mr.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /*
  2. * Copyright(c) 2016 Intel Corporation.
  3. *
  4. * This file is provided under a dual BSD/GPLv2 license. When using or
  5. * redistributing this file, you may do so under either license.
  6. *
  7. * GPL LICENSE SUMMARY
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * BSD LICENSE
  19. *
  20. * Redistribution and use in source and binary forms, with or without
  21. * modification, are permitted provided that the following conditions
  22. * are met:
  23. *
  24. * - Redistributions of source code must retain the above copyright
  25. * notice, this list of conditions and the following disclaimer.
  26. * - Redistributions in binary form must reproduce the above copyright
  27. * notice, this list of conditions and the following disclaimer in
  28. * the documentation and/or other materials provided with the
  29. * distribution.
  30. * - Neither the name of Intel Corporation nor the names of its
  31. * contributors may be used to endorse or promote products derived
  32. * from this software without specific prior written permission.
  33. *
  34. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45. *
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/vmalloc.h>
  49. #include <rdma/ib_umem.h>
  50. #include <rdma/rdma_vt.h>
  51. #include "vt.h"
  52. #include "mr.h"
  53. #include "trace.h"
  54. /**
  55. * rvt_driver_mr_init - Init MR resources per driver
  56. * @rdi: rvt dev struct
  57. *
  58. * Do any intilization needed when a driver registers with rdmavt.
  59. *
  60. * Return: 0 on success or errno on failure
  61. */
  62. int rvt_driver_mr_init(struct rvt_dev_info *rdi)
  63. {
  64. unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
  65. unsigned lk_tab_size;
  66. int i;
  67. /*
  68. * The top hfi1_lkey_table_size bits are used to index the
  69. * table. The lower 8 bits can be owned by the user (copied from
  70. * the LKEY). The remaining bits act as a generation number or tag.
  71. */
  72. if (!lkey_table_size)
  73. return -EINVAL;
  74. spin_lock_init(&rdi->lkey_table.lock);
  75. /* ensure generation is at least 4 bits */
  76. if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
  77. rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
  78. lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
  79. rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
  80. lkey_table_size = rdi->dparms.lkey_table_size;
  81. }
  82. rdi->lkey_table.max = 1 << lkey_table_size;
  83. rdi->lkey_table.shift = 32 - lkey_table_size;
  84. lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
  85. rdi->lkey_table.table = (struct rvt_mregion __rcu **)
  86. vmalloc_node(lk_tab_size, rdi->dparms.node);
  87. if (!rdi->lkey_table.table)
  88. return -ENOMEM;
  89. RCU_INIT_POINTER(rdi->dma_mr, NULL);
  90. for (i = 0; i < rdi->lkey_table.max; i++)
  91. RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
  92. return 0;
  93. }
  94. /**
  95. *rvt_mr_exit: clean up MR
  96. *@rdi: rvt dev structure
  97. *
  98. * called when drivers have unregistered or perhaps failed to register with us
  99. */
  100. void rvt_mr_exit(struct rvt_dev_info *rdi)
  101. {
  102. if (rdi->dma_mr)
  103. rvt_pr_err(rdi, "DMA MR not null!\n");
  104. vfree(rdi->lkey_table.table);
  105. }
  106. static void rvt_deinit_mregion(struct rvt_mregion *mr)
  107. {
  108. int i = mr->mapsz;
  109. mr->mapsz = 0;
  110. while (i)
  111. kfree(mr->map[--i]);
  112. percpu_ref_exit(&mr->refcount);
  113. }
  114. static void __rvt_mregion_complete(struct percpu_ref *ref)
  115. {
  116. struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
  117. refcount);
  118. complete(&mr->comp);
  119. }
  120. static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
  121. int count, unsigned int percpu_flags)
  122. {
  123. int m, i = 0;
  124. struct rvt_dev_info *dev = ib_to_rvt(pd->device);
  125. mr->mapsz = 0;
  126. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  127. for (; i < m; i++) {
  128. mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
  129. dev->dparms.node);
  130. if (!mr->map[i])
  131. goto bail;
  132. mr->mapsz++;
  133. }
  134. init_completion(&mr->comp);
  135. /* count returning the ptr to user */
  136. if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
  137. percpu_flags, GFP_KERNEL))
  138. goto bail;
  139. atomic_set(&mr->lkey_invalid, 0);
  140. mr->pd = pd;
  141. mr->max_segs = count;
  142. return 0;
  143. bail:
  144. rvt_deinit_mregion(mr);
  145. return -ENOMEM;
  146. }
  147. /**
  148. * rvt_alloc_lkey - allocate an lkey
  149. * @mr: memory region that this lkey protects
  150. * @dma_region: 0->normal key, 1->restricted DMA key
  151. *
  152. * Returns 0 if successful, otherwise returns -errno.
