i2c-exynos5.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /**
  2. * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  3. *
  4. * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/i2c.h>
  13. #include <linux/time.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/clk.h>
  20. #include <linux/slab.h>
  21. #include <linux/io.h>
  22. #include <linux/of_address.h>
  23. #include <linux/of_device.h>
  24. #include <linux/of_irq.h>
  25. #include <linux/spinlock.h>
  26. /*
  27. * HSI2C controller from Samsung supports 2 modes of operation
  28. * 1. Auto mode: Where in master automatically controls the whole transaction
  29. * 2. Manual mode: Software controls the transaction by issuing commands
  30. * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
  31. *
  32. * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
  33. *
  34. * Special bits are available for both modes of operation to set commands
  35. * and for checking transfer status
  36. */
  37. /* Register Map */
  38. #define HSI2C_CTL 0x00
  39. #define HSI2C_FIFO_CTL 0x04
  40. #define HSI2C_TRAILIG_CTL 0x08
  41. #define HSI2C_CLK_CTL 0x0C
  42. #define HSI2C_CLK_SLOT 0x10
  43. #define HSI2C_INT_ENABLE 0x20
  44. #define HSI2C_INT_STATUS 0x24
  45. #define HSI2C_ERR_STATUS 0x2C
  46. #define HSI2C_FIFO_STATUS 0x30
  47. #define HSI2C_TX_DATA 0x34
  48. #define HSI2C_RX_DATA 0x38
  49. #define HSI2C_CONF 0x40
  50. #define HSI2C_AUTO_CONF 0x44
  51. #define HSI2C_TIMEOUT 0x48
  52. #define HSI2C_MANUAL_CMD 0x4C
  53. #define HSI2C_TRANS_STATUS 0x50
  54. #define HSI2C_TIMING_HS1 0x54
  55. #define HSI2C_TIMING_HS2 0x58
  56. #define HSI2C_TIMING_HS3 0x5C
  57. #define HSI2C_TIMING_FS1 0x60
  58. #define HSI2C_TIMING_FS2 0x64
  59. #define HSI2C_TIMING_FS3 0x68
  60. #define HSI2C_TIMING_SLA 0x6C
  61. #define HSI2C_ADDR 0x70
  62. /* I2C_CTL Register bits */
  63. #define HSI2C_FUNC_MODE_I2C (1u << 0)
  64. #define HSI2C_MASTER (1u << 3)
  65. #define HSI2C_RXCHON (1u << 6)
  66. #define HSI2C_TXCHON (1u << 7)
  67. #define HSI2C_SW_RST (1u << 31)
  68. /* I2C_FIFO_CTL Register bits */
  69. #define HSI2C_RXFIFO_EN (1u << 0)
  70. #define HSI2C_TXFIFO_EN (1u << 1)
  71. #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
  72. #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
  73. /* I2C_TRAILING_CTL Register bits */
  74. #define HSI2C_TRAILING_COUNT (0xf)
  75. /* I2C_INT_EN Register bits */
  76. #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
  77. #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
  78. #define HSI2C_INT_TRAILING_EN (1u << 6)
  79. /* I2C_INT_STAT Register bits */
  80. #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
  81. #define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
  82. #define HSI2C_INT_TX_UNDERRUN (1u << 2)
  83. #define HSI2C_INT_TX_OVERRUN (1u << 3)
  84. #define HSI2C_INT_RX_UNDERRUN (1u << 4)
  85. #define HSI2C_INT_RX_OVERRUN (1u << 5)
  86. #define HSI2C_INT_TRAILING (1u << 6)
  87. #define HSI2C_INT_I2C (1u << 9)
  88. #define HSI2C_INT_TRANS_DONE (1u << 7)
  89. #define HSI2C_INT_TRANS_ABORT (1u << 8)
  90. #define HSI2C_INT_NO_DEV_ACK (1u << 9)
  91. #define HSI2C_INT_NO_DEV (1u << 10)
  92. #define HSI2C_INT_TIMEOUT (1u << 11)
