i915_debugfs.c 138 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include "intel_drv.h"
  31. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  32. {
  33. return to_i915(node->minor->dev);
  34. }
  35. static __always_inline void seq_print_param(struct seq_file *m,
  36. const char *name,
  37. const char *type,
  38. const void *x)
  39. {
  40. if (!__builtin_strcmp(type, "bool"))
  41. seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
  42. else if (!__builtin_strcmp(type, "int"))
  43. seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
  44. else if (!__builtin_strcmp(type, "unsigned int"))
  45. seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
  46. else if (!__builtin_strcmp(type, "char *"))
  47. seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
  48. else
  49. BUILD_BUG();
  50. }
  51. static int i915_capabilities(struct seq_file *m, void *data)
  52. {
  53. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  54. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  55. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  56. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  57. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  58. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  59. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  60. #undef PRINT_FLAG
  61. kernel_param_lock(THIS_MODULE);
  62. #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
  63. I915_PARAMS_FOR_EACH(PRINT_PARAM);
  64. #undef PRINT_PARAM
  65. kernel_param_unlock(THIS_MODULE);
  66. return 0;
  67. }
  68. static char get_active_flag(struct drm_i915_gem_object *obj)
  69. {
  70. return i915_gem_object_is_active(obj) ? '*' : ' ';
  71. }
  72. static char get_pin_flag(struct drm_i915_gem_object *obj)
  73. {
  74. return obj->pin_display ? 'p' : ' ';
  75. }
  76. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  77. {
  78. switch (i915_gem_object_get_tiling(obj)) {
  79. default:
  80. case I915_TILING_NONE: return ' ';
  81. case I915_TILING_X: return 'X';
  82. case I915_TILING_Y: return 'Y';
  83. }
  84. }
  85. static char get_global_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  88. }
  89. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  90. {
  91. return obj->mm.mapping ? 'M' : ' ';
  92. }
  93. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  94. {
  95. u64 size = 0;
  96. struct i915_vma *vma;
  97. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  98. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  99. size += vma->node.size;
  100. }
  101. return size;
  102. }
  103. static void
  104. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  105. {
  106. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  107. struct intel_engine_cs *engine;
  108. struct i915_vma *vma;
  109. unsigned int frontbuffer_bits;
  110. int pin_count = 0;
  111. lockdep_assert_held(&obj->base.dev->struct_mutex);
  112. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  113. &obj->base,
  114. get_active_flag(obj),
  115. get_pin_flag(obj),
  116. get_tiling_flag(obj),
  117. get_global_flag(obj),
  118. get_pin_mapped_flag(obj),
  119. obj->base.size / 1024,
  120. obj->base.read_domains,
  121. obj->base.write_domain,
  122. i915_cache_level_str(dev_priv, obj->cache_level),
  123. obj->mm.dirty ? " dirty" : "",
  124. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  125. if (obj->base.name)
  126. seq_printf(m, " (name: %d)", obj->base.name);
  127. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  128. if (i915_vma_is_pinned(vma))
  129. pin_count++;
  130. }
  131. seq_printf(m, " (pinned x %d)", pin_count);
  132. if (obj->pin_display)
  133. seq_printf(m, " (display)");
  134. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  135. if (!drm_mm_node_allocated(&vma->node))
  136. continue;
  137. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  138. i915_vma_is_ggtt(vma) ? "g" : "pp",
  139. vma->node.start, vma->node.size);
  140. if (i915_vma_is_ggtt(vma)) {
  141. switch (vma->ggtt_view.type) {
  142. case I915_GGTT_VIEW_NORMAL:
  143. seq_puts(m, ", normal");
  144. break;
  145. case I915_GGTT_VIEW_PARTIAL:
  146. seq_printf(m, ", partial [%08llx+%x]",
  147. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  148. vma->ggtt_view.partial.size << PAGE_SHIFT);
  149. break;
  150. case I915_GGTT_VIEW_ROTATED:
  151. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  152. vma->ggtt_view.rotated.plane[0].width,
  153. vma->ggtt_view.rotated.plane[0].height,
  154. vma->ggtt_view.rotated.plane[0].stride,
  155. vma->ggtt_view.rotated.plane[0].offset,
  156. vma->ggtt_view.rotated.plane[1].width,
  157. vma->ggtt_view.rotated.plane[1].height,
  158. vma->ggtt_view.rotated.plane[1].stride,
  159. vma->ggtt_view.rotated.plane[1].offset);
  160. break;
  161. default:
  162. MISSING_CASE(vma->ggtt_view.type);
  163. break;
  164. }
  165. }
  166. if (vma->fence)
  167. seq_printf(m, " , fence: %d%s",
  168. vma->fence->id,
  169. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  170. seq_puts(m, ")");
  171. }
  172. if (obj->stolen)
  173. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  174. engine = i915_gem_object_last_write_engine(obj);
  175. if (engine)
  176. seq_printf(m, " (%s)", engine->name);
  177. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  178. if (frontbuffer_bits)
  179. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  180. }
  181. static int obj_rank_by_stolen(const void *A, const void *B)
  182. {
  183. const struct drm_i915_gem_object *a =
  184. *(const struct drm_i915_gem_object **)A;
  185. const struct drm_i915_gem_object *b =
  186. *(const struct drm_i915_gem_object **)B;
  187. if (a->stolen->start < b->stolen->start)
  188. return -1;
  189. if (a->stolen->start > b->stolen->start)
  190. return 1;
  191. return 0;
  192. }
  193. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  194. {
  195. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  196. struct drm_device *dev = &dev_priv->drm;
  197. struct drm_i915_gem_object **objects;
  198. struct drm_i915_gem_object *obj;
  199. u64 total_obj_size, total_gtt_size;
  200. unsigned long total, count, n;
  201. int ret;
  202. total = READ_ONCE(dev_priv->mm.object_count);
  203. objects = drm_malloc_ab(total, sizeof(*objects));
  204. if (!objects)
  205. return -ENOMEM;
  206. ret = mutex_lock_interruptible(&dev->struct_mutex);
  207. if (ret)
  208. goto out;
  209. total_obj_size = total_gtt_size = count = 0;
  210. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  211. if (count == total)
  212. break;
  213. if (obj->stolen == NULL)
  214. continue;
  215. objects[count++] = obj;
  216. total_obj_size += obj->base.size;
  217. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  218. }
  219. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  220. if (count == total)
  221. break;
  222. if (obj->stolen == NULL)
  223. continue;
  224. objects[count++] = obj;
  225. total_obj_size += obj->base.size;
  226. }
  227. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  228. seq_puts(m, "Stolen:\n");
  229. for (n = 0; n < count; n++) {
  230. seq_puts(m, " ");
  231. describe_obj(m, objects[n]);
  232. seq_putc(m, '\n');
  233. }
  234. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  235. count, total_obj_size, total_gtt_size);
  236. mutex_unlock(&dev->struct_mutex);
  237. out:
  238. drm_free_large(objects);
  239. return ret;
  240. }
  241. struct file_stats {
  242. struct drm_i915_file_private *file_priv;
  243. unsigned long count;
  244. u64 total, unbound;
  245. u64 global, shared;
  246. u64 active, inactive;
  247. };
  248. static int per_file_stats(int id, void *ptr, void *data)
  249. {
  250. struct drm_i915_gem_object *obj = ptr;
  251. struct file_stats *stats = data;
  252. struct i915_vma *vma;
  253. stats->count++;
  254. stats->total += obj->base.size;
  255. if (!obj->bind_count)
  256. stats->unbound += obj->base.size;
  257. if (obj->base.name || obj->base.dma_buf)
  258. stats->shared += obj->base.size;
  259. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  260. if (!drm_mm_node_allocated(&vma->node))
  261. continue;
  262. if (i915_vma_is_ggtt(vma)) {
  263. stats->global += vma->node.size;
  264. } else {
  265. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  266. if (ppgtt->base.file != stats->file_priv)
  267. continue;
  268. }
  269. if (i915_vma_is_active(vma))
  270. stats->active += vma->node.size;
  271. else
  272. stats->inactive += vma->node.size;
  273. }
  274. return 0;
  275. }
  276. #define print_file_stats(m, name, stats) do { \
  277. if (stats.count) \
  278. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  279. name, \
  280. stats.count, \
  281. stats.total, \
  282. stats.active, \
  283. stats.inactive, \
  284. stats.global, \
  285. stats.shared, \
  286. stats.unbound); \
  287. } while (0)
  288. static void print_batch_pool_stats(struct seq_file *m,
  289. struct drm_i915_private *dev_priv)
  290. {
  291. struct drm_i915_gem_object *obj;
  292. struct file_stats stats;
  293. struct intel_engine_cs *engine;
  294. enum intel_engine_id id;
  295. int j;
  296. memset(&stats, 0, sizeof(stats));
  297. for_each_engine(engine, dev_priv, id) {
  298. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  299. list_for_each_entry(obj,
  300. &engine->batch_pool.cache_list[j],
  301. batch_pool_link)
  302. per_file_stats(0, obj, &stats);
  303. }
  304. }
  305. print_file_stats(m, "[k]batch pool", stats);
  306. }
  307. static int per_file_ctx_stats(int id, void *ptr, void *data)
  308. {
  309. struct i915_gem_context *ctx = ptr;
  310. int n;
  311. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  312. if (ctx->engine[n].state)
  313. per_file_stats(0, ctx->engine[n].state->obj, data);
  314. if (ctx->engine[n].ring)
  315. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  316. }
  317. return 0;
  318. }
  319. static void print_context_stats(struct seq_file *m,
  320. struct drm_i915_private *dev_priv)
  321. {
  322. struct drm_device *dev = &dev_priv->drm;
  323. struct file_stats stats;
  324. struct drm_file *file;
  325. memset(&stats, 0, sizeof(stats));
  326. mutex_lock(&dev->struct_mutex);
  327. if (dev_priv->kernel_context)
  328. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  329. list_for_each_entry(file, &dev->filelist, lhead) {
  330. struct drm_i915_file_private *fpriv = file->driver_priv;
  331. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  332. }
  333. mutex_unlock(&dev->struct_mutex);
  334. print_file_stats(m, "[k]contexts", stats);
  335. }
  336. static int i915_gem_object_info(struct seq_file *m, void *data)
  337. {
  338. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  339. struct drm_device *dev = &dev_priv->drm;
  340. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  341. u32 count, mapped_count, purgeable_count, dpy_count;
  342. u64 size, mapped_size, purgeable_size, dpy_size;
  343. struct drm_i915_gem_object *obj;
  344. struct drm_file *file;
  345. int ret;
  346. ret = mutex_lock_interruptible(&dev->struct_mutex);
  347. if (ret)
  348. return ret;
  349. seq_printf(m, "%u objects, %llu bytes\n",
  350. dev_priv->mm.object_count,
  351. dev_priv->mm.object_memory);
  352. size = count = 0;
  353. mapped_size = mapped_count = 0;
  354. purgeable_size = purgeable_count = 0;
  355. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  356. size += obj->base.size;
  357. ++count;
  358. if (obj->mm.madv == I915_MADV_DONTNEED) {
  359. purgeable_size += obj->base.size;
  360. ++purgeable_count;
  361. }
  362. if (obj->mm.mapping) {
  363. mapped_count++;
  364. mapped_size += obj->base.size;
  365. }
  366. }
  367. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  368. size = count = dpy_size = dpy_count = 0;
  369. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  370. size += obj->base.size;
  371. ++count;
  372. if (obj->pin_display) {
  373. dpy_size += obj->base.size;
  374. ++dpy_count;
  375. }
  376. if (obj->mm.madv == I915_MADV_DONTNEED) {
  377. purgeable_size += obj->base.size;
  378. ++purgeable_count;
  379. }
  380. if (obj->mm.mapping) {
  381. mapped_count++;
  382. mapped_size += obj->base.size;
  383. }
  384. }
  385. seq_printf(m, "%u bound objects, %llu bytes\n",
  386. count, size);
  387. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  388. purgeable_count, purgeable_size);
  389. seq_printf(m, "%u mapped objects, %llu bytes\n",
  390. mapped_count, mapped_size);
  391. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  392. dpy_count, dpy_size);
  393. seq_printf(m, "%llu [%llu] gtt total\n",
  394. ggtt->base.total, ggtt->mappable_end);
  395. seq_putc(m, '\n');
  396. print_batch_pool_stats(m, dev_priv);
  397. mutex_unlock(&dev->struct_mutex);
  398. mutex_lock(&dev->filelist_mutex);
  399. print_context_stats(m, dev_priv);
  400. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  401. struct file_stats stats;
  402. struct drm_i915_file_private *file_priv = file->driver_priv;
  403. struct drm_i915_gem_request *request;
  404. struct task_struct *task;
  405. memset(&stats, 0, sizeof(stats));
  406. stats.file_priv = file->driver_priv;
  407. spin_lock(&file->table_lock);
  408. idr_for_each(&file->object_idr, per_file_stats, &stats);
  409. spin_unlock(&file->table_lock);
  410. /*
  411. * Although we have a valid reference on file->pid, that does
  412. * not guarantee that the task_struct who called get_pid() is
  413. * still alive (e.g. get_pid(current) => fork() => exit()).
  414. * Therefore, we need to protect this ->comm access using RCU.
  415. */
  416. mutex_lock(&dev->struct_mutex);
  417. request = list_first_entry_or_null(&file_priv->mm.request_list,
  418. struct drm_i915_gem_request,
  419. client_link);
  420. rcu_read_lock();
  421. task = pid_task(request && request->ctx->pid ?