  153. *
  154. * Increments mr reference count as required.
  155. *
  156. * Sets the lkey field mr for non-dma regions.
  157. *
  158. */
  159. static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
  160. {
  161. unsigned long flags;
  162. u32 r;
  163. u32 n;
  164. int ret = 0;
  165. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  166. struct rvt_lkey_table *rkt = &dev->lkey_table;
  167. rvt_get_mr(mr);
  168. spin_lock_irqsave(&rkt->lock, flags);
  169. /* special case for dma_mr lkey == 0 */
  170. if (dma_region) {
  171. struct rvt_mregion *tmr;
  172. tmr = rcu_access_pointer(dev->dma_mr);
  173. if (!tmr) {
  174. mr->lkey_published = 1;
  175. /* Insure published written first */
  176. rcu_assign_pointer(dev->dma_mr, mr);
  177. rvt_get_mr(mr);
  178. }
  179. goto success;
  180. }
  181. /* Find the next available LKEY */
  182. r = rkt->next;
  183. n = r;
  184. for (;;) {
  185. if (!rcu_access_pointer(rkt->table[r]))
  186. break;
  187. r = (r + 1) & (rkt->max - 1);
  188. if (r == n)
  189. goto bail;
  190. }
  191. rkt->next = (r + 1) & (rkt->max - 1);
  192. /*
  193. * Make sure lkey is never zero which is reserved to indicate an
  194. * unrestricted LKEY.
  195. */
  196. rkt->gen++;
  197. /*
  198. * bits are capped to ensure enough bits for generation number
  199. */
  200. mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
  201. ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
  202. << 8);
  203. if (mr->lkey == 0) {
  204. mr->lkey |= 1 << 8;
  205. rkt->gen++;
  206. }
  207. mr->lkey_published = 1;
  208. /* Insure published written first */
  209. rcu_assign_pointer(rkt->table[r], mr);
  210. success:
  211. spin_unlock_irqrestore(&rkt->lock, flags);
  212. out:
  213. return ret;
  214. bail:
  215. rvt_put_mr(mr);
  216. spin_unlock_irqrestore(&rkt->lock, flags);
  217. ret = -ENOMEM;
  218. goto out;
  219. }
  220. /**
  221. * rvt_free_lkey - free an lkey
  222. * @mr: mr to free from tables
  223. */
  224. static void rvt_free_lkey(struct rvt_mregion *mr)
  225. {
  226. unsigned long flags;
  227. u32 lkey = mr->lkey;
  228. u32 r;
  229. struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
  230. struct rvt_lkey_table *rkt = &dev->lkey_table;
  231. int freed = 0;
  232. spin_lock_irqsave(&rkt->lock, flags);
  233. if (!lkey) {
  234. if (mr->lkey_published) {
  235. mr->lkey_published = 0;
  236. /* insure published is written before pointer */
  237. rcu_assign_pointer(dev->dma_mr, NULL);
  238. rvt_put_mr(mr);
  239. }
  240. } else {
  241. if (!mr->lkey_published)
  242. goto out;
  243. r = lkey >> (32 - dev->dparms.lkey_table_size);
  244. mr->lkey_published = 0;
  245. /* insure published is written before pointer */
  246. rcu_assign_pointer(rkt->table[r], NULL);
  247. }
  248. freed++;
  249. out:
  250. spin_unlock_irqrestore(&rkt->lock, flags);
  251. if (freed)
  252. percpu_ref_kill(&mr->refcount);
  253. }
  254. static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
  255. {
  256. struct rvt_mr *mr;
  257. int rval = -ENOMEM;
  258. int m;
  259. /* Allocate struct plus pointers to first level page tables. */
  260. m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
  261. mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
  262. if (!mr)
  263. goto bail;
  264. rval = rvt_init_mregion(&mr->mr, pd, count, 0);
  265. if (rval)
  266. goto bail;
  267. /*
  268. * ib_reg_phys_mr() will initialize mr->ibmr except for
  269. * lkey and rkey.
