mem.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include <rdma/ib_user_verbs.h>
  37. #include "iw_cxgb4.h"
  38. int use_dsgl = 1;
  39. module_param(use_dsgl, int, 0644);
  40. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=1) (DEPRECATED)");
  41. #define T4_ULPTX_MIN_IO 32
  42. #define C4IW_MAX_INLINE_SIZE 96
  43. #define T4_ULPTX_MAX_DMA 1024
  44. #define C4IW_INLINE_THRESHOLD 128
  45. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  46. module_param(inline_threshold, int, 0644);
  47. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  48. static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
  49. {
  50. return (is_t4(dev->rdev.lldi.adapter_type) ||
  51. is_t5(dev->rdev.lldi.adapter_type)) &&
  52. length >= 8*1024*1024*1024ULL;
  53. }
  54. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  55. u32 len, dma_addr_t data,
  56. int wait, struct sk_buff *skb)
  57. {
  58. struct ulp_mem_io *req;
  59. struct ulptx_sgl *sgl;
  60. u8 wr_len;
  61. int ret = 0;
  62. struct c4iw_wr_wait wr_wait;
  63. addr &= 0x7FFFFFF;
  64. if (wait)
  65. c4iw_init_wr_wait(&wr_wait);
  66. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  67. if (!skb) {
  68. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  69. if (!skb)
  70. return -ENOMEM;
  71. }
  72. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  73. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  74. memset(req, 0, wr_len);
  75. INIT_ULPTX_WR(req, wr_len, 0, 0);
  76. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  77. (wait ? FW_WR_COMPL_F : 0));
  78. req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
  79. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  80. req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
  81. T5_ULP_MEMIO_ORDER_V(1) |
  82. T5_ULP_MEMIO_FID_V(rdev->lldi.rxq_ids[0]));
  83. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
  84. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  85. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
  86. sgl = (struct ulptx_sgl *)(req + 1);
  87. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
  88. ULPTX_NSGE_V(1));
  89. sgl->len0 = cpu_to_be32(len);
  90. sgl->addr0 = cpu_to_be64(data);
  91. ret = c4iw_ofld_send(rdev, skb);
  92. if (ret)
  93. return ret;
  94. if (wait)
  95. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  96. return ret;
  97. }
  98. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  99. void *data, struct sk_buff *skb)
  100. {
  101. struct ulp_mem_io *req;
  102. struct ulptx_idata *sc;
  103. u8 wr_len, *to_dp, *from_dp;
  104. int copy_len, num_wqe, i, ret = 0;
  105. struct c4iw_wr_wait wr_wait;
  106. __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  107. if (is_t4(rdev->lldi.adapter_type))
  108. cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
  109. else
  110. cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
  111. addr &= 0x7FFFFFF;
  112. pr_debug("%s addr 0x%x len %u\n", __func__, addr, len);
  113. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  114. c4iw_init_wr_wait(&wr_wait);
  115. for (i = 0; i < num_wqe; i++) {
  116. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  117. len;
  118. wr_len = roundup(sizeof *req + sizeof *sc +
  119. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  120. if (!skb) {
  121. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  122. if (!skb)
  123. return -ENOMEM;
  124. }
  125. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  126. req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
  127. memset(req, 0, wr_len);
  128. INIT_ULPTX_WR(req, wr_len, 0, 0);
  129. if (i == (num_wqe-1)) {
  130. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  131. FW_WR_COMPL_F);
  132. req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait;
  133. } else
  134. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
  135. req->wr.wr_mid = cpu_to_be32(
  136. FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  137. req->cmd = cmd;
  138. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
  139. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  140. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  141. 16));
  142. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
  143. sc = (struct ulptx_idata *)(req + 1);
  144. sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
  145. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  146. to_dp = (u8 *)(sc + 1);
  147. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  148. if (data)
  149. memcpy(to_dp, from_dp, copy_len);
  150. else
  151. memset(to_dp, 0, copy_len);
  152. if (copy_len % T4_ULPTX_MIN_IO)
  153. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  154. (copy_len % T4_ULPTX_MIN_IO));
  155. ret = c4iw_ofld_send(rdev, skb);
  156. skb = NULL;
  157. if (ret)
  158. return ret;
  159. len -= C4IW_MAX_INLINE_SIZE;
  160. }
  161. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  162. return ret;
  163. }
  164. static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len,
  165. void *data, struct sk_buff *skb)
  166. {
  167. u32 remain = len;
  168. u32 dmalen;
  169. int ret = 0;
  170. dma_addr_t daddr;
  171. dma_addr_t save;
  172. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  173. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  174. return -1;
  175. save = daddr;
  176. while (remain > inline_threshold) {
  177. if (remain < T4_ULPTX_MAX_DMA) {
  178. if (remain & ~T4_ULPTX_MIN_IO)
  179. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  180. else
  181. dmalen = remain;
  182. } else
  183. dmalen = T4_ULPTX_MAX_DMA;
  184. remain -= dmalen;
  185. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  186. !remain, skb);
  187. if (ret)
  188. goto out;
  189. addr += dmalen >> 5;
  190. data += dmalen;
  191. daddr += dmalen;
  192. }
  193. if (remain)
  194. ret = _c4iw_write_mem_inline(rdev, addr, remain, data, skb);
  195. out:
  196. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  197. return ret;
  198. }
  199. /*
  200. * write len bytes of data into addr (32B aligned address)
  201. * If data is NULL, clear len byte of memory to zero.
