bmc150-accel-core.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_RESET 0x14
  61. #define BMC150_ACCEL_RESET_VAL 0xB6
  62. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  63. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  64. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  66. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  67. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  68. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  69. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  70. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  71. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  72. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  74. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  75. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  76. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  77. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  78. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  79. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  80. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  81. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  82. #define BMC150_ACCEL_REG_INT_5 0x27
  83. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  84. #define BMC150_ACCEL_REG_INT_6 0x28
  85. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  86. /* Slope duration in terms of number of samples */
  87. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  88. /* in terms of multiples of g's/LSB, based on range */
  89. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  90. #define BMC150_ACCEL_REG_XOUT_L 0x02
  91. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  92. /* Sleep Duration values */
  93. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  94. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  95. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  96. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  97. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  98. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  99. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  100. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  101. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  102. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  103. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  104. #define BMC150_ACCEL_REG_TEMP 0x08
  105. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  106. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  107. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  108. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  109. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  110. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  111. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  112. #define BMC150_ACCEL_FIFO_LENGTH 32
  113. enum bmc150_accel_axis {
  114. AXIS_X,
  115. AXIS_Y,
  116. AXIS_Z,
  117. AXIS_MAX,
  118. };
  119. enum bmc150_power_modes {
  120. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  121. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  122. BMC150_ACCEL_SLEEP_MODE_LPM,
  123. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  124. };
  125. struct bmc150_scale_info {
  126. int scale;
  127. u8 reg_range;
  128. };
  129. struct bmc150_accel_chip_info {
  130. const char *name;
  131. u8 chip_id;
  132. const struct iio_chan_spec *channels;
  133. int num_channels;
  134. const struct bmc150_scale_info scale_table[4];
  135. };
  136. struct bmc150_accel_interrupt {
  137. const struct bmc150_accel_interrupt_info *info;
  138. atomic_t users;
  139. };
  140. struct bmc150_accel_trigger {
  141. struct bmc150_accel_data *data;
  142. struct iio_trigger *indio_trig;
  143. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  144. int intr;
  145. bool enabled;
  146. };
  147. enum bmc150_accel_interrupt_id {
  148. BMC150_ACCEL_INT_DATA_READY,
  149. BMC150_ACCEL_INT_ANY_MOTION,
  150. BMC150_ACCEL_INT_WATERMARK,
  151. BMC150_ACCEL_INTERRUPTS,
  152. };
  153. enum bmc150_accel_trigger_id {
  154. BMC150_ACCEL_TRIGGER_DATA_READY,
  155. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  156. BMC150_ACCEL_TRIGGERS,
  157. };
  158. struct bmc150_accel_data {
  159. struct regmap *regmap;
  160. int irq;
  161. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  162. atomic_t active_intr;
  163. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  164. struct mutex mutex;
  165. u8 fifo_mode, watermark;
  166. s16 buffer[8];
  167. u8 bw_bits;
  168. u32 slope_dur;
  169. u32 slope_thres;
  170. u32 range;
  171. int ev_enable_state;
  172. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  173. const struct bmc150_accel_chip_info *chip_info;
  174. };
  175. static const struct {
  176. int val;
  177. int val2;
  178. u8 bw_bits;
  179. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  180. {31, 260000, 0x09},
  181. {62, 500000, 0x0A},
  182. {125, 0, 0x0B},
  183. {250, 0, 0x0C},
  184. {500, 0, 0x0D},
  185. {1000, 0, 0x0E},
  186. {2000, 0, 0x0F} };
  187. static const struct {
  188. int bw_bits;
  189. int msec;
  190. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  191. {0x09, 32},
  192. {0x0A, 16},
  193. {0x0B, 8},
  194. {0x0C, 4},
  195. {0x0D, 2},
  196. {0x0E, 1},
  197. {0x0F, 1} };
  198. static const struct {
  199. int sleep_dur;
  200. u8 reg_value;
  201. } bmc150_accel_sleep_value_table[] = { {0, 0},
  202. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  203. {1000, BMC150_ACCEL_SLEEP_1_MS},
  204. {2000, BMC150_ACCEL_SLEEP_2_MS},
  205. {4000, BMC150_ACCEL_SLEEP_4_MS},
  206. {6000, BMC150_ACCEL_SLEEP_6_MS},
  207. {10000, BMC150_ACCEL_SLEEP_10_MS},
  208. {25000, BMC150_ACCEL_SLEEP_25_MS},
  209. {50000, BMC150_ACCEL_SLEEP_50_MS},
  210. {100000, BMC150_ACCEL_SLEEP_100_MS},
  211. {500000, BMC150_ACCEL_SLEEP_500_MS},
  212. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  213. const struct regmap_config bmc150_regmap_conf = {
  214. .reg_bits = 8,
  215. .val_bits = 8,
  216. .max_register = 0x3f,
  217. };