  270. */
  271. rval = rvt_alloc_lkey(&mr->mr, 0);
  272. if (rval)
  273. goto bail_mregion;
  274. mr->ibmr.lkey = mr->mr.lkey;
  275. mr->ibmr.rkey = mr->mr.lkey;
  276. done:
  277. return mr;
  278. bail_mregion:
  279. rvt_deinit_mregion(&mr->mr);
  280. bail:
  281. kfree(mr);
  282. mr = ERR_PTR(rval);
  283. goto done;
  284. }
  285. static void __rvt_free_mr(struct rvt_mr *mr)
  286. {
  287. rvt_free_lkey(&mr->mr);
  288. rvt_deinit_mregion(&mr->mr);
  289. kfree(mr);
  290. }
  291. /**
  292. * rvt_get_dma_mr - get a DMA memory region
  293. * @pd: protection domain for this memory region
  294. * @acc: access flags
  295. *
  296. * Return: the memory region on success, otherwise returns an errno.
  297. * Note that all DMA addresses should be created via the functions in
  298. * struct dma_virt_ops.
  299. */
  300. struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
  301. {
  302. struct rvt_mr *mr;
  303. struct ib_mr *ret;
  304. int rval;
  305. if (ibpd_to_rvtpd(pd)->user)
  306. return ERR_PTR(-EPERM);
  307. mr = kzalloc(sizeof(*mr), GFP_KERNEL);
  308. if (!mr) {
  309. ret = ERR_PTR(-ENOMEM);
  310. goto bail;
  311. }
  312. rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
  313. if (rval) {
  314. ret = ERR_PTR(rval);
  315. goto bail;
  316. }
  317. rval = rvt_alloc_lkey(&mr->mr, 1);
  318. if (rval) {
  319. ret = ERR_PTR(rval);
  320. goto bail_mregion;
  321. }
  322. mr->mr.access_flags = acc;
  323. ret = &mr->ibmr;
  324. done:
  325. return ret;
  326. bail_mregion:
  327. rvt_deinit_mregion(&mr->mr);
  328. bail:
  329. kfree(mr);
  330. goto done;
  331. }
  332. /**
  333. * rvt_reg_user_mr - register a userspace memory region
  334. * @pd: protection domain for this memory region
  335. * @start: starting userspace address
  336. * @length: length of region to register
  337. * @mr_access_flags: access flags for this memory region
  338. * @udata: unused by the driver
  339. *
  340. * Return: the memory region on success, otherwise returns an errno.