  202. */
  203. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  204. void *data, struct sk_buff *skb)
  205. {
  206. if (rdev->lldi.ulptx_memwrite_dsgl && use_dsgl) {
  207. if (len > inline_threshold) {
  208. if (_c4iw_write_mem_dma(rdev, addr, len, data, skb)) {
  209. pr_warn_ratelimited("%s: dma map failure (non fatal)\n",
  210. pci_name(rdev->lldi.pdev));
  211. return _c4iw_write_mem_inline(rdev, addr, len,
  212. data, skb);
  213. } else {
  214. return 0;
  215. }
  216. } else
  217. return _c4iw_write_mem_inline(rdev, addr,
  218. len, data, skb);
  219. } else
  220. return _c4iw_write_mem_inline(rdev, addr, len, data, skb);
  221. }
  222. /*
  223. * Build and write a TPT entry.
  224. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  225. * pbl_size and pbl_addr
  226. * OUT: stag index
  227. */
  228. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  229. u32 *stag, u8 stag_state, u32 pdid,
  230. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  231. int bind_enabled, u32 zbva, u64 to,
  232. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr,
  233. struct sk_buff *skb)
  234. {
  235. int err;
  236. struct fw_ri_tpte tpt;
  237. u32 stag_idx;
  238. static atomic_t key;
  239. if (c4iw_fatal_error(rdev))
  240. return -EIO;
  241. stag_state = stag_state > 0;
  242. stag_idx = (*stag) >> 8;
  243. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  244. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  245. if (!stag_idx) {
  246. mutex_lock(&rdev->stats.lock);
  247. rdev->stats.stag.fail++;
  248. mutex_unlock(&rdev->stats.lock);
  249. return -ENOMEM;
  250. }
  251. mutex_lock(&rdev->stats.lock);
  252. rdev->stats.stag.cur += 32;
  253. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  254. rdev->stats.stag.max = rdev->stats.stag.cur;
  255. mutex_unlock(&rdev->stats.lock);
  256. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  257. }
  258. pr_debug("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  259. __func__, stag_state, type, pdid, stag_idx);
  260. /* write TPT entry */
  261. if (reset_tpt_entry)
  262. memset(&tpt, 0, sizeof(tpt));
  263. else {
  264. tpt.valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
  265. FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
  266. FW_RI_TPTE_STAGSTATE_V(stag_state) |
  267. FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
  268. tpt.locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
  269. (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
  270. FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
  271. FW_RI_VA_BASED_TO))|
  272. FW_RI_TPTE_PS_V(page_size));
  273. tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  274. FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
  275. tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  276. tpt.va_hi = cpu_to_be32((u32)(to >> 32));
  277. tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  278. tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
  279. tpt.len_hi = cpu_to_be32((u32)(len >> 32));
  280. }
  281. err = write_adapter_mem(rdev, stag_idx +
  282. (rdev->lldi.vr->stag.start >> 5),
  283. sizeof(tpt), &tpt, skb);
  284. if (reset_tpt_entry) {
  285. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  286. mutex_lock(&rdev->stats.lock);
  287. rdev->stats.stag.cur -= 32;
  288. mutex_unlock(&rdev->stats.lock);
  289. }
  290. return err;
  291. }
  292. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  293. u32 pbl_addr, u32 pbl_size)
  294. {
  295. int err;
  296. pr_debug("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  297. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  298. pbl_size);
  299. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl, NULL);
  300. return err;
  301. }
  302. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  303. u32 pbl_addr, struct sk_buff *skb)
  304. {