  93. #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
  94. HSI2C_INT_TRANS_ABORT | \
  95. HSI2C_INT_NO_DEV_ACK | \
  96. HSI2C_INT_NO_DEV | \
  97. HSI2C_INT_TIMEOUT)
  98. /* I2C_FIFO_STAT Register bits */
  99. #define HSI2C_RX_FIFO_EMPTY (1u << 24)
  100. #define HSI2C_RX_FIFO_FULL (1u << 23)
  101. #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
  102. #define HSI2C_TX_FIFO_EMPTY (1u << 8)
  103. #define HSI2C_TX_FIFO_FULL (1u << 7)
  104. #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
  105. /* I2C_CONF Register bits */
  106. #define HSI2C_AUTO_MODE (1u << 31)
  107. #define HSI2C_10BIT_ADDR_MODE (1u << 30)
  108. #define HSI2C_HS_MODE (1u << 29)
  109. /* I2C_AUTO_CONF Register bits */
  110. #define HSI2C_READ_WRITE (1u << 16)
  111. #define HSI2C_STOP_AFTER_TRANS (1u << 17)
  112. #define HSI2C_MASTER_RUN (1u << 31)
  113. /* I2C_TIMEOUT Register bits */
  114. #define HSI2C_TIMEOUT_EN (1u << 31)
  115. #define HSI2C_TIMEOUT_MASK 0xff
  116. /* I2C_TRANS_STATUS register bits */
  117. #define HSI2C_MASTER_BUSY (1u << 17)
  118. #define HSI2C_SLAVE_BUSY (1u << 16)
  119. /* I2C_TRANS_STATUS register bits for Exynos5 variant */
  120. #define HSI2C_TIMEOUT_AUTO (1u << 4)
  121. #define HSI2C_NO_DEV (1u << 3)
  122. #define HSI2C_NO_DEV_ACK (1u << 2)
  123. #define HSI2C_TRANS_ABORT (1u << 1)
  124. #define HSI2C_TRANS_DONE (1u << 0)
  125. /* I2C_TRANS_STATUS register bits for Exynos7 variant */
  126. #define HSI2C_MASTER_ST_MASK 0xf
  127. #define HSI2C_MASTER_ST_IDLE 0x0
  128. #define HSI2C_MASTER_ST_START 0x1
  129. #define HSI2C_MASTER_ST_RESTART 0x2
  130. #define HSI2C_MASTER_ST_STOP 0x3
  131. #define HSI2C_MASTER_ST_MASTER_ID 0x4
  132. #define HSI2C_MASTER_ST_ADDR0 0x5
  133. #define HSI2C_MASTER_ST_ADDR1 0x6
  134. #define HSI2C_MASTER_ST_ADDR2 0x7
  135. #define HSI2C_MASTER_ST_ADDR_SR 0x8
  136. #define HSI2C_MASTER_ST_READ 0x9
  137. #define HSI2C_MASTER_ST_WRITE 0xa
  138. #define HSI2C_MASTER_ST_NO_ACK 0xb
  139. #define HSI2C_MASTER_ST_LOSE 0xc
  140. #define HSI2C_MASTER_ST_WAIT 0xd
  141. #define HSI2C_MASTER_ST_WAIT_CMD 0xe
  142. /* I2C_ADDR register bits */
  143. #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
  144. #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
  145. #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
  146. #define MASTER_ID(x) ((x & 0x7) + 0x08)
  147. /*
  148. * Controller operating frequency, timing values for operation
  149. * are calculated against this frequency
  150. */
  151. #define HSI2C_HS_TX_CLOCK 1000000
  152. #define HSI2C_FS_TX_CLOCK 100000
  153. #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(1000))
  154. #define HSI2C_EXYNOS7 BIT(0)
  155. struct exynos5_i2c {
  156. struct i2c_adapter adap;
  157. unsigned int suspended:1;
  158. struct i2c_msg *msg;
  159. struct completion msg_complete;
  160. unsigned int msg_ptr;
  161. unsigned int irq;
  162. void __iomem *regs;
  163. struct clk *clk;
  164. struct device *dev;
  165. int state;
  166. spinlock_t lock; /* IRQ synchronization */
  167. /*
  168. * Since the TRANS_DONE bit is cleared on read, and we may read it
  169. * either during an IRQ or after a transaction, keep track of its
  170. * state here.