  341. */
  342. struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  343. u64 virt_addr, int mr_access_flags,
  344. struct ib_udata *udata)
  345. {
  346. struct rvt_mr *mr;
  347. struct ib_umem *umem;
  348. struct scatterlist *sg;
  349. int n, m, entry;
  350. struct ib_mr *ret;
  351. if (length == 0)
  352. return ERR_PTR(-EINVAL);
  353. umem = ib_umem_get(pd->uobject->context, start, length,
  354. mr_access_flags, 0);
  355. if (IS_ERR(umem))
  356. return (void *)umem;
  357. n = umem->nmap;
  358. mr = __rvt_alloc_mr(n, pd);
  359. if (IS_ERR(mr)) {
  360. ret = (struct ib_mr *)mr;
  361. goto bail_umem;
  362. }
  363. mr->mr.user_base = start;
  364. mr->mr.iova = virt_addr;
  365. mr->mr.length = length;
  366. mr->mr.offset = ib_umem_offset(umem);
  367. mr->mr.access_flags = mr_access_flags;
  368. mr->umem = umem;
  369. mr->mr.page_shift = umem->page_shift;
  370. m = 0;
  371. n = 0;
  372. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  373. void *vaddr;
  374. vaddr = page_address(sg_page(sg));
  375. if (!vaddr) {
  376. ret = ERR_PTR(-EINVAL);
  377. goto bail_inval;
  378. }
  379. mr->mr.map[m]->segs[n].vaddr = vaddr;
  380. mr->mr.map[m]->segs[n].length = BIT(umem->page_shift);
  381. trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr,
  382. BIT(umem->page_shift));
  383. n++;
  384. if (n == RVT_SEGSZ) {
  385. m++;
  386. n = 0;
  387. }
  388. }
  389. return &mr->ibmr;
  390. bail_inval:
  391. __rvt_free_mr(mr);
  392. bail_umem:
  393. ib_umem_release(umem);
  394. return ret;
  395. }
  396. /**
  397. * rvt_dereg_mr - unregister and free a memory region
  398. * @ibmr: the memory region to free
  399. *
  400. *
  401. * Note that this is called to free MRs created by rvt_get_dma_mr()
  402. * or rvt_reg_user_mr().
  403. *
  404. * Returns 0 on success.
  405. */
  406. int rvt_dereg_mr(struct ib_mr *ibmr)
  407. {
  408. struct rvt_mr *mr = to_imr(ibmr);
  409. struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
  410. int ret = 0;
  411. unsigned long timeout;
  412. rvt_free_lkey(&mr->mr);
  413. rvt_put_mr(&mr->mr); /* will set completion if last */
  414. timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
  415. if (!timeout) {
  416. rvt_pr_err(rdi,
  417. "rvt_dereg_mr timeout mr %p pd %p\n",
  418. mr, mr->mr.pd);
  419. rvt_get_mr(&mr->mr);
  420. ret = -EBUSY;
  421. goto out;
  422. }
  423. rvt_deinit_mregion(&mr->mr);
  424. if (mr->umem)
  425. ib_umem_release(mr->umem);
  426. kfree(mr);
  427. out:
  428. return ret;
  429. }
  430. /**
  431. * rvt_alloc_mr - Allocate a memory region usable with the
  432. * @pd: protection domain for this memory region
  433. * @mr_type: mem region type
  434. * @max_num_sg: Max number of segments allowed
  435. *
  436. * Return: the memory region on success, otherwise return an errno.