  218. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  219. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  220. enum bmc150_power_modes mode,
  221. int dur_us)
  222. {
  223. struct device *dev = regmap_get_device(data->regmap);
  224. int i;
  225. int ret;
  226. u8 lpw_bits;
  227. int dur_val = -1;
  228. if (dur_us > 0) {
  229. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  230. ++i) {
  231. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  232. dur_us)
  233. dur_val =
  234. bmc150_accel_sleep_value_table[i].reg_value;
  235. }
  236. } else {
  237. dur_val = 0;
  238. }
  239. if (dur_val < 0)
  240. return -EINVAL;
  241. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  242. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  243. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  244. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  245. if (ret < 0) {
  246. dev_err(dev, "Error writing reg_pmu_lpw\n");
  247. return ret;
  248. }
  249. return 0;
  250. }
  251. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  252. int val2)
  253. {
  254. int i;
  255. int ret;
  256. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  257. if (bmc150_accel_samp_freq_table[i].val == val &&
  258. bmc150_accel_samp_freq_table[i].val2 == val2) {
  259. ret = regmap_write(data->regmap,
  260. BMC150_ACCEL_REG_PMU_BW,
  261. bmc150_accel_samp_freq_table[i].bw_bits);
  262. if (ret < 0)
  263. return ret;
  264. data->bw_bits =
  265. bmc150_accel_samp_freq_table[i].bw_bits;
  266. return 0;
  267. }
  268. }
  269. return -EINVAL;
  270. }
  271. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  272. {
  273. struct device *dev = regmap_get_device(data->regmap);
  274. int ret;
  275. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  276. data->slope_thres);
  277. if (ret < 0) {
  278. dev_err(dev, "Error writing reg_int_6\n");
  279. return ret;
  280. }
  281. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  282. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  283. if (ret < 0) {
  284. dev_err(dev, "Error updating reg_int_5\n");
  285. return ret;
  286. }
  287. dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
  288. data->slope_dur);
  289. return ret;
  290. }
  291. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  292. bool state)
  293. {
  294. if (state)
  295. return bmc150_accel_update_slope(t->data);
  296. return 0;
  297. }
  298. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  299. int *val2)
  300. {
  301. int i;
  302. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  303. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  304. *val = bmc150_accel_samp_freq_table[i].val;
  305. *val2 = bmc150_accel_samp_freq_table[i].val2;
  306. return IIO_VAL_INT_PLUS_MICRO;
  307. }
  308. }
  309. return -EINVAL;
  310. }
  311. #ifdef CONFIG_PM
  312. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  313. {
  314. int i;
  315. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  316. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  317. return bmc150_accel_sample_upd_time[i].msec;
  318. }
  319. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  320. }
  321. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  322. {
  323. struct device *dev = regmap_get_device(data->regmap);
  324. int ret;
  325. if (on) {
  326. ret = pm_runtime_get_sync(dev);
  327. } else {
  328. pm_runtime_mark_last_busy(dev);
  329. ret = pm_runtime_put_autosuspend(dev);
  330. }
  331. if (ret < 0) {
  332. dev_err(dev,
  333. "Failed: bmc150_accel_set_power_state for %d\n", on);
  334. if (on)
  335. pm_runtime_put_noidle(dev);
  336. return ret;
  337. }
  338. return 0;
  339. }
  340. #else
  341. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  342. {
  343. return 0;
  344. }
  345. #endif
  346. static const struct bmc150_accel_interrupt_info {
  347. u8 map_reg;
  348. u8 map_bitmask;
  349. u8 en_reg;
  350. u8 en_bitmask;
  351. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  352. { /* data ready interrupt */
  353. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  354. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  355. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  356. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  357. },
  358. { /* motion interrupt */
  359. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  360. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  361. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  362. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  363. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  364. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  365. },
  366. { /* fifo watermark interrupt */
  367. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  368. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  369. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  370. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  371. },
  372. };
  373. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  374. struct bmc150_accel_data *data)
  375. {
  376. int i;
  377. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  378. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  379. }
  380. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  381. bool state)
  382. {
  383. struct device *dev = regmap_get_device(data->regmap);
  384. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  385. const struct bmc150_accel_interrupt_info *info = intr->info;
  386. int ret;
  387. if (state) {
  388. if (atomic_inc_return(&intr->users) > 1)
  389. return 0;
  390. } else {
  391. if (atomic_dec_return(&intr->users) > 0)
  392. return 0;
  393. }
  394. /*
  395. * We will expect the enable and disable to do operation in reverse
  396. * order. This will happen here anyway, as our resume operation uses
  397. * sync mode runtime pm calls. The suspend operation will be delayed
  398. * by autosuspend delay.
  399. * So the disable operation will still happen in reverse order of
  400. * enable operation. When runtime pm is disabled the mode is always on,
  401. * so sequence doesn't matter.