  305. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  306. pbl_size, pbl_addr, skb);
  307. }
  308. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  309. {
  310. *stag = T4_STAG_UNSET;
  311. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  312. 0UL, 0, 0, 0, 0, NULL);
  313. }
  314. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag,
  315. struct sk_buff *skb)
  316. {
  317. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  318. 0, skb);
  319. }
  320. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  321. u32 pbl_size, u32 pbl_addr)
  322. {
  323. *stag = T4_STAG_UNSET;
  324. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  325. 0UL, 0, 0, pbl_size, pbl_addr, NULL);
  326. }
  327. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  328. {
  329. u32 mmid;
  330. mhp->attr.state = 1;
  331. mhp->attr.stag = stag;
  332. mmid = stag >> 8;
  333. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  334. pr_debug("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  335. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  336. }
  337. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  338. struct c4iw_mr *mhp, int shift)
  339. {
  340. u32 stag = T4_STAG_UNSET;
  341. int ret;
  342. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  343. FW_RI_STAG_NSMR, mhp->attr.len ?
  344. mhp->attr.perms : 0,
  345. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  346. mhp->attr.va_fbo, mhp->attr.len ?
  347. mhp->attr.len : -1, shift - 12,
  348. mhp->attr.pbl_size, mhp->attr.pbl_addr, NULL);
  349. if (ret)
  350. return ret;
  351. ret = finish_mem_reg(mhp, stag);
  352. if (ret) {
  353. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  354. mhp->attr.pbl_addr, mhp->dereg_skb);
  355. mhp->dereg_skb = NULL;
  356. }
  357. return ret;
  358. }
  359. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  360. {
  361. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  362. npages << 3);
  363. if (!mhp->attr.pbl_addr)
  364. return -ENOMEM;
  365. mhp->attr.pbl_size = npages;
  366. return 0;
  367. }
  368. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  369. {
  370. struct c4iw_dev *rhp;
  371. struct c4iw_pd *php;
  372. struct c4iw_mr *mhp;
  373. int ret;
  374. u32 stag = T4_STAG_UNSET;
  375. pr_debug("%s ib_pd %p\n", __func__, pd);
  376. php = to_c4iw_pd(pd);
  377. rhp = php->rhp;
  378. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  379. if (!mhp)
  380. return ERR_PTR(-ENOMEM);
  381. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  382. if (!mhp->dereg_skb) {
  383. ret = -ENOMEM;
  384. goto err0;
  385. }
  386. mhp->rhp = rhp;
  387. mhp->attr.pdid = php->pdid;
  388. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  389. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  390. mhp->attr.zbva = 0;
  391. mhp->attr.va_fbo = 0;
  392. mhp->attr.page_size = 0;
  393. mhp->attr.len = ~0ULL;
  394. mhp->attr.pbl_size = 0;
  395. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  396. FW_RI_STAG_NSMR, mhp->attr.perms,
  397. mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0,
  398. NULL);
  399. if (ret)
  400. goto err1;
  401. ret = finish_mem_reg(mhp, stag);
  402. if (ret)
  403. goto err2;
  404. return &mhp->ibmr;
  405. err2:
  406. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  407. mhp->attr.pbl_addr, mhp->dereg_skb);
  408. err1:
  409. kfree_skb(mhp->dereg_skb);
  410. err0:
  411. kfree(mhp);
  412. return ERR_PTR(ret);
  413. }
  414. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  415. u64 virt, int acc, struct ib_udata *udata)
  416. {
  417. __be64 *pages;
  418. int shift, n, len;
  419. int i, k, entry;
  420. int err = 0;
  421. struct scatterlist *sg;
  422. struct c4iw_dev *rhp;
  423. struct c4iw_pd *php;
  424. struct c4iw_mr *mhp;
  425. pr_debug("%s ib_pd %p\n", __func__, pd);
  426. if (length == ~0ULL)