  171. */
  172. int trans_done;
  173. /* Controller operating frequency */
  174. unsigned int op_clock;
  175. /* Version of HS-I2C Hardware */
  176. const struct exynos_hsi2c_variant *variant;
  177. };
  178. /**
  179. * struct exynos_hsi2c_variant - platform specific HSI2C driver data
  180. * @fifo_depth: the fifo depth supported by the HSI2C module
  181. *
  182. * Specifies platform specific configuration of HSI2C module.
  183. * Note: A structure for driver specific platform data is used for future
  184. * expansion of its usage.
  185. */
  186. struct exynos_hsi2c_variant {
  187. unsigned int fifo_depth;
  188. unsigned int hw;
  189. };
  190. static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
  191. .fifo_depth = 64,
  192. };
  193. static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
  194. .fifo_depth = 16,
  195. };
  196. static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
  197. .fifo_depth = 16,
  198. .hw = HSI2C_EXYNOS7,
  199. };
  200. static const struct of_device_id exynos5_i2c_match[] = {
  201. {
  202. .compatible = "samsung,exynos5-hsi2c",
  203. .data = &exynos5250_hsi2c_data
  204. }, {
  205. .compatible = "samsung,exynos5250-hsi2c",
  206. .data = &exynos5250_hsi2c_data
  207. }, {
  208. .compatible = "samsung,exynos5260-hsi2c",
  209. .data = &exynos5260_hsi2c_data
  210. }, {
  211. .compatible = "samsung,exynos7-hsi2c",
  212. .data = &exynos7_hsi2c_data
  213. }, {},
  214. };
  215. MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
  216. static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
  217. {
  218. writel(readl(i2c->regs + HSI2C_INT_STATUS),
  219. i2c->regs + HSI2C_INT_STATUS);
  220. }
  221. /*
  222. * exynos5_i2c_set_timing: updates the registers with appropriate
  223. * timing values calculated
  224. *
  225. * Returns 0 on success, -EINVAL if the cycle length cannot
  226. * be calculated.
  227. */
  228. static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
  229. {
  230. u32 i2c_timing_s1;
  231. u32 i2c_timing_s2;
  232. u32 i2c_timing_s3;
  233. u32 i2c_timing_sla;
  234. unsigned int t_start_su, t_start_hd;
  235. unsigned int t_stop_su;
  236. unsigned int t_data_su, t_data_hd;
  237. unsigned int t_scl_l, t_scl_h;
  238. unsigned int t_sr_release;
  239. unsigned int t_ftl_cycle;
  240. unsigned int clkin = clk_get_rate(i2c->clk);
  241. unsigned int op_clk = hs_timings ? i2c->op_clock :
  242. (i2c->op_clock >= HSI2C_HS_TX_CLOCK) ? HSI2C_FS_TX_CLOCK :
  243. i2c->op_clock;
  244. int div, clk_cycle, temp;
  245. /*
  246. * In case of HSI2C controller in Exynos5 series
  247. * FPCLK / FI2C =
  248. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
  249. *
  250. * In case of HSI2C controllers in Exynos7 series
  251. * FPCLK / FI2C =
  252. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
  253. *
  254. * clk_cycle := TSCLK_L + TSCLK_H
  255. * temp := (CLK_DIV + 1) * (clk_cycle + 2)
  256. *
  257. * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
  258. *
  259. */
  260. t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
  261. temp = clkin / op_clk - 8 - t_ftl_cycle;
  262. if (i2c->variant->hw != HSI2C_EXYNOS7)
  263. temp -= t_ftl_cycle;
  264. div = temp / 512;
  265. clk_cycle = temp / (div + 1) - 2;
  266. if (temp < 4 || div >= 256 || clk_cycle < 2) {
  267. dev_err(i2c->dev, "%s clock set-up failed\n",
  268. hs_timings ? "HS" : "FS");
  269. return -EINVAL;
  270. }
  271. t_scl_l = clk_cycle / 2;
  272. t_scl_h = clk_cycle / 2;
  273. t_start_su = t_scl_l;
  274. t_start_hd = t_scl_l;
  275. t_stop_su = t_scl_l;
  276. t_data_su = t_scl_l / 2;
  277. t_data_hd = t_scl_l / 2;
  278. t_sr_release = clk_cycle;
  279. i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
  280. i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
  281. i2c_timing_s3 = div << 16 | t_sr_release << 0;
  282. i2c_timing_sla = t_data_hd << 0;
