i915_gem_fence_reg.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. */
  23. #include <drm/drmP.h>
  24. #include <drm/i915_drm.h>
  25. #include "i915_drv.h"
  26. /**
  27. * DOC: fence register handling
  28. *
  29. * Important to avoid confusions: "fences" in the i915 driver are not execution
  30. * fences used to track command completion but hardware detiler objects which
  31. * wrap a given range of the global GTT. Each platform has only a fairly limited
  32. * set of these objects.
  33. *
  34. * Fences are used to detile GTT memory mappings. They're also connected to the
  35. * hardware frontbuffer render tracking and hence interact with frontbuffer
  36. * compression. Furthermore on older platforms fences are required for tiled
  37. * objects used by the display engine. They can also be used by the render
  38. * engine - they're required for blitter commands and are optional for render
  39. * commands. But on gen4+ both display (with the exception of fbc) and rendering
  40. * have their own tiling state bits and don't need fences.
  41. *
  42. * Also note that fences only support X and Y tiling and hence can't be used for
  43. * the fancier new tiling formats like W, Ys and Yf.
  44. *
  45. * Finally note that because fences are such a restricted resource they're
  46. * dynamically associated with objects. Furthermore fence state is committed to
  47. * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
  48. * explicitly call i915_gem_object_get_fence() to synchronize fencing status
  49. * for cpu access. Also note that some code wants an unfenced view, for those
  50. * cases the fence can be removed forcefully with i915_gem_object_put_fence().
  51. *
  52. * Internally these functions will synchronize with userspace access by removing
  53. * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
  54. */
  55. #define pipelined 0
  56. static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
  57. struct i915_vma *vma)
  58. {
  59. i915_reg_t fence_reg_lo, fence_reg_hi;
  60. int fence_pitch_shift;
  61. u64 val;
  62. if (INTEL_INFO(fence->i915)->gen >= 6) {
  63. fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
  64. fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
  65. fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
  66. } else {
  67. fence_reg_lo = FENCE_REG_965_LO(fence->id);
  68. fence_reg_hi = FENCE_REG_965_HI(fence->id);
  69. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  70. }
  71. val = 0;
  72. if (vma) {
  73. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  74. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  75. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
  76. GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
  77. GEM_BUG_ON(!IS_ALIGNED(stride, 128));
  78. val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
  79. val |= vma->node.start;
  80. val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
  81. if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
  82. val |= BIT(I965_FENCE_TILING_Y_SHIFT);
  83. val |= I965_FENCE_REG_VALID;
  84. }
  85. if (!pipelined) {
  86. struct drm_i915_private *dev_priv = fence->i915;
  87. /* To w/a incoherency with non-atomic 64-bit register updates,
  88. * we split the 64-bit update into two 32-bit writes. In order
  89. * for a partial fence not to be evaluated between writes, we
  90. * precede the update with write to turn off the fence register,
  91. * and only enable the fence as the last step.
  92. *
  93. * For extra levels of paranoia, we make sure each step lands
  94. * before applying the next step.