  427. return ERR_PTR(-EINVAL);
  428. if ((length + start) < start)
  429. return ERR_PTR(-EINVAL);
  430. php = to_c4iw_pd(pd);
  431. rhp = php->rhp;
  432. if (mr_exceeds_hw_limits(rhp, length))
  433. return ERR_PTR(-EINVAL);
  434. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  435. if (!mhp)
  436. return ERR_PTR(-ENOMEM);
  437. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  438. if (!mhp->dereg_skb) {
  439. kfree(mhp);
  440. return ERR_PTR(-ENOMEM);
  441. }
  442. mhp->rhp = rhp;
  443. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  444. if (IS_ERR(mhp->umem)) {
  445. err = PTR_ERR(mhp->umem);
  446. kfree_skb(mhp->dereg_skb);
  447. kfree(mhp);
  448. return ERR_PTR(err);
  449. }
  450. shift = mhp->umem->page_shift;
  451. n = mhp->umem->nmap;
  452. err = alloc_pbl(mhp, n);
  453. if (err)
  454. goto err;
  455. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  456. if (!pages) {
  457. err = -ENOMEM;
  458. goto err_pbl;
  459. }
  460. i = n = 0;
  461. for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
  462. len = sg_dma_len(sg) >> shift;
  463. for (k = 0; k < len; ++k) {
  464. pages[i++] = cpu_to_be64(sg_dma_address(sg) +
  465. (k << shift));
  466. if (i == PAGE_SIZE / sizeof *pages) {
  467. err = write_pbl(&mhp->rhp->rdev,
  468. pages,
  469. mhp->attr.pbl_addr + (n << 3), i);
  470. if (err)
  471. goto pbl_done;
  472. n += i;
  473. i = 0;
  474. }
  475. }
  476. }
  477. if (i)
  478. err = write_pbl(&mhp->rhp->rdev, pages,
  479. mhp->attr.pbl_addr + (n << 3), i);
  480. pbl_done:
  481. free_page((unsigned long) pages);
  482. if (err)
  483. goto err_pbl;
  484. mhp->attr.pdid = php->pdid;
  485. mhp->attr.zbva = 0;
  486. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  487. mhp->attr.va_fbo = virt;
  488. mhp->attr.page_size = shift - 12;
  489. mhp->attr.len = length;
  490. err = register_mem(rhp, php, mhp, shift);
  491. if (err)
  492. goto err_pbl;
  493. return &mhp->ibmr;
  494. err_pbl:
  495. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  496. mhp->attr.pbl_size << 3);
  497. err:
  498. ib_umem_release(mhp->umem);
  499. kfree_skb(mhp->dereg_skb);
  500. kfree(mhp);
  501. return ERR_PTR(err);
  502. }
  503. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
  504. struct ib_udata *udata)
  505. {
  506. struct c4iw_dev *rhp;
  507. struct c4iw_pd *php;
  508. struct c4iw_mw *mhp;
  509. u32 mmid;
  510. u32 stag = 0;
  511. int ret;
  512. if (type != IB_MW_TYPE_1)
  513. return ERR_PTR(-EINVAL);
  514. php = to_c4iw_pd(pd);
  515. rhp = php->rhp;
  516. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  517. if (!mhp)
  518. return ERR_PTR(-ENOMEM);
  519. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  520. if (!mhp->dereg_skb) {
  521. ret = -ENOMEM;
  522. goto free_mhp;
  523. }
  524. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  525. if (ret)
  526. goto free_skb;
  527. mhp->rhp = rhp;
  528. mhp->attr.pdid = php->pdid;
  529. mhp->attr.type = FW_RI_STAG_MW;
  530. mhp->attr.stag = stag;
  531. mmid = (stag) >> 8;
  532. mhp->ibmw.rkey = stag;
  533. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  534. ret = -ENOMEM;
  535. goto dealloc_win;
  536. }
  537. pr_debug("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  538. return &(mhp->ibmw);
  539. dealloc_win:
  540. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  541. free_skb:
  542. kfree_skb(mhp->dereg_skb);
  543. free_mhp:
  544. kfree(mhp);
  545. return ERR_PTR(ret);
  546. }
  547. int c4iw_dealloc_mw(struct ib_mw *mw)
  548. {
  549. struct c4iw_dev *rhp;
  550. struct c4iw_mw *mhp;
  551. u32 mmid;
  552. mhp = to_c4iw_mw(mw);
  553. rhp = mhp->rhp;
  554. mmid = (mw->rkey) >> 8;
  555. remove_handle(rhp, &rhp->mmidr, mmid);
  556. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  557. kfree_skb(mhp->dereg_skb);
  558. kfree(mhp);