  283. dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
  284. t_start_su, t_start_hd, t_stop_su);
  285. dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
  286. t_data_su, t_scl_l, t_scl_h);
  287. dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
  288. div, t_sr_release);
  289. dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
  290. if (hs_timings) {
  291. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
  292. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
  293. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  294. } else {
  295. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
  296. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
  297. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  298. }
  299. writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
  300. return 0;
  301. }
  302. static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
  303. {
  304. /* always set Fast Speed timings */
  305. int ret = exynos5_i2c_set_timing(i2c, false);
  306. if (ret < 0 || i2c->op_clock < HSI2C_HS_TX_CLOCK)
  307. return ret;
  308. return exynos5_i2c_set_timing(i2c, true);
  309. }
  310. /*
  311. * exynos5_i2c_init: configures the controller for I2C functionality
  312. * Programs I2C controller for Master mode operation
  313. */
  314. static void exynos5_i2c_init(struct exynos5_i2c *i2c)
  315. {
  316. u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
  317. u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
  318. /* Clear to disable Timeout */
  319. i2c_timeout &= ~HSI2C_TIMEOUT_EN;
  320. writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
  321. writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
  322. i2c->regs + HSI2C_CTL);
  323. writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
  324. if (i2c->op_clock >= HSI2C_HS_TX_CLOCK) {
  325. writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
  326. i2c->regs + HSI2C_ADDR);
  327. i2c_conf |= HSI2C_HS_MODE;
  328. }
  329. writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
  330. }
  331. static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
  332. {
  333. u32 i2c_ctl;
  334. /* Set and clear the bit for reset */
  335. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  336. i2c_ctl |= HSI2C_SW_RST;
  337. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  338. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  339. i2c_ctl &= ~HSI2C_SW_RST;
  340. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  341. /* We don't expect calculations to fail during the run */
  342. exynos5_hsi2c_clock_setup(i2c);
  343. /* Initialize the configure registers */
  344. exynos5_i2c_init(i2c);
  345. }
  346. /*
  347. * exynos5_i2c_irq: top level IRQ servicing routine
  348. *
  349. * INT_STATUS registers gives the interrupt details. Further,
  350. * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
  351. * state of the bus.
  352. */
  353. static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
  354. {
  355. struct exynos5_i2c *i2c = dev_id;
  356. u32 fifo_level, int_status, fifo_status, trans_status;
  357. unsigned char byte;
  358. int len = 0;
  359. i2c->state = -EINVAL;
  360. spin_lock(&i2c->lock);
  361. int_status = readl(i2c->regs + HSI2C_INT_STATUS);
  362. writel(int_status, i2c->regs + HSI2C_INT_STATUS);
  363. /* handle interrupt related to the transfer status */
  364. if (i2c->variant->hw == HSI2C_EXYNOS7) {
  365. if (int_status & HSI2C_INT_TRANS_DONE) {
  366. i2c->trans_done = 1;
  367. i2c->state = 0;
  368. } else if (int_status & HSI2C_INT_TRANS_ABORT) {
  369. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  370. i2c->state = -EAGAIN;
  371. goto stop;
  372. } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
  373. dev_dbg(i2c->dev, "No ACK from device\n");
  374. i2c->state = -ENXIO;
  375. goto stop;
  376. } else if (int_status & HSI2C_INT_NO_DEV) {