  402. */
  403. ret = bmc150_accel_set_power_state(data, state);
  404. if (ret < 0)
  405. return ret;
  406. /* map the interrupt to the appropriate pins */
  407. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  408. (state ? info->map_bitmask : 0));
  409. if (ret < 0) {
  410. dev_err(dev, "Error updating reg_int_map\n");
  411. goto out_fix_power_state;
  412. }
  413. /* enable/disable the interrupt */
  414. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  415. (state ? info->en_bitmask : 0));
  416. if (ret < 0) {
  417. dev_err(dev, "Error updating reg_int_en\n");
  418. goto out_fix_power_state;
  419. }
  420. if (state)
  421. atomic_inc(&data->active_intr);
  422. else
  423. atomic_dec(&data->active_intr);
  424. return 0;
  425. out_fix_power_state:
  426. bmc150_accel_set_power_state(data, false);
  427. return ret;
  428. }
  429. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  430. {
  431. struct device *dev = regmap_get_device(data->regmap);
  432. int ret, i;
  433. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  434. if (data->chip_info->scale_table[i].scale == val) {
  435. ret = regmap_write(data->regmap,
  436. BMC150_ACCEL_REG_PMU_RANGE,
  437. data->chip_info->scale_table[i].reg_range);
  438. if (ret < 0) {
  439. dev_err(dev, "Error writing pmu_range\n");
  440. return ret;
  441. }
  442. data->range = data->chip_info->scale_table[i].reg_range;
  443. return 0;
  444. }
  445. }
  446. return -EINVAL;
  447. }
  448. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  449. {
  450. struct device *dev = regmap_get_device(data->regmap);
  451. int ret;
  452. unsigned int value;
  453. mutex_lock(&data->mutex);
  454. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  455. if (ret < 0) {
  456. dev_err(dev, "Error reading reg_temp\n");
  457. mutex_unlock(&data->mutex);
  458. return ret;
  459. }
  460. *val = sign_extend32(value, 7);
  461. mutex_unlock(&data->mutex);
  462. return IIO_VAL_INT;
  463. }
  464. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  465. struct iio_chan_spec const *chan,
  466. int *val)
  467. {
  468. struct device *dev = regmap_get_device(data->regmap);
  469. int ret;
  470. int axis = chan->scan_index;
  471. __le16 raw_val;
  472. mutex_lock(&data->mutex);
  473. ret = bmc150_accel_set_power_state(data, true);
  474. if (ret < 0) {
  475. mutex_unlock(&data->mutex);
  476. return ret;
  477. }
  478. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  479. &raw_val, sizeof(raw_val));
  480. if (ret < 0) {
  481. dev_err(dev, "Error reading axis %d\n", axis);
  482. bmc150_accel_set_power_state(data, false);
  483. mutex_unlock(&data->mutex);
  484. return ret;
  485. }
  486. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  487. chan->scan_type.realbits - 1);
  488. ret = bmc150_accel_set_power_state(data, false);
  489. mutex_unlock(&data->mutex);
  490. if (ret < 0)
  491. return ret;
  492. return IIO_VAL_INT;
  493. }
  494. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  495. struct iio_chan_spec const *chan,
  496. int *val, int *val2, long mask)
  497. {
  498. struct bmc150_accel_data *data = iio_priv(indio_dev);
  499. int ret;
  500. switch (mask) {
  501. case IIO_CHAN_INFO_RAW:
  502. switch (chan->type) {
  503. case IIO_TEMP:
  504. return bmc150_accel_get_temp(data, val);
  505. case IIO_ACCEL:
  506. if (iio_buffer_enabled(indio_dev))
  507. return -EBUSY;
  508. else
  509. return bmc150_accel_get_axis(data, chan, val);
  510. default:
  511. return -EINVAL;
  512. }
  513. case IIO_CHAN_INFO_OFFSET:
  514. if (chan->type == IIO_TEMP) {
  515. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  516. return IIO_VAL_INT;
  517. } else {
  518. return -EINVAL;
  519. }
  520. case IIO_CHAN_INFO_SCALE:
  521. *val = 0;
  522. switch (chan->type) {
  523. case IIO_TEMP:
  524. *val2 = 500000;
  525. return IIO_VAL_INT_PLUS_MICRO;
  526. case IIO_ACCEL:
  527. {
  528. int i;
  529. const struct bmc150_scale_info *si;
  530. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  531. for (i = 0; i < st_size; ++i) {
  532. si = &data->chip_info->scale_table[i];
  533. if (si->reg_range == data->range) {
  534. *val2 = si->scale;
  535. return IIO_VAL_INT_PLUS_MICRO;
  536. }
  537. }
  538. return -EINVAL;
  539. }
  540. default:
  541. return -EINVAL;
  542. }
  543. case IIO_CHAN_INFO_SAMP_FREQ:
  544. mutex_lock(&data->mutex);
  545. ret = bmc150_accel_get_bw(data, val, val2);
  546. mutex_unlock(&data->mutex);
  547. return ret;
  548. default:
  549. return -EINVAL;
  550. }
  551. }
  552. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  553. struct iio_chan_spec const *chan,
  554. int val, int val2, long mask)
  555. {
  556. struct bmc150_accel_data *data = iio_priv(indio_dev);
  557. int ret;
  558. switch (mask) {
  559. case IIO_CHAN_INFO_SAMP_FREQ:
  560. mutex_lock(&data->mutex);
  561. ret = bmc150_accel_set_bw(data, val, val2);
  562. mutex_unlock(&data->mutex);
  563. break;
  564. case IIO_CHAN_INFO_SCALE:
  565. if (val)
  566. return -EINVAL;
  567. mutex_lock(&data->mutex);
  568. ret = bmc150_accel_set_scale(data, val2);
  569. mutex_unlock(&data->mutex);
  570. return ret;
  571. default:
  572. ret = -EINVAL;
  573. }
  574. return ret;
  575. }
  576. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  577. const struct iio_chan_spec *chan,
  578. enum iio_event_type type,
  579. enum iio_event_direction dir,
  580. enum iio_event_info info,
  581. int *val, int *val2)
  582. {
  583. struct bmc150_accel_data *data = iio_priv(indio_dev);
  584. *val2 = 0;
  585. switch (info) {
  586. case IIO_EV_INFO_VALUE:
  587. *val = data->slope_thres;
  588. break;
  589. case IIO_EV_INFO_PERIOD:
  590. *val = data->slope_dur;
  591. break;
  592. default:
  593. return -EINVAL;
  594. }
  595. return IIO_VAL_INT;
  596. }
  597. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  598. const struct iio_chan_spec *chan,
  599. enum iio_event_type type,
  600. enum iio_event_direction dir,
  601. enum iio_event_info info,
  602. int val, int val2)
  603. {
  604. struct bmc150_accel_data *data = iio_priv(indio_dev);
  605. if (data->ev_enable_state)
  606. return -EBUSY;
  607. switch (info) {
  608. case IIO_EV_INFO_VALUE:
  609. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  610. break;
  611. case IIO_EV_INFO_PERIOD:
  612. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  613. break;
  614. default:
  615. return -EINVAL;
  616. }
  617. return 0;
  618. }
  619. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  620. const struct iio_chan_spec *chan,
  621. enum iio_event_type type,
  622. enum iio_event_direction dir)
  623. {
  624. struct bmc150_accel_data *data = iio_priv(indio_dev);
  625. return data->ev_enable_state;
  626. }
  627. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  628. const struct iio_chan_spec *chan,
  629. enum iio_event_type type,
  630. enum iio_event_direction dir,
  631. int state)
  632. {
  633. struct bmc150_accel_data *data = iio_priv(indio_dev);
  634. int ret;
  635. if (state == data->ev_enable_state)
  636. return 0;
  637. mutex_lock(&data->mutex);
  638. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  639. state);
  640. if (ret < 0) {
  641. mutex_unlock(&data->mutex);
  642. return ret;
  643. }
  644. data->ev_enable_state = state;
  645. mutex_unlock(&data->mutex);
  646. return 0;
  647. }
  648. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  649. struct iio_trigger *trig)
  650. {
  651. struct bmc150_accel_data *data = iio_priv(indio_dev);
  652. int i;
  653. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  654. if (data->triggers[i].indio_trig == trig)
  655. return 0;
  656. }
  657. return -EINVAL;
  658. }
  659. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  660. struct device_attribute *attr,
  661. char *buf)
  662. {
  663. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  664. struct bmc150_accel_data *data = iio_priv(indio_dev);
  665. int wm;
  666. mutex_lock(&data->mutex);
  667. wm = data->watermark;
  668. mutex_unlock(&data->mutex);
  669. return sprintf(buf, "%d\n", wm);
  670. }
  671. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  672. struct device_attribute *attr,
  673. char *buf)
  674. {
  675. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  676. struct bmc150_accel_data *data = iio_priv(indio_dev);
  677. bool state;
  678. mutex_lock(&data->mutex);
  679. state = data->fifo_mode;
  680. mutex_unlock(&data->mutex);
  681. return sprintf(buf, "%d\n", state);
  682. }
  683. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  684. static IIO_CONST_ATTR(hwfifo_watermark_max,
  685. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  686. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  687. bmc150_accel_get_fifo_state, NULL, 0);
  688. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  689. bmc150_accel_get_fifo_watermark, NULL, 0);
  690. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  691. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  692. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  693. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  694. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  695. NULL,
  696. };
  697. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  698. {
  699. struct bmc150_accel_data *data = iio_priv(indio_dev);
  700. if (val > BMC150_ACCEL_FIFO_LENGTH)
  701. val = BMC150_ACCEL_FIFO_LENGTH;
  702. mutex_lock(&data->mutex);
  703. data->watermark = val;
  704. mutex_unlock(&data->mutex);
  705. return 0;
  706. }
  707. /*
  708. * We must read at least one full frame in one burst, otherwise the rest of the
  709. * frame data is discarded.
  710. */
  711. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  712. char *buffer, int samples)
  713. {
  714. struct device *dev = regmap_get_device(data->regmap);
  715. int sample_length = 3 * 2;
  716. int ret;
  717. int total_length = samples * sample_length;
  718. int i;
  719. size_t step = regmap_get_raw_read_max(data->regmap);
  720. if (!step || step > total_length)
  721. step = total_length;
  722. else if (step < total_length)
  723. step = sample_length;
  724. /*
  725. * Seems we have a bus with size limitation so we have to execute
  726. * multiple reads
  727. */
  728. for (i = 0; i < total_length; i += step) {
  729. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  730. &buffer[i], step);
  731. if (ret)
  732. break;
  733. }
  734. if (ret)
  735. dev_err(dev,
  736. "Error transferring data from fifo in single steps of %zu\n",
  737. step);
  738. return ret;
  739. }
  740. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  741. unsigned samples, bool irq)
  742. {
  743. struct bmc150_accel_data *data = iio_priv(indio_dev);
  744. struct device *dev = regmap_get_device(data->regmap);
  745. int ret, i;
  746. u8 count;
  747. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  748. int64_t tstamp;
  749. uint64_t sample_period;
  750. unsigned int val;
  751. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  752. if (ret < 0) {
  753. dev_err(dev, "Error reading reg_fifo_status\n");
  754. return ret;
  755. }
  756. count = val & 0x7F;
  757. if (!count)
  758. return 0;
  759. /*
  760. * If we getting called from IRQ handler we know the stored timestamp is
  761. * fairly accurate for the last stored sample. Otherwise, if we are
  762. * called as a result of a read operation from userspace and hence
  763. * before the watermark interrupt was triggered, take a timestamp
  764. * now. We can fall anywhere in between two samples so the error in this
  765. * case is at most one sample period.
  766. */
  767. if (!irq) {
  768. data->old_timestamp = data->timestamp;
  769. data->timestamp = iio_get_time_ns(indio_dev);
  770. }
  771. /*
  772. * Approximate timestamps for each of the sample based on the sampling
  773. * frequency, timestamp for last sample and number of samples.
  774. *
  775. * Note that we can't use the current bandwidth settings to compute the
  776. * sample period because the sample rate varies with the device
  777. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  778. * small variation adds when we store a large number of samples and
  779. * creates significant jitter between the last and first samples in
  780. * different batches (e.g. 32ms vs 21ms).
  781. *
  782. * To avoid this issue we compute the actual sample period ourselves
  783. * based on the timestamp delta between the last two flush operations.