  422. request->ctx->pid : file->pid,
  423. PIDTYPE_PID);
  424. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  425. rcu_read_unlock();
  426. mutex_unlock(&dev->struct_mutex);
  427. }
  428. mutex_unlock(&dev->filelist_mutex);
  429. return 0;
  430. }
  431. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  432. {
  433. struct drm_info_node *node = m->private;
  434. struct drm_i915_private *dev_priv = node_to_i915(node);
  435. struct drm_device *dev = &dev_priv->drm;
  436. bool show_pin_display_only = !!node->info_ent->data;
  437. struct drm_i915_gem_object *obj;
  438. u64 total_obj_size, total_gtt_size;
  439. int count, ret;
  440. ret = mutex_lock_interruptible(&dev->struct_mutex);
  441. if (ret)
  442. return ret;
  443. total_obj_size = total_gtt_size = count = 0;
  444. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  445. if (show_pin_display_only && !obj->pin_display)
  446. continue;
  447. seq_puts(m, " ");
  448. describe_obj(m, obj);
  449. seq_putc(m, '\n');
  450. total_obj_size += obj->base.size;
  451. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  452. count++;
  453. }
  454. mutex_unlock(&dev->struct_mutex);
  455. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  456. count, total_obj_size, total_gtt_size);
  457. return 0;
  458. }
  459. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  460. {
  461. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  462. struct drm_device *dev = &dev_priv->drm;
  463. struct intel_crtc *crtc;
  464. int ret;
  465. ret = mutex_lock_interruptible(&dev->struct_mutex);
  466. if (ret)
  467. return ret;
  468. for_each_intel_crtc(dev, crtc) {
  469. const char pipe = pipe_name(crtc->pipe);
  470. const char plane = plane_name(crtc->plane);
  471. struct intel_flip_work *work;
  472. spin_lock_irq(&dev->event_lock);
  473. work = crtc->flip_work;
  474. if (work == NULL) {
  475. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  476. pipe, plane);
  477. } else {
  478. u32 pending;
  479. u32 addr;
  480. pending = atomic_read(&work->pending);
  481. if (pending) {
  482. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  483. pipe, plane);
  484. } else {
  485. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  486. pipe, plane);
  487. }
  488. if (work->flip_queued_req) {
  489. struct intel_engine_cs *engine = work->flip_queued_req->engine;
  490. seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
  491. engine->name,
  492. work->flip_queued_req->global_seqno,
  493. intel_engine_last_submit(engine),
  494. intel_engine_get_seqno(engine),
  495. i915_gem_request_completed(work->flip_queued_req));
  496. } else
  497. seq_printf(m, "Flip not associated with any ring\n");
  498. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  499. work->flip_queued_vblank,
  500. work->flip_ready_vblank,
  501. intel_crtc_get_vblank_counter(crtc));
  502. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  503. if (INTEL_GEN(dev_priv) >= 4)
  504. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  505. else
  506. addr = I915_READ(DSPADDR(crtc->plane));
  507. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  508. if (work->pending_flip_obj) {
  509. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  510. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  511. }
  512. }
  513. spin_unlock_irq(&dev->event_lock);
  514. }
  515. mutex_unlock(&dev->struct_mutex);
  516. return 0;
  517. }
  518. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  519. {
  520. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  521. struct drm_device *dev = &dev_priv->drm;
  522. struct drm_i915_gem_object *obj;
  523. struct intel_engine_cs *engine;
  524. enum intel_engine_id id;
  525. int total = 0;
  526. int ret, j;
  527. ret = mutex_lock_interruptible(&dev->struct_mutex);
  528. if (ret)
  529. return ret;
  530. for_each_engine(engine, dev_priv, id) {
  531. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  532. int count;
  533. count = 0;
  534. list_for_each_entry(obj,
  535. &engine->batch_pool.cache_list[j],
  536. batch_pool_link)
  537. count++;
  538. seq_printf(m, "%s cache[%d]: %d objects\n",
  539. engine->name, j, count);
  540. list_for_each_entry(obj,
  541. &engine->batch_pool.cache_list[j],
  542. batch_pool_link) {
  543. seq_puts(m, " ");
  544. describe_obj(m, obj);
  545. seq_putc(m, '\n');
  546. }
  547. total += count;
  548. }
  549. }
  550. seq_printf(m, "total: %d\n", total);
  551. mutex_unlock(&dev->struct_mutex);
  552. return 0;
  553. }
  554. static void print_request(struct seq_file *m,
  555. struct drm_i915_gem_request *rq,
  556. const char *prefix)
  557. {
  558. seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
  559. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  560. rq->priotree.priority,
  561. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  562. rq->timeline->common->name);
  563. }
  564. static int i915_gem_request_info(struct seq_file *m, void *data)
  565. {
  566. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  567. struct drm_device *dev = &dev_priv->drm;
  568. struct drm_i915_gem_request *req;
  569. struct intel_engine_cs *engine;
  570. enum intel_engine_id id;
  571. int ret, any;
  572. ret = mutex_lock_interruptible(&dev->struct_mutex);
  573. if (ret)
  574. return ret;
  575. any = 0;
  576. for_each_engine(engine, dev_priv, id) {
  577. int count;
  578. count = 0;
  579. list_for_each_entry(req, &engine->timeline->requests, link)
  580. count++;
  581. if (count == 0)
  582. continue;
  583. seq_printf(m, "%s requests: %d\n", engine->name, count);
  584. list_for_each_entry(req, &engine->timeline->requests, link)
  585. print_request(m, req, " ");
  586. any++;
  587. }
  588. mutex_unlock(&dev->struct_mutex);
  589. if (any == 0)
  590. seq_puts(m, "No requests\n");
  591. return 0;
  592. }
  593. static void i915_ring_seqno_info(struct seq_file *m,
  594. struct intel_engine_cs *engine)
  595. {
  596. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  597. struct rb_node *rb;
  598. seq_printf(m, "Current sequence (%s): %x\n",
  599. engine->name, intel_engine_get_seqno(engine));
  600. spin_lock_irq(&b->rb_lock);
  601. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  602. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  603. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  604. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  605. }
  606. spin_unlock_irq(&b->rb_lock);
  607. }
  608. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  609. {
  610. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  611. struct intel_engine_cs *engine;
  612. enum intel_engine_id id;
  613. for_each_engine(engine, dev_priv, id)
  614. i915_ring_seqno_info(m, engine);
  615. return 0;
  616. }
  617. static int i915_interrupt_info(struct seq_file *m, void *data)
  618. {
  619. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  620. struct intel_engine_cs *engine;
  621. enum intel_engine_id id;
  622. int i, pipe;
  623. intel_runtime_pm_get(dev_priv);
  624. if (IS_CHERRYVIEW(dev_priv)) {
  625. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  626. I915_READ(GEN8_MASTER_IRQ));
  627. seq_printf(m, "Display IER:\t%08x\n",
  628. I915_READ(VLV_IER));
  629. seq_printf(m, "Display IIR:\t%08x\n",
  630. I915_READ(VLV_IIR));
  631. seq_printf(m, "Display IIR_RW:\t%08x\n",
  632. I915_READ(VLV_IIR_RW));
  633. seq_printf(m, "Display IMR:\t%08x\n",
  634. I915_READ(VLV_IMR));
  635. for_each_pipe(dev_priv, pipe) {
  636. enum intel_display_power_domain power_domain;
  637. power_domain = POWER_DOMAIN_PIPE(pipe);
  638. if (!intel_display_power_get_if_enabled(dev_priv,
  639. power_domain)) {
  640. seq_printf(m, "Pipe %c power disabled\n",
  641. pipe_name(pipe));
  642. continue;
  643. }
  644. seq_printf(m, "Pipe %c stat:\t%08x\n",
  645. pipe_name(pipe),
  646. I915_READ(PIPESTAT(pipe)));
  647. intel_display_power_put(dev_priv, power_domain);
  648. }
  649. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  650. seq_printf(m, "Port hotplug:\t%08x\n",
  651. I915_READ(PORT_HOTPLUG_EN));
  652. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  653. I915_READ(VLV_DPFLIPSTAT));
  654. seq_printf(m, "DPINVGTT:\t%08x\n",
  655. I915_READ(DPINVGTT));
  656. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  657. for (i = 0; i < 4; i++) {
  658. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  659. i, I915_READ(GEN8_GT_IMR(i)));
  660. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  661. i, I915_READ(GEN8_GT_IIR(i)));
  662. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  663. i, I915_READ(GEN8_GT_IER(i)));
  664. }
  665. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  666. I915_READ(GEN8_PCU_IMR));
  667. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  668. I915_READ(GEN8_PCU_IIR));
  669. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  670. I915_READ(GEN8_PCU_IER));
  671. } else if (INTEL_GEN(dev_priv) >= 8) {
  672. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  673. I915_READ(GEN8_MASTER_IRQ));
  674. for (i = 0; i < 4; i++) {
  675. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  676. i, I915_READ(GEN8_GT_IMR(i)));
  677. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  678. i, I915_READ(GEN8_GT_IIR(i)));
  679. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  680. i, I915_READ(GEN8_GT_IER(i)));
  681. }
  682. for_each_pipe(dev_priv, pipe) {
  683. enum intel_display_power_domain power_domain;
  684. power_domain = POWER_DOMAIN_PIPE(pipe);
  685. if (!intel_display_power_get_if_enabled(dev_priv,
  686. power_domain)) {
  687. seq_printf(m, "Pipe %c power disabled\n",
  688. pipe_name(pipe));
  689. continue;
  690. }
  691. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  692. pipe_name(pipe),
  693. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  694. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  695. pipe_name(pipe),
  696. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  697. seq_printf(m, "Pipe %c IER:\t%08x\n",
  698. pipe_name(pipe),
  699. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  700. intel_display_power_put(dev_priv, power_domain);
  701. }
  702. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  703. I915_READ(GEN8_DE_PORT_IMR));
  704. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  705. I915_READ(GEN8_DE_PORT_IIR));
  706. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  707. I915_READ(GEN8_DE_PORT_IER));
  708. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  709. I915_READ(GEN8_DE_MISC_IMR));
  710. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  711. I915_READ(GEN8_DE_MISC_IIR));
  712. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  713. I915_READ(GEN8_DE_MISC_IER));
  714. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  715. I915_READ(GEN8_PCU_IMR));
  716. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  717. I915_READ(GEN8_PCU_IIR));
  718. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  719. I915_READ(GEN8_PCU_IER));
  720. } else if (IS_VALLEYVIEW(dev_priv)) {
  721. seq_printf(m, "Display IER:\t%08x\n",
  722. I915_READ(VLV_IER));
  723. seq_printf(m, "Display IIR:\t%08x\n",
  724. I915_READ(VLV_IIR));
  725. seq_printf(m, "Display IIR_RW:\t%08x\n",
  726. I915_READ(VLV_IIR_RW));
  727. seq_printf(m, "Display IMR:\t%08x\n",
  728. I915_READ(VLV_IMR));
  729. for_each_pipe(dev_priv, pipe) {
  730. enum intel_display_power_domain power_domain;
  731. power_domain = POWER_DOMAIN_PIPE(pipe);
  732. if (!intel_display_power_get_if_enabled(dev_priv,
  733. power_domain)) {
  734. seq_printf(m, "Pipe %c power disabled\n",
  735. pipe_name(pipe));
  736. continue;
  737. }
  738. seq_printf(m, "Pipe %c stat:\t%08x\n",
  739. pipe_name(pipe),
  740. I915_READ(PIPESTAT(pipe)));
  741. intel_display_power_put(dev_priv, power_domain);
  742. }
  743. seq_printf(m, "Master IER:\t%08x\n",
  744. I915_READ(VLV_MASTER_IER));
  745. seq_printf(m, "Render IER:\t%08x\n",
  746. I915_READ(GTIER));
  747. seq_printf(m, "Render IIR:\t%08x\n",
  748. I915_READ(GTIIR));
  749. seq_printf(m, "Render IMR:\t%08x\n",
  750. I915_READ(GTIMR));
  751. seq_printf(m, "PM IER:\t\t%08x\n",
  752. I915_READ(GEN6_PMIER));
  753. seq_printf(m, "PM IIR:\t\t%08x\n",
  754. I915_READ(GEN6_PMIIR));
  755. seq_printf(m, "PM IMR:\t\t%08x\n",
  756. I915_READ(GEN6_PMIMR));
  757. seq_printf(m, "Port hotplug:\t%08x\n",
  758. I915_READ(PORT_HOTPLUG_EN));
  759. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  760. I915_READ(VLV_DPFLIPSTAT));
  761. seq_printf(m, "DPINVGTT:\t%08x\n",
  762. I915_READ(DPINVGTT));
  763. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  764. seq_printf(m, "Interrupt enable: %08x\n",
  765. I915_READ(IER));
  766. seq_printf(m, "Interrupt identity: %08x\n",
  767. I915_READ(IIR));
  768. seq_printf(m, "Interrupt mask: %08x\n",
  769. I915_READ(IMR));
  770. for_each_pipe(dev_priv, pipe)
  771. seq_printf(m, "Pipe %c stat: %08x\n",
  772. pipe_name(pipe),
  773. I915_READ(PIPESTAT(pipe)));
  774. } else {
  775. seq_printf(m, "North Display Interrupt enable: %08x\n",
  776. I915_READ(DEIER));
  777. seq_printf(m, "North Display Interrupt identity: %08x\n",
  778. I915_READ(DEIIR));
  779. seq_printf(m, "North Display Interrupt mask: %08x\n",
  780. I915_READ(DEIMR));
  781. seq_printf(m, "South Display Interrupt enable: %08x\n",
  782. I915_READ(SDEIER));
  783. seq_printf(m, "South Display Interrupt identity: %08x\n",
  784. I915_READ(SDEIIR));
  785. seq_printf(m, "South Display Interrupt mask: %08x\n",
  786. I915_READ(SDEIMR));
  787. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  788. I915_READ(GTIER));
  789. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  790. I915_READ(GTIIR));
  791. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  792. I915_READ(GTIMR));
  793. }
  794. for_each_engine(engine, dev_priv, id) {
  795. if (INTEL_GEN(dev_priv) >= 6) {
  796. seq_printf(m,
  797. "Graphics Interrupt mask (%s): %08x\n",
  798. engine->name, I915_READ_IMR(engine));
  799. }
  800. i915_ring_seqno_info(m, engine);
  801. }
  802. intel_runtime_pm_put(dev_priv);
  803. return 0;
  804. }
  805. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  806. {
  807. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  808. struct drm_device *dev = &dev_priv->drm;
  809. int i, ret;
  810. ret = mutex_lock_interruptible(&dev->struct_mutex);
  811. if (ret)
  812. return ret;
  813. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  814. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  815. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  816. seq_printf(m, "Fence %d, pin count = %d, object = ",
  817. i, dev_priv->fence_regs[i].pin_count);
  818. if (!vma)
  819. seq_puts(m, "unused");
  820. else
  821. describe_obj(m, vma->obj);
  822. seq_putc(m, '\n');
  823. }
  824. mutex_unlock(&dev->struct_mutex);
  825. return 0;
  826. }
  827. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  828. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  829. size_t count, loff_t *pos)
  830. {
  831. struct i915_gpu_state *error = file->private_data;
  832. struct drm_i915_error_state_buf str;
  833. ssize_t ret;
  834. loff_t tmp;
  835. if (!error)
  836. return 0;
  837. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  838. if (ret)
  839. return ret;
  840. ret = i915_error_state_to_str(&str, error);
  841. if (ret)
  842. goto out;
  843. tmp = 0;
  844. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  845. if (ret < 0)
  846. goto out;
  847. *pos = str.start + ret;
  848. out:
  849. i915_error_state_buf_release(&str);
  850. return ret;
  851. }
  852. static int gpu_state_release(struct inode *inode, struct file *file)
  853. {
  854. i915_gpu_state_put(file->private_data);
  855. return 0;
  856. }
  857. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  858. {
  859. struct drm_i915_private *i915 = inode->i_private;
  860. struct i915_gpu_state *gpu;
  861. intel_runtime_pm_get(i915);
  862. gpu = i915_capture_gpu_state(i915);
  863. intel_runtime_pm_put(i915);
  864. if (!gpu)
  865. return -ENOMEM;
  866. file->private_data = gpu;
  867. return 0;
  868. }
  869. static const struct file_operations i915_gpu_info_fops = {
  870. .owner = THIS_MODULE,
  871. .open = i915_gpu_info_open,
  872. .read = gpu_state_read,
  873. .llseek = default_llseek,
  874. .release = gpu_state_release,
  875. };
  876. static ssize_t
  877. i915_error_state_write(struct file *filp,
  878. const char __user *ubuf,
  879. size_t cnt,
  880. loff_t *ppos)
  881. {
  882. struct i915_gpu_state *error = filp->private_data;
  883. if (!error)
  884. return 0;
  885. DRM_DEBUG_DRIVER("Resetting error state\n");
  886. i915_reset_error_state(error->i915);
  887. return cnt;
  888. }
  889. static int i915_error_state_open(struct inode *inode, struct file *file)
  890. {
  891. file->private_data = i915_first_error_state(inode->i_private);
  892. return 0;
  893. }
  894. static const struct file_operations i915_error_state_fops = {
  895. .owner = THIS_MODULE,
  896. .open = i915_error_state_open,
  897. .read = gpu_state_read,
  898. .write = i915_error_state_write,
  899. .llseek = default_llseek,
  900. .release = gpu_state_release,
  901. };
  902. #endif
  903. static int
  904. i915_next_seqno_set(void *data, u64 val)
  905. {
  906. struct drm_i915_private *dev_priv = data;
  907. struct drm_device *dev = &dev_priv->drm;
  908. int ret;
  909. ret = mutex_lock_interruptible(&dev->struct_mutex);
  910. if (ret)
  911. return ret;
  912. ret = i915_gem_set_global_seqno(dev, val);
  913. mutex_unlock(&dev->struct_mutex);
  914. return ret;
  915. }
  916. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  917. NULL, i915_next_seqno_set,
  918. "0x%llx\n");
  919. static int i915_frequency_info(struct seq_file *m, void *unused)
  920. {
  921. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  922. int ret = 0;
  923. intel_runtime_pm_get(dev_priv);
  924. if (IS_GEN5(dev_priv)) {
  925. u16 rgvswctl = I915_READ16(MEMSWCTL);
  926. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  927. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  928. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  929. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  930. MEMSTAT_VID_SHIFT);
  931. seq_printf(m, "Current P-state: %d\n",
  932. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  933. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  934. u32 freq_sts;
  935. mutex_lock(&dev_priv->rps.hw_lock);
  936. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  937. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  938. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  939. seq_printf(m, "actual GPU freq: %d MHz\n",
  940. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  941. seq_printf(m, "current GPU freq: %d MHz\n",
  942. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  943. seq_printf(m, "max GPU freq: %d MHz\n",
  944. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  945. seq_printf(m, "min GPU freq: %d MHz\n",
  946. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  947. seq_printf(m, "idle GPU freq: %d MHz\n",
  948. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  949. seq_printf(m,
  950. "efficient (RPe) frequency: %d MHz\n",
  951. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  952. mutex_unlock(&dev_priv->rps.hw_lock);
  953. } else if (INTEL_GEN(dev_priv) >= 6) {
  954. u32 rp_state_limits;
  955. u32 gt_perf_status;
  956. u32 rp_state_cap;
  957. u32 rpmodectl, rpinclimit, rpdeclimit;
  958. u32 rpstat, cagf, reqf;
  959. u32 rpupei, rpcurup, rpprevup;
  960. u32 rpdownei, rpcurdown, rpprevdown;
  961. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  962. int max_freq;
  963. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  964. if (IS_GEN9_LP(dev_priv)) {
  965. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  966. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  967. } else {
  968. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  969. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  970. }
  971. /* RPSTAT1 is in the GT power well */
  972. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  973. reqf = I915_READ(GEN6_RPNSWREQ);
  974. if (IS_GEN9(dev_priv))
  975. reqf >>= 23;
  976. else {
  977. reqf &= ~GEN6_TURBO_DISABLE;
  978. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  979. reqf >>= 24;
  980. else
  981. reqf >>= 25;
  982. }
  983. reqf = intel_gpu_freq(dev_priv, reqf);
  984. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  985. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  986. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  987. rpstat = I915_READ(GEN6_RPSTAT1);
  988. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  989. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  990. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  991. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  992. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  993. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  994. if (IS_GEN9(dev_priv))
  995. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  996. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  997. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  998. else
  999. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1000. cagf = intel_gpu_freq(dev_priv, cagf);
  1001. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1002. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  1003. pm_ier = I915_READ(GEN6_PMIER);
  1004. pm_imr = I915_READ(GEN6_PMIMR);
  1005. pm_isr = I915_READ(GEN6_PMISR);
  1006. pm_iir = I915_READ(GEN6_PMIIR);
  1007. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1008. } else {
  1009. pm_ier = I915_READ(GEN8_GT_IER(2));
  1010. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1011. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1012. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1013. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1014. }