  95. */
  96. I915_WRITE(fence_reg_lo, 0);
  97. POSTING_READ(fence_reg_lo);
  98. I915_WRITE(fence_reg_hi, upper_32_bits(val));
  99. I915_WRITE(fence_reg_lo, lower_32_bits(val));
  100. POSTING_READ(fence_reg_lo);
  101. }
  102. }
  103. static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
  104. struct i915_vma *vma)
  105. {
  106. u32 val;
  107. val = 0;
  108. if (vma) {
  109. unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
  110. bool is_y_tiled = tiling == I915_TILING_Y;
  111. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  112. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  113. GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
  114. GEM_BUG_ON(!is_power_of_2(vma->fence_size));
  115. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
  116. if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
  117. stride /= 128;
  118. else
  119. stride /= 512;
  120. GEM_BUG_ON(!is_power_of_2(stride));
  121. val = vma->node.start;
  122. if (is_y_tiled)
  123. val |= BIT(I830_FENCE_TILING_Y_SHIFT);
  124. val |= I915_FENCE_SIZE_BITS(vma->fence_size);
  125. val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
  126. val |= I830_FENCE_REG_VALID;
  127. }
  128. if (!pipelined) {
  129. struct drm_i915_private *dev_priv = fence->i915;
  130. i915_reg_t reg = FENCE_REG(fence->id);
  131. I915_WRITE(reg, val);
  132. POSTING_READ(reg);
  133. }
  134. }
  135. static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
  136. struct i915_vma *vma)
  137. {
  138. u32 val;
  139. val = 0;
  140. if (vma) {
  141. unsigned int stride = i915_gem_object_get_stride(vma->obj);
  142. GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
  143. GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
  144. GEM_BUG_ON(!is_power_of_2(vma->fence_size));
  145. GEM_BUG_ON(!is_power_of_2(stride / 128));
  146. GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
  147. val = vma->node.start;
  148. if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
  149. val |= BIT(I830_FENCE_TILING_Y_SHIFT);
  150. val |= I830_FENCE_SIZE_BITS(vma->fence_size);
  151. val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
  152. val |= I830_FENCE_REG_VALID;
  153. }
  154. if (!pipelined) {
  155. struct drm_i915_private *dev_priv = fence->i915;
  156. i915_reg_t reg = FENCE_REG(fence->id);
  157. I915_WRITE(reg, val);
  158. POSTING_READ(reg);
  159. }
  160. }
  161. static void fence_write(struct drm_i915_fence_reg *fence,
  162. struct i915_vma *vma)
  163. {
  164. /* Previous access through the fence register is marshalled by
  165. * the mb() inside the fault handlers (i915_gem_release_mmaps)
  166. * and explicitly managed for internal users.
  167. */
  168. if (IS_GEN2(fence->i915))
  169. i830_write_fence_reg(fence, vma);
  170. else if (IS_GEN3(fence->i915))
  171. i915_write_fence_reg(fence, vma);
  172. else
  173. i965_write_fence_reg(fence, vma);
  174. /* Access through the fenced region afterwards is
  175. * ordered by the posting reads whilst writing the registers.
  176. */
  177. fence->dirty = false;
  178. }
  179. static int fence_update(struct drm_i915_fence_reg *fence,
  180. struct i915_vma *vma)
  181. {
  182. int ret;
  183. if (vma) {
  184. if (!i915_vma_is_map_and_fenceable(vma))
  185. return -EINVAL;
  186. if (WARN(!i915_gem_object_get_stride(vma->obj) ||
  187. !i915_gem_object_get_tiling(vma->obj),
  188. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  189. i915_gem_object_get_stride(vma->obj),
  190. i915_gem_object_get_tiling(vma->obj)))
  191. return -EINVAL;
  192. ret = i915_gem_active_retire(&vma->last_fence,
  193. &vma->obj->base.dev->struct_mutex);
  194. if (ret)
  195. return ret;
  196. }
  197. if (fence->vma) {
  198. ret = i915_gem_active_retire(&fence->vma->last_fence,
  199. &fence->vma->obj->base.dev->struct_mutex);
  200. if (ret)
  201. return ret;
  202. }
  203. if (fence->vma && fence->vma != vma) {
  204. /* Ensure that all userspace CPU access is completed before
  205. * stealing the fence.
  206. */
  207. i915_gem_release_mmap(fence->vma->obj);
  208. fence->vma->fence = NULL;
  209. fence->vma = NULL;
  210. list_move(&fence->link, &fence->i915->mm.fence_list);
  211. }
  212. /* We only need to update the register itself if the device is awake.
  213. * If the device is currently powered down, we will defer the write
  214. * to the runtime resume, see i915_gem_restore_fences().