  437. */
  438. struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
  439. enum ib_mr_type mr_type,
  440. u32 max_num_sg)
  441. {
  442. struct rvt_mr *mr;
  443. if (mr_type != IB_MR_TYPE_MEM_REG)
  444. return ERR_PTR(-EINVAL);
  445. mr = __rvt_alloc_mr(max_num_sg, pd);
  446. if (IS_ERR(mr))
  447. return (struct ib_mr *)mr;
  448. return &mr->ibmr;
  449. }
  450. /**
  451. * rvt_set_page - page assignment function called by ib_sg_to_pages
  452. * @ibmr: memory region
  453. * @addr: dma address of mapped page
  454. *
  455. * Return: 0 on success
  456. */
  457. static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
  458. {
  459. struct rvt_mr *mr = to_imr(ibmr);
  460. u32 ps = 1 << mr->mr.page_shift;
  461. u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
  462. int m, n;
  463. if (unlikely(mapped_segs == mr->mr.max_segs))
  464. return -ENOMEM;
  465. if (mr->mr.length == 0) {
  466. mr->mr.user_base = addr;
  467. mr->mr.iova = addr;
  468. }
  469. m = mapped_segs / RVT_SEGSZ;
  470. n = mapped_segs % RVT_SEGSZ;
  471. mr->mr.map[m]->segs[n].vaddr = (void *)addr;
  472. mr->mr.map[m]->segs[n].length = ps;
  473. trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
  474. mr->mr.length += ps;
  475. return 0;
  476. }
  477. /**
  478. * rvt_map_mr_sg - map sg list and set it the memory region
  479. * @ibmr: memory region
  480. * @sg: dma mapped scatterlist
  481. * @sg_nents: number of entries in sg
  482. * @sg_offset: offset in bytes into sg
  483. *
  484. * Return: number of sg elements mapped to the memory region
  485. */
  486. int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
  487. int sg_nents, unsigned int *sg_offset)
  488. {
  489. struct rvt_mr *mr = to_imr(ibmr);
  490. mr->mr.length = 0;
  491. mr->mr.page_shift = PAGE_SHIFT;
  492. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
  493. rvt_set_page);
  494. }
  495. /**
  496. * rvt_fast_reg_mr - fast register physical MR
  497. * @qp: the queue pair where the work request comes from
  498. * @ibmr: the memory region to be registered
  499. * @key: updated key for this memory region
  500. * @access: access flags for this memory region
  501. *
  502. * Returns 0 on success.
  503. */
  504. int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
  505. int access)
  506. {
  507. struct rvt_mr *mr = to_imr(ibmr);
  508. if (qp->ibqp.pd != mr->mr.pd)
  509. return -EACCES;
  510. /* not applicable to dma MR or user MR */
  511. if (!mr->mr.lkey || mr->umem)
  512. return -EINVAL;
  513. if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
  514. return -EINVAL;
  515. ibmr->lkey = key;
  516. ibmr->rkey = key;
  517. mr->mr.lkey = key;
  518. mr->mr.access_flags = access;
  519. atomic_set(&mr->mr.lkey_invalid, 0);
  520. return 0;
  521. }
  522. EXPORT_SYMBOL(rvt_fast_reg_mr);
  523. /**
  524. * rvt_invalidate_rkey - invalidate an MR rkey
  525. * @qp: queue pair associated with the invalidate op
  526. * @rkey: rkey to invalidate
  527. *
  528. * Returns 0 on success.
  529. */
  530. int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
  531. {
  532. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  533. struct rvt_lkey_table *rkt = &dev->lkey_table;
  534. struct rvt_mregion *mr;
  535. if (rkey == 0)
  536. return -EINVAL;
  537. rcu_read_lock();
  538. mr = rcu_dereference(
  539. rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
  540. if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  541. goto bail;
  542. atomic_set(&mr->lkey_invalid, 1);
  543. rcu_read_unlock();
  544. return 0;
  545. bail:
  546. rcu_read_unlock();
  547. return -EINVAL;
  548. }
  549. EXPORT_SYMBOL(rvt_invalidate_rkey);
  550. /**
  551. * rvt_alloc_fmr - allocate a fast memory region
  552. * @pd: the protection domain for this memory region
  553. * @mr_access_flags: access flags for this memory region
  554. * @fmr_attr: fast memory region attributes
  555. *
  556. * Return: the memory region on success, otherwise returns an errno.
