sched_policy.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Anhua Xu
  25. * Kevin Tian <kevin.tian@intel.com>
  26. *
  27. * Contributors:
  28. * Min He <min.he@intel.com>
  29. * Bing Niu <bing.niu@intel.com>
  30. * Zhi Wang <zhi.a.wang@intel.com>
  31. *
  32. */
  33. #include "i915_drv.h"
  34. #include "gvt.h"
  35. static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
  36. {
  37. enum intel_engine_id i;
  38. struct intel_engine_cs *engine;
  39. for_each_engine(engine, vgpu->gvt->dev_priv, i) {
  40. if (!list_empty(workload_q_head(vgpu, i)))
  41. return true;
  42. }
  43. return false;
  44. }
  45. struct vgpu_sched_data {
  46. struct list_head lru_list;
  47. struct intel_vgpu *vgpu;
  48. ktime_t sched_in_time;
  49. ktime_t sched_out_time;
  50. ktime_t sched_time;
  51. ktime_t left_ts;
  52. ktime_t allocated_ts;
  53. struct vgpu_sched_ctl sched_ctl;
  54. };
  55. struct gvt_sched_data {
  56. struct intel_gvt *gvt;
  57. struct hrtimer timer;
  58. unsigned long period;
  59. struct list_head lru_runq_head;
  60. };
  61. static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu)
  62. {
  63. ktime_t delta_ts;
  64. struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data;
  65. delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time;
  66. vgpu_data->sched_time += delta_ts;
  67. vgpu_data->left_ts -= delta_ts;
  68. }
  69. #define GVT_TS_BALANCE_PERIOD_MS 100
  70. #define GVT_TS_BALANCE_STAGE_NUM 10
  71. static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
  72. {
  73. struct vgpu_sched_data *vgpu_data;
  74. struct list_head *pos;
  75. static uint64_t stage_check;
  76. int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
  77. /* The timeslice accumulation reset at stage 0, which is
  78. * allocated again without adding previous debt.
  79. */
  80. if (stage == 0) {
  81. int total_weight = 0;
  82. ktime_t fair_timeslice;
  83. list_for_each(pos, &sched_data->lru_runq_head) {
  84. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  85. total_weight += vgpu_data->sched_ctl.weight;
  86. }
  87. list_for_each(pos, &sched_data->lru_runq_head) {
  88. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  89. fair_timeslice = ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS) *
  90. vgpu_data->sched_ctl.weight /
  91. total_weight;
  92. vgpu_data->allocated_ts = fair_timeslice;
  93. vgpu_data->left_ts = vgpu_data->allocated_ts;
  94. }
  95. } else {
  96. list_for_each(pos, &sched_data->lru_runq_head) {
  97. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  98. /* timeslice for next 100ms should add the left/debt
  99. * slice of previous stages.
  100. */
  101. vgpu_data->left_ts += vgpu_data->allocated_ts;
  102. }
  103. }
  104. }
  105. static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
  106. {
  107. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  108. enum intel_engine_id i;
  109. struct intel_engine_cs *engine;
  110. struct vgpu_sched_data *vgpu_data;
  111. ktime_t cur_time;
  112. /* no need to schedule if next_vgpu is the same with current_vgpu,
  113. * let scheduler chose next_vgpu again by setting it to NULL.
  114. */
  115. if (scheduler->next_vgpu == scheduler->current_vgpu) {
  116. scheduler->next_vgpu = NULL;
  117. return;
  118. }
  119. /*
  120. * after the flag is set, workload dispatch thread will
  121. * stop dispatching workload for current vgpu
  122. */
  123. scheduler->need_reschedule = true;
  124. /* still have uncompleted workload? */
  125. for_each_engine(engine, gvt->dev_priv, i) {
  126. if (scheduler->current_workload[i])
  127. return;
  128. }
  129. cur_time = ktime_get();
  130. if (scheduler->current_vgpu) {
  131. vgpu_data = scheduler->current_vgpu->sched_data;
  132. vgpu_data->sched_out_time = cur_time;
  133. vgpu_update_timeslice(scheduler->current_vgpu);
  134. }
  135. vgpu_data = scheduler->next_vgpu->sched_data;
  136. vgpu_data->sched_in_time = cur_time;
  137. /* switch current vgpu */
  138. scheduler->current_vgpu = scheduler->next_vgpu;
  139. scheduler->next_vgpu = NULL;
  140. scheduler->need_reschedule = false;
  141. /* wake up workload dispatch thread */
  142. for_each_engine(engine, gvt->dev_priv, i)
  143. wake_up(&scheduler->waitq[i]);
  144. }
  145. static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
  146. {
  147. struct vgpu_sched_data *vgpu_data;
  148. struct intel_vgpu *vgpu = NULL;
  149. struct list_head *head = &sched_data->lru_runq_head;
  150. struct list_head *pos;
  151. /* search a vgpu with pending workload */