  377. dev_dbg(i2c->dev, "No device\n");
  378. i2c->state = -ENXIO;
  379. goto stop;
  380. } else if (int_status & HSI2C_INT_TIMEOUT) {
  381. dev_dbg(i2c->dev, "Accessing device timed out\n");
  382. i2c->state = -ETIMEDOUT;
  383. goto stop;
  384. }
  385. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  386. if ((trans_status & HSI2C_MASTER_ST_MASK) == HSI2C_MASTER_ST_LOSE) {
  387. i2c->state = -EAGAIN;
  388. goto stop;
  389. }
  390. } else if (int_status & HSI2C_INT_I2C) {
  391. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  392. if (trans_status & HSI2C_NO_DEV_ACK) {
  393. dev_dbg(i2c->dev, "No ACK from device\n");
  394. i2c->state = -ENXIO;
  395. goto stop;
  396. } else if (trans_status & HSI2C_NO_DEV) {
  397. dev_dbg(i2c->dev, "No device\n");
  398. i2c->state = -ENXIO;
  399. goto stop;
  400. } else if (trans_status & HSI2C_TRANS_ABORT) {
  401. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  402. i2c->state = -EAGAIN;
  403. goto stop;
  404. } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
  405. dev_dbg(i2c->dev, "Accessing device timed out\n");
  406. i2c->state = -ETIMEDOUT;
  407. goto stop;
  408. } else if (trans_status & HSI2C_TRANS_DONE) {
  409. i2c->trans_done = 1;
  410. i2c->state = 0;
  411. }
  412. }
  413. if ((i2c->msg->flags & I2C_M_RD) && (int_status &
  414. (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
  415. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  416. fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
  417. len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
  418. while (len > 0) {
  419. byte = (unsigned char)
  420. readl(i2c->regs + HSI2C_RX_DATA);
  421. i2c->msg->buf[i2c->msg_ptr++] = byte;
  422. len--;
  423. }
  424. i2c->state = 0;
  425. } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
  426. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  427. fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
  428. len = i2c->variant->fifo_depth - fifo_level;
  429. if (len > (i2c->msg->len - i2c->msg_ptr)) {
  430. u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
  431. int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
  432. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  433. len = i2c->msg->len - i2c->msg_ptr;
  434. }
  435. while (len > 0) {
  436. byte = i2c->msg->buf[i2c->msg_ptr++];
  437. writel(byte, i2c->regs + HSI2C_TX_DATA);
  438. len--;
  439. }
  440. i2c->state = 0;
  441. }
  442. stop:
  443. if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
  444. (i2c->state < 0)) {
  445. writel(0, i2c->regs + HSI2C_INT_ENABLE);
  446. exynos5_i2c_clr_pend_irq(i2c);
  447. complete(&i2c->msg_complete);
  448. }
  449. spin_unlock(&i2c->lock);
  450. return IRQ_HANDLED;
  451. }
  452. /*
  453. * exynos5_i2c_wait_bus_idle
  454. *
  455. * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
  456. * cleared.
  457. *
  458. * Returns -EBUSY if the bus cannot be bought to idle
  459. */
  460. static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
  461. {
  462. unsigned long stop_time;
  463. u32 trans_status;
  464. /* wait for 100 milli seconds for the bus to be idle */
  465. stop_time = jiffies + msecs_to_jiffies(100) + 1;
  466. do {
  467. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  468. if (!(trans_status & HSI2C_MASTER_BUSY))
  469. return 0;
  470. usleep_range(50, 200);
  471. } while (time_before(jiffies, stop_time));
  472. return -EBUSY;
  473. }
  474. /*
  475. * exynos5_i2c_message_start: Configures the bus and starts the xfer
  476. * i2c: struct exynos5_i2c pointer for the current bus
  477. * stop: Enables stop after transfer if set. Set for last transfer of
  478. * in the list of messages.
  479. *
  480. * Configures the bus for read/write function
  481. * Sets chip address to talk to, message length to be sent.
  482. * Enables appropriate interrupts and sends start xfer command.