  215. */
  216. if (intel_runtime_pm_get_if_in_use(fence->i915)) {
  217. fence_write(fence, vma);
  218. intel_runtime_pm_put(fence->i915);
  219. }
  220. if (vma) {
  221. if (fence->vma != vma) {
  222. vma->fence = fence;
  223. fence->vma = vma;
  224. }
  225. list_move_tail(&fence->link, &fence->i915->mm.fence_list);
  226. }
  227. return 0;
  228. }
  229. /**
  230. * i915_vma_put_fence - force-remove fence for a VMA
  231. * @vma: vma to map linearly (not through a fence reg)
  232. *
  233. * This function force-removes any fence from the given object, which is useful
  234. * if the kernel wants to do untiled GTT access.
  235. *
  236. * Returns:
  237. *
  238. * 0 on success, negative error code on failure.
  239. */
  240. int
  241. i915_vma_put_fence(struct i915_vma *vma)
  242. {
  243. struct drm_i915_fence_reg *fence = vma->fence;
  244. if (!fence)
  245. return 0;
  246. if (fence->pin_count)
  247. return -EBUSY;
  248. return fence_update(fence, NULL);
  249. }
  250. static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
  251. {
  252. struct drm_i915_fence_reg *fence;
  253. list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
  254. if (fence->pin_count)
  255. continue;
  256. return fence;
  257. }
  258. /* Wait for completion of pending flips which consume fences */
  259. if (intel_has_pending_fb_unpin(dev_priv))
  260. return ERR_PTR(-EAGAIN);
  261. return ERR_PTR(-EDEADLK);
  262. }
  263. /**
  264. * i915_vma_get_fence - set up fencing for a vma
  265. * @vma: vma to map through a fence reg
  266. *
  267. * When mapping objects through the GTT, userspace wants to be able to write
  268. * to them without having to worry about swizzling if the object is tiled.
  269. * This function walks the fence regs looking for a free one for @obj,
  270. * stealing one if it can't find any.
  271. *
  272. * It then sets up the reg based on the object's properties: address, pitch
  273. * and tiling format.
  274. *
  275. * For an untiled surface, this removes any existing fence.
  276. *
  277. * Returns:
  278. *
  279. * 0 on success, negative error code on failure.
  280. */
  281. int
  282. i915_vma_get_fence(struct i915_vma *vma)
  283. {
  284. struct drm_i915_fence_reg *fence;
  285. struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
  286. /* Note that we revoke fences on runtime suspend. Therefore the user
  287. * must keep the device awake whilst using the fence.
  288. */
  289. assert_rpm_wakelock_held(vma->vm->i915);
  290. /* Just update our place in the LRU if our fence is getting reused. */
  291. if (vma->fence) {
  292. fence = vma->fence;
  293. if (!fence->dirty) {
  294. list_move_tail(&fence->link,
  295. &fence->i915->mm.fence_list);
  296. return 0;
  297. }
  298. } else if (set) {
  299. fence = fence_find(vma->vm->i915);
  300. if (IS_ERR(fence))
  301. return PTR_ERR(fence);
  302. } else
  303. return 0;
  304. return fence_update(fence, set);
  305. }
  306. /**
  307. * i915_gem_revoke_fences - revoke fence state
  308. * @dev_priv: i915 device private
  309. *
  310. * Removes all GTT mmappings via the fence registers. This forces any user
  311. * of the fence to reacquire that fence before continuing with their access.
  312. * One use is during GPU reset where the fence register is lost and we need to
  313. * revoke concurrent userspace access via GTT mmaps until the hardware has been
  314. * reset and the fence registers have been restored.
  315. */
  316. void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
  317. {
  318. int i;
  319. lockdep_assert_held(&dev_priv->drm.struct_mutex);
  320. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  321. struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
  322. if (fence->vma)
  323. i915_gem_release_mmap(fence->vma->obj);
  324. }
  325. }
  326. /**
  327. * i915_gem_restore_fences - restore fence state
  328. * @dev_priv: i915 device private
  329. *
  330. * Restore the hw fence state to match the software tracking again, to be called
  331. * after a gpu reset and on resume. Note that on runtime suspend we only cancel
  332. * the fences, to be reacquired by the user later.
