hns_roce_mr.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /*
  2. * Copyright (c) 2016 Hisilicon Limited.
  3. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the
  9. * OpenIB.org BSD license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or
  12. * without modification, are permitted provided that the following
  13. * conditions are met:
  14. *
  15. * - Redistributions of source code must retain the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer.
  18. *
  19. * - Redistributions in binary form must reproduce the above
  20. * copyright notice, this list of conditions and the following
  21. * disclaimer in the documentation and/or other materials
  22. * provided with the distribution.
  23. *
  24. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31. * SOFTWARE.
  32. */
  33. #include <linux/platform_device.h>
  34. #include <rdma/ib_umem.h>
  35. #include "hns_roce_device.h"
  36. #include "hns_roce_cmd.h"
  37. #include "hns_roce_hem.h"
  38. static u32 hw_index_to_key(unsigned long ind)
  39. {
  40. return (u32)(ind >> 24) | (ind << 8);
  41. }
  42. unsigned long key_to_hw_index(u32 key)
  43. {
  44. return (key << 24) | (key >> 8);
  45. }
  46. static int hns_roce_sw2hw_mpt(struct hns_roce_dev *hr_dev,
  47. struct hns_roce_cmd_mailbox *mailbox,
  48. unsigned long mpt_index)
  49. {
  50. return hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, mpt_index, 0,
  51. HNS_ROCE_CMD_SW2HW_MPT,
  52. HNS_ROCE_CMD_TIMEOUT_MSECS);
  53. }
  54. int hns_roce_hw2sw_mpt(struct hns_roce_dev *hr_dev,
  55. struct hns_roce_cmd_mailbox *mailbox,
  56. unsigned long mpt_index)
  57. {
  58. return hns_roce_cmd_mbox(hr_dev, 0, mailbox ? mailbox->dma : 0,
  59. mpt_index, !mailbox, HNS_ROCE_CMD_HW2SW_MPT,
  60. HNS_ROCE_CMD_TIMEOUT_MSECS);
  61. }
  62. static int hns_roce_buddy_alloc(struct hns_roce_buddy *buddy, int order,
  63. unsigned long *seg)
  64. {
  65. int o;
  66. u32 m;
  67. spin_lock(&buddy->lock);
  68. for (o = order; o <= buddy->max_order; ++o) {
  69. if (buddy->num_free[o]) {
  70. m = 1 << (buddy->max_order - o);
  71. *seg = find_first_bit(buddy->bits[o], m);
  72. if (*seg < m)
  73. goto found;
  74. }
  75. }
  76. spin_unlock(&buddy->lock);
  77. return -1;
  78. found:
  79. clear_bit(*seg, buddy->bits[o]);
  80. --buddy->num_free[o];
  81. while (o > order) {
  82. --o;
  83. *seg <<= 1;
  84. set_bit(*seg ^ 1, buddy->bits[o]);
  85. ++buddy->num_free[o];
  86. }
  87. spin_unlock(&buddy->lock);
  88. *seg <<= order;
  89. return 0;
  90. }
  91. static void hns_roce_buddy_free(struct hns_roce_buddy *buddy, unsigned long seg,
  92. int order)
  93. {
  94. seg >>= order;
  95. spin_lock(&buddy->lock);
  96. while (test_bit(seg ^ 1, buddy->bits[order])) {
  97. clear_bit(seg ^ 1, buddy->bits[order]);
  98. --buddy->num_free[order];
  99. seg >>= 1;
  100. ++order;
  101. }
  102. set_bit(seg, buddy->bits[order]);
  103. ++buddy->num_free[order];
  104. spin_unlock(&buddy->lock);
  105. }
  106. static int hns_roce_buddy_init(struct hns_roce_buddy *buddy, int max_order)
  107. {
  108. int i, s;
  109. buddy->max_order = max_order;
  110. spin_lock_init(&buddy->lock);
  111. buddy->bits = kcalloc(buddy->max_order + 1,
  112. sizeof(*buddy->bits),