  483. */
  484. static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
  485. {
  486. u32 i2c_ctl;
  487. u32 int_en = 0;
  488. u32 i2c_auto_conf = 0;
  489. u32 fifo_ctl;
  490. unsigned long flags;
  491. unsigned short trig_lvl;
  492. if (i2c->variant->hw == HSI2C_EXYNOS7)
  493. int_en |= HSI2C_INT_I2C_TRANS;
  494. else
  495. int_en |= HSI2C_INT_I2C;
  496. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  497. i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
  498. fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
  499. if (i2c->msg->flags & I2C_M_RD) {
  500. i2c_ctl |= HSI2C_RXCHON;
  501. i2c_auto_conf |= HSI2C_READ_WRITE;
  502. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  503. (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
  504. fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
  505. int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
  506. HSI2C_INT_TRAILING_EN);
  507. } else {
  508. i2c_ctl |= HSI2C_TXCHON;
  509. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  510. (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
  511. fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
  512. int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
  513. }
  514. writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
  515. writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
  516. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  517. /*
  518. * Enable interrupts before starting the transfer so that we don't
  519. * miss any INT_I2C interrupts.
  520. */
  521. spin_lock_irqsave(&i2c->lock, flags);
  522. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  523. if (stop == 1)
  524. i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
  525. i2c_auto_conf |= i2c->msg->len;
  526. i2c_auto_conf |= HSI2C_MASTER_RUN;
  527. writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
  528. spin_unlock_irqrestore(&i2c->lock, flags);
  529. }
  530. static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
  531. struct i2c_msg *msgs, int stop)
  532. {
  533. unsigned long timeout;
  534. int ret;
  535. i2c->msg = msgs;
  536. i2c->msg_ptr = 0;
  537. i2c->trans_done = 0;
  538. reinit_completion(&i2c->msg_complete);
  539. exynos5_i2c_message_start(i2c, stop);
  540. timeout = wait_for_completion_timeout(&i2c->msg_complete,
  541. EXYNOS5_I2C_TIMEOUT);
  542. if (timeout == 0)
  543. ret = -ETIMEDOUT;
  544. else
  545. ret = i2c->state;
  546. /*
  547. * If this is the last message to be transfered (stop == 1)
  548. * Then check if the bus can be brought back to idle.
  549. */
  550. if (ret == 0 && stop)
  551. ret = exynos5_i2c_wait_bus_idle(i2c);
  552. if (ret < 0) {
  553. exynos5_i2c_reset(i2c);
  554. if (ret == -ETIMEDOUT)
  555. dev_warn(i2c->dev, "%s timeout\n",
  556. (msgs->flags & I2C_M_RD) ? "rx" : "tx");
  557. }
  558. /* Return the state as in interrupt routine */
  559. return ret;
  560. }
  561. static int exynos5_i2c_xfer(struct i2c_adapter *adap,
  562. struct i2c_msg *msgs, int num)
  563. {
  564. struct exynos5_i2c *i2c = adap->algo_data;
  565. int i = 0, ret = 0, stop = 0;
  566. if (i2c->suspended) {
  567. dev_err(i2c->dev, "HS-I2C is not initialized.\n");
  568. return -EIO;
  569. }
  570. ret = clk_enable(i2c->clk);
  571. if (ret)
  572. return ret;
  573. for (i = 0; i < num; i++, msgs++) {
  574. stop = (i == num - 1);
  575. ret = exynos5_i2c_xfer_msg(i2c, msgs, stop);
  576. if (ret < 0)
  577. goto out;
  578. }
  579. if (i == num) {
  580. ret = num;
  581. } else {
  582. /* Only one message, cannot access the device */
  583. if (i == 1)
  584. ret = -EREMOTEIO;
  585. else
  586. ret = i;
  587. dev_warn(i2c->dev, "xfer message failed\n");
  588. }
  589. out:
  590. clk_disable(i2c->clk);
  591. return ret;
  592. }
  593. static u32 exynos5_i2c_func(struct i2c_adapter *adap)
  594. {
  595. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  596. }
  597. static const struct i2c_algorithm exynos5_i2c_algorithm = {
  598. .master_xfer = exynos5_i2c_xfer,
  599. .functionality = exynos5_i2c_func,