  784. */
  785. sample_period = (data->timestamp - data->old_timestamp);
  786. do_div(sample_period, count);
  787. tstamp = data->timestamp - (count - 1) * sample_period;
  788. if (samples && count > samples)
  789. count = samples;
  790. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  791. if (ret)
  792. return ret;
  793. /*
  794. * Ideally we want the IIO core to handle the demux when running in fifo
  795. * mode but not when running in triggered buffer mode. Unfortunately
  796. * this does not seem to be possible, so stick with driver demux for
  797. * now.
  798. */
  799. for (i = 0; i < count; i++) {
  800. u16 sample[8];
  801. int j, bit;
  802. j = 0;
  803. for_each_set_bit(bit, indio_dev->active_scan_mask,
  804. indio_dev->masklength)
  805. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  806. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  807. tstamp += sample_period;
  808. }
  809. return count;
  810. }
  811. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  812. {
  813. struct bmc150_accel_data *data = iio_priv(indio_dev);
  814. int ret;
  815. mutex_lock(&data->mutex);
  816. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  817. mutex_unlock(&data->mutex);
  818. return ret;
  819. }
  820. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  821. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  822. static struct attribute *bmc150_accel_attributes[] = {
  823. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  824. NULL,
  825. };
  826. static const struct attribute_group bmc150_accel_attrs_group = {
  827. .attrs = bmc150_accel_attributes,
  828. };
  829. static const struct iio_event_spec bmc150_accel_event = {
  830. .type = IIO_EV_TYPE_ROC,
  831. .dir = IIO_EV_DIR_EITHER,
  832. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  833. BIT(IIO_EV_INFO_ENABLE) |
  834. BIT(IIO_EV_INFO_PERIOD)
  835. };
  836. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  837. .type = IIO_ACCEL, \
  838. .modified = 1, \
  839. .channel2 = IIO_MOD_##_axis, \
  840. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  841. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  842. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  843. .scan_index = AXIS_##_axis, \
  844. .scan_type = { \
  845. .sign = 's', \
  846. .realbits = (bits), \
  847. .storagebits = 16, \
  848. .shift = 16 - (bits), \
  849. .endianness = IIO_LE, \
  850. }, \
  851. .event_spec = &bmc150_accel_event, \
  852. .num_event_specs = 1 \
  853. }
  854. #define BMC150_ACCEL_CHANNELS(bits) { \
  855. { \
  856. .type = IIO_TEMP, \
  857. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  858. BIT(IIO_CHAN_INFO_SCALE) | \
  859. BIT(IIO_CHAN_INFO_OFFSET), \
  860. .scan_index = -1, \
  861. }, \
  862. BMC150_ACCEL_CHANNEL(X, bits), \
  863. BMC150_ACCEL_CHANNEL(Y, bits), \
  864. BMC150_ACCEL_CHANNEL(Z, bits), \
  865. IIO_CHAN_SOFT_TIMESTAMP(3), \
  866. }
  867. static const struct iio_chan_spec bma222e_accel_channels[] =
  868. BMC150_ACCEL_CHANNELS(8);
  869. static const struct iio_chan_spec bma250e_accel_channels[] =
  870. BMC150_ACCEL_CHANNELS(10);
  871. static const struct iio_chan_spec bmc150_accel_channels[] =
  872. BMC150_ACCEL_CHANNELS(12);
  873. static const struct iio_chan_spec bma280_accel_channels[] =
  874. BMC150_ACCEL_CHANNELS(14);
  875. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  876. [bmc150] = {
  877. .name = "BMC150A",
  878. .chip_id = 0xFA,
  879. .channels = bmc150_accel_channels,
  880. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  881. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  882. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  883. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  884. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  885. },
  886. [bmi055] = {
  887. .name = "BMI055A",
  888. .chip_id = 0xFA,
  889. .channels = bmc150_accel_channels,
  890. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  891. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  892. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  893. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  894. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  895. },
  896. [bma255] = {
  897. .name = "BMA0255",
  898. .chip_id = 0xFA,
  899. .channels = bmc150_accel_channels,
  900. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  901. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  902. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  903. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  904. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  905. },
  906. [bma250e] = {
  907. .name = "BMA250E",
  908. .chip_id = 0xF9,
  909. .channels = bma250e_accel_channels,
  910. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  911. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  912. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  913. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  914. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  915. },
  916. [bma222e] = {
  917. .name = "BMA222E",
  918. .chip_id = 0xF8,
  919. .channels = bma222e_accel_channels,
  920. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  921. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  922. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  923. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  924. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  925. },
  926. [bma280] = {
  927. .name = "BMA0280",
  928. .chip_id = 0xFB,
  929. .channels = bma280_accel_channels,
  930. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  931. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  932. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  933. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  934. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  935. },