  333. */
  334. void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
  335. {
  336. int i;
  337. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  338. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  339. struct i915_vma *vma = reg->vma;
  340. /*
  341. * Commit delayed tiling changes if we have an object still
  342. * attached to the fence, otherwise just clear the fence.
  343. */
  344. if (vma && !i915_gem_object_is_tiled(vma->obj)) {
  345. GEM_BUG_ON(!reg->dirty);
  346. GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
  347. list_move(&reg->link, &dev_priv->mm.fence_list);
  348. vma->fence = NULL;
  349. vma = NULL;
  350. }
  351. fence_write(reg, vma);
  352. reg->vma = vma;
  353. }
  354. }
  355. /**
  356. * DOC: tiling swizzling details
  357. *
  358. * The idea behind tiling is to increase cache hit rates by rearranging
  359. * pixel data so that a group of pixel accesses are in the same cacheline.
  360. * Performance improvement from doing this on the back/depth buffer are on
  361. * the order of 30%.
  362. *
  363. * Intel architectures make this somewhat more complicated, though, by
  364. * adjustments made to addressing of data when the memory is in interleaved
  365. * mode (matched pairs of DIMMS) to improve memory bandwidth.
  366. * For interleaved memory, the CPU sends every sequential 64 bytes
  367. * to an alternate memory channel so it can get the bandwidth from both.
  368. *
  369. * The GPU also rearranges its accesses for increased bandwidth to interleaved
  370. * memory, and it matches what the CPU does for non-tiled. However, when tiled
  371. * it does it a little differently, since one walks addresses not just in the
  372. * X direction but also Y. So, along with alternating channels when bit
  373. * 6 of the address flips, it also alternates when other bits flip -- Bits 9
  374. * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
  375. * are common to both the 915 and 965-class hardware.
  376. *
  377. * The CPU also sometimes XORs in higher bits as well, to improve
  378. * bandwidth doing strided access like we do so frequently in graphics. This
  379. * is called "Channel XOR Randomization" in the MCH documentation. The result
  380. * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
  381. * decode.
  382. *
  383. * All of this bit 6 XORing has an effect on our memory management,
  384. * as we need to make sure that the 3d driver can correctly address object
  385. * contents.
  386. *
  387. * If we don't have interleaved memory, all tiling is safe and no swizzling is
  388. * required.
  389. *
  390. * When bit 17 is XORed in, we simply refuse to tile at all. Bit
  391. * 17 is not just a page offset, so as we page an object out and back in,
  392. * individual pages in it will have different bit 17 addresses, resulting in
  393. * each 64 bytes being swapped with its neighbor!
  394. *
  395. * Otherwise, if interleaved, we have to tell the 3d driver what the address
  396. * swizzling it needs to do is, since it's writing with the CPU to the pages
  397. * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
  398. * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
  399. * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
  400. * to match what the GPU expects.
  401. */
  402. /**
  403. * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
  404. * @dev_priv: i915 device private
  405. *
  406. * Detects bit 6 swizzling of address lookup between IGD access and CPU
  407. * access through main memory.
  408. */
  409. void
  410. i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
  411. {
  412. uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  413. uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  414. if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
  415. /*
  416. * On BDW+, swizzling is not used. We leave the CPU memory
  417. * controller in charge of optimizing memory accesses without
  418. * the extra address manipulation GPU side.
  419. *
  420. * VLV and CHV don't have GPU swizzling.