  1015. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1016. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1017. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  1018. dev_priv->rps.pm_intrmsk_mbz);
  1019. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1020. seq_printf(m, "Render p-state ratio: %d\n",
  1021. (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
  1022. seq_printf(m, "Render p-state VID: %d\n",
  1023. gt_perf_status & 0xff);
  1024. seq_printf(m, "Render p-state limit: %d\n",
  1025. rp_state_limits & 0xff);
  1026. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1027. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1028. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1029. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1030. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1031. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1032. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1033. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1034. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1035. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1036. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1037. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1038. seq_printf(m, "Up threshold: %d%%\n",
  1039. dev_priv->rps.up_threshold);
  1040. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1041. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1042. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1043. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1044. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1045. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1046. seq_printf(m, "Down threshold: %d%%\n",
  1047. dev_priv->rps.down_threshold);
  1048. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1049. rp_state_cap >> 16) & 0xff;
  1050. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1051. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1052. intel_gpu_freq(dev_priv, max_freq));
  1053. max_freq = (rp_state_cap & 0xff00) >> 8;
  1054. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1055. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1056. intel_gpu_freq(dev_priv, max_freq));
  1057. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1058. rp_state_cap >> 0) & 0xff;
  1059. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1060. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1061. intel_gpu_freq(dev_priv, max_freq));
  1062. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1063. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1064. seq_printf(m, "Current freq: %d MHz\n",
  1065. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1066. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1067. seq_printf(m, "Idle freq: %d MHz\n",
  1068. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1069. seq_printf(m, "Min freq: %d MHz\n",
  1070. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1071. seq_printf(m, "Boost freq: %d MHz\n",
  1072. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1073. seq_printf(m, "Max freq: %d MHz\n",
  1074. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1075. seq_printf(m,
  1076. "efficient (RPe) frequency: %d MHz\n",
  1077. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1078. } else {
  1079. seq_puts(m, "no P-state info available\n");
  1080. }
  1081. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1082. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1083. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1084. intel_runtime_pm_put(dev_priv);
  1085. return ret;
  1086. }
  1087. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1088. struct seq_file *m,
  1089. struct intel_instdone *instdone)
  1090. {
  1091. int slice;
  1092. int subslice;
  1093. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1094. instdone->instdone);
  1095. if (INTEL_GEN(dev_priv) <= 3)
  1096. return;
  1097. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1098. instdone->slice_common);
  1099. if (INTEL_GEN(dev_priv) <= 6)
  1100. return;
  1101. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1102. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1103. slice, subslice, instdone->sampler[slice][subslice]);
  1104. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1105. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1106. slice, subslice, instdone->row[slice][subslice]);
  1107. }
  1108. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1109. {
  1110. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1111. struct intel_engine_cs *engine;
  1112. u64 acthd[I915_NUM_ENGINES];
  1113. u32 seqno[I915_NUM_ENGINES];
  1114. struct intel_instdone instdone;
  1115. enum intel_engine_id id;
  1116. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1117. seq_puts(m, "Wedged\n");
  1118. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1119. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1120. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1121. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1122. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1123. seq_puts(m, "Waiter holding struct mutex\n");
  1124. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1125. seq_puts(m, "struct_mutex blocked for reset\n");
  1126. if (!i915.enable_hangcheck) {
  1127. seq_puts(m, "Hangcheck disabled\n");
  1128. return 0;
  1129. }
  1130. intel_runtime_pm_get(dev_priv);
  1131. for_each_engine(engine, dev_priv, id) {
  1132. acthd[id] = intel_engine_get_active_head(engine);
  1133. seqno[id] = intel_engine_get_seqno(engine);
  1134. }
  1135. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1136. intel_runtime_pm_put(dev_priv);
  1137. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1138. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1139. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1140. jiffies));
  1141. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1142. seq_puts(m, "Hangcheck active, work pending\n");
  1143. else
  1144. seq_puts(m, "Hangcheck inactive\n");
  1145. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1146. for_each_engine(engine, dev_priv, id) {
  1147. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1148. struct rb_node *rb;
  1149. seq_printf(m, "%s:\n", engine->name);
  1150. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1151. engine->hangcheck.seqno, seqno[id],
  1152. intel_engine_last_submit(engine),
  1153. engine->timeline->inflight_seqnos);
  1154. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1155. yesno(intel_engine_has_waiter(engine)),
  1156. yesno(test_bit(engine->id,
  1157. &dev_priv->gpu_error.missed_irq_rings)),
  1158. yesno(engine->hangcheck.stalled));
  1159. spin_lock_irq(&b->rb_lock);
  1160. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1161. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1162. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1163. w->tsk->comm, w->tsk->pid, w->seqno);
  1164. }
  1165. spin_unlock_irq(&b->rb_lock);
  1166. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1167. (long long)engine->hangcheck.acthd,
  1168. (long long)acthd[id]);
  1169. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1170. hangcheck_action_to_str(engine->hangcheck.action),
  1171. engine->hangcheck.action,
  1172. jiffies_to_msecs(jiffies -
  1173. engine->hangcheck.action_timestamp));
  1174. if (engine->id == RCS) {
  1175. seq_puts(m, "\tinstdone read =\n");
  1176. i915_instdone_info(dev_priv, m, &instdone);
  1177. seq_puts(m, "\tinstdone accu =\n");
  1178. i915_instdone_info(dev_priv, m,
  1179. &engine->hangcheck.instdone);
  1180. }
  1181. }
  1182. return 0;
  1183. }
  1184. static int ironlake_drpc_info(struct seq_file *m)
  1185. {
  1186. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1187. u32 rgvmodectl, rstdbyctl;
  1188. u16 crstandvid;
  1189. rgvmodectl = I915_READ(MEMMODECTL);
  1190. rstdbyctl = I915_READ(RSTDBYCTL);
  1191. crstandvid = I915_READ16(CRSTANDVID);
  1192. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1193. seq_printf(m, "Boost freq: %d\n",
  1194. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1195. MEMMODE_BOOST_FREQ_SHIFT);
  1196. seq_printf(m, "HW control enabled: %s\n",
  1197. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1198. seq_printf(m, "SW control enabled: %s\n",
  1199. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1200. seq_printf(m, "Gated voltage change: %s\n",
  1201. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1202. seq_printf(m, "Starting frequency: P%d\n",
  1203. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1204. seq_printf(m, "Max P-state: P%d\n",
  1205. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1206. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1207. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1208. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1209. seq_printf(m, "Render standby enabled: %s\n",
  1210. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1211. seq_puts(m, "Current RS state: ");
  1212. switch (rstdbyctl & RSX_STATUS_MASK) {
  1213. case RSX_STATUS_ON:
  1214. seq_puts(m, "on\n");
  1215. break;
  1216. case RSX_STATUS_RC1:
  1217. seq_puts(m, "RC1\n");
  1218. break;
  1219. case RSX_STATUS_RC1E:
  1220. seq_puts(m, "RC1E\n");
  1221. break;
  1222. case RSX_STATUS_RS1:
  1223. seq_puts(m, "RS1\n");
  1224. break;
  1225. case RSX_STATUS_RS2:
  1226. seq_puts(m, "RS2 (RC6)\n");
  1227. break;
  1228. case RSX_STATUS_RS3:
  1229. seq_puts(m, "RC3 (RC6+)\n");
  1230. break;
  1231. default:
  1232. seq_puts(m, "unknown\n");
  1233. break;
  1234. }
  1235. return 0;
  1236. }
  1237. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1238. {
  1239. struct drm_i915_private *i915 = node_to_i915(m->private);
  1240. struct intel_uncore_forcewake_domain *fw_domain;
  1241. unsigned int tmp;
  1242. for_each_fw_domain(fw_domain, i915, tmp)
  1243. seq_printf(m, "%s.wake_count = %u\n",
  1244. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1245. READ_ONCE(fw_domain->wake_count));
  1246. return 0;
  1247. }
  1248. static void print_rc6_res(struct seq_file *m,
  1249. const char *title,
  1250. const i915_reg_t reg)
  1251. {
  1252. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1253. seq_printf(m, "%s %u (%llu us)\n",
  1254. title, I915_READ(reg),
  1255. intel_rc6_residency_us(dev_priv, reg));
  1256. }
  1257. static int vlv_drpc_info(struct seq_file *m)
  1258. {
  1259. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1260. u32 rpmodectl1, rcctl1, pw_status;
  1261. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1262. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1263. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1264. seq_printf(m, "Video Turbo Mode: %s\n",
  1265. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1266. seq_printf(m, "Turbo enabled: %s\n",
  1267. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1268. seq_printf(m, "HW control enabled: %s\n",
  1269. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1270. seq_printf(m, "SW control enabled: %s\n",
  1271. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1272. GEN6_RP_MEDIA_SW_MODE));
  1273. seq_printf(m, "RC6 Enabled: %s\n",
  1274. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1275. GEN6_RC_CTL_EI_MODE(1))));
  1276. seq_printf(m, "Render Power Well: %s\n",
  1277. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1278. seq_printf(m, "Media Power Well: %s\n",
  1279. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1280. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1281. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1282. return i915_forcewake_domains(m, NULL);
  1283. }
  1284. static int gen6_drpc_info(struct seq_file *m)
  1285. {
  1286. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1287. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1288. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1289. unsigned forcewake_count;
  1290. int count = 0;
  1291. forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
  1292. if (forcewake_count) {
  1293. seq_puts(m, "RC information inaccurate because somebody "
  1294. "holds a forcewake reference \n");
  1295. } else {
  1296. /* NB: we cannot use forcewake, else we read the wrong values */
  1297. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1298. udelay(10);
  1299. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1300. }
  1301. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1302. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1303. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1304. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1305. if (INTEL_GEN(dev_priv) >= 9) {
  1306. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1307. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1308. }
  1309. mutex_lock(&dev_priv->rps.hw_lock);
  1310. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1311. mutex_unlock(&dev_priv->rps.hw_lock);
  1312. seq_printf(m, "Video Turbo Mode: %s\n",
  1313. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1314. seq_printf(m, "HW control enabled: %s\n",
  1315. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1316. seq_printf(m, "SW control enabled: %s\n",
  1317. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1318. GEN6_RP_MEDIA_SW_MODE));
  1319. seq_printf(m, "RC1e Enabled: %s\n",
  1320. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1321. seq_printf(m, "RC6 Enabled: %s\n",
  1322. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1323. if (INTEL_GEN(dev_priv) >= 9) {
  1324. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1325. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1326. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1327. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1328. }
  1329. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1330. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1331. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1332. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1333. seq_puts(m, "Current RC state: ");
  1334. switch (gt_core_status & GEN6_RCn_MASK) {
  1335. case GEN6_RC0:
  1336. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1337. seq_puts(m, "Core Power Down\n");
  1338. else
  1339. seq_puts(m, "on\n");
  1340. break;
  1341. case GEN6_RC3:
  1342. seq_puts(m, "RC3\n");
  1343. break;
  1344. case GEN6_RC6:
  1345. seq_puts(m, "RC6\n");
  1346. break;
  1347. case GEN6_RC7:
  1348. seq_puts(m, "RC7\n");
  1349. break;
  1350. default:
  1351. seq_puts(m, "Unknown\n");
  1352. break;
  1353. }
  1354. seq_printf(m, "Core Power Down: %s\n",
  1355. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1356. if (INTEL_GEN(dev_priv) >= 9) {
  1357. seq_printf(m, "Render Power Well: %s\n",
  1358. (gen9_powergate_status &
  1359. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1360. seq_printf(m, "Media Power Well: %s\n",
  1361. (gen9_powergate_status &
  1362. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1363. }
  1364. /* Not exactly sure what this is */
  1365. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1366. GEN6_GT_GFX_RC6_LOCKED);
  1367. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1368. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1369. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1370. seq_printf(m, "RC6 voltage: %dmV\n",
  1371. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1372. seq_printf(m, "RC6+ voltage: %dmV\n",
  1373. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1374. seq_printf(m, "RC6++ voltage: %dmV\n",
  1375. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1376. return i915_forcewake_domains(m, NULL);
  1377. }
  1378. static int i915_drpc_info(struct seq_file *m, void *unused)
  1379. {
  1380. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1381. int err;
  1382. intel_runtime_pm_get(dev_priv);
  1383. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1384. err = vlv_drpc_info(m);
  1385. else if (INTEL_GEN(dev_priv) >= 6)
  1386. err = gen6_drpc_info(m);
  1387. else
  1388. err = ironlake_drpc_info(m);
  1389. intel_runtime_pm_put(dev_priv);
  1390. return err;
  1391. }
  1392. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1393. {
  1394. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1395. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1396. dev_priv->fb_tracking.busy_bits);
  1397. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1398. dev_priv->fb_tracking.flip_bits);
  1399. return 0;
  1400. }
  1401. static int i915_fbc_status(struct seq_file *m, void *unused)
  1402. {
  1403. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1404. if (!HAS_FBC(dev_priv)) {
  1405. seq_puts(m, "FBC unsupported on this chipset\n");
  1406. return 0;
  1407. }
  1408. intel_runtime_pm_get(dev_priv);
  1409. mutex_lock(&dev_priv->fbc.lock);
  1410. if (intel_fbc_is_active(dev_priv))
  1411. seq_puts(m, "FBC enabled\n");
  1412. else
  1413. seq_printf(m, "FBC disabled: %s\n",
  1414. dev_priv->fbc.no_fbc_reason);
  1415. if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
  1416. uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
  1417. BDW_FBC_COMPRESSION_MASK :
  1418. IVB_FBC_COMPRESSION_MASK;
  1419. seq_printf(m, "Compressing: %s\n",
  1420. yesno(I915_READ(FBC_STATUS2) & mask));
  1421. }
  1422. mutex_unlock(&dev_priv->fbc.lock);
  1423. intel_runtime_pm_put(dev_priv);
  1424. return 0;
  1425. }
  1426. static int i915_fbc_fc_get(void *data, u64 *val)
  1427. {
  1428. struct drm_i915_private *dev_priv = data;
  1429. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1430. return -ENODEV;
  1431. *val = dev_priv->fbc.false_color;
  1432. return 0;
  1433. }
  1434. static int i915_fbc_fc_set(void *data, u64 val)
  1435. {
  1436. struct drm_i915_private *dev_priv = data;
  1437. u32 reg;
  1438. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1439. return -ENODEV;
  1440. mutex_lock(&dev_priv->fbc.lock);
  1441. reg = I915_READ(ILK_DPFC_CONTROL);
  1442. dev_priv->fbc.false_color = val;
  1443. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1444. (reg | FBC_CTL_FALSE_COLOR) :
  1445. (reg & ~FBC_CTL_FALSE_COLOR));
  1446. mutex_unlock(&dev_priv->fbc.lock);
  1447. return 0;
  1448. }
  1449. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1450. i915_fbc_fc_get, i915_fbc_fc_set,
  1451. "%llu\n");
  1452. static int i915_ips_status(struct seq_file *m, void *unused)
  1453. {
  1454. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1455. if (!HAS_IPS(dev_priv)) {
  1456. seq_puts(m, "not supported\n");
  1457. return 0;
  1458. }
  1459. intel_runtime_pm_get(dev_priv);
  1460. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1461. yesno(i915.enable_ips));
  1462. if (INTEL_GEN(dev_priv) >= 8) {
  1463. seq_puts(m, "Currently: unknown\n");
  1464. } else {
  1465. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1466. seq_puts(m, "Currently: enabled\n");
  1467. else
  1468. seq_puts(m, "Currently: disabled\n");
  1469. }
  1470. intel_runtime_pm_put(dev_priv);
  1471. return 0;
  1472. }
  1473. static int i915_sr_status(struct seq_file *m, void *unused)
  1474. {
  1475. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1476. bool sr_enabled = false;
  1477. intel_runtime_pm_get(dev_priv);
  1478. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1479. if (INTEL_GEN(dev_priv) >= 9)
  1480. /* no global SR status; inspect per-plane WM */;
  1481. else if (HAS_PCH_SPLIT(dev_priv))
  1482. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1483. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1484. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1485. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1486. else if (IS_I915GM(dev_priv))
  1487. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1488. else if (IS_PINEVIEW(dev_priv))
  1489. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1490. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1491. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1492. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1493. intel_runtime_pm_put(dev_priv);
  1494. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1495. return 0;
  1496. }
  1497. static int i915_emon_status(struct seq_file *m, void *unused)
  1498. {
  1499. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1500. struct drm_device *dev = &dev_priv->drm;
  1501. unsigned long temp, chipset, gfx;
  1502. int ret;
  1503. if (!IS_GEN5(dev_priv))
  1504. return -ENODEV;
  1505. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1506. if (ret)
  1507. return ret;
  1508. temp = i915_mch_val(dev_priv);
  1509. chipset = i915_chipset_val(dev_priv);
  1510. gfx = i915_gfx_val(dev_priv);
  1511. mutex_unlock(&dev->struct_mutex);
  1512. seq_printf(m, "GMCH temp: %ld\n", temp);
  1513. seq_printf(m, "Chipset power: %ld\n", chipset);
  1514. seq_printf(m, "GFX power: %ld\n", gfx);
  1515. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1516. return 0;
  1517. }
  1518. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1519. {
  1520. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1521. int ret = 0;
  1522. int gpu_freq, ia_freq;
  1523. unsigned int max_gpu_freq, min_gpu_freq;
  1524. if (!HAS_LLC(dev_priv)) {
  1525. seq_puts(m, "unsupported on this chipset\n");
  1526. return 0;
  1527. }
  1528. intel_runtime_pm_get(dev_priv);
  1529. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1530. if (ret)
  1531. goto out;
  1532. if (IS_GEN9_BC(dev_priv)) {
  1533. /* Convert GT frequency to 50 HZ units */
  1534. min_gpu_freq =
  1535. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1536. max_gpu_freq =
  1537. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1538. } else {
  1539. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1540. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1541. }
  1542. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1543. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1544. ia_freq = gpu_freq;
  1545. sandybridge_pcode_read(dev_priv,
  1546. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1547. &ia_freq);
  1548. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1549. intel_gpu_freq(dev_priv, (gpu_freq *
  1550. (IS_GEN9_BC(dev_priv) ?