  936. };
  937. static const struct iio_info bmc150_accel_info = {
  938. .attrs = &bmc150_accel_attrs_group,
  939. .read_raw = bmc150_accel_read_raw,
  940. .write_raw = bmc150_accel_write_raw,
  941. .read_event_value = bmc150_accel_read_event,
  942. .write_event_value = bmc150_accel_write_event,
  943. .write_event_config = bmc150_accel_write_event_config,
  944. .read_event_config = bmc150_accel_read_event_config,
  945. .driver_module = THIS_MODULE,
  946. };
  947. static const struct iio_info bmc150_accel_info_fifo = {
  948. .attrs = &bmc150_accel_attrs_group,
  949. .read_raw = bmc150_accel_read_raw,
  950. .write_raw = bmc150_accel_write_raw,
  951. .read_event_value = bmc150_accel_read_event,
  952. .write_event_value = bmc150_accel_write_event,
  953. .write_event_config = bmc150_accel_write_event_config,
  954. .read_event_config = bmc150_accel_read_event_config,
  955. .validate_trigger = bmc150_accel_validate_trigger,
  956. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  957. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  958. .driver_module = THIS_MODULE,
  959. };
  960. static const unsigned long bmc150_accel_scan_masks[] = {
  961. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  962. 0};
  963. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  964. {
  965. struct iio_poll_func *pf = p;
  966. struct iio_dev *indio_dev = pf->indio_dev;
  967. struct bmc150_accel_data *data = iio_priv(indio_dev);
  968. int ret;
  969. mutex_lock(&data->mutex);
  970. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  971. data->buffer, AXIS_MAX * 2);
  972. mutex_unlock(&data->mutex);
  973. if (ret < 0)
  974. goto err_read;
  975. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  976. pf->timestamp);
  977. err_read:
  978. iio_trigger_notify_done(indio_dev->trig);
  979. return IRQ_HANDLED;
  980. }
  981. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  982. {
  983. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  984. struct bmc150_accel_data *data = t->data;
  985. struct device *dev = regmap_get_device(data->regmap);
  986. int ret;
  987. /* new data interrupts don't need ack */
  988. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  989. return 0;
  990. mutex_lock(&data->mutex);
  991. /* clear any latched interrupt */
  992. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  993. BMC150_ACCEL_INT_MODE_LATCH_INT |
  994. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  995. mutex_unlock(&data->mutex);
  996. if (ret < 0) {
  997. dev_err(dev, "Error writing reg_int_rst_latch\n");
  998. return ret;
  999. }
  1000. return 0;
  1001. }
  1002. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  1003. bool state)
  1004. {
  1005. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1006. struct bmc150_accel_data *data = t->data;
  1007. int ret;
  1008. mutex_lock(&data->mutex);
  1009. if (t->enabled == state) {
  1010. mutex_unlock(&data->mutex);
  1011. return 0;
  1012. }
  1013. if (t->setup) {
  1014. ret = t->setup(t, state);
  1015. if (ret < 0) {
  1016. mutex_unlock(&data->mutex);
  1017. return ret;
  1018. }
  1019. }
  1020. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1021. if (ret < 0) {
  1022. mutex_unlock(&data->mutex);
  1023. return ret;
  1024. }
  1025. t->enabled = state;
  1026. mutex_unlock(&data->mutex);
  1027. return ret;
  1028. }
  1029. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1030. .set_trigger_state = bmc150_accel_trigger_set_state,
  1031. .try_reenable = bmc150_accel_trig_try_reen,
  1032. .owner = THIS_MODULE,
  1033. };
  1034. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1035. {
  1036. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1037. struct device *dev = regmap_get_device(data->regmap);
  1038. int dir;
  1039. int ret;
  1040. unsigned int val;
  1041. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1042. if (ret < 0) {
  1043. dev_err(dev, "Error reading reg_int_status_2\n");
  1044. return ret;
  1045. }
  1046. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1047. dir = IIO_EV_DIR_FALLING;
  1048. else
  1049. dir = IIO_EV_DIR_RISING;
  1050. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1051. iio_push_event(indio_dev,
  1052. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1053. 0,
  1054. IIO_MOD_X,
  1055. IIO_EV_TYPE_ROC,
  1056. dir),
  1057. data->timestamp);
  1058. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1059. iio_push_event(indio_dev,
  1060. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1061. 0,
  1062. IIO_MOD_Y,
  1063. IIO_EV_TYPE_ROC,
  1064. dir),
  1065. data->timestamp);
  1066. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1067. iio_push_event(indio_dev,
  1068. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1069. 0,
  1070. IIO_MOD_Z,
  1071. IIO_EV_TYPE_ROC,
  1072. dir),
  1073. data->timestamp);
  1074. return ret;
  1075. }
  1076. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1077. {
  1078. struct iio_dev *indio_dev = private;
  1079. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1080. struct device *dev = regmap_get_device(data->regmap);
  1081. bool ack = false;
  1082. int ret;
  1083. mutex_lock(&data->mutex);
  1084. if (data->fifo_mode) {
  1085. ret = __bmc150_accel_fifo_flush(indio_dev,
  1086. BMC150_ACCEL_FIFO_LENGTH, true);
  1087. if (ret > 0)
  1088. ack = true;
  1089. }
  1090. if (data->ev_enable_state) {
  1091. ret = bmc150_accel_handle_roc_event(indio_dev);
  1092. if (ret > 0)
  1093. ack = true;
  1094. }
  1095. if (ack) {
  1096. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1097. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1098. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1099. if (ret)