  113. GFP_KERNEL);
  114. buddy->num_free = kcalloc(buddy->max_order + 1,
  115. sizeof(*buddy->num_free),
  116. GFP_KERNEL);
  117. if (!buddy->bits || !buddy->num_free)
  118. goto err_out;
  119. for (i = 0; i <= buddy->max_order; ++i) {
  120. s = BITS_TO_LONGS(1 << (buddy->max_order - i));
  121. buddy->bits[i] = kcalloc(s, sizeof(long), GFP_KERNEL |
  122. __GFP_NOWARN);
  123. if (!buddy->bits[i]) {
  124. buddy->bits[i] = vzalloc(s * sizeof(long));
  125. if (!buddy->bits[i])
  126. goto err_out_free;
  127. }
  128. }
  129. set_bit(0, buddy->bits[buddy->max_order]);
  130. buddy->num_free[buddy->max_order] = 1;
  131. return 0;
  132. err_out_free:
  133. for (i = 0; i <= buddy->max_order; ++i)
  134. kvfree(buddy->bits[i]);
  135. err_out:
  136. kfree(buddy->bits);
  137. kfree(buddy->num_free);
  138. return -ENOMEM;
  139. }
  140. static void hns_roce_buddy_cleanup(struct hns_roce_buddy *buddy)
  141. {
  142. int i;
  143. for (i = 0; i <= buddy->max_order; ++i)
  144. kvfree(buddy->bits[i]);
  145. kfree(buddy->bits);
  146. kfree(buddy->num_free);
  147. }
  148. static int hns_roce_alloc_mtt_range(struct hns_roce_dev *hr_dev, int order,
  149. unsigned long *seg)
  150. {
  151. struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
  152. int ret = 0;
  153. ret = hns_roce_buddy_alloc(&mr_table->mtt_buddy, order, seg);
  154. if (ret == -1)
  155. return -1;
  156. if (hns_roce_table_get_range(hr_dev, &mr_table->mtt_table, *seg,
  157. *seg + (1 << order) - 1)) {
  158. hns_roce_buddy_free(&mr_table->mtt_buddy, *seg, order);
  159. return -1;
  160. }
  161. return 0;
  162. }
  163. int hns_roce_mtt_init(struct hns_roce_dev *hr_dev, int npages, int page_shift,
  164. struct hns_roce_mtt *mtt)
  165. {
  166. int ret = 0;
  167. int i;
  168. /* Page num is zero, correspond to DMA memory register */
  169. if (!npages) {
  170. mtt->order = -1;
  171. mtt->page_shift = HNS_ROCE_HEM_PAGE_SHIFT;
  172. return 0;
  173. }
  174. /* Note: if page_shift is zero, FAST memory register */
  175. mtt->page_shift = page_shift;
  176. /* Compute MTT entry necessary */
  177. for (mtt->order = 0, i = HNS_ROCE_MTT_ENTRY_PER_SEG; i < npages;
  178. i <<= 1)
  179. ++mtt->order;
  180. /* Allocate MTT entry */
  181. ret = hns_roce_alloc_mtt_range(hr_dev, mtt->order, &mtt->first_seg);
  182. if (ret == -1)
  183. return -ENOMEM;
  184. return 0;
  185. }
  186. void hns_roce_mtt_cleanup(struct hns_roce_dev *hr_dev, struct hns_roce_mtt *mtt)
  187. {
  188. struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
  189. if (mtt->order < 0)
  190. return;
  191. hns_roce_buddy_free(&mr_table->mtt_buddy, mtt->first_seg, mtt->order);
  192. hns_roce_table_put_range(hr_dev, &mr_table->mtt_table, mtt->first_seg,
  193. mtt->first_seg + (1 << mtt->order) - 1);
  194. }
  195. static int hns_roce_mr_alloc(struct hns_roce_dev *hr_dev, u32 pd, u64 iova,
  196. u64 size, u32 access, int npages,
  197. struct hns_roce_mr *mr)
  198. {
  199. unsigned long index = 0;
  200. int ret = 0;
  201. struct device *dev = &hr_dev->pdev->dev;
  202. /* Allocate a key for mr from mr_table */
  203. ret = hns_roce_bitmap_alloc(&hr_dev->mr_table.mtpt_bitmap, &index);
  204. if (ret == -1)
  205. return -ENOMEM;