  557. */
  558. struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
  559. struct ib_fmr_attr *fmr_attr)
  560. {
  561. struct rvt_fmr *fmr;
  562. int m;
  563. struct ib_fmr *ret;
  564. int rval = -ENOMEM;
  565. /* Allocate struct plus pointers to first level page tables. */
  566. m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
  567. fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
  568. if (!fmr)
  569. goto bail;
  570. rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
  571. PERCPU_REF_INIT_ATOMIC);
  572. if (rval)
  573. goto bail;
  574. /*
  575. * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
  576. * rkey.
  577. */
  578. rval = rvt_alloc_lkey(&fmr->mr, 0);
  579. if (rval)
  580. goto bail_mregion;
  581. fmr->ibfmr.rkey = fmr->mr.lkey;
  582. fmr->ibfmr.lkey = fmr->mr.lkey;
  583. /*
  584. * Resources are allocated but no valid mapping (RKEY can't be
  585. * used).
  586. */
  587. fmr->mr.access_flags = mr_access_flags;
  588. fmr->mr.max_segs = fmr_attr->max_pages;
  589. fmr->mr.page_shift = fmr_attr->page_shift;
  590. ret = &fmr->ibfmr;
  591. done:
  592. return ret;
  593. bail_mregion:
  594. rvt_deinit_mregion(&fmr->mr);
  595. bail:
  596. kfree(fmr);
  597. ret = ERR_PTR(rval);
  598. goto done;
  599. }
  600. /**
  601. * rvt_map_phys_fmr - set up a fast memory region
  602. * @ibmfr: the fast memory region to set up
  603. * @page_list: the list of pages to associate with the fast memory region
  604. * @list_len: the number of pages to associate with the fast memory region
  605. * @iova: the virtual address of the start of the fast memory region
  606. *
  607. * This may be called from interrupt context.
  608. *
  609. * Return: 0 on success
  610. */
  611. int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
  612. int list_len, u64 iova)
  613. {
  614. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  615. struct rvt_lkey_table *rkt;
  616. unsigned long flags;
  617. int m, n;
  618. unsigned long i;
  619. u32 ps;
  620. struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
  621. i = atomic_long_read(&fmr->mr.refcount.count);
  622. if (i > 2)
  623. return -EBUSY;
  624. if (list_len > fmr->mr.max_segs)
  625. return -EINVAL;
  626. rkt = &rdi->lkey_table;
  627. spin_lock_irqsave(&rkt->lock, flags);
  628. fmr->mr.user_base = iova;
  629. fmr->mr.iova = iova;
  630. ps = 1 << fmr->mr.page_shift;
  631. fmr->mr.length = list_len * ps;
  632. m = 0;
  633. n = 0;
  634. for (i = 0; i < list_len; i++) {
  635. fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
  636. fmr->mr.map[m]->segs[n].length = ps;
  637. trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
  638. if (++n == RVT_SEGSZ) {
  639. m++;
  640. n = 0;
  641. }
  642. }
  643. spin_unlock_irqrestore(&rkt->lock, flags);
  644. return 0;
  645. }
  646. /**
  647. * rvt_unmap_fmr - unmap fast memory regions
  648. * @fmr_list: the list of fast memory regions to unmap
  649. *
  650. * Return: 0 on success.
  651. */
  652. int rvt_unmap_fmr(struct list_head *fmr_list)
  653. {
  654. struct rvt_fmr *fmr;
  655. struct rvt_lkey_table *rkt;
  656. unsigned long flags;
  657. struct rvt_dev_info *rdi;
  658. list_for_each_entry(fmr, fmr_list, ibfmr.list) {
  659. rdi = ib_to_rvt(fmr->ibfmr.device);
  660. rkt = &rdi->lkey_table;
  661. spin_lock_irqsave(&rkt->lock, flags);
  662. fmr->mr.user_base = 0;
  663. fmr->mr.iova = 0;
  664. fmr->mr.length = 0;
  665. spin_unlock_irqrestore(&rkt->lock, flags);
  666. }
  667. return 0;
  668. }
  669. /**
  670. * rvt_dealloc_fmr - deallocate a fast memory region
  671. * @ibfmr: the fast memory region to deallocate
  672. *
  673. * Return: 0 on success.