  1100. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1101. ret = IRQ_HANDLED;
  1102. } else {
  1103. ret = IRQ_NONE;
  1104. }
  1105. mutex_unlock(&data->mutex);
  1106. return ret;
  1107. }
  1108. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1109. {
  1110. struct iio_dev *indio_dev = private;
  1111. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1112. bool ack = false;
  1113. int i;
  1114. data->old_timestamp = data->timestamp;
  1115. data->timestamp = iio_get_time_ns(indio_dev);
  1116. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1117. if (data->triggers[i].enabled) {
  1118. iio_trigger_poll(data->triggers[i].indio_trig);
  1119. ack = true;
  1120. break;
  1121. }
  1122. }
  1123. if (data->ev_enable_state || data->fifo_mode)
  1124. return IRQ_WAKE_THREAD;
  1125. if (ack)
  1126. return IRQ_HANDLED;
  1127. return IRQ_NONE;
  1128. }
  1129. static const struct {
  1130. int intr;
  1131. const char *name;
  1132. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1133. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1134. {
  1135. .intr = 0,
  1136. .name = "%s-dev%d",
  1137. },
  1138. {
  1139. .intr = 1,
  1140. .name = "%s-any-motion-dev%d",
  1141. .setup = bmc150_accel_any_motion_setup,
  1142. },
  1143. };
  1144. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1145. int from)
  1146. {
  1147. int i;
  1148. for (i = from; i >= 0; i--) {
  1149. if (data->triggers[i].indio_trig) {
  1150. iio_trigger_unregister(data->triggers[i].indio_trig);
  1151. data->triggers[i].indio_trig = NULL;
  1152. }
  1153. }
  1154. }
  1155. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1156. struct bmc150_accel_data *data)
  1157. {
  1158. struct device *dev = regmap_get_device(data->regmap);
  1159. int i, ret;
  1160. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1161. struct bmc150_accel_trigger *t = &data->triggers[i];
  1162. t->indio_trig = devm_iio_trigger_alloc(dev,
  1163. bmc150_accel_triggers[i].name,
  1164. indio_dev->name,
  1165. indio_dev->id);
  1166. if (!t->indio_trig) {
  1167. ret = -ENOMEM;
  1168. break;
  1169. }
  1170. t->indio_trig->dev.parent = dev;
  1171. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1172. t->intr = bmc150_accel_triggers[i].intr;
  1173. t->data = data;
  1174. t->setup = bmc150_accel_triggers[i].setup;
  1175. iio_trigger_set_drvdata(t->indio_trig, t);
  1176. ret = iio_trigger_register(t->indio_trig);
  1177. if (ret)
  1178. break;
  1179. }
  1180. if (ret)
  1181. bmc150_accel_unregister_triggers(data, i - 1);
  1182. return ret;
  1183. }
  1184. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1185. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1186. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1187. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1188. {
  1189. struct device *dev = regmap_get_device(data->regmap);
  1190. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1191. int ret;
  1192. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1193. if (ret < 0) {
  1194. dev_err(dev, "Error writing reg_fifo_config1\n");
  1195. return ret;
  1196. }
  1197. if (!data->fifo_mode)
  1198. return 0;
  1199. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1200. data->watermark);
  1201. if (ret < 0)
  1202. dev_err(dev, "Error writing reg_fifo_config0\n");
  1203. return ret;
  1204. }
  1205. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1206. {
  1207. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1208. return bmc150_accel_set_power_state(data, true);
  1209. }
  1210. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1211. {
  1212. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1213. int ret = 0;
  1214. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1215. return iio_triggered_buffer_postenable(indio_dev);
  1216. mutex_lock(&data->mutex);
  1217. if (!data->watermark)
  1218. goto out;
  1219. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1220. true);
  1221. if (ret)
  1222. goto out;
  1223. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1224. ret = bmc150_accel_fifo_set_mode(data);
  1225. if (ret) {
  1226. data->fifo_mode = 0;
  1227. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1228. false);
  1229. }
  1230. out:
  1231. mutex_unlock(&data->mutex);
  1232. return ret;
  1233. }
  1234. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1235. {
  1236. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1237. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1238. return iio_triggered_buffer_predisable(indio_dev);
  1239. mutex_lock(&data->mutex);
  1240. if (!data->fifo_mode)
  1241. goto out;
  1242. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1243. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1244. data->fifo_mode = 0;
  1245. bmc150_accel_fifo_set_mode(data);
  1246. out:
  1247. mutex_unlock(&data->mutex);
  1248. return 0;
  1249. }
  1250. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1251. {
  1252. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1253. return bmc150_accel_set_power_state(data, false);
  1254. }
  1255. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1256. .preenable = bmc150_accel_buffer_preenable,
  1257. .postenable = bmc150_accel_buffer_postenable,
  1258. .predisable = bmc150_accel_buffer_predisable,
  1259. .postdisable = bmc150_accel_buffer_postdisable,
  1260. };
  1261. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1262. {
  1263. struct device *dev = regmap_get_device(data->regmap);
  1264. int ret, i;
  1265. unsigned int val;
  1266. /*
  1267. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1268. * reset is required according to the data sheets of supported chips.