  1551. GEN9_FREQ_SCALER : 1))),
  1552. ((ia_freq >> 0) & 0xff) * 100,
  1553. ((ia_freq >> 8) & 0xff) * 100);
  1554. }
  1555. mutex_unlock(&dev_priv->rps.hw_lock);
  1556. out:
  1557. intel_runtime_pm_put(dev_priv);
  1558. return ret;
  1559. }
  1560. static int i915_opregion(struct seq_file *m, void *unused)
  1561. {
  1562. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1563. struct drm_device *dev = &dev_priv->drm;
  1564. struct intel_opregion *opregion = &dev_priv->opregion;
  1565. int ret;
  1566. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1567. if (ret)
  1568. goto out;
  1569. if (opregion->header)
  1570. seq_write(m, opregion->header, OPREGION_SIZE);
  1571. mutex_unlock(&dev->struct_mutex);
  1572. out:
  1573. return 0;
  1574. }
  1575. static int i915_vbt(struct seq_file *m, void *unused)
  1576. {
  1577. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1578. if (opregion->vbt)
  1579. seq_write(m, opregion->vbt, opregion->vbt_size);
  1580. return 0;
  1581. }
  1582. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1583. {
  1584. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1585. struct drm_device *dev = &dev_priv->drm;
  1586. struct intel_framebuffer *fbdev_fb = NULL;
  1587. struct drm_framebuffer *drm_fb;
  1588. int ret;
  1589. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1590. if (ret)
  1591. return ret;
  1592. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1593. if (dev_priv->fbdev) {
  1594. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1595. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1596. fbdev_fb->base.width,
  1597. fbdev_fb->base.height,
  1598. fbdev_fb->base.format->depth,
  1599. fbdev_fb->base.format->cpp[0] * 8,
  1600. fbdev_fb->base.modifier,
  1601. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1602. describe_obj(m, fbdev_fb->obj);
  1603. seq_putc(m, '\n');
  1604. }
  1605. #endif
  1606. mutex_lock(&dev->mode_config.fb_lock);
  1607. drm_for_each_fb(drm_fb, dev) {
  1608. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1609. if (fb == fbdev_fb)
  1610. continue;
  1611. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1612. fb->base.width,
  1613. fb->base.height,
  1614. fb->base.format->depth,
  1615. fb->base.format->cpp[0] * 8,
  1616. fb->base.modifier,
  1617. drm_framebuffer_read_refcount(&fb->base));
  1618. describe_obj(m, fb->obj);
  1619. seq_putc(m, '\n');
  1620. }
  1621. mutex_unlock(&dev->mode_config.fb_lock);
  1622. mutex_unlock(&dev->struct_mutex);
  1623. return 0;
  1624. }
  1625. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1626. {
  1627. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1628. ring->space, ring->head, ring->tail);
  1629. }
  1630. static int i915_context_status(struct seq_file *m, void *unused)
  1631. {
  1632. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1633. struct drm_device *dev = &dev_priv->drm;
  1634. struct intel_engine_cs *engine;
  1635. struct i915_gem_context *ctx;
  1636. enum intel_engine_id id;
  1637. int ret;
  1638. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1639. if (ret)
  1640. return ret;
  1641. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1642. seq_printf(m, "HW context %u ", ctx->hw_id);
  1643. if (ctx->pid) {
  1644. struct task_struct *task;
  1645. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1646. if (task) {
  1647. seq_printf(m, "(%s [%d]) ",
  1648. task->comm, task->pid);
  1649. put_task_struct(task);
  1650. }
  1651. } else if (IS_ERR(ctx->file_priv)) {
  1652. seq_puts(m, "(deleted) ");
  1653. } else {
  1654. seq_puts(m, "(kernel) ");
  1655. }
  1656. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1657. seq_putc(m, '\n');
  1658. for_each_engine(engine, dev_priv, id) {
  1659. struct intel_context *ce = &ctx->engine[engine->id];
  1660. seq_printf(m, "%s: ", engine->name);
  1661. seq_putc(m, ce->initialised ? 'I' : 'i');
  1662. if (ce->state)
  1663. describe_obj(m, ce->state->obj);
  1664. if (ce->ring)
  1665. describe_ctx_ring(m, ce->ring);
  1666. seq_putc(m, '\n');
  1667. }
  1668. seq_putc(m, '\n');
  1669. }
  1670. mutex_unlock(&dev->struct_mutex);
  1671. return 0;
  1672. }
  1673. static void i915_dump_lrc_obj(struct seq_file *m,
  1674. struct i915_gem_context *ctx,
  1675. struct intel_engine_cs *engine)
  1676. {
  1677. struct i915_vma *vma = ctx->engine[engine->id].state;
  1678. struct page *page;
  1679. int j;
  1680. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1681. if (!vma) {
  1682. seq_puts(m, "\tFake context\n");
  1683. return;
  1684. }
  1685. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1686. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1687. i915_ggtt_offset(vma));
  1688. if (i915_gem_object_pin_pages(vma->obj)) {
  1689. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1690. return;
  1691. }
  1692. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1693. if (page) {
  1694. u32 *reg_state = kmap_atomic(page);
  1695. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1696. seq_printf(m,
  1697. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1698. j * 4,
  1699. reg_state[j], reg_state[j + 1],
  1700. reg_state[j + 2], reg_state[j + 3]);
  1701. }
  1702. kunmap_atomic(reg_state);
  1703. }
  1704. i915_gem_object_unpin_pages(vma->obj);
  1705. seq_putc(m, '\n');
  1706. }
  1707. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1708. {
  1709. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1710. struct drm_device *dev = &dev_priv->drm;
  1711. struct intel_engine_cs *engine;
  1712. struct i915_gem_context *ctx;
  1713. enum intel_engine_id id;
  1714. int ret;
  1715. if (!i915.enable_execlists) {
  1716. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1717. return 0;
  1718. }
  1719. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1720. if (ret)
  1721. return ret;
  1722. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1723. for_each_engine(engine, dev_priv, id)
  1724. i915_dump_lrc_obj(m, ctx, engine);
  1725. mutex_unlock(&dev->struct_mutex);
  1726. return 0;
  1727. }
  1728. static const char *swizzle_string(unsigned swizzle)
  1729. {
  1730. switch (swizzle) {
  1731. case I915_BIT_6_SWIZZLE_NONE:
  1732. return "none";
  1733. case I915_BIT_6_SWIZZLE_9:
  1734. return "bit9";
  1735. case I915_BIT_6_SWIZZLE_9_10:
  1736. return "bit9/bit10";
  1737. case I915_BIT_6_SWIZZLE_9_11:
  1738. return "bit9/bit11";
  1739. case I915_BIT_6_SWIZZLE_9_10_11:
  1740. return "bit9/bit10/bit11";
  1741. case I915_BIT_6_SWIZZLE_9_17:
  1742. return "bit9/bit17";
  1743. case I915_BIT_6_SWIZZLE_9_10_17:
  1744. return "bit9/bit10/bit17";
  1745. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1746. return "unknown";
  1747. }
  1748. return "bug";
  1749. }
  1750. static int i915_swizzle_info(struct seq_file *m, void *data)
  1751. {
  1752. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1753. intel_runtime_pm_get(dev_priv);
  1754. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1755. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1756. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1757. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1758. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1759. seq_printf(m, "DDC = 0x%08x\n",
  1760. I915_READ(DCC));
  1761. seq_printf(m, "DDC2 = 0x%08x\n",
  1762. I915_READ(DCC2));
  1763. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1764. I915_READ16(C0DRB3));
  1765. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1766. I915_READ16(C1DRB3));
  1767. } else if (INTEL_GEN(dev_priv) >= 6) {
  1768. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1769. I915_READ(MAD_DIMM_C0));
  1770. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1771. I915_READ(MAD_DIMM_C1));
  1772. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1773. I915_READ(MAD_DIMM_C2));
  1774. seq_printf(m, "TILECTL = 0x%08x\n",
  1775. I915_READ(TILECTL));
  1776. if (INTEL_GEN(dev_priv) >= 8)
  1777. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1778. I915_READ(GAMTARBMODE));
  1779. else
  1780. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1781. I915_READ(ARB_MODE));
  1782. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1783. I915_READ(DISP_ARB_CTL));
  1784. }
  1785. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1786. seq_puts(m, "L-shaped memory detected\n");
  1787. intel_runtime_pm_put(dev_priv);
  1788. return 0;
  1789. }
  1790. static int per_file_ctx(int id, void *ptr, void *data)
  1791. {
  1792. struct i915_gem_context *ctx = ptr;
  1793. struct seq_file *m = data;
  1794. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1795. if (!ppgtt) {
  1796. seq_printf(m, " no ppgtt for context %d\n",
  1797. ctx->user_handle);
  1798. return 0;
  1799. }
  1800. if (i915_gem_context_is_default(ctx))
  1801. seq_puts(m, " default context:\n");
  1802. else
  1803. seq_printf(m, " context %d:\n", ctx->user_handle);
  1804. ppgtt->debug_dump(ppgtt, m);
  1805. return 0;
  1806. }
  1807. static void gen8_ppgtt_info(struct seq_file *m,
  1808. struct drm_i915_private *dev_priv)
  1809. {
  1810. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1811. struct intel_engine_cs *engine;
  1812. enum intel_engine_id id;
  1813. int i;
  1814. if (!ppgtt)
  1815. return;
  1816. for_each_engine(engine, dev_priv, id) {
  1817. seq_printf(m, "%s\n", engine->name);
  1818. for (i = 0; i < 4; i++) {
  1819. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1820. pdp <<= 32;
  1821. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1822. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1823. }
  1824. }
  1825. }
  1826. static void gen6_ppgtt_info(struct seq_file *m,
  1827. struct drm_i915_private *dev_priv)
  1828. {
  1829. struct intel_engine_cs *engine;
  1830. enum intel_engine_id id;
  1831. if (IS_GEN6(dev_priv))
  1832. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1833. for_each_engine(engine, dev_priv, id) {
  1834. seq_printf(m, "%s\n", engine->name);
  1835. if (IS_GEN7(dev_priv))
  1836. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1837. I915_READ(RING_MODE_GEN7(engine)));
  1838. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1839. I915_READ(RING_PP_DIR_BASE(engine)));
  1840. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1841. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1842. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1843. I915_READ(RING_PP_DIR_DCLV(engine)));
  1844. }
  1845. if (dev_priv->mm.aliasing_ppgtt) {
  1846. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1847. seq_puts(m, "aliasing PPGTT:\n");
  1848. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1849. ppgtt->debug_dump(ppgtt, m);
  1850. }
  1851. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1852. }
  1853. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1854. {
  1855. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1856. struct drm_device *dev = &dev_priv->drm;
  1857. struct drm_file *file;
  1858. int ret;
  1859. mutex_lock(&dev->filelist_mutex);
  1860. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1861. if (ret)
  1862. goto out_unlock;
  1863. intel_runtime_pm_get(dev_priv);
  1864. if (INTEL_GEN(dev_priv) >= 8)
  1865. gen8_ppgtt_info(m, dev_priv);
  1866. else if (INTEL_GEN(dev_priv) >= 6)
  1867. gen6_ppgtt_info(m, dev_priv);
  1868. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1869. struct drm_i915_file_private *file_priv = file->driver_priv;
  1870. struct task_struct *task;
  1871. task = get_pid_task(file->pid, PIDTYPE_PID);
  1872. if (!task) {
  1873. ret = -ESRCH;
  1874. goto out_rpm;
  1875. }
  1876. seq_printf(m, "\nproc: %s\n", task->comm);
  1877. put_task_struct(task);
  1878. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1879. (void *)(unsigned long)m);
  1880. }
  1881. out_rpm:
  1882. intel_runtime_pm_put(dev_priv);
  1883. mutex_unlock(&dev->struct_mutex);
  1884. out_unlock:
  1885. mutex_unlock(&dev->filelist_mutex);
  1886. return ret;
  1887. }
  1888. static int count_irq_waiters(struct drm_i915_private *i915)
  1889. {
  1890. struct intel_engine_cs *engine;
  1891. enum intel_engine_id id;
  1892. int count = 0;
  1893. for_each_engine(engine, i915, id)
  1894. count += intel_engine_has_waiter(engine);
  1895. return count;
  1896. }
  1897. static const char *rps_power_to_str(unsigned int power)
  1898. {
  1899. static const char * const strings[] = {
  1900. [LOW_POWER] = "low power",
  1901. [BETWEEN] = "mixed",
  1902. [HIGH_POWER] = "high power",
  1903. };
  1904. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1905. return "unknown";
  1906. return strings[power];
  1907. }
  1908. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1909. {
  1910. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1911. struct drm_device *dev = &dev_priv->drm;
  1912. struct drm_file *file;
  1913. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1914. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1915. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1916. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1917. seq_printf(m, "Frequency requested %d\n",
  1918. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1919. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1920. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1921. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1922. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1923. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1924. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1925. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1926. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1927. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1928. mutex_lock(&dev->filelist_mutex);
  1929. spin_lock(&dev_priv->rps.client_lock);
  1930. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1931. struct drm_i915_file_private *file_priv = file->driver_priv;
  1932. struct task_struct *task;
  1933. rcu_read_lock();
  1934. task = pid_task(file->pid, PIDTYPE_PID);
  1935. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1936. task ? task->comm : "<unknown>",
  1937. task ? task->pid : -1,
  1938. file_priv->rps.boosts,
  1939. list_empty(&file_priv->rps.link) ? "" : ", active");
  1940. rcu_read_unlock();
  1941. }
  1942. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  1943. spin_unlock(&dev_priv->rps.client_lock);
  1944. mutex_unlock(&dev->filelist_mutex);
  1945. if (INTEL_GEN(dev_priv) >= 6 &&
  1946. dev_priv->rps.enabled &&
  1947. dev_priv->gt.active_requests) {
  1948. u32 rpup, rpupei;
  1949. u32 rpdown, rpdownei;
  1950. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1951. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1952. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1953. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1954. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1955. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1956. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1957. rps_power_to_str(dev_priv->rps.power));
  1958. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1959. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1960. dev_priv->rps.up_threshold);
  1961. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1962. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1963. dev_priv->rps.down_threshold);
  1964. } else {
  1965. seq_puts(m, "\nRPS Autotuning inactive\n");
  1966. }
  1967. return 0;
  1968. }
  1969. static int i915_llc(struct seq_file *m, void *data)
  1970. {
  1971. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1972. const bool edram = INTEL_GEN(dev_priv) > 8;
  1973. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1974. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1975. intel_uncore_edram_size(dev_priv)/1024/1024);
  1976. return 0;
  1977. }
  1978. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1979. {
  1980. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1981. struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
  1982. if (!HAS_HUC_UCODE(dev_priv))
  1983. return 0;
  1984. seq_puts(m, "HuC firmware status:\n");
  1985. seq_printf(m, "\tpath: %s\n", huc_fw->path);
  1986. seq_printf(m, "\tfetch: %s\n",
  1987. intel_uc_fw_status_repr(huc_fw->fetch_status));
  1988. seq_printf(m, "\tload: %s\n",
  1989. intel_uc_fw_status_repr(huc_fw->load_status));
  1990. seq_printf(m, "\tversion wanted: %d.%d\n",
  1991. huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
  1992. seq_printf(m, "\tversion found: %d.%d\n",
  1993. huc_fw->major_ver_found, huc_fw->minor_ver_found);
  1994. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1995. huc_fw->header_offset, huc_fw->header_size);
  1996. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1997. huc_fw->ucode_offset, huc_fw->ucode_size);
  1998. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1999. huc_fw->rsa_offset, huc_fw->rsa_size);
  2000. intel_runtime_pm_get(dev_priv);
  2001. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  2002. intel_runtime_pm_put(dev_priv);
  2003. return 0;
  2004. }
  2005. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2006. {
  2007. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2008. struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
  2009. u32 tmp, i;
  2010. if (!HAS_GUC_UCODE(dev_priv))
  2011. return 0;
  2012. seq_printf(m, "GuC firmware status:\n");
  2013. seq_printf(m, "\tpath: %s\n",
  2014. guc_fw->path);
  2015. seq_printf(m, "\tfetch: %s\n",
  2016. intel_uc_fw_status_repr(guc_fw->fetch_status));
  2017. seq_printf(m, "\tload: %s\n",
  2018. intel_uc_fw_status_repr(guc_fw->load_status));
  2019. seq_printf(m, "\tversion wanted: %d.%d\n",
  2020. guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
  2021. seq_printf(m, "\tversion found: %d.%d\n",
  2022. guc_fw->major_ver_found, guc_fw->minor_ver_found);
  2023. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2024. guc_fw->header_offset, guc_fw->header_size);
  2025. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2026. guc_fw->ucode_offset, guc_fw->ucode_size);
  2027. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2028. guc_fw->rsa_offset, guc_fw->rsa_size);
  2029. intel_runtime_pm_get(dev_priv);
  2030. tmp = I915_READ(GUC_STATUS);
  2031. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2032. seq_printf(m, "\tBootrom status = 0x%x\n",
  2033. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2034. seq_printf(m, "\tuKernel status = 0x%x\n",
  2035. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2036. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2037. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2038. seq_puts(m, "\nScratch registers:\n");
  2039. for (i = 0; i < 16; i++)
  2040. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2041. intel_runtime_pm_put(dev_priv);
  2042. return 0;
  2043. }
  2044. static void i915_guc_log_info(struct seq_file *m,
  2045. struct drm_i915_private *dev_priv)
  2046. {
  2047. struct intel_guc *guc = &dev_priv->guc;
  2048. seq_puts(m, "\nGuC logging stats:\n");
  2049. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2050. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2051. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2052. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2053. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2054. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2055. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2056. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2057. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2058. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2059. guc->log.flush_interrupt_count);
  2060. seq_printf(m, "\tCapture miss count: %u\n",
  2061. guc->log.capture_miss_count);
  2062. }
  2063. static void i915_guc_client_info(struct seq_file *m,
  2064. struct drm_i915_private *dev_priv,
  2065. struct i915_guc_client *client)
  2066. {
  2067. struct intel_engine_cs *engine;
  2068. enum intel_engine_id id;
  2069. uint64_t tot = 0;
  2070. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  2071. client->priority, client->stage_id, client->proc_desc_offset);
  2072. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
  2073. client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
  2074. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2075. client->wq_size, client->wq_offset, client->wq_tail);
  2076. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2077. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2078. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2079. for_each_engine(engine, dev_priv, id) {
  2080. u64 submissions = client->submissions[id];
  2081. tot += submissions;
  2082. seq_printf(m, "\tSubmissions: %llu %s\n",
  2083. submissions, engine->name);
  2084. }
  2085. seq_printf(m, "\tTotal: %llu\n", tot);
  2086. }
  2087. static int i915_guc_info(struct seq_file *m, void *data)
  2088. {
  2089. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2090. const struct intel_guc *guc = &dev_priv->guc;
  2091. struct intel_engine_cs *engine;
  2092. enum intel_engine_id id;
  2093. u64 total;