  674. */
  675. int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
  676. {
  677. struct rvt_fmr *fmr = to_ifmr(ibfmr);
  678. int ret = 0;
  679. unsigned long timeout;
  680. rvt_free_lkey(&fmr->mr);
  681. rvt_put_mr(&fmr->mr); /* will set completion if last */
  682. timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
  683. if (!timeout) {
  684. rvt_get_mr(&fmr->mr);
  685. ret = -EBUSY;
  686. goto out;
  687. }
  688. rvt_deinit_mregion(&fmr->mr);
  689. kfree(fmr);
  690. out:
  691. return ret;
  692. }
  693. /**
  694. * rvt_lkey_ok - check IB SGE for validity and initialize
  695. * @rkt: table containing lkey to check SGE against
  696. * @pd: protection domain
  697. * @isge: outgoing internal SGE
  698. * @sge: SGE to check
  699. * @acc: access flags
  700. *
  701. * Check the IB SGE for validity and initialize our internal version
  702. * of it.
  703. *
  704. * Return: 1 if valid and successful, otherwise returns 0.
  705. *
  706. * increments the reference count upon success
  707. *
  708. */
  709. int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
  710. struct rvt_sge *isge, struct ib_sge *sge, int acc)
  711. {
  712. struct rvt_mregion *mr;
  713. unsigned n, m;
  714. size_t off;
  715. /*
  716. * We use LKEY == zero for kernel virtual addresses
  717. * (see rvt_get_dma_mr() and dma_virt_ops).
  718. */
  719. rcu_read_lock();
  720. if (sge->lkey == 0) {
  721. struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
  722. if (pd->user)
  723. goto bail;
  724. mr = rcu_dereference(dev->dma_mr);
  725. if (!mr)
  726. goto bail;
  727. rvt_get_mr(mr);
  728. rcu_read_unlock();
  729. isge->mr = mr;
  730. isge->vaddr = (void *)sge->addr;
  731. isge->length = sge->length;
  732. isge->sge_length = sge->length;
  733. isge->m = 0;
  734. isge->n = 0;
  735. goto ok;
  736. }
  737. mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
  738. if (!mr)
  739. goto bail;
  740. rvt_get_mr(mr);
  741. if (!READ_ONCE(mr->lkey_published))
  742. goto bail_unref;
  743. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  744. mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
  745. goto bail_unref;
  746. off = sge->addr - mr->user_base;
  747. if (unlikely(sge->addr < mr->user_base ||
  748. off + sge->length > mr->length ||
  749. (mr->access_flags & acc) != acc))
  750. goto bail_unref;
  751. rcu_read_unlock();
  752. off += mr->offset;
  753. if (mr->page_shift) {
  754. /*
  755. * page sizes are uniform power of 2 so no loop is necessary
  756. * entries_spanned_by_off is the number of times the loop below
  757. * would have executed.
  758. */
  759. size_t entries_spanned_by_off;
  760. entries_spanned_by_off = off >> mr->page_shift;
  761. off -= (entries_spanned_by_off << mr->page_shift);
  762. m = entries_spanned_by_off / RVT_SEGSZ;
  763. n = entries_spanned_by_off % RVT_SEGSZ;
  764. } else {
  765. m = 0;
  766. n = 0;
  767. while (off >= mr->map[m]->segs[n].length) {
  768. off -= mr->map[m]->segs[n].length;
  769. n++;
  770. if (n >= RVT_SEGSZ) {
  771. m++;
  772. n = 0;
  773. }
  774. }
  775. }
  776. isge->mr = mr;
  777. isge->vaddr = mr->map[m]->segs[n].vaddr + off;
  778. isge->length = mr->map[m]->segs[n].length - off;
  779. isge->sge_length = sge->length;
  780. isge->m = m;
  781. isge->n = n;
  782. ok:
  783. return 1;
  784. bail_unref:
  785. rvt_put_mr(mr);
  786. bail:
  787. rcu_read_unlock();
  788. return 0;
  789. }
  790. EXPORT_SYMBOL(rvt_lkey_ok);
  791. /**
  792. * rvt_rkey_ok - check the IB virtual address, length, and RKEY
  793. * @qp: qp for validation
  794. * @sge: SGE state
  795. * @len: length of data
  796. * @vaddr: virtual address to place data
  797. * @rkey: rkey to check
  798. * @acc: access flags
  799. *
  800. * Return: 1 if successful, otherwise 0.