  206. mr->iova = iova; /* MR va starting addr */
  207. mr->size = size; /* MR addr range */
  208. mr->pd = pd; /* MR num */
  209. mr->access = access; /* MR access permit */
  210. mr->enabled = 0; /* MR active status */
  211. mr->key = hw_index_to_key(index); /* MR key */
  212. if (size == ~0ull) {
  213. mr->type = MR_TYPE_DMA;
  214. mr->pbl_buf = NULL;
  215. mr->pbl_dma_addr = 0;
  216. } else {
  217. mr->type = MR_TYPE_MR;
  218. mr->pbl_buf = dma_alloc_coherent(dev, npages * 8,
  219. &(mr->pbl_dma_addr),
  220. GFP_KERNEL);
  221. if (!mr->pbl_buf)
  222. return -ENOMEM;
  223. }
  224. return 0;
  225. }
  226. static void hns_roce_mr_free(struct hns_roce_dev *hr_dev,
  227. struct hns_roce_mr *mr)
  228. {
  229. struct device *dev = &hr_dev->pdev->dev;
  230. int npages = 0;
  231. int ret;
  232. if (mr->enabled) {
  233. ret = hns_roce_hw2sw_mpt(hr_dev, NULL, key_to_hw_index(mr->key)
  234. & (hr_dev->caps.num_mtpts - 1));
  235. if (ret)
  236. dev_warn(dev, "HW2SW_MPT failed (%d)\n", ret);
  237. }
  238. if (mr->size != ~0ULL) {
  239. npages = ib_umem_page_count(mr->umem);
  240. dma_free_coherent(dev, (unsigned int)(npages * 8), mr->pbl_buf,
  241. mr->pbl_dma_addr);
  242. }
  243. hns_roce_bitmap_free(&hr_dev->mr_table.mtpt_bitmap,
  244. key_to_hw_index(mr->key), BITMAP_NO_RR);
  245. }
  246. static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
  247. struct hns_roce_mr *mr)
  248. {
  249. int ret;
  250. unsigned long mtpt_idx = key_to_hw_index(mr->key);
  251. struct device *dev = &hr_dev->pdev->dev;
  252. struct hns_roce_cmd_mailbox *mailbox;
  253. struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
  254. /* Prepare HEM entry memory */
  255. ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
  256. if (ret)
  257. return ret;
  258. /* Allocate mailbox memory */
  259. mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
  260. if (IS_ERR(mailbox)) {
  261. ret = PTR_ERR(mailbox);
  262. goto err_table;
  263. }
  264. ret = hr_dev->hw->write_mtpt(mailbox->buf, mr, mtpt_idx);
  265. if (ret) {
  266. dev_err(dev, "Write mtpt fail!\n");
  267. goto err_page;
  268. }
  269. ret = hns_roce_sw2hw_mpt(hr_dev, mailbox,
  270. mtpt_idx & (hr_dev->caps.num_mtpts - 1));
  271. if (ret) {
  272. dev_err(dev, "SW2HW_MPT failed (%d)\n", ret);
  273. goto err_page;
  274. }
  275. mr->enabled = 1;
  276. hns_roce_free_cmd_mailbox(hr_dev, mailbox);
  277. return 0;
  278. err_page:
  279. hns_roce_free_cmd_mailbox(hr_dev, mailbox);
  280. err_table:
  281. hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
  282. return ret;
  283. }
  284. static int hns_roce_write_mtt_chunk(struct hns_roce_dev *hr_dev,
  285. struct hns_roce_mtt *mtt, u32 start_index,
  286. u32 npages, u64 *page_list)
  287. {
  288. u32 i = 0;
  289. __le64 *mtts = NULL;
  290. dma_addr_t dma_handle;
  291. u32 s = start_index * sizeof(u64);
  292. /* All MTTs must fit in the same page */
  293. if (start_index / (PAGE_SIZE / sizeof(u64)) !=
  294. (start_index + npages - 1) / (PAGE_SIZE / sizeof(u64)))
  295. return -EINVAL;
  296. if (start_index & (HNS_ROCE_MTT_ENTRY_PER_SEG - 1))
  297. return -EINVAL;
  298. mtts = hns_roce_table_find(&hr_dev->mr_table.mtt_table,