  559. pr_debug("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  560. return 0;
  561. }
  562. struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
  563. enum ib_mr_type mr_type,
  564. u32 max_num_sg)
  565. {
  566. struct c4iw_dev *rhp;
  567. struct c4iw_pd *php;
  568. struct c4iw_mr *mhp;
  569. u32 mmid;
  570. u32 stag = 0;
  571. int ret = 0;
  572. int length = roundup(max_num_sg * sizeof(u64), 32);
  573. php = to_c4iw_pd(pd);
  574. rhp = php->rhp;
  575. if (mr_type != IB_MR_TYPE_MEM_REG ||
  576. max_num_sg > t4_max_fr_depth(&rhp->rdev.lldi.ulptx_memwrite_dsgl &&
  577. use_dsgl))
  578. return ERR_PTR(-EINVAL);
  579. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  580. if (!mhp) {
  581. ret = -ENOMEM;
  582. goto err;
  583. }
  584. mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev,
  585. length, &mhp->mpl_addr, GFP_KERNEL);
  586. if (!mhp->mpl) {
  587. ret = -ENOMEM;
  588. goto err_mpl;
  589. }
  590. mhp->max_mpl_len = length;
  591. mhp->rhp = rhp;
  592. ret = alloc_pbl(mhp, max_num_sg);
  593. if (ret)
  594. goto err1;
  595. mhp->attr.pbl_size = max_num_sg;
  596. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  597. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  598. if (ret)
  599. goto err2;
  600. mhp->attr.pdid = php->pdid;
  601. mhp->attr.type = FW_RI_STAG_NSMR;
  602. mhp->attr.stag = stag;
  603. mhp->attr.state = 0;
  604. mmid = (stag) >> 8;
  605. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  606. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  607. ret = -ENOMEM;
  608. goto err3;
  609. }
  610. pr_debug("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  611. return &(mhp->ibmr);
  612. err3:
  613. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  614. mhp->attr.pbl_addr, mhp->dereg_skb);
  615. err2:
  616. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  617. mhp->attr.pbl_size << 3);
  618. err1:
  619. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  620. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  621. err_mpl:
  622. kfree(mhp);
  623. err:
  624. return ERR_PTR(ret);
  625. }
  626. static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
  627. {
  628. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  629. if (unlikely(mhp->mpl_len == mhp->max_mpl_len))
  630. return -ENOMEM;
  631. mhp->mpl[mhp->mpl_len++] = addr;
  632. return 0;
  633. }
  634. int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
  635. unsigned int *sg_offset)
  636. {
  637. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  638. mhp->mpl_len = 0;
  639. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page);
  640. }
  641. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  642. {
  643. struct c4iw_dev *rhp;
  644. struct c4iw_mr *mhp;
  645. u32 mmid;
  646. pr_debug("%s ib_mr %p\n", __func__, ib_mr);
  647. mhp = to_c4iw_mr(ib_mr);
  648. rhp = mhp->rhp;
  649. mmid = mhp->attr.stag >> 8;
  650. remove_handle(rhp, &rhp->mmidr, mmid);
  651. if (mhp->mpl)
  652. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  653. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  654. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  655. mhp->attr.pbl_addr, mhp->dereg_skb);
  656. if (mhp->attr.pbl_size)
  657. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  658. mhp->attr.pbl_size << 3);
  659. if (mhp->kva)
  660. kfree((void *) (unsigned long) mhp->kva);
  661. if (mhp->umem)
  662. ib_umem_release(mhp->umem);
  663. pr_debug("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  664. kfree(mhp);
  665. return 0;
  666. }
  667. void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey)
  668. {
  669. struct c4iw_mr *mhp;
  670. unsigned long flags;
  671. spin_lock_irqsave(&rhp->lock, flags);
  672. mhp = get_mhp(rhp, rkey >> 8);
  673. if (mhp)
  674. mhp->attr.state = 0;
  675. spin_unlock_irqrestore(&rhp->lock, flags);
  676. }