  2094. if (!guc->execbuf_client) {
  2095. seq_printf(m, "GuC submission %s\n",
  2096. HAS_GUC_SCHED(dev_priv) ?
  2097. "disabled" :
  2098. "not supported");
  2099. return 0;
  2100. }
  2101. seq_printf(m, "Doorbell map:\n");
  2102. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  2103. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2104. seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
  2105. seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
  2106. seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
  2107. seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
  2108. seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
  2109. total = 0;
  2110. seq_printf(m, "\nGuC submissions:\n");
  2111. for_each_engine(engine, dev_priv, id) {
  2112. u64 submissions = guc->submissions[id];
  2113. total += submissions;
  2114. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2115. engine->name, submissions, guc->last_seqno[id]);
  2116. }
  2117. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2118. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2119. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2120. i915_guc_log_info(m, dev_priv);
  2121. /* Add more as required ... */
  2122. return 0;
  2123. }
  2124. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2125. {
  2126. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2127. struct drm_i915_gem_object *obj;
  2128. int i = 0, pg;
  2129. if (!dev_priv->guc.log.vma)
  2130. return 0;
  2131. obj = dev_priv->guc.log.vma->obj;
  2132. for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
  2133. u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
  2134. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2135. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2136. *(log + i), *(log + i + 1),
  2137. *(log + i + 2), *(log + i + 3));
  2138. kunmap_atomic(log);
  2139. }
  2140. seq_putc(m, '\n');
  2141. return 0;
  2142. }
  2143. static int i915_guc_log_control_get(void *data, u64 *val)
  2144. {
  2145. struct drm_device *dev = data;
  2146. struct drm_i915_private *dev_priv = to_i915(dev);
  2147. if (!dev_priv->guc.log.vma)
  2148. return -EINVAL;
  2149. *val = i915.guc_log_level;
  2150. return 0;
  2151. }
  2152. static int i915_guc_log_control_set(void *data, u64 val)
  2153. {
  2154. struct drm_device *dev = data;
  2155. struct drm_i915_private *dev_priv = to_i915(dev);
  2156. int ret;
  2157. if (!dev_priv->guc.log.vma)
  2158. return -EINVAL;
  2159. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2160. if (ret)
  2161. return ret;
  2162. intel_runtime_pm_get(dev_priv);
  2163. ret = i915_guc_log_control(dev_priv, val);
  2164. intel_runtime_pm_put(dev_priv);
  2165. mutex_unlock(&dev->struct_mutex);
  2166. return ret;
  2167. }
  2168. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2169. i915_guc_log_control_get, i915_guc_log_control_set,
  2170. "%lld\n");
  2171. static const char *psr2_live_status(u32 val)
  2172. {
  2173. static const char * const live_status[] = {
  2174. "IDLE",
  2175. "CAPTURE",
  2176. "CAPTURE_FS",
  2177. "SLEEP",
  2178. "BUFON_FW",
  2179. "ML_UP",
  2180. "SU_STANDBY",
  2181. "FAST_SLEEP",
  2182. "DEEP_SLEEP",
  2183. "BUF_ON",
  2184. "TG_ON"
  2185. };
  2186. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2187. if (val < ARRAY_SIZE(live_status))
  2188. return live_status[val];
  2189. return "unknown";
  2190. }
  2191. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2192. {
  2193. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2194. u32 psrperf = 0;
  2195. u32 stat[3];
  2196. enum pipe pipe;
  2197. bool enabled = false;
  2198. if (!HAS_PSR(dev_priv)) {
  2199. seq_puts(m, "PSR not supported\n");
  2200. return 0;
  2201. }
  2202. intel_runtime_pm_get(dev_priv);
  2203. mutex_lock(&dev_priv->psr.lock);
  2204. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2205. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2206. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2207. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2208. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2209. dev_priv->psr.busy_frontbuffer_bits);
  2210. seq_printf(m, "Re-enable work scheduled: %s\n",
  2211. yesno(work_busy(&dev_priv->psr.work.work)));
  2212. if (HAS_DDI(dev_priv)) {
  2213. if (dev_priv->psr.psr2_support)
  2214. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2215. else
  2216. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2217. } else {
  2218. for_each_pipe(dev_priv, pipe) {
  2219. enum transcoder cpu_transcoder =
  2220. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2221. enum intel_display_power_domain power_domain;
  2222. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2223. if (!intel_display_power_get_if_enabled(dev_priv,
  2224. power_domain))
  2225. continue;
  2226. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2227. VLV_EDP_PSR_CURR_STATE_MASK;
  2228. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2229. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2230. enabled = true;
  2231. intel_display_power_put(dev_priv, power_domain);
  2232. }
  2233. }
  2234. seq_printf(m, "Main link in standby mode: %s\n",
  2235. yesno(dev_priv->psr.link_standby));
  2236. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2237. if (!HAS_DDI(dev_priv))
  2238. for_each_pipe(dev_priv, pipe) {
  2239. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2240. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2241. seq_printf(m, " pipe %c", pipe_name(pipe));
  2242. }
  2243. seq_puts(m, "\n");
  2244. /*
  2245. * VLV/CHV PSR has no kind of performance counter
  2246. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2247. */
  2248. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2249. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2250. EDP_PSR_PERF_CNT_MASK;
  2251. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2252. }
  2253. if (dev_priv->psr.psr2_support) {
  2254. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2255. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2256. psr2, psr2_live_status(psr2));
  2257. }
  2258. mutex_unlock(&dev_priv->psr.lock);
  2259. intel_runtime_pm_put(dev_priv);
  2260. return 0;
  2261. }
  2262. static int i915_sink_crc(struct seq_file *m, void *data)
  2263. {
  2264. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2265. struct drm_device *dev = &dev_priv->drm;
  2266. struct intel_connector *connector;
  2267. struct drm_connector_list_iter conn_iter;
  2268. struct intel_dp *intel_dp = NULL;
  2269. int ret;
  2270. u8 crc[6];
  2271. drm_modeset_lock_all(dev);
  2272. drm_connector_list_iter_begin(dev, &conn_iter);
  2273. for_each_intel_connector_iter(connector, &conn_iter) {
  2274. struct drm_crtc *crtc;
  2275. if (!connector->base.state->best_encoder)
  2276. continue;
  2277. crtc = connector->base.state->crtc;
  2278. if (!crtc->state->active)
  2279. continue;
  2280. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2281. continue;
  2282. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2283. ret = intel_dp_sink_crc(intel_dp, crc);
  2284. if (ret)
  2285. goto out;
  2286. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2287. crc[0], crc[1], crc[2],
  2288. crc[3], crc[4], crc[5]);
  2289. goto out;
  2290. }
  2291. ret = -ENODEV;
  2292. out:
  2293. drm_connector_list_iter_end(&conn_iter);
  2294. drm_modeset_unlock_all(dev);
  2295. return ret;
  2296. }
  2297. static int i915_energy_uJ(struct seq_file *m, void *data)
  2298. {
  2299. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2300. u64 power;
  2301. u32 units;
  2302. if (INTEL_GEN(dev_priv) < 6)
  2303. return -ENODEV;
  2304. intel_runtime_pm_get(dev_priv);
  2305. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2306. power = (power & 0x1f00) >> 8;
  2307. units = 1000000 / (1 << power); /* convert to uJ */
  2308. power = I915_READ(MCH_SECP_NRG_STTS);
  2309. power *= units;
  2310. intel_runtime_pm_put(dev_priv);
  2311. seq_printf(m, "%llu", (long long unsigned)power);
  2312. return 0;
  2313. }
  2314. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2315. {
  2316. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2317. struct pci_dev *pdev = dev_priv->drm.pdev;
  2318. if (!HAS_RUNTIME_PM(dev_priv))
  2319. seq_puts(m, "Runtime power management not supported\n");
  2320. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2321. seq_printf(m, "IRQs disabled: %s\n",
  2322. yesno(!intel_irqs_enabled(dev_priv)));
  2323. #ifdef CONFIG_PM
  2324. seq_printf(m, "Usage count: %d\n",
  2325. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2326. #else
  2327. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2328. #endif
  2329. seq_printf(m, "PCI device power state: %s [%d]\n",
  2330. pci_power_name(pdev->current_state),
  2331. pdev->current_state);
  2332. return 0;
  2333. }
  2334. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2335. {
  2336. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2337. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2338. int i;
  2339. mutex_lock(&power_domains->lock);
  2340. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2341. for (i = 0; i < power_domains->power_well_count; i++) {
  2342. struct i915_power_well *power_well;
  2343. enum intel_display_power_domain power_domain;
  2344. power_well = &power_domains->power_wells[i];
  2345. seq_printf(m, "%-25s %d\n", power_well->name,
  2346. power_well->count);
  2347. for_each_power_domain(power_domain, power_well->domains)
  2348. seq_printf(m, " %-23s %d\n",
  2349. intel_display_power_domain_str(power_domain),
  2350. power_domains->domain_use_count[power_domain]);
  2351. }
  2352. mutex_unlock(&power_domains->lock);
  2353. return 0;
  2354. }
  2355. static int i915_dmc_info(struct seq_file *m, void *unused)
  2356. {
  2357. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2358. struct intel_csr *csr;
  2359. if (!HAS_CSR(dev_priv)) {
  2360. seq_puts(m, "not supported\n");
  2361. return 0;
  2362. }
  2363. csr = &dev_priv->csr;
  2364. intel_runtime_pm_get(dev_priv);
  2365. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2366. seq_printf(m, "path: %s\n", csr->fw_path);
  2367. if (!csr->dmc_payload)
  2368. goto out;
  2369. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2370. CSR_VERSION_MINOR(csr->version));
  2371. if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
  2372. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2373. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2374. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2375. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2376. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2377. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2378. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2379. }
  2380. out:
  2381. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2382. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2383. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2384. intel_runtime_pm_put(dev_priv);
  2385. return 0;
  2386. }
  2387. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2388. struct drm_display_mode *mode)
  2389. {
  2390. int i;
  2391. for (i = 0; i < tabs; i++)
  2392. seq_putc(m, '\t');
  2393. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2394. mode->base.id, mode->name,
  2395. mode->vrefresh, mode->clock,
  2396. mode->hdisplay, mode->hsync_start,
  2397. mode->hsync_end, mode->htotal,
  2398. mode->vdisplay, mode->vsync_start,
  2399. mode->vsync_end, mode->vtotal,
  2400. mode->type, mode->flags);
  2401. }
  2402. static void intel_encoder_info(struct seq_file *m,
  2403. struct intel_crtc *intel_crtc,
  2404. struct intel_encoder *intel_encoder)
  2405. {
  2406. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2407. struct drm_device *dev = &dev_priv->drm;
  2408. struct drm_crtc *crtc = &intel_crtc->base;
  2409. struct intel_connector *intel_connector;
  2410. struct drm_encoder *encoder;
  2411. encoder = &intel_encoder->base;
  2412. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2413. encoder->base.id, encoder->name);
  2414. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2415. struct drm_connector *connector = &intel_connector->base;
  2416. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2417. connector->base.id,
  2418. connector->name,
  2419. drm_get_connector_status_name(connector->status));
  2420. if (connector->status == connector_status_connected) {
  2421. struct drm_display_mode *mode = &crtc->mode;
  2422. seq_printf(m, ", mode:\n");
  2423. intel_seq_print_mode(m, 2, mode);
  2424. } else {
  2425. seq_putc(m, '\n');
  2426. }
  2427. }
  2428. }
  2429. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2430. {
  2431. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2432. struct drm_device *dev = &dev_priv->drm;
  2433. struct drm_crtc *crtc = &intel_crtc->base;
  2434. struct intel_encoder *intel_encoder;
  2435. struct drm_plane_state *plane_state = crtc->primary->state;
  2436. struct drm_framebuffer *fb = plane_state->fb;
  2437. if (fb)
  2438. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2439. fb->base.id, plane_state->src_x >> 16,
  2440. plane_state->src_y >> 16, fb->width, fb->height);
  2441. else
  2442. seq_puts(m, "\tprimary plane disabled\n");
  2443. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2444. intel_encoder_info(m, intel_crtc, intel_encoder);
  2445. }
  2446. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2447. {
  2448. struct drm_display_mode *mode = panel->fixed_mode;
  2449. seq_printf(m, "\tfixed mode:\n");
  2450. intel_seq_print_mode(m, 2, mode);
  2451. }
  2452. static void intel_dp_info(struct seq_file *m,
  2453. struct intel_connector *intel_connector)
  2454. {
  2455. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2456. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2457. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2458. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2459. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2460. intel_panel_info(m, &intel_connector->panel);
  2461. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2462. &intel_dp->aux);
  2463. }
  2464. static void intel_dp_mst_info(struct seq_file *m,
  2465. struct intel_connector *intel_connector)
  2466. {
  2467. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2468. struct intel_dp_mst_encoder *intel_mst =
  2469. enc_to_mst(&intel_encoder->base);
  2470. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2471. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2472. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2473. intel_connector->port);
  2474. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2475. }
  2476. static void intel_hdmi_info(struct seq_file *m,
  2477. struct intel_connector *intel_connector)
  2478. {
  2479. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2480. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2481. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2482. }
  2483. static void intel_lvds_info(struct seq_file *m,
  2484. struct intel_connector *intel_connector)
  2485. {
  2486. intel_panel_info(m, &intel_connector->panel);
  2487. }
  2488. static void intel_connector_info(struct seq_file *m,
  2489. struct drm_connector *connector)
  2490. {
  2491. struct intel_connector *intel_connector = to_intel_connector(connector);
  2492. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2493. struct drm_display_mode *mode;
  2494. seq_printf(m, "connector %d: type %s, status: %s\n",
  2495. connector->base.id, connector->name,
  2496. drm_get_connector_status_name(connector->status));
  2497. if (connector->status == connector_status_connected) {
  2498. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2499. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2500. connector->display_info.width_mm,
  2501. connector->display_info.height_mm);
  2502. seq_printf(m, "\tsubpixel order: %s\n",
  2503. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2504. seq_printf(m, "\tCEA rev: %d\n",
  2505. connector->display_info.cea_rev);
  2506. }
  2507. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2508. return;
  2509. switch (connector->connector_type) {
  2510. case DRM_MODE_CONNECTOR_DisplayPort:
  2511. case DRM_MODE_CONNECTOR_eDP:
  2512. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2513. intel_dp_mst_info(m, intel_connector);
  2514. else
  2515. intel_dp_info(m, intel_connector);
  2516. break;
  2517. case DRM_MODE_CONNECTOR_LVDS:
  2518. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2519. intel_lvds_info(m, intel_connector);
  2520. break;
  2521. case DRM_MODE_CONNECTOR_HDMIA:
  2522. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2523. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2524. intel_hdmi_info(m, intel_connector);
  2525. break;
  2526. default:
  2527. break;
  2528. }
  2529. seq_printf(m, "\tmodes:\n");
  2530. list_for_each_entry(mode, &connector->modes, head)
  2531. intel_seq_print_mode(m, 2, mode);
  2532. }
  2533. static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
  2534. {
  2535. u32 state;
  2536. if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
  2537. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2538. else
  2539. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2540. return state;
  2541. }
  2542. static bool cursor_position(struct drm_i915_private *dev_priv,
  2543. int pipe, int *x, int *y)
  2544. {
  2545. u32 pos;
  2546. pos = I915_READ(CURPOS(pipe));
  2547. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2548. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2549. *x = -*x;
  2550. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2551. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2552. *y = -*y;
  2553. return cursor_active(dev_priv, pipe);
  2554. }
  2555. static const char *plane_type(enum drm_plane_type type)
  2556. {
  2557. switch (type) {
  2558. case DRM_PLANE_TYPE_OVERLAY:
  2559. return "OVL";
  2560. case DRM_PLANE_TYPE_PRIMARY:
  2561. return "PRI";
  2562. case DRM_PLANE_TYPE_CURSOR:
  2563. return "CUR";
  2564. /*
  2565. * Deliberately omitting default: to generate compiler warnings
  2566. * when a new drm_plane_type gets added.