  421. */
  422. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  423. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  424. } else if (INTEL_GEN(dev_priv) >= 6) {
  425. if (dev_priv->preserve_bios_swizzle) {
  426. if (I915_READ(DISP_ARB_CTL) &
  427. DISP_TILE_SURFACE_SWIZZLING) {
  428. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  429. swizzle_y = I915_BIT_6_SWIZZLE_9;
  430. } else {
  431. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  432. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  433. }
  434. } else {
  435. uint32_t dimm_c0, dimm_c1;
  436. dimm_c0 = I915_READ(MAD_DIMM_C0);
  437. dimm_c1 = I915_READ(MAD_DIMM_C1);
  438. dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  439. dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
  440. /* Enable swizzling when the channels are populated
  441. * with identically sized dimms. We don't need to check
  442. * the 3rd channel because no cpu with gpu attached
  443. * ships in that configuration. Also, swizzling only
  444. * makes sense for 2 channels anyway. */
  445. if (dimm_c0 == dimm_c1) {
  446. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  447. swizzle_y = I915_BIT_6_SWIZZLE_9;
  448. } else {
  449. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  450. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  451. }
  452. }
  453. } else if (IS_GEN5(dev_priv)) {
  454. /* On Ironlake whatever DRAM config, GPU always do
  455. * same swizzling setup.
  456. */
  457. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  458. swizzle_y = I915_BIT_6_SWIZZLE_9;
  459. } else if (IS_GEN2(dev_priv)) {
  460. /* As far as we know, the 865 doesn't have these bit 6
  461. * swizzling issues.
  462. */
  463. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  464. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  465. } else if (IS_MOBILE(dev_priv) ||
  466. IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
  467. uint32_t dcc;
  468. /* On 9xx chipsets, channel interleave by the CPU is
  469. * determined by DCC. For single-channel, neither the CPU
  470. * nor the GPU do swizzling. For dual channel interleaved,
  471. * the GPU's interleave is bit 9 and 10 for X tiled, and bit
  472. * 9 for Y tiled. The CPU's interleave is independent, and
  473. * can be based on either bit 11 (haven't seen this yet) or
  474. * bit 17 (common).
  475. */
  476. dcc = I915_READ(DCC);
  477. switch (dcc & DCC_ADDRESSING_MODE_MASK) {
  478. case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
  479. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
  480. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  481. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  482. break;
  483. case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
  484. if (dcc & DCC_CHANNEL_XOR_DISABLE) {
  485. /* This is the base swizzling by the GPU for
  486. * tiled buffers.
  487. */
  488. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  489. swizzle_y = I915_BIT_6_SWIZZLE_9;
  490. } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
  491. /* Bit 11 swizzling by the CPU in addition. */
  492. swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
  493. swizzle_y = I915_BIT_6_SWIZZLE_9_11;
  494. } else {
  495. /* Bit 17 swizzling by the CPU in addition. */
  496. swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
  497. swizzle_y = I915_BIT_6_SWIZZLE_9_17;
  498. }
  499. break;
  500. }
  501. /* check for L-shaped memory aka modified enhanced addressing */
  502. if (IS_GEN4(dev_priv) &&
  503. !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
  504. swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  505. swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  506. }
  507. if (dcc == 0xffffffff) {
  508. DRM_ERROR("Couldn't read from MCHBAR. "
  509. "Disabling tiling.\n");
  510. swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
  511. swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
  512. }
  513. } else {
  514. /* The 965, G33, and newer, have a very flexible memory
  515. * configuration. It will enable dual-channel mode
  516. * (interleaving) on as much memory as it can, and the GPU
  517. * will additionally sometimes enable different bit 6
  518. * swizzling for tiled objects from the CPU.
  519. *
  520. * Here's what I found on the G965:
  521. * slot fill memory size swizzling
  522. * 0A 0B 1A 1B 1-ch 2-ch
  523. * 512 0 0 0 512 0 O
  524. * 512 0 512 0 16 1008 X
  525. * 512 0 0 512 16 1008 X
  526. * 0 512 0 512 16 1008 X
  527. * 1024 1024 1024 0 2048 1024 O
  528. *
  529. * We could probably detect this based on either the DRB
  530. * matching, which was the case for the swizzling required in
  531. * the table above, or from the 1-ch value being less than
  532. * the minimum size of a rank.
  533. *
  534. * Reports indicate that the swizzling actually
  535. * varies depending upon page placement inside the
  536. * channels, i.e. we see swizzled pages where the
  537. * banks of memory are paired and unswizzled on the
  538. * uneven portion, so leave that as unknown.