  1269. */
  1270. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1271. BMC150_ACCEL_RESET_VAL);
  1272. usleep_range(1800, 2500);
  1273. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1274. if (ret < 0) {
  1275. dev_err(dev, "Error: Reading chip id\n");
  1276. return ret;
  1277. }
  1278. dev_dbg(dev, "Chip Id %x\n", val);
  1279. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1280. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1281. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1282. break;
  1283. }
  1284. }
  1285. if (!data->chip_info) {
  1286. dev_err(dev, "Invalid chip %x\n", val);
  1287. return -ENODEV;
  1288. }
  1289. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1290. if (ret < 0)
  1291. return ret;
  1292. /* Set Bandwidth */
  1293. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1294. if (ret < 0)
  1295. return ret;
  1296. /* Set Default Range */
  1297. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1298. BMC150_ACCEL_DEF_RANGE_4G);
  1299. if (ret < 0) {
  1300. dev_err(dev, "Error writing reg_pmu_range\n");
  1301. return ret;
  1302. }
  1303. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1304. /* Set default slope duration and thresholds */
  1305. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1306. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1307. ret = bmc150_accel_update_slope(data);
  1308. if (ret < 0)
  1309. return ret;
  1310. /* Set default as latched interrupts */
  1311. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1312. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1313. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1314. if (ret < 0) {
  1315. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1316. return ret;
  1317. }
  1318. return 0;
  1319. }
  1320. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1321. const char *name, bool block_supported)
  1322. {
  1323. struct bmc150_accel_data *data;
  1324. struct iio_dev *indio_dev;
  1325. int ret;
  1326. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1327. if (!indio_dev)
  1328. return -ENOMEM;
  1329. data = iio_priv(indio_dev);
  1330. dev_set_drvdata(dev, indio_dev);
  1331. data->irq = irq;
  1332. data->regmap = regmap;
  1333. ret = bmc150_accel_chip_init(data);
  1334. if (ret < 0)
  1335. return ret;
  1336. mutex_init(&data->mutex);
  1337. indio_dev->dev.parent = dev;
  1338. indio_dev->channels = data->chip_info->channels;
  1339. indio_dev->num_channels = data->chip_info->num_channels;
  1340. indio_dev->name = name ? name : data->chip_info->name;
  1341. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1342. indio_dev->modes = INDIO_DIRECT_MODE;
  1343. indio_dev->info = &bmc150_accel_info;
  1344. ret = iio_triggered_buffer_setup(indio_dev,
  1345. &iio_pollfunc_store_time,
  1346. bmc150_accel_trigger_handler,
  1347. &bmc150_accel_buffer_ops);
  1348. if (ret < 0) {
  1349. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1350. return ret;
  1351. }
  1352. if (data->irq > 0) {
  1353. ret = devm_request_threaded_irq(
  1354. dev, data->irq,
  1355. bmc150_accel_irq_handler,
  1356. bmc150_accel_irq_thread_handler,
  1357. IRQF_TRIGGER_RISING,
  1358. BMC150_ACCEL_IRQ_NAME,
  1359. indio_dev);
  1360. if (ret)
  1361. goto err_buffer_cleanup;
  1362. /*
  1363. * Set latched mode interrupt. While certain interrupts are
  1364. * non-latched regardless of this settings (e.g. new data) we
  1365. * want to use latch mode when we can to prevent interrupt
  1366. * flooding.
  1367. */
  1368. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1369. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1370. if (ret < 0) {
  1371. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1372. goto err_buffer_cleanup;
  1373. }
  1374. bmc150_accel_interrupts_setup(indio_dev, data);
  1375. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1376. if (ret)
  1377. goto err_buffer_cleanup;
  1378. if (block_supported) {
  1379. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1380. indio_dev->info = &bmc150_accel_info_fifo;
  1381. iio_buffer_set_attrs(indio_dev->buffer,
  1382. bmc150_accel_fifo_attributes);
  1383. }
  1384. }
  1385. ret = pm_runtime_set_active(dev);
  1386. if (ret)
  1387. goto err_trigger_unregister;
  1388. pm_runtime_enable(dev);
  1389. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1390. pm_runtime_use_autosuspend(dev);
  1391. ret = iio_device_register(indio_dev);
  1392. if (ret < 0) {
  1393. dev_err(dev, "Unable to register iio device\n");
  1394. goto err_trigger_unregister;
  1395. }
  1396. return 0;
  1397. err_trigger_unregister:
  1398. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1399. err_buffer_cleanup:
  1400. iio_triggered_buffer_cleanup(indio_dev);
  1401. return ret;
  1402. }
  1403. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1404. int bmc150_accel_core_remove(struct device *dev)
  1405. {
  1406. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1407. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1408. iio_device_unregister(indio_dev);
  1409. pm_runtime_disable(dev);
  1410. pm_runtime_set_suspended(dev);
  1411. pm_runtime_put_noidle(dev);
  1412. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1413. iio_triggered_buffer_cleanup(indio_dev);
  1414. mutex_lock(&data->mutex);
  1415. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1416. mutex_unlock(&data->mutex);
  1417. return 0;
  1418. }
  1419. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1420. #ifdef CONFIG_PM_SLEEP
  1421. static int bmc150_accel_suspend(struct device *dev)
  1422. {
  1423. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1424. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1425. mutex_lock(&data->mutex);
  1426. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1427. mutex_unlock(&data->mutex);
  1428. return 0;
  1429. }
  1430. static int bmc150_accel_resume(struct device *dev)
  1431. {
  1432. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1433. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1434. mutex_lock(&data->mutex);
  1435. if (atomic_read(&data->active_intr))
  1436. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1437. bmc150_accel_fifo_set_mode(data);
  1438. mutex_unlock(&data->mutex);
  1439. return 0;
  1440. }
  1441. #endif
  1442. #ifdef CONFIG_PM
  1443. static int bmc150_accel_runtime_suspend(struct device *dev)
  1444. {
  1445. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1446. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1447. int ret;
  1448. dev_dbg(dev, __func__);
  1449. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1450. if (ret < 0)
  1451. return -EAGAIN;
  1452. return 0;
  1453. }
  1454. static int bmc150_accel_runtime_resume(struct device *dev)
  1455. {
  1456. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1457. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1458. int ret;
  1459. int sleep_val;
  1460. dev_dbg(dev, __func__);
  1461. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1462. if (ret < 0)
  1463. return ret;
  1464. ret = bmc150_accel_fifo_set_mode(data);
  1465. if (ret < 0)
  1466. return ret;
  1467. sleep_val = bmc150_accel_get_startup_times(data);
  1468. if (sleep_val < 20)
  1469. usleep_range(sleep_val * 1000, 20000);
  1470. else
  1471. msleep_interruptible(sleep_val);
  1472. return 0;
  1473. }
  1474. #endif
  1475. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1476. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1477. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1478. bmc150_accel_runtime_resume, NULL)
  1479. };
  1480. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1481. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1482. MODULE_LICENSE("GPL v2");
  1483. MODULE_DESCRIPTION("BMC150 accelerometer driver");