  2567. */
  2568. }
  2569. return "unknown";
  2570. }
  2571. static const char *plane_rotation(unsigned int rotation)
  2572. {
  2573. static char buf[48];
  2574. /*
  2575. * According to doc only one DRM_ROTATE_ is allowed but this
  2576. * will print them all to visualize if the values are misused
  2577. */
  2578. snprintf(buf, sizeof(buf),
  2579. "%s%s%s%s%s%s(0x%08x)",
  2580. (rotation & DRM_ROTATE_0) ? "0 " : "",
  2581. (rotation & DRM_ROTATE_90) ? "90 " : "",
  2582. (rotation & DRM_ROTATE_180) ? "180 " : "",
  2583. (rotation & DRM_ROTATE_270) ? "270 " : "",
  2584. (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
  2585. (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
  2586. rotation);
  2587. return buf;
  2588. }
  2589. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2590. {
  2591. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2592. struct drm_device *dev = &dev_priv->drm;
  2593. struct intel_plane *intel_plane;
  2594. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2595. struct drm_plane_state *state;
  2596. struct drm_plane *plane = &intel_plane->base;
  2597. struct drm_format_name_buf format_name;
  2598. if (!plane->state) {
  2599. seq_puts(m, "plane->state is NULL!\n");
  2600. continue;
  2601. }
  2602. state = plane->state;
  2603. if (state->fb) {
  2604. drm_get_format_name(state->fb->format->format,
  2605. &format_name);
  2606. } else {
  2607. sprintf(format_name.str, "N/A");
  2608. }
  2609. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2610. plane->base.id,
  2611. plane_type(intel_plane->base.type),
  2612. state->crtc_x, state->crtc_y,
  2613. state->crtc_w, state->crtc_h,
  2614. (state->src_x >> 16),
  2615. ((state->src_x & 0xffff) * 15625) >> 10,
  2616. (state->src_y >> 16),
  2617. ((state->src_y & 0xffff) * 15625) >> 10,
  2618. (state->src_w >> 16),
  2619. ((state->src_w & 0xffff) * 15625) >> 10,
  2620. (state->src_h >> 16),
  2621. ((state->src_h & 0xffff) * 15625) >> 10,
  2622. format_name.str,
  2623. plane_rotation(state->rotation));
  2624. }
  2625. }
  2626. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2627. {
  2628. struct intel_crtc_state *pipe_config;
  2629. int num_scalers = intel_crtc->num_scalers;
  2630. int i;
  2631. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2632. /* Not all platformas have a scaler */
  2633. if (num_scalers) {
  2634. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2635. num_scalers,
  2636. pipe_config->scaler_state.scaler_users,
  2637. pipe_config->scaler_state.scaler_id);
  2638. for (i = 0; i < num_scalers; i++) {
  2639. struct intel_scaler *sc =
  2640. &pipe_config->scaler_state.scalers[i];
  2641. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2642. i, yesno(sc->in_use), sc->mode);
  2643. }
  2644. seq_puts(m, "\n");
  2645. } else {
  2646. seq_puts(m, "\tNo scalers available on this platform\n");
  2647. }
  2648. }
  2649. static int i915_display_info(struct seq_file *m, void *unused)
  2650. {
  2651. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2652. struct drm_device *dev = &dev_priv->drm;
  2653. struct intel_crtc *crtc;
  2654. struct drm_connector *connector;
  2655. struct drm_connector_list_iter conn_iter;
  2656. intel_runtime_pm_get(dev_priv);
  2657. seq_printf(m, "CRTC info\n");
  2658. seq_printf(m, "---------\n");
  2659. for_each_intel_crtc(dev, crtc) {
  2660. bool active;
  2661. struct intel_crtc_state *pipe_config;
  2662. int x, y;
  2663. drm_modeset_lock(&crtc->base.mutex, NULL);
  2664. pipe_config = to_intel_crtc_state(crtc->base.state);
  2665. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2666. crtc->base.base.id, pipe_name(crtc->pipe),
  2667. yesno(pipe_config->base.active),
  2668. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2669. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2670. if (pipe_config->base.active) {
  2671. intel_crtc_info(m, crtc);
  2672. active = cursor_position(dev_priv, crtc->pipe, &x, &y);
  2673. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2674. yesno(crtc->cursor_base),
  2675. x, y, crtc->base.cursor->state->crtc_w,
  2676. crtc->base.cursor->state->crtc_h,
  2677. crtc->cursor_addr, yesno(active));
  2678. intel_scaler_info(m, crtc);
  2679. intel_plane_info(m, crtc);
  2680. }
  2681. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2682. yesno(!crtc->cpu_fifo_underrun_disabled),
  2683. yesno(!crtc->pch_fifo_underrun_disabled));
  2684. drm_modeset_unlock(&crtc->base.mutex);
  2685. }
  2686. seq_printf(m, "\n");
  2687. seq_printf(m, "Connector info\n");
  2688. seq_printf(m, "--------------\n");
  2689. mutex_lock(&dev->mode_config.mutex);
  2690. drm_connector_list_iter_begin(dev, &conn_iter);
  2691. drm_for_each_connector_iter(connector, &conn_iter)
  2692. intel_connector_info(m, connector);
  2693. drm_connector_list_iter_end(&conn_iter);
  2694. mutex_unlock(&dev->mode_config.mutex);
  2695. intel_runtime_pm_put(dev_priv);
  2696. return 0;
  2697. }
  2698. static int i915_engine_info(struct seq_file *m, void *unused)
  2699. {
  2700. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2701. struct intel_engine_cs *engine;
  2702. enum intel_engine_id id;
  2703. intel_runtime_pm_get(dev_priv);
  2704. seq_printf(m, "GT awake? %s\n",
  2705. yesno(dev_priv->gt.awake));
  2706. seq_printf(m, "Global active requests: %d\n",
  2707. dev_priv->gt.active_requests);
  2708. for_each_engine(engine, dev_priv, id) {
  2709. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2710. struct drm_i915_gem_request *rq;
  2711. struct rb_node *rb;
  2712. u64 addr;
  2713. seq_printf(m, "%s\n", engine->name);
  2714. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
  2715. intel_engine_get_seqno(engine),
  2716. intel_engine_last_submit(engine),
  2717. engine->hangcheck.seqno,
  2718. jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
  2719. engine->timeline->inflight_seqnos);
  2720. rcu_read_lock();
  2721. seq_printf(m, "\tRequests:\n");
  2722. rq = list_first_entry(&engine->timeline->requests,
  2723. struct drm_i915_gem_request, link);
  2724. if (&rq->link != &engine->timeline->requests)
  2725. print_request(m, rq, "\t\tfirst ");
  2726. rq = list_last_entry(&engine->timeline->requests,
  2727. struct drm_i915_gem_request, link);
  2728. if (&rq->link != &engine->timeline->requests)
  2729. print_request(m, rq, "\t\tlast ");
  2730. rq = i915_gem_find_active_request(engine);
  2731. if (rq) {
  2732. print_request(m, rq, "\t\tactive ");
  2733. seq_printf(m,
  2734. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2735. rq->head, rq->postfix, rq->tail,
  2736. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2737. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2738. }
  2739. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2740. I915_READ(RING_START(engine->mmio_base)),
  2741. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2742. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2743. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2744. rq ? rq->ring->head : 0);
  2745. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2746. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2747. rq ? rq->ring->tail : 0);
  2748. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2749. I915_READ(RING_CTL(engine->mmio_base)),
  2750. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2751. rcu_read_unlock();
  2752. addr = intel_engine_get_active_head(engine);
  2753. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2754. upper_32_bits(addr), lower_32_bits(addr));
  2755. addr = intel_engine_get_last_batch_head(engine);
  2756. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2757. upper_32_bits(addr), lower_32_bits(addr));
  2758. if (i915.enable_execlists) {
  2759. u32 ptr, read, write;
  2760. struct rb_node *rb;
  2761. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2762. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2763. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2764. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2765. read = GEN8_CSB_READ_PTR(ptr);
  2766. write = GEN8_CSB_WRITE_PTR(ptr);
  2767. seq_printf(m, "\tExeclist CSB read %d, write %d\n",
  2768. read, write);
  2769. if (read >= GEN8_CSB_ENTRIES)
  2770. read = 0;
  2771. if (write >= GEN8_CSB_ENTRIES)
  2772. write = 0;
  2773. if (read > write)
  2774. write += GEN8_CSB_ENTRIES;
  2775. while (read < write) {
  2776. unsigned int idx = ++read % GEN8_CSB_ENTRIES;
  2777. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2778. idx,
  2779. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2780. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2781. }
  2782. rcu_read_lock();
  2783. rq = READ_ONCE(engine->execlist_port[0].request);
  2784. if (rq) {
  2785. seq_printf(m, "\t\tELSP[0] count=%d, ",
  2786. engine->execlist_port[0].count);
  2787. print_request(m, rq, "rq: ");
  2788. } else {
  2789. seq_printf(m, "\t\tELSP[0] idle\n");
  2790. }
  2791. rq = READ_ONCE(engine->execlist_port[1].request);
  2792. if (rq) {
  2793. seq_printf(m, "\t\tELSP[1] count=%d, ",
  2794. engine->execlist_port[1].count);
  2795. print_request(m, rq, "rq: ");
  2796. } else {
  2797. seq_printf(m, "\t\tELSP[1] idle\n");
  2798. }
  2799. rcu_read_unlock();
  2800. spin_lock_irq(&engine->timeline->lock);
  2801. for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
  2802. rq = rb_entry(rb, typeof(*rq), priotree.node);
  2803. print_request(m, rq, "\t\tQ ");
  2804. }
  2805. spin_unlock_irq(&engine->timeline->lock);
  2806. } else if (INTEL_GEN(dev_priv) > 6) {
  2807. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2808. I915_READ(RING_PP_DIR_BASE(engine)));
  2809. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2810. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2811. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2812. I915_READ(RING_PP_DIR_DCLV(engine)));
  2813. }
  2814. spin_lock_irq(&b->rb_lock);
  2815. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2816. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  2817. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2818. w->tsk->comm, w->tsk->pid, w->seqno);
  2819. }
  2820. spin_unlock_irq(&b->rb_lock);
  2821. seq_puts(m, "\n");
  2822. }
  2823. intel_runtime_pm_put(dev_priv);
  2824. return 0;
  2825. }
  2826. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2827. {
  2828. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2829. struct drm_device *dev = &dev_priv->drm;
  2830. struct intel_engine_cs *engine;
  2831. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2832. enum intel_engine_id id;
  2833. int j, ret;
  2834. if (!i915.semaphores) {
  2835. seq_puts(m, "Semaphores are disabled\n");
  2836. return 0;
  2837. }
  2838. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2839. if (ret)
  2840. return ret;
  2841. intel_runtime_pm_get(dev_priv);
  2842. if (IS_BROADWELL(dev_priv)) {
  2843. struct page *page;
  2844. uint64_t *seqno;
  2845. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2846. seqno = (uint64_t *)kmap_atomic(page);
  2847. for_each_engine(engine, dev_priv, id) {
  2848. uint64_t offset;
  2849. seq_printf(m, "%s\n", engine->name);
  2850. seq_puts(m, " Last signal:");
  2851. for (j = 0; j < num_rings; j++) {
  2852. offset = id * I915_NUM_ENGINES + j;
  2853. seq_printf(m, "0x%08llx (0x%02llx) ",
  2854. seqno[offset], offset * 8);
  2855. }
  2856. seq_putc(m, '\n');
  2857. seq_puts(m, " Last wait: ");
  2858. for (j = 0; j < num_rings; j++) {
  2859. offset = id + (j * I915_NUM_ENGINES);
  2860. seq_printf(m, "0x%08llx (0x%02llx) ",
  2861. seqno[offset], offset * 8);
  2862. }
  2863. seq_putc(m, '\n');
  2864. }
  2865. kunmap_atomic(seqno);
  2866. } else {
  2867. seq_puts(m, " Last signal:");
  2868. for_each_engine(engine, dev_priv, id)
  2869. for (j = 0; j < num_rings; j++)
  2870. seq_printf(m, "0x%08x\n",
  2871. I915_READ(engine->semaphore.mbox.signal[j]));
  2872. seq_putc(m, '\n');
  2873. }
  2874. intel_runtime_pm_put(dev_priv);
  2875. mutex_unlock(&dev->struct_mutex);
  2876. return 0;
  2877. }
  2878. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2879. {
  2880. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2881. struct drm_device *dev = &dev_priv->drm;
  2882. int i;
  2883. drm_modeset_lock_all(dev);
  2884. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2885. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2886. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2887. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2888. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2889. seq_printf(m, " tracked hardware state:\n");
  2890. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2891. seq_printf(m, " dpll_md: 0x%08x\n",
  2892. pll->state.hw_state.dpll_md);
  2893. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2894. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2895. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2896. }
  2897. drm_modeset_unlock_all(dev);
  2898. return 0;
  2899. }
  2900. static int i915_wa_registers(struct seq_file *m, void *unused)
  2901. {
  2902. int i;
  2903. int ret;
  2904. struct intel_engine_cs *engine;
  2905. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2906. struct drm_device *dev = &dev_priv->drm;
  2907. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2908. enum intel_engine_id id;
  2909. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2910. if (ret)
  2911. return ret;
  2912. intel_runtime_pm_get(dev_priv);
  2913. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2914. for_each_engine(engine, dev_priv, id)
  2915. seq_printf(m, "HW whitelist count for %s: %d\n",
  2916. engine->name, workarounds->hw_whitelist_count[id]);
  2917. for (i = 0; i < workarounds->count; ++i) {
  2918. i915_reg_t addr;
  2919. u32 mask, value, read;
  2920. bool ok;
  2921. addr = workarounds->reg[i].addr;
  2922. mask = workarounds->reg[i].mask;
  2923. value = workarounds->reg[i].value;
  2924. read = I915_READ(addr);
  2925. ok = (value & mask) == (read & mask);
  2926. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2927. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2928. }
  2929. intel_runtime_pm_put(dev_priv);
  2930. mutex_unlock(&dev->struct_mutex);
  2931. return 0;
  2932. }
  2933. static int i915_ddb_info(struct seq_file *m, void *unused)
  2934. {
  2935. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2936. struct drm_device *dev = &dev_priv->drm;
  2937. struct skl_ddb_allocation *ddb;
  2938. struct skl_ddb_entry *entry;
  2939. enum pipe pipe;
  2940. int plane;
  2941. if (INTEL_GEN(dev_priv) < 9)
  2942. return 0;
  2943. drm_modeset_lock_all(dev);
  2944. ddb = &dev_priv->wm.skl_hw.ddb;
  2945. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2946. for_each_pipe(dev_priv, pipe) {
  2947. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2948. for_each_universal_plane(dev_priv, pipe, plane) {
  2949. entry = &ddb->plane[pipe][plane];
  2950. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2951. entry->start, entry->end,
  2952. skl_ddb_entry_size(entry));
  2953. }
  2954. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2955. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2956. entry->end, skl_ddb_entry_size(entry));
  2957. }
  2958. drm_modeset_unlock_all(dev);
  2959. return 0;
  2960. }
  2961. static void drrs_status_per_crtc(struct seq_file *m,
  2962. struct drm_device *dev,
  2963. struct intel_crtc *intel_crtc)
  2964. {
  2965. struct drm_i915_private *dev_priv = to_i915(dev);
  2966. struct i915_drrs *drrs = &dev_priv->drrs;
  2967. int vrefresh = 0;
  2968. struct drm_connector *connector;
  2969. struct drm_connector_list_iter conn_iter;
  2970. drm_connector_list_iter_begin(dev, &conn_iter);
  2971. drm_for_each_connector_iter(connector, &conn_iter) {
  2972. if (connector->state->crtc != &intel_crtc->base)
  2973. continue;
  2974. seq_printf(m, "%s:\n", connector->name);
  2975. }
  2976. drm_connector_list_iter_end(&conn_iter);
  2977. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2978. seq_puts(m, "\tVBT: DRRS_type: Static");
  2979. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2980. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2981. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2982. seq_puts(m, "\tVBT: DRRS_type: None");
  2983. else
  2984. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2985. seq_puts(m, "\n\n");
  2986. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2987. struct intel_panel *panel;
  2988. mutex_lock(&drrs->mutex);
  2989. /* DRRS Supported */
  2990. seq_puts(m, "\tDRRS Supported: Yes\n");
  2991. /* disable_drrs() will make drrs->dp NULL */
  2992. if (!drrs->dp) {
  2993. seq_puts(m, "Idleness DRRS: Disabled");
  2994. mutex_unlock(&drrs->mutex);
  2995. return;
  2996. }
  2997. panel = &drrs->dp->attached_connector->panel;
  2998. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2999. drrs->busy_frontbuffer_bits);
  3000. seq_puts(m, "\n\t\t");
  3001. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  3002. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  3003. vrefresh = panel->fixed_mode->vrefresh;
  3004. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  3005. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  3006. vrefresh = panel->downclock_mode->vrefresh;
  3007. } else {
  3008. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  3009. drrs->refresh_rate_type);
  3010. mutex_unlock(&drrs->mutex);
  3011. return;
  3012. }
  3013. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  3014. seq_puts(m, "\n\t\t");
  3015. mutex_unlock(&drrs->mutex);
  3016. } else {
  3017. /* DRRS not supported. Print the VBT parameter*/
  3018. seq_puts(m, "\tDRRS Supported : No");
  3019. }
  3020. seq_puts(m, "\n");
  3021. }
  3022. static int i915_drrs_status(struct seq_file *m, void *unused)
  3023. {
  3024. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3025. struct drm_device *dev = &dev_priv->drm;
  3026. struct intel_crtc *intel_crtc;
  3027. int active_crtc_cnt = 0;
  3028. drm_modeset_lock_all(dev);
  3029. for_each_intel_crtc(dev, intel_crtc) {
  3030. if (intel_crtc->base.state->active) {
  3031. active_crtc_cnt++;
  3032. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  3033. drrs_status_per_crtc(m, dev, intel_crtc);
  3034. }
  3035. }
  3036. drm_modeset_unlock_all(dev);
  3037. if (!active_crtc_cnt)
  3038. seq_puts(m, "No active crtc found\n");
  3039. return 0;
  3040. }
  3041. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  3042. {
  3043. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3044. struct drm_device *dev = &dev_priv->drm;
  3045. struct intel_encoder *intel_encoder;
  3046. struct intel_digital_port *intel_dig_port;
  3047. struct drm_connector *connector;
  3048. struct drm_connector_list_iter conn_iter;
  3049. drm_connector_list_iter_begin(dev, &conn_iter);