  539. */
  540. if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
  541. swizzle_x = I915_BIT_6_SWIZZLE_9_10;
  542. swizzle_y = I915_BIT_6_SWIZZLE_9;
  543. }
  544. }
  545. if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
  546. swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
  547. /* Userspace likes to explode if it sees unknown swizzling,
  548. * so lie. We will finish the lie when reporting through
  549. * the get-tiling-ioctl by reporting the physical swizzle
  550. * mode as unknown instead.
  551. *
  552. * As we don't strictly know what the swizzling is, it may be
  553. * bit17 dependent, and so we need to also prevent the pages
  554. * from being moved.
  555. */
  556. dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
  557. swizzle_x = I915_BIT_6_SWIZZLE_NONE;
  558. swizzle_y = I915_BIT_6_SWIZZLE_NONE;
  559. }
  560. dev_priv->mm.bit_6_swizzle_x = swizzle_x;
  561. dev_priv->mm.bit_6_swizzle_y = swizzle_y;
  562. }
  563. /*
  564. * Swap every 64 bytes of this page around, to account for it having a new
  565. * bit 17 of its physical address and therefore being interpreted differently
  566. * by the GPU.
  567. */
  568. static void
  569. i915_gem_swizzle_page(struct page *page)
  570. {
  571. char temp[64];
  572. char *vaddr;
  573. int i;
  574. vaddr = kmap(page);
  575. for (i = 0; i < PAGE_SIZE; i += 128) {
  576. memcpy(temp, &vaddr[i], 64);
  577. memcpy(&vaddr[i], &vaddr[i + 64], 64);
  578. memcpy(&vaddr[i + 64], temp, 64);
  579. }
  580. kunmap(page);
  581. }
  582. /**
  583. * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
  584. * @obj: i915 GEM buffer object
  585. * @pages: the scattergather list of physical pages
  586. *
  587. * This function fixes up the swizzling in case any page frame number for this
  588. * object has changed in bit 17 since that state has been saved with
  589. * i915_gem_object_save_bit_17_swizzle().
  590. *
  591. * This is called when pinning backing storage again, since the kernel is free
  592. * to move unpinned backing storage around (either by directly moving pages or
  593. * by swapping them out and back in again).
  594. */
  595. void
  596. i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
  597. struct sg_table *pages)
  598. {
  599. struct sgt_iter sgt_iter;
  600. struct page *page;
  601. int i;
  602. if (obj->bit_17 == NULL)
  603. return;
  604. i = 0;
  605. for_each_sgt_page(page, sgt_iter, pages) {
  606. char new_bit_17 = page_to_phys(page) >> 17;
  607. if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
  608. i915_gem_swizzle_page(page);
  609. set_page_dirty(page);
  610. }
  611. i++;
  612. }
  613. }
  614. /**
  615. * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
  616. * @obj: i915 GEM buffer object
  617. * @pages: the scattergather list of physical pages
  618. *
  619. * This function saves the bit 17 of each page frame number so that swizzling
  620. * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
  621. * be called before the backing storage can be unpinned.
  622. */
  623. void
  624. i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
  625. struct sg_table *pages)
  626. {
  627. const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
  628. struct sgt_iter sgt_iter;
  629. struct page *page;
  630. int i;
  631. if (obj->bit_17 == NULL) {
  632. obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
  633. sizeof(long), GFP_KERNEL);
  634. if (obj->bit_17 == NULL) {
  635. DRM_ERROR("Failed to allocate memory for bit 17 "
  636. "record\n");
  637. return;
  638. }
  639. }
  640. i = 0;
  641. for_each_sgt_page(page, sgt_iter, pages) {
  642. if (page_to_phys(page) & (1 << 17))
  643. __set_bit(i, obj->bit_17);
  644. else
  645. __clear_bit(i, obj->bit_17);
  646. i++;
  647. }
  648. }