  299. mtt->first_seg + s / hr_dev->caps.mtt_entry_sz,
  300. &dma_handle);
  301. if (!mtts)
  302. return -ENOMEM;
  303. /* Save page addr, low 12 bits : 0 */
  304. for (i = 0; i < npages; ++i)
  305. mtts[i] = (cpu_to_le64(page_list[i])) >> PAGE_ADDR_SHIFT;
  306. return 0;
  307. }
  308. static int hns_roce_write_mtt(struct hns_roce_dev *hr_dev,
  309. struct hns_roce_mtt *mtt, u32 start_index,
  310. u32 npages, u64 *page_list)
  311. {
  312. int chunk;
  313. int ret;
  314. if (mtt->order < 0)
  315. return -EINVAL;
  316. while (npages > 0) {
  317. chunk = min_t(int, PAGE_SIZE / sizeof(u64), npages);
  318. ret = hns_roce_write_mtt_chunk(hr_dev, mtt, start_index, chunk,
  319. page_list);
  320. if (ret)
  321. return ret;
  322. npages -= chunk;
  323. start_index += chunk;
  324. page_list += chunk;
  325. }
  326. return 0;
  327. }
  328. int hns_roce_buf_write_mtt(struct hns_roce_dev *hr_dev,
  329. struct hns_roce_mtt *mtt, struct hns_roce_buf *buf)
  330. {
  331. u32 i = 0;
  332. int ret = 0;
  333. u64 *page_list = NULL;
  334. page_list = kmalloc_array(buf->npages, sizeof(*page_list), GFP_KERNEL);
  335. if (!page_list)
  336. return -ENOMEM;
  337. for (i = 0; i < buf->npages; ++i) {
  338. if (buf->nbufs == 1)
  339. page_list[i] = buf->direct.map + (i << buf->page_shift);
  340. else
  341. page_list[i] = buf->page_list[i].map;
  342. }
  343. ret = hns_roce_write_mtt(hr_dev, mtt, 0, buf->npages, page_list);
  344. kfree(page_list);
  345. return ret;
  346. }
  347. int hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
  348. {
  349. struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
  350. int ret = 0;
  351. ret = hns_roce_bitmap_init(&mr_table->mtpt_bitmap,
  352. hr_dev->caps.num_mtpts,
  353. hr_dev->caps.num_mtpts - 1,
  354. hr_dev->caps.reserved_mrws, 0);
  355. if (ret)
  356. return ret;
  357. ret = hns_roce_buddy_init(&mr_table->mtt_buddy,
  358. ilog2(hr_dev->caps.num_mtt_segs));
  359. if (ret)
  360. goto err_buddy;
  361. return 0;
  362. err_buddy:
  363. hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
  364. return ret;
  365. }
  366. void hns_roce_cleanup_mr_table(struct hns_roce_dev *hr_dev)
  367. {
  368. struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
  369. hns_roce_buddy_cleanup(&mr_table->mtt_buddy);
  370. hns_roce_bitmap_cleanup(&mr_table->mtpt_bitmap);
  371. }
  372. struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
  373. {
  374. int ret = 0;
  375. struct hns_roce_mr *mr = NULL;
  376. mr = kmalloc(sizeof(*mr), GFP_KERNEL);
  377. if (mr == NULL)
  378. return ERR_PTR(-ENOMEM);
  379. /* Allocate memory region key */
  380. ret = hns_roce_mr_alloc(to_hr_dev(pd->device), to_hr_pd(pd)->pdn, 0,
  381. ~0ULL, acc, 0, mr);
  382. if (ret)
  383. goto err_free;
  384. ret = hns_roce_mr_enable(to_hr_dev(pd->device), mr);
  385. if (ret)
  386. goto err_mr;
  387. mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
  388. mr->umem = NULL;
  389. return &mr->ibmr;
  390. err_mr:
  391. hns_roce_mr_free(to_hr_dev(pd->device), mr);
  392. err_free:
  393. kfree(mr);
  394. return ERR_PTR(ret);
  395. }
  396. int hns_roce_ib_umem_write_mtt(struct hns_roce_dev *hr_dev,
  397. struct hns_roce_mtt *mtt, struct ib_umem *umem)