  3050. drm_for_each_connector_iter(connector, &conn_iter) {
  3051. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3052. continue;
  3053. intel_encoder = intel_attached_encoder(connector);
  3054. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3055. continue;
  3056. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3057. if (!intel_dig_port->dp.can_mst)
  3058. continue;
  3059. seq_printf(m, "MST Source Port %c\n",
  3060. port_name(intel_dig_port->port));
  3061. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3062. }
  3063. drm_connector_list_iter_end(&conn_iter);
  3064. return 0;
  3065. }
  3066. static ssize_t i915_displayport_test_active_write(struct file *file,
  3067. const char __user *ubuf,
  3068. size_t len, loff_t *offp)
  3069. {
  3070. char *input_buffer;
  3071. int status = 0;
  3072. struct drm_device *dev;
  3073. struct drm_connector *connector;
  3074. struct drm_connector_list_iter conn_iter;
  3075. struct intel_dp *intel_dp;
  3076. int val = 0;
  3077. dev = ((struct seq_file *)file->private_data)->private;
  3078. if (len == 0)
  3079. return 0;
  3080. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3081. if (!input_buffer)
  3082. return -ENOMEM;
  3083. if (copy_from_user(input_buffer, ubuf, len)) {
  3084. status = -EFAULT;
  3085. goto out;
  3086. }
  3087. input_buffer[len] = '\0';
  3088. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3089. drm_connector_list_iter_begin(dev, &conn_iter);
  3090. drm_for_each_connector_iter(connector, &conn_iter) {
  3091. if (connector->connector_type !=
  3092. DRM_MODE_CONNECTOR_DisplayPort)
  3093. continue;
  3094. if (connector->status == connector_status_connected &&
  3095. connector->encoder != NULL) {
  3096. intel_dp = enc_to_intel_dp(connector->encoder);
  3097. status = kstrtoint(input_buffer, 10, &val);
  3098. if (status < 0)
  3099. break;
  3100. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3101. /* To prevent erroneous activation of the compliance
  3102. * testing code, only accept an actual value of 1 here
  3103. */
  3104. if (val == 1)
  3105. intel_dp->compliance.test_active = 1;
  3106. else
  3107. intel_dp->compliance.test_active = 0;
  3108. }
  3109. }
  3110. drm_connector_list_iter_end(&conn_iter);
  3111. out:
  3112. kfree(input_buffer);
  3113. if (status < 0)
  3114. return status;
  3115. *offp += len;
  3116. return len;
  3117. }
  3118. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3119. {
  3120. struct drm_device *dev = m->private;
  3121. struct drm_connector *connector;
  3122. struct drm_connector_list_iter conn_iter;
  3123. struct intel_dp *intel_dp;
  3124. drm_connector_list_iter_begin(dev, &conn_iter);
  3125. drm_for_each_connector_iter(connector, &conn_iter) {
  3126. if (connector->connector_type !=
  3127. DRM_MODE_CONNECTOR_DisplayPort)
  3128. continue;
  3129. if (connector->status == connector_status_connected &&
  3130. connector->encoder != NULL) {
  3131. intel_dp = enc_to_intel_dp(connector->encoder);
  3132. if (intel_dp->compliance.test_active)
  3133. seq_puts(m, "1");
  3134. else
  3135. seq_puts(m, "0");
  3136. } else
  3137. seq_puts(m, "0");
  3138. }
  3139. drm_connector_list_iter_end(&conn_iter);
  3140. return 0;
  3141. }
  3142. static int i915_displayport_test_active_open(struct inode *inode,
  3143. struct file *file)
  3144. {
  3145. struct drm_i915_private *dev_priv = inode->i_private;
  3146. return single_open(file, i915_displayport_test_active_show,
  3147. &dev_priv->drm);
  3148. }
  3149. static const struct file_operations i915_displayport_test_active_fops = {
  3150. .owner = THIS_MODULE,
  3151. .open = i915_displayport_test_active_open,
  3152. .read = seq_read,
  3153. .llseek = seq_lseek,
  3154. .release = single_release,
  3155. .write = i915_displayport_test_active_write
  3156. };
  3157. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3158. {
  3159. struct drm_device *dev = m->private;
  3160. struct drm_connector *connector;
  3161. struct drm_connector_list_iter conn_iter;
  3162. struct intel_dp *intel_dp;
  3163. drm_connector_list_iter_begin(dev, &conn_iter);
  3164. drm_for_each_connector_iter(connector, &conn_iter) {
  3165. if (connector->connector_type !=
  3166. DRM_MODE_CONNECTOR_DisplayPort)
  3167. continue;
  3168. if (connector->status == connector_status_connected &&
  3169. connector->encoder != NULL) {
  3170. intel_dp = enc_to_intel_dp(connector->encoder);
  3171. if (intel_dp->compliance.test_type ==
  3172. DP_TEST_LINK_EDID_READ)
  3173. seq_printf(m, "%lx",
  3174. intel_dp->compliance.test_data.edid);
  3175. else if (intel_dp->compliance.test_type ==
  3176. DP_TEST_LINK_VIDEO_PATTERN) {
  3177. seq_printf(m, "hdisplay: %d\n",
  3178. intel_dp->compliance.test_data.hdisplay);
  3179. seq_printf(m, "vdisplay: %d\n",
  3180. intel_dp->compliance.test_data.vdisplay);
  3181. seq_printf(m, "bpc: %u\n",
  3182. intel_dp->compliance.test_data.bpc);
  3183. }
  3184. } else
  3185. seq_puts(m, "0");
  3186. }
  3187. drm_connector_list_iter_end(&conn_iter);
  3188. return 0;
  3189. }
  3190. static int i915_displayport_test_data_open(struct inode *inode,
  3191. struct file *file)
  3192. {
  3193. struct drm_i915_private *dev_priv = inode->i_private;
  3194. return single_open(file, i915_displayport_test_data_show,
  3195. &dev_priv->drm);
  3196. }
  3197. static const struct file_operations i915_displayport_test_data_fops = {
  3198. .owner = THIS_MODULE,
  3199. .open = i915_displayport_test_data_open,
  3200. .read = seq_read,
  3201. .llseek = seq_lseek,
  3202. .release = single_release
  3203. };
  3204. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3205. {
  3206. struct drm_device *dev = m->private;
  3207. struct drm_connector *connector;
  3208. struct drm_connector_list_iter conn_iter;
  3209. struct intel_dp *intel_dp;
  3210. drm_connector_list_iter_begin(dev, &conn_iter);
  3211. drm_for_each_connector_iter(connector, &conn_iter) {
  3212. if (connector->connector_type !=
  3213. DRM_MODE_CONNECTOR_DisplayPort)
  3214. continue;
  3215. if (connector->status == connector_status_connected &&
  3216. connector->encoder != NULL) {
  3217. intel_dp = enc_to_intel_dp(connector->encoder);
  3218. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3219. } else
  3220. seq_puts(m, "0");
  3221. }
  3222. drm_connector_list_iter_end(&conn_iter);
  3223. return 0;
  3224. }
  3225. static int i915_displayport_test_type_open(struct inode *inode,
  3226. struct file *file)
  3227. {
  3228. struct drm_i915_private *dev_priv = inode->i_private;
  3229. return single_open(file, i915_displayport_test_type_show,
  3230. &dev_priv->drm);
  3231. }
  3232. static const struct file_operations i915_displayport_test_type_fops = {
  3233. .owner = THIS_MODULE,
  3234. .open = i915_displayport_test_type_open,
  3235. .read = seq_read,
  3236. .llseek = seq_lseek,
  3237. .release = single_release
  3238. };
  3239. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3240. {
  3241. struct drm_i915_private *dev_priv = m->private;
  3242. struct drm_device *dev = &dev_priv->drm;
  3243. int level;
  3244. int num_levels;
  3245. if (IS_CHERRYVIEW(dev_priv))
  3246. num_levels = 3;
  3247. else if (IS_VALLEYVIEW(dev_priv))
  3248. num_levels = 1;
  3249. else
  3250. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3251. drm_modeset_lock_all(dev);
  3252. for (level = 0; level < num_levels; level++) {
  3253. unsigned int latency = wm[level];
  3254. /*
  3255. * - WM1+ latency values in 0.5us units
  3256. * - latencies are in us on gen9/vlv/chv
  3257. */
  3258. if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
  3259. IS_CHERRYVIEW(dev_priv))
  3260. latency *= 10;
  3261. else if (level > 0)
  3262. latency *= 5;
  3263. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3264. level, wm[level], latency / 10, latency % 10);
  3265. }
  3266. drm_modeset_unlock_all(dev);
  3267. }
  3268. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3269. {
  3270. struct drm_i915_private *dev_priv = m->private;
  3271. const uint16_t *latencies;
  3272. if (INTEL_GEN(dev_priv) >= 9)
  3273. latencies = dev_priv->wm.skl_latency;
  3274. else
  3275. latencies = dev_priv->wm.pri_latency;
  3276. wm_latency_show(m, latencies);
  3277. return 0;
  3278. }
  3279. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3280. {
  3281. struct drm_i915_private *dev_priv = m->private;
  3282. const uint16_t *latencies;
  3283. if (INTEL_GEN(dev_priv) >= 9)
  3284. latencies = dev_priv->wm.skl_latency;
  3285. else
  3286. latencies = dev_priv->wm.spr_latency;
  3287. wm_latency_show(m, latencies);
  3288. return 0;
  3289. }
  3290. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3291. {
  3292. struct drm_i915_private *dev_priv = m->private;
  3293. const uint16_t *latencies;
  3294. if (INTEL_GEN(dev_priv) >= 9)
  3295. latencies = dev_priv->wm.skl_latency;
  3296. else
  3297. latencies = dev_priv->wm.cur_latency;
  3298. wm_latency_show(m, latencies);
  3299. return 0;
  3300. }
  3301. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3302. {
  3303. struct drm_i915_private *dev_priv = inode->i_private;
  3304. if (INTEL_GEN(dev_priv) < 5)
  3305. return -ENODEV;
  3306. return single_open(file, pri_wm_latency_show, dev_priv);
  3307. }
  3308. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3309. {
  3310. struct drm_i915_private *dev_priv = inode->i_private;
  3311. if (HAS_GMCH_DISPLAY(dev_priv))
  3312. return -ENODEV;
  3313. return single_open(file, spr_wm_latency_show, dev_priv);
  3314. }
  3315. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3316. {
  3317. struct drm_i915_private *dev_priv = inode->i_private;
  3318. if (HAS_GMCH_DISPLAY(dev_priv))
  3319. return -ENODEV;
  3320. return single_open(file, cur_wm_latency_show, dev_priv);
  3321. }
  3322. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3323. size_t len, loff_t *offp, uint16_t wm[8])
  3324. {
  3325. struct seq_file *m = file->private_data;
  3326. struct drm_i915_private *dev_priv = m->private;
  3327. struct drm_device *dev = &dev_priv->drm;
  3328. uint16_t new[8] = { 0 };
  3329. int num_levels;
  3330. int level;
  3331. int ret;
  3332. char tmp[32];
  3333. if (IS_CHERRYVIEW(dev_priv))
  3334. num_levels = 3;
  3335. else if (IS_VALLEYVIEW(dev_priv))
  3336. num_levels = 1;
  3337. else
  3338. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3339. if (len >= sizeof(tmp))
  3340. return -EINVAL;
  3341. if (copy_from_user(tmp, ubuf, len))
  3342. return -EFAULT;
  3343. tmp[len] = '\0';
  3344. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3345. &new[0], &new[1], &new[2], &new[3],
  3346. &new[4], &new[5], &new[6], &new[7]);
  3347. if (ret != num_levels)
  3348. return -EINVAL;
  3349. drm_modeset_lock_all(dev);
  3350. for (level = 0; level < num_levels; level++)
  3351. wm[level] = new[level];
  3352. drm_modeset_unlock_all(dev);
  3353. return len;
  3354. }
  3355. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3356. size_t len, loff_t *offp)
  3357. {
  3358. struct seq_file *m = file->private_data;
  3359. struct drm_i915_private *dev_priv = m->private;
  3360. uint16_t *latencies;
  3361. if (INTEL_GEN(dev_priv) >= 9)
  3362. latencies = dev_priv->wm.skl_latency;
  3363. else
  3364. latencies = dev_priv->wm.pri_latency;
  3365. return wm_latency_write(file, ubuf, len, offp, latencies);
  3366. }
  3367. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3368. size_t len, loff_t *offp)
  3369. {
  3370. struct seq_file *m = file->private_data;
  3371. struct drm_i915_private *dev_priv = m->private;
  3372. uint16_t *latencies;
  3373. if (INTEL_GEN(dev_priv) >= 9)
  3374. latencies = dev_priv->wm.skl_latency;
  3375. else
  3376. latencies = dev_priv->wm.spr_latency;
  3377. return wm_latency_write(file, ubuf, len, offp, latencies);
  3378. }
  3379. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3380. size_t len, loff_t *offp)
  3381. {
  3382. struct seq_file *m = file->private_data;
  3383. struct drm_i915_private *dev_priv = m->private;
  3384. uint16_t *latencies;
  3385. if (INTEL_GEN(dev_priv) >= 9)
  3386. latencies = dev_priv->wm.skl_latency;
  3387. else
  3388. latencies = dev_priv->wm.cur_latency;
  3389. return wm_latency_write(file, ubuf, len, offp, latencies);
  3390. }
  3391. static const struct file_operations i915_pri_wm_latency_fops = {
  3392. .owner = THIS_MODULE,
  3393. .open = pri_wm_latency_open,
  3394. .read = seq_read,
  3395. .llseek = seq_lseek,
  3396. .release = single_release,
  3397. .write = pri_wm_latency_write
  3398. };
  3399. static const struct file_operations i915_spr_wm_latency_fops = {
  3400. .owner = THIS_MODULE,
  3401. .open = spr_wm_latency_open,
  3402. .read = seq_read,
  3403. .llseek = seq_lseek,
  3404. .release = single_release,
  3405. .write = spr_wm_latency_write
  3406. };
  3407. static const struct file_operations i915_cur_wm_latency_fops = {
  3408. .owner = THIS_MODULE,
  3409. .open = cur_wm_latency_open,
  3410. .read = seq_read,
  3411. .llseek = seq_lseek,
  3412. .release = single_release,
  3413. .write = cur_wm_latency_write
  3414. };
  3415. static int
  3416. i915_wedged_get(void *data, u64 *val)
  3417. {
  3418. struct drm_i915_private *dev_priv = data;
  3419. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3420. return 0;
  3421. }
  3422. static int
  3423. i915_wedged_set(void *data, u64 val)
  3424. {
  3425. struct drm_i915_private *i915 = data;
  3426. struct intel_engine_cs *engine;
  3427. unsigned int tmp;
  3428. /*
  3429. * There is no safeguard against this debugfs entry colliding
  3430. * with the hangcheck calling same i915_handle_error() in
  3431. * parallel, causing an explosion. For now we assume that the
  3432. * test harness is responsible enough not to inject gpu hangs
  3433. * while it is writing to 'i915_wedged'
  3434. */
  3435. if (i915_reset_backoff(&i915->gpu_error))
  3436. return -EAGAIN;
  3437. for_each_engine_masked(engine, i915, val, tmp) {
  3438. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3439. engine->hangcheck.stalled = true;
  3440. }
  3441. i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
  3442. wait_on_bit(&i915->gpu_error.flags,
  3443. I915_RESET_HANDOFF,
  3444. TASK_UNINTERRUPTIBLE);
  3445. return 0;
  3446. }
  3447. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3448. i915_wedged_get, i915_wedged_set,
  3449. "%llu\n");
  3450. static int
  3451. fault_irq_set(struct drm_i915_private *i915,
  3452. unsigned long *irq,
  3453. unsigned long val)
  3454. {
  3455. int err;
  3456. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3457. if (err)
  3458. return err;
  3459. err = i915_gem_wait_for_idle(i915,
  3460. I915_WAIT_LOCKED |
  3461. I915_WAIT_INTERRUPTIBLE);
  3462. if (err)
  3463. goto err_unlock;
  3464. *irq = val;
  3465. mutex_unlock(&i915->drm.struct_mutex);
  3466. /* Flush idle worker to disarm irq */
  3467. while (flush_delayed_work(&i915->gt.idle_work))
  3468. ;
  3469. return 0;
  3470. err_unlock:
  3471. mutex_unlock(&i915->drm.struct_mutex);
  3472. return err;
  3473. }
  3474. static int
  3475. i915_ring_missed_irq_get(void *data, u64 *val)
  3476. {
  3477. struct drm_i915_private *dev_priv = data;
  3478. *val = dev_priv->gpu_error.missed_irq_rings;
  3479. return 0;
  3480. }
  3481. static int
  3482. i915_ring_missed_irq_set(void *data, u64 val)
  3483. {
  3484. struct drm_i915_private *i915 = data;
  3485. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3486. }
  3487. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3488. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3489. "0x%08llx\n");
  3490. static int
  3491. i915_ring_test_irq_get(void *data, u64 *val)
  3492. {
  3493. struct drm_i915_private *dev_priv = data;
  3494. *val = dev_priv->gpu_error.test_irq_rings;
  3495. return 0;
  3496. }
  3497. static int
  3498. i915_ring_test_irq_set(void *data, u64 val)
  3499. {
  3500. struct drm_i915_private *i915 = data;
  3501. val &= INTEL_INFO(i915)->ring_mask;
  3502. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3503. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3504. }
  3505. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3506. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3507. "0x%08llx\n");
  3508. #define DROP_UNBOUND 0x1
  3509. #define DROP_BOUND 0x2
  3510. #define DROP_RETIRE 0x4
  3511. #define DROP_ACTIVE 0x8
  3512. #define DROP_FREED 0x10
  3513. #define DROP_SHRINK_ALL 0x20
  3514. #define DROP_ALL (DROP_UNBOUND | \
  3515. DROP_BOUND | \
  3516. DROP_RETIRE | \
  3517. DROP_ACTIVE | \
  3518. DROP_FREED | \
  3519. DROP_SHRINK_ALL)
  3520. static int
  3521. i915_drop_caches_get(void *data, u64 *val)
  3522. {
  3523. *val = DROP_ALL;
  3524. return 0;
  3525. }
  3526. static int
  3527. i915_drop_caches_set(void *data, u64 val)
  3528. {
  3529. struct drm_i915_private *dev_priv = data;
  3530. struct drm_device *dev = &dev_priv->drm;
  3531. int ret;
  3532. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3533. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3534. * on ioctls on -EAGAIN. */
  3535. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3536. if (ret)
  3537. return ret;
  3538. if (val & DROP_ACTIVE) {
  3539. ret = i915_gem_wait_for_idle(dev_priv,
  3540. I915_WAIT_INTERRUPTIBLE |
  3541. I915_WAIT_LOCKED);
  3542. if (ret)
  3543. goto unlock;
  3544. }
  3545. if (val & DROP_RETIRE)
  3546. i915_gem_retire_requests(dev_priv);
  3547. lockdep_set_current_reclaim_state(GFP_KERNEL);
  3548. if (val & DROP_BOUND)
  3549. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3550. if (val & DROP_UNBOUND)
  3551. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3552. if (val & DROP_SHRINK_ALL)
  3553. i915_gem_shrink_all(dev_priv);
  3554. lockdep_clear_current_reclaim_state();
  3555. unlock:
  3556. mutex_unlock(&dev->struct_mutex);
  3557. if (val & DROP_FREED) {
  3558. synchronize_rcu();
  3559. i915_gem_drain_freed_objects(dev_priv);
  3560. }
  3561. return ret;
  3562. }
  3563. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3564. i915_drop_caches_get, i915_drop_caches_set,
  3565. "0x%08llx\n");
  3566. static int
  3567. i915_max_freq_get(void *data, u64 *val)
  3568. {
  3569. struct drm_i915_private *dev_priv = data;
  3570. if (INTEL_GEN(dev_priv) < 6)
  3571. return -ENODEV;
  3572. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3573. return 0;
  3574. }
  3575. static int
  3576. i915_max_freq_set(void *data, u64 val)
  3577. {
  3578. struct drm_i915_private *dev_priv = data;
  3579. u32 hw_max, hw_min;
  3580. int ret;
  3581. if (INTEL_GEN(dev_priv) < 6)
  3582. return -ENODEV;
  3583. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3584. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3585. if (ret)
  3586. return ret;
  3587. /*
  3588. * Turbo will still be enabled, but won't go above the set value.