  600. };
  601. static int exynos5_i2c_probe(struct platform_device *pdev)
  602. {
  603. struct device_node *np = pdev->dev.of_node;
  604. struct exynos5_i2c *i2c;
  605. struct resource *mem;
  606. int ret;
  607. i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
  608. if (!i2c)
  609. return -ENOMEM;
  610. if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
  611. i2c->op_clock = HSI2C_FS_TX_CLOCK;
  612. strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
  613. i2c->adap.owner = THIS_MODULE;
  614. i2c->adap.algo = &exynos5_i2c_algorithm;
  615. i2c->adap.retries = 3;
  616. i2c->dev = &pdev->dev;
  617. i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
  618. if (IS_ERR(i2c->clk)) {
  619. dev_err(&pdev->dev, "cannot get clock\n");
  620. return -ENOENT;
  621. }
  622. ret = clk_prepare_enable(i2c->clk);
  623. if (ret)
  624. return ret;
  625. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  626. i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
  627. if (IS_ERR(i2c->regs)) {
  628. ret = PTR_ERR(i2c->regs);
  629. goto err_clk;
  630. }
  631. i2c->adap.dev.of_node = np;
  632. i2c->adap.algo_data = i2c;
  633. i2c->adap.dev.parent = &pdev->dev;
  634. /* Clear pending interrupts from u-boot or misc causes */
  635. exynos5_i2c_clr_pend_irq(i2c);
  636. spin_lock_init(&i2c->lock);
  637. init_completion(&i2c->msg_complete);
  638. i2c->irq = ret = platform_get_irq(pdev, 0);
  639. if (ret <= 0) {
  640. dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
  641. ret = -EINVAL;
  642. goto err_clk;
  643. }
  644. ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
  645. IRQF_NO_SUSPEND | IRQF_ONESHOT,
  646. dev_name(&pdev->dev), i2c);
  647. if (ret != 0) {
  648. dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
  649. goto err_clk;
  650. }
  651. i2c->variant = of_device_get_match_data(&pdev->dev);
  652. ret = exynos5_hsi2c_clock_setup(i2c);
  653. if (ret)
  654. goto err_clk;
  655. exynos5_i2c_reset(i2c);
  656. ret = i2c_add_adapter(&i2c->adap);
  657. if (ret < 0)
  658. goto err_clk;
  659. platform_set_drvdata(pdev, i2c);
  660. clk_disable(i2c->clk);
  661. return 0;
  662. err_clk:
  663. clk_disable_unprepare(i2c->clk);
  664. return ret;
  665. }
  666. static int exynos5_i2c_remove(struct platform_device *pdev)
  667. {
  668. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  669. i2c_del_adapter(&i2c->adap);
  670. clk_unprepare(i2c->clk);
  671. return 0;
  672. }
  673. #ifdef CONFIG_PM_SLEEP
  674. static int exynos5_i2c_suspend_noirq(struct device *dev)
  675. {
  676. struct platform_device *pdev = to_platform_device(dev);
  677. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  678. i2c->suspended = 1;
  679. clk_unprepare(i2c->clk);
  680. return 0;
  681. }
  682. static int exynos5_i2c_resume_noirq(struct device *dev)
  683. {
  684. struct platform_device *pdev = to_platform_device(dev);
  685. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  686. int ret = 0;
  687. ret = clk_prepare_enable(i2c->clk);
  688. if (ret)
  689. return ret;
  690. ret = exynos5_hsi2c_clock_setup(i2c);
  691. if (ret) {
  692. clk_disable_unprepare(i2c->clk);
  693. return ret;
  694. }
  695. exynos5_i2c_init(i2c);
  696. clk_disable(i2c->clk);
  697. i2c->suspended = 0;
  698. return 0;
  699. }
  700. #endif
  701. static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
  702. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
  703. exynos5_i2c_resume_noirq)
  704. };
  705. static struct platform_driver exynos5_i2c_driver = {
  706. .probe = exynos5_i2c_probe,
  707. .remove = exynos5_i2c_remove,
  708. .driver = {
  709. .name = "exynos5-hsi2c",
  710. .pm = &exynos5_i2c_dev_pm_ops,
  711. .of_match_table = exynos5_i2c_match,
  712. },
  713. };
  714. module_platform_driver(exynos5_i2c_driver);
  715. MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
  716. MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
  717. MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
  718. MODULE_LICENSE("GPL v2");