  398. {
  399. struct scatterlist *sg;
  400. int i, k, entry;
  401. int ret = 0;
  402. u64 *pages;
  403. u32 n;
  404. int len;
  405. pages = (u64 *) __get_free_page(GFP_KERNEL);
  406. if (!pages)
  407. return -ENOMEM;
  408. i = n = 0;
  409. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  410. len = sg_dma_len(sg) >> mtt->page_shift;
  411. for (k = 0; k < len; ++k) {
  412. pages[i++] = sg_dma_address(sg) +
  413. (k << umem->page_shift);
  414. if (i == PAGE_SIZE / sizeof(u64)) {
  415. ret = hns_roce_write_mtt(hr_dev, mtt, n, i,
  416. pages);
  417. if (ret)
  418. goto out;
  419. n += i;
  420. i = 0;
  421. }
  422. }
  423. }
  424. if (i)
  425. ret = hns_roce_write_mtt(hr_dev, mtt, n, i, pages);
  426. out:
  427. free_page((unsigned long) pages);
  428. return ret;
  429. }
  430. static int hns_roce_ib_umem_write_mr(struct hns_roce_mr *mr,
  431. struct ib_umem *umem)
  432. {
  433. int i = 0;
  434. int entry;
  435. struct scatterlist *sg;
  436. for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
  437. mr->pbl_buf[i] = ((u64)sg_dma_address(sg)) >> 12;
  438. i++;
  439. }
  440. /* Memory barrier */
  441. mb();
  442. return 0;
  443. }
  444. struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  445. u64 virt_addr, int access_flags,
  446. struct ib_udata *udata)
  447. {
  448. struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
  449. struct device *dev = &hr_dev->pdev->dev;
  450. struct hns_roce_mr *mr = NULL;
  451. int ret = 0;
  452. int n = 0;
  453. mr = kmalloc(sizeof(*mr), GFP_KERNEL);
  454. if (!mr)
  455. return ERR_PTR(-ENOMEM);
  456. mr->umem = ib_umem_get(pd->uobject->context, start, length,
  457. access_flags, 0);
  458. if (IS_ERR(mr->umem)) {
  459. ret = PTR_ERR(mr->umem);
  460. goto err_free;
  461. }
  462. n = ib_umem_page_count(mr->umem);
  463. if (mr->umem->page_shift != HNS_ROCE_HEM_PAGE_SHIFT) {
  464. dev_err(dev, "Just support 4K page size but is 0x%lx now!\n",
  465. BIT(mr->umem->page_shift));
  466. ret = -EINVAL;
  467. goto err_umem;
  468. }
  469. if (n > HNS_ROCE_MAX_MTPT_PBL_NUM) {
  470. dev_err(dev, " MR len %lld err. MR is limited to 4G at most!\n",
  471. length);
  472. ret = -EINVAL;
  473. goto err_umem;
  474. }
  475. ret = hns_roce_mr_alloc(hr_dev, to_hr_pd(pd)->pdn, virt_addr, length,
  476. access_flags, n, mr);
  477. if (ret)
  478. goto err_umem;
  479. ret = hns_roce_ib_umem_write_mr(mr, mr->umem);
  480. if (ret)
  481. goto err_mr;
  482. ret = hns_roce_mr_enable(hr_dev, mr);
  483. if (ret)
  484. goto err_mr;
  485. mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
  486. return &mr->ibmr;
  487. err_mr:
  488. hns_roce_mr_free(hr_dev, mr);
  489. err_umem:
  490. ib_umem_release(mr->umem);
  491. err_free:
  492. kfree(mr);
  493. return ERR_PTR(ret);
  494. }
  495. int hns_roce_dereg_mr(struct ib_mr *ibmr)
  496. {
  497. struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
  498. struct hns_roce_mr *mr = to_hr_mr(ibmr);
  499. int ret = 0;
  500. if (hr_dev->hw->dereg_mr) {
  501. ret = hr_dev->hw->dereg_mr(hr_dev, mr);
  502. } else {
  503. hns_roce_mr_free(hr_dev, mr);
  504. if (mr->umem)
  505. ib_umem_release(mr->umem);
  506. kfree(mr);
  507. }
  508. return ret;
  509. }