  3589. */
  3590. val = intel_freq_opcode(dev_priv, val);
  3591. hw_max = dev_priv->rps.max_freq;
  3592. hw_min = dev_priv->rps.min_freq;
  3593. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3594. mutex_unlock(&dev_priv->rps.hw_lock);
  3595. return -EINVAL;
  3596. }
  3597. dev_priv->rps.max_freq_softlimit = val;
  3598. if (intel_set_rps(dev_priv, val))
  3599. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3600. mutex_unlock(&dev_priv->rps.hw_lock);
  3601. return 0;
  3602. }
  3603. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3604. i915_max_freq_get, i915_max_freq_set,
  3605. "%llu\n");
  3606. static int
  3607. i915_min_freq_get(void *data, u64 *val)
  3608. {
  3609. struct drm_i915_private *dev_priv = data;
  3610. if (INTEL_GEN(dev_priv) < 6)
  3611. return -ENODEV;
  3612. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3613. return 0;
  3614. }
  3615. static int
  3616. i915_min_freq_set(void *data, u64 val)
  3617. {
  3618. struct drm_i915_private *dev_priv = data;
  3619. u32 hw_max, hw_min;
  3620. int ret;
  3621. if (INTEL_GEN(dev_priv) < 6)
  3622. return -ENODEV;
  3623. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3624. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3625. if (ret)
  3626. return ret;
  3627. /*
  3628. * Turbo will still be enabled, but won't go below the set value.
  3629. */
  3630. val = intel_freq_opcode(dev_priv, val);
  3631. hw_max = dev_priv->rps.max_freq;
  3632. hw_min = dev_priv->rps.min_freq;
  3633. if (val < hw_min ||
  3634. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3635. mutex_unlock(&dev_priv->rps.hw_lock);
  3636. return -EINVAL;
  3637. }
  3638. dev_priv->rps.min_freq_softlimit = val;
  3639. if (intel_set_rps(dev_priv, val))
  3640. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3641. mutex_unlock(&dev_priv->rps.hw_lock);
  3642. return 0;
  3643. }
  3644. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3645. i915_min_freq_get, i915_min_freq_set,
  3646. "%llu\n");
  3647. static int
  3648. i915_cache_sharing_get(void *data, u64 *val)
  3649. {
  3650. struct drm_i915_private *dev_priv = data;
  3651. u32 snpcr;
  3652. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3653. return -ENODEV;
  3654. intel_runtime_pm_get(dev_priv);
  3655. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3656. intel_runtime_pm_put(dev_priv);
  3657. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3658. return 0;
  3659. }
  3660. static int
  3661. i915_cache_sharing_set(void *data, u64 val)
  3662. {
  3663. struct drm_i915_private *dev_priv = data;
  3664. u32 snpcr;
  3665. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3666. return -ENODEV;
  3667. if (val > 3)
  3668. return -EINVAL;
  3669. intel_runtime_pm_get(dev_priv);
  3670. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3671. /* Update the cache sharing policy here as well */
  3672. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3673. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3674. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3675. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3676. intel_runtime_pm_put(dev_priv);
  3677. return 0;
  3678. }
  3679. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3680. i915_cache_sharing_get, i915_cache_sharing_set,
  3681. "%llu\n");
  3682. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3683. struct sseu_dev_info *sseu)
  3684. {
  3685. int ss_max = 2;
  3686. int ss;
  3687. u32 sig1[ss_max], sig2[ss_max];
  3688. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3689. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3690. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3691. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3692. for (ss = 0; ss < ss_max; ss++) {
  3693. unsigned int eu_cnt;
  3694. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3695. /* skip disabled subslice */
  3696. continue;
  3697. sseu->slice_mask = BIT(0);
  3698. sseu->subslice_mask |= BIT(ss);
  3699. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3700. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3701. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3702. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3703. sseu->eu_total += eu_cnt;
  3704. sseu->eu_per_subslice = max_t(unsigned int,
  3705. sseu->eu_per_subslice, eu_cnt);
  3706. }
  3707. }
  3708. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3709. struct sseu_dev_info *sseu)
  3710. {
  3711. int s_max = 3, ss_max = 4;
  3712. int s, ss;
  3713. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3714. /* BXT has a single slice and at most 3 subslices. */
  3715. if (IS_GEN9_LP(dev_priv)) {
  3716. s_max = 1;
  3717. ss_max = 3;
  3718. }
  3719. for (s = 0; s < s_max; s++) {
  3720. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3721. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3722. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3723. }
  3724. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3725. GEN9_PGCTL_SSA_EU19_ACK |
  3726. GEN9_PGCTL_SSA_EU210_ACK |
  3727. GEN9_PGCTL_SSA_EU311_ACK;
  3728. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3729. GEN9_PGCTL_SSB_EU19_ACK |
  3730. GEN9_PGCTL_SSB_EU210_ACK |
  3731. GEN9_PGCTL_SSB_EU311_ACK;
  3732. for (s = 0; s < s_max; s++) {
  3733. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3734. /* skip disabled slice */
  3735. continue;
  3736. sseu->slice_mask |= BIT(s);
  3737. if (IS_GEN9_BC(dev_priv))
  3738. sseu->subslice_mask =
  3739. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3740. for (ss = 0; ss < ss_max; ss++) {
  3741. unsigned int eu_cnt;
  3742. if (IS_GEN9_LP(dev_priv)) {
  3743. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3744. /* skip disabled subslice */
  3745. continue;
  3746. sseu->subslice_mask |= BIT(ss);
  3747. }
  3748. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3749. eu_mask[ss%2]);
  3750. sseu->eu_total += eu_cnt;
  3751. sseu->eu_per_subslice = max_t(unsigned int,
  3752. sseu->eu_per_subslice,
  3753. eu_cnt);
  3754. }
  3755. }
  3756. }
  3757. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3758. struct sseu_dev_info *sseu)
  3759. {
  3760. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3761. int s;
  3762. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3763. if (sseu->slice_mask) {
  3764. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3765. sseu->eu_per_subslice =
  3766. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3767. sseu->eu_total = sseu->eu_per_subslice *
  3768. sseu_subslice_total(sseu);
  3769. /* subtract fused off EU(s) from enabled slice(s) */
  3770. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3771. u8 subslice_7eu =
  3772. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3773. sseu->eu_total -= hweight8(subslice_7eu);
  3774. }
  3775. }
  3776. }
  3777. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3778. const struct sseu_dev_info *sseu)
  3779. {
  3780. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3781. const char *type = is_available_info ? "Available" : "Enabled";
  3782. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3783. sseu->slice_mask);
  3784. seq_printf(m, " %s Slice Total: %u\n", type,
  3785. hweight8(sseu->slice_mask));
  3786. seq_printf(m, " %s Subslice Total: %u\n", type,
  3787. sseu_subslice_total(sseu));
  3788. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3789. sseu->subslice_mask);
  3790. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3791. hweight8(sseu->subslice_mask));
  3792. seq_printf(m, " %s EU Total: %u\n", type,
  3793. sseu->eu_total);
  3794. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3795. sseu->eu_per_subslice);
  3796. if (!is_available_info)
  3797. return;
  3798. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3799. if (HAS_POOLED_EU(dev_priv))
  3800. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3801. seq_printf(m, " Has Slice Power Gating: %s\n",
  3802. yesno(sseu->has_slice_pg));
  3803. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3804. yesno(sseu->has_subslice_pg));
  3805. seq_printf(m, " Has EU Power Gating: %s\n",
  3806. yesno(sseu->has_eu_pg));
  3807. }
  3808. static int i915_sseu_status(struct seq_file *m, void *unused)
  3809. {
  3810. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3811. struct sseu_dev_info sseu;
  3812. if (INTEL_GEN(dev_priv) < 8)
  3813. return -ENODEV;
  3814. seq_puts(m, "SSEU Device Info\n");
  3815. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3816. seq_puts(m, "SSEU Device Status\n");
  3817. memset(&sseu, 0, sizeof(sseu));
  3818. intel_runtime_pm_get(dev_priv);
  3819. if (IS_CHERRYVIEW(dev_priv)) {
  3820. cherryview_sseu_device_status(dev_priv, &sseu);
  3821. } else if (IS_BROADWELL(dev_priv)) {
  3822. broadwell_sseu_device_status(dev_priv, &sseu);
  3823. } else if (INTEL_GEN(dev_priv) >= 9) {
  3824. gen9_sseu_device_status(dev_priv, &sseu);
  3825. }
  3826. intel_runtime_pm_put(dev_priv);
  3827. i915_print_sseu_info(m, false, &sseu);
  3828. return 0;
  3829. }
  3830. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3831. {
  3832. struct drm_i915_private *dev_priv = inode->i_private;
  3833. if (INTEL_GEN(dev_priv) < 6)
  3834. return 0;
  3835. intel_runtime_pm_get(dev_priv);
  3836. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3837. return 0;
  3838. }
  3839. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3840. {
  3841. struct drm_i915_private *dev_priv = inode->i_private;
  3842. if (INTEL_GEN(dev_priv) < 6)
  3843. return 0;
  3844. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3845. intel_runtime_pm_put(dev_priv);
  3846. return 0;
  3847. }
  3848. static const struct file_operations i915_forcewake_fops = {
  3849. .owner = THIS_MODULE,
  3850. .open = i915_forcewake_open,
  3851. .release = i915_forcewake_release,
  3852. };
  3853. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3854. {
  3855. struct drm_i915_private *dev_priv = m->private;
  3856. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3857. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3858. seq_printf(m, "Detected: %s\n",
  3859. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3860. return 0;
  3861. }
  3862. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3863. const char __user *ubuf, size_t len,
  3864. loff_t *offp)
  3865. {
  3866. struct seq_file *m = file->private_data;
  3867. struct drm_i915_private *dev_priv = m->private;
  3868. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3869. unsigned int new_threshold;
  3870. int i;
  3871. char *newline;
  3872. char tmp[16];
  3873. if (len >= sizeof(tmp))
  3874. return -EINVAL;
  3875. if (copy_from_user(tmp, ubuf, len))
  3876. return -EFAULT;
  3877. tmp[len] = '\0';
  3878. /* Strip newline, if any */
  3879. newline = strchr(tmp, '\n');
  3880. if (newline)
  3881. *newline = '\0';
  3882. if (strcmp(tmp, "reset") == 0)
  3883. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3884. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3885. return -EINVAL;
  3886. if (new_threshold > 0)
  3887. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3888. new_threshold);
  3889. else
  3890. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3891. spin_lock_irq(&dev_priv->irq_lock);
  3892. hotplug->hpd_storm_threshold = new_threshold;
  3893. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3894. for_each_hpd_pin(i)
  3895. hotplug->stats[i].count = 0;
  3896. spin_unlock_irq(&dev_priv->irq_lock);
  3897. /* Re-enable hpd immediately if we were in an irq storm */
  3898. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3899. return len;
  3900. }
  3901. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3902. {
  3903. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3904. }
  3905. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3906. .owner = THIS_MODULE,
  3907. .open = i915_hpd_storm_ctl_open,
  3908. .read = seq_read,
  3909. .llseek = seq_lseek,
  3910. .release = single_release,
  3911. .write = i915_hpd_storm_ctl_write
  3912. };
  3913. static const struct drm_info_list i915_debugfs_list[] = {
  3914. {"i915_capabilities", i915_capabilities, 0},
  3915. {"i915_gem_objects", i915_gem_object_info, 0},
  3916. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3917. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  3918. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3919. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3920. {"i915_gem_request", i915_gem_request_info, 0},
  3921. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3922. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3923. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3924. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3925. {"i915_guc_info", i915_guc_info, 0},
  3926. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3927. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3928. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3929. {"i915_frequency_info", i915_frequency_info, 0},
  3930. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3931. {"i915_drpc_info", i915_drpc_info, 0},
  3932. {"i915_emon_status", i915_emon_status, 0},
  3933. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3934. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3935. {"i915_fbc_status", i915_fbc_status, 0},
  3936. {"i915_ips_status", i915_ips_status, 0},
  3937. {"i915_sr_status", i915_sr_status, 0},
  3938. {"i915_opregion", i915_opregion, 0},
  3939. {"i915_vbt", i915_vbt, 0},
  3940. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3941. {"i915_context_status", i915_context_status, 0},
  3942. {"i915_dump_lrc", i915_dump_lrc, 0},
  3943. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3944. {"i915_swizzle_info", i915_swizzle_info, 0},
  3945. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3946. {"i915_llc", i915_llc, 0},
  3947. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3948. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3949. {"i915_energy_uJ", i915_energy_uJ, 0},
  3950. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3951. {"i915_power_domain_info", i915_power_domain_info, 0},
  3952. {"i915_dmc_info", i915_dmc_info, 0},
  3953. {"i915_display_info", i915_display_info, 0},
  3954. {"i915_engine_info", i915_engine_info, 0},
  3955. {"i915_semaphore_status", i915_semaphore_status, 0},
  3956. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3957. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3958. {"i915_wa_registers", i915_wa_registers, 0},
  3959. {"i915_ddb_info", i915_ddb_info, 0},
  3960. {"i915_sseu_status", i915_sseu_status, 0},
  3961. {"i915_drrs_status", i915_drrs_status, 0},
  3962. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3963. };
  3964. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3965. static const struct i915_debugfs_files {
  3966. const char *name;
  3967. const struct file_operations *fops;
  3968. } i915_debugfs_files[] = {
  3969. {"i915_wedged", &i915_wedged_fops},
  3970. {"i915_max_freq", &i915_max_freq_fops},
  3971. {"i915_min_freq", &i915_min_freq_fops},
  3972. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3973. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3974. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3975. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3976. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3977. {"i915_error_state", &i915_error_state_fops},
  3978. {"i915_gpu_info", &i915_gpu_info_fops},
  3979. #endif
  3980. {"i915_next_seqno", &i915_next_seqno_fops},
  3981. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3982. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3983. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3984. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3985. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3986. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3987. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3988. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3989. {"i915_guc_log_control", &i915_guc_log_control_fops},
  3990. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
  3991. };
  3992. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3993. {
  3994. struct drm_minor *minor = dev_priv->drm.primary;
  3995. struct dentry *ent;
  3996. int ret, i;
  3997. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  3998. minor->debugfs_root, to_i915(minor->dev),
  3999. &i915_forcewake_fops);
  4000. if (!ent)
  4001. return -ENOMEM;
  4002. ret = intel_pipe_crc_create(minor);
  4003. if (ret)
  4004. return ret;
  4005. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4006. ent = debugfs_create_file(i915_debugfs_files[i].name,
  4007. S_IRUGO | S_IWUSR,
  4008. minor->debugfs_root,
  4009. to_i915(minor->dev),
  4010. i915_debugfs_files[i].fops);
  4011. if (!ent)
  4012. return -ENOMEM;
  4013. }
  4014. return drm_debugfs_create_files(i915_debugfs_list,
  4015. I915_DEBUGFS_ENTRIES,
  4016. minor->debugfs_root, minor);
  4017. }
  4018. struct dpcd_block {
  4019. /* DPCD dump start address. */
  4020. unsigned int offset;
  4021. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4022. unsigned int end;
  4023. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4024. size_t size;
  4025. /* Only valid for eDP. */
  4026. bool edp;
  4027. };
  4028. static const struct dpcd_block i915_dpcd_debug[] = {
  4029. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4030. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4031. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4032. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4033. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4034. { .offset = DP_SET_POWER },
  4035. { .offset = DP_EDP_DPCD_REV },
  4036. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4037. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4038. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4039. };
  4040. static int i915_dpcd_show(struct seq_file *m, void *data)
  4041. {
  4042. struct drm_connector *connector = m->private;
  4043. struct intel_dp *intel_dp =
  4044. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4045. uint8_t buf[16];
  4046. ssize_t err;
  4047. int i;
  4048. if (connector->status != connector_status_connected)
  4049. return -ENODEV;
  4050. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4051. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4052. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4053. if (b->edp &&
  4054. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4055. continue;
  4056. /* low tech for now */
  4057. if (WARN_ON(size > sizeof(buf)))
  4058. continue;
  4059. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4060. if (err <= 0) {
  4061. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4062. size, b->offset, err);
  4063. continue;
  4064. }
  4065. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4066. }
  4067. return 0;
  4068. }
  4069. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4070. {
  4071. return single_open(file, i915_dpcd_show, inode->i_private);
  4072. }
  4073. static const struct file_operations i915_dpcd_fops = {
  4074. .owner = THIS_MODULE,
  4075. .open = i915_dpcd_open,
  4076. .read = seq_read,
  4077. .llseek = seq_lseek,
  4078. .release = single_release,
  4079. };
  4080. static int i915_panel_show(struct seq_file *m, void *data)
  4081. {
  4082. struct drm_connector *connector = m->private;
  4083. struct intel_dp *intel_dp =
  4084. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4085. if (connector->status != connector_status_connected)
  4086. return -ENODEV;
  4087. seq_printf(m, "Panel power up delay: %d\n",
  4088. intel_dp->panel_power_up_delay);
  4089. seq_printf(m, "Panel power down delay: %d\n",
  4090. intel_dp->panel_power_down_delay);
  4091. seq_printf(m, "Backlight on delay: %d\n",
  4092. intel_dp->backlight_on_delay);
  4093. seq_printf(m, "Backlight off delay: %d\n",
  4094. intel_dp->backlight_off_delay);
  4095. return 0;
  4096. }
  4097. static int i915_panel_open(struct inode *inode, struct file *file)
  4098. {
  4099. return single_open(file, i915_panel_show, inode->i_private);
  4100. }
  4101. static const struct file_operations i915_panel_fops = {
  4102. .owner = THIS_MODULE,
  4103. .open = i915_panel_open,
  4104. .read = seq_read,
  4105. .llseek = seq_lseek,
  4106. .release = single_release,
  4107. };
  4108. /**
  4109. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4110. * @connector: pointer to a registered drm_connector
  4111. *
  4112. * Cleanup will be done by drm_connector_unregister() through a call to
  4113. * drm_debugfs_connector_remove().
  4114. *
  4115. * Returns 0 on success, negative error codes on error.
  4116. */
  4117. int i915_debugfs_connector_add(struct drm_connector *connector)
  4118. {
  4119. struct dentry *root = connector->debugfs_entry;
  4120. /* The connector must have been registered beforehands. */
  4121. if (!root)
  4122. return -ENODEV;
  4123. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4124. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4125. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4126. connector, &i915_dpcd_fops);
  4127. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4128. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4129. connector, &i915_panel_fops);
  4130. return 0;
  4131. }