  801. *
  802. * increments the reference count upon success
  803. */
  804. int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
  805. u32 len, u64 vaddr, u32 rkey, int acc)
  806. {
  807. struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
  808. struct rvt_lkey_table *rkt = &dev->lkey_table;
  809. struct rvt_mregion *mr;
  810. unsigned n, m;
  811. size_t off;
  812. /*
  813. * We use RKEY == zero for kernel virtual addresses
  814. * (see rvt_get_dma_mr() and dma_virt_ops).
  815. */
  816. rcu_read_lock();
  817. if (rkey == 0) {
  818. struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
  819. struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
  820. if (pd->user)
  821. goto bail;
  822. mr = rcu_dereference(rdi->dma_mr);
  823. if (!mr)
  824. goto bail;
  825. rvt_get_mr(mr);
  826. rcu_read_unlock();
  827. sge->mr = mr;
  828. sge->vaddr = (void *)vaddr;
  829. sge->length = len;
  830. sge->sge_length = len;
  831. sge->m = 0;
  832. sge->n = 0;
  833. goto ok;
  834. }
  835. mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
  836. if (!mr)
  837. goto bail;
  838. rvt_get_mr(mr);
  839. /* insure mr read is before test */
  840. if (!READ_ONCE(mr->lkey_published))
  841. goto bail_unref;
  842. if (unlikely(atomic_read(&mr->lkey_invalid) ||
  843. mr->lkey != rkey || qp->ibqp.pd != mr->pd))
  844. goto bail_unref;
  845. off = vaddr - mr->iova;
  846. if (unlikely(vaddr < mr->iova || off + len > mr->length ||
  847. (mr->access_flags & acc) == 0))
  848. goto bail_unref;
  849. rcu_read_unlock();
  850. off += mr->offset;
  851. if (mr->page_shift) {
  852. /*
  853. * page sizes are uniform power of 2 so no loop is necessary
  854. * entries_spanned_by_off is the number of times the loop below
  855. * would have executed.
  856. */
  857. size_t entries_spanned_by_off;
  858. entries_spanned_by_off = off >> mr->page_shift;
  859. off -= (entries_spanned_by_off << mr->page_shift);
  860. m = entries_spanned_by_off / RVT_SEGSZ;
  861. n = entries_spanned_by_off % RVT_SEGSZ;
  862. } else {
  863. m = 0;
  864. n = 0;
  865. while (off >= mr->map[m]->segs[n].length) {
  866. off -= mr->map[m]->segs[n].length;
  867. n++;
  868. if (n >= RVT_SEGSZ) {
  869. m++;
  870. n = 0;
  871. }
  872. }
  873. }
  874. sge->mr = mr;
  875. sge->vaddr = mr->map[m]->segs[n].vaddr + off;
  876. sge->length = mr->map[m]->segs[n].length - off;
  877. sge->sge_length = len;
  878. sge->m = m;
  879. sge->n = n;
  880. ok:
  881. return 1;
  882. bail_unref:
  883. rvt_put_mr(mr);
  884. bail:
  885. rcu_read_unlock();
  886. return 0;
  887. }
  888. EXPORT_SYMBOL(rvt_rkey_ok);