  152. list_for_each(pos, head) {
  153. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  154. if (!vgpu_has_pending_workload(vgpu_data->vgpu))
  155. continue;
  156. /* Return the vGPU only if it has time slice left */
  157. if (vgpu_data->left_ts > 0) {
  158. vgpu = vgpu_data->vgpu;
  159. break;
  160. }
  161. }
  162. return vgpu;
  163. }
  164. /* in nanosecond */
  165. #define GVT_DEFAULT_TIME_SLICE 1000000
  166. static void tbs_sched_func(struct gvt_sched_data *sched_data)
  167. {
  168. struct intel_gvt *gvt = sched_data->gvt;
  169. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  170. struct vgpu_sched_data *vgpu_data;
  171. struct intel_vgpu *vgpu = NULL;
  172. static uint64_t timer_check;
  173. if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS))
  174. gvt_balance_timeslice(sched_data);
  175. /* no active vgpu or has already had a target */
  176. if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
  177. goto out;
  178. vgpu = find_busy_vgpu(sched_data);
  179. if (vgpu) {
  180. scheduler->next_vgpu = vgpu;
  181. /* Move the last used vGPU to the tail of lru_list */
  182. vgpu_data = vgpu->sched_data;
  183. list_del_init(&vgpu_data->lru_list);
  184. list_add_tail(&vgpu_data->lru_list,
  185. &sched_data->lru_runq_head);
  186. } else {
  187. scheduler->next_vgpu = gvt->idle_vgpu;
  188. }
  189. out:
  190. if (scheduler->next_vgpu)
  191. try_to_schedule_next_vgpu(gvt);
  192. }
  193. void intel_gvt_schedule(struct intel_gvt *gvt)
  194. {
  195. struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
  196. mutex_lock(&gvt->lock);
  197. tbs_sched_func(sched_data);
  198. mutex_unlock(&gvt->lock);
  199. }
  200. static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
  201. {
  202. struct gvt_sched_data *data;
  203. data = container_of(timer_data, struct gvt_sched_data, timer);
  204. intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
  205. hrtimer_add_expires_ns(&data->timer, data->period);
  206. return HRTIMER_RESTART;
  207. }
  208. static int tbs_sched_init(struct intel_gvt *gvt)
  209. {
  210. struct intel_gvt_workload_scheduler *scheduler =
  211. &gvt->scheduler;
  212. struct gvt_sched_data *data;
  213. data = kzalloc(sizeof(*data), GFP_KERNEL);
  214. if (!data)
  215. return -ENOMEM;
  216. INIT_LIST_HEAD(&data->lru_runq_head);
  217. hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  218. data->timer.function = tbs_timer_fn;
  219. data->period = GVT_DEFAULT_TIME_SLICE;
  220. data->gvt = gvt;
  221. scheduler->sched_data = data;
  222. return 0;
  223. }
  224. static void tbs_sched_clean(struct intel_gvt *gvt)
  225. {
  226. struct intel_gvt_workload_scheduler *scheduler =
  227. &gvt->scheduler;
  228. struct gvt_sched_data *data = scheduler->sched_data;
  229. hrtimer_cancel(&data->timer);
  230. kfree(data);
  231. scheduler->sched_data = NULL;
  232. }
  233. static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
  234. {
  235. struct vgpu_sched_data *data;
  236. data = kzalloc(sizeof(*data), GFP_KERNEL);
  237. if (!data)
  238. return -ENOMEM;
  239. data->sched_ctl.weight = vgpu->sched_ctl.weight;
  240. data->vgpu = vgpu;
  241. INIT_LIST_HEAD(&data->lru_list);
  242. vgpu->sched_data = data;
  243. return 0;
  244. }
  245. static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
  246. {
  247. kfree(vgpu->sched_data);
  248. vgpu->sched_data = NULL;
  249. }
  250. static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
  251. {
  252. struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
  253. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  254. if (!list_empty(&vgpu_data->lru_list))
  255. return;
  256. list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);
  257. if (!hrtimer_active(&sched_data->timer))
  258. hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
  259. sched_data->period), HRTIMER_MODE_ABS);
  260. }
  261. static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
  262. {
  263. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  264. list_del_init(&vgpu_data->lru_list);
  265. }
  266. static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
  267. .init = tbs_sched_init,
  268. .clean = tbs_sched_clean,
  269. .init_vgpu = tbs_sched_init_vgpu,
  270. .clean_vgpu = tbs_sched_clean_vgpu,
  271. .start_schedule = tbs_sched_start_schedule,
  272. .stop_schedule = tbs_sched_stop_schedule,
  273. };
  274. int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
  275. {
  276. gvt->scheduler.sched_ops = &tbs_schedule_ops;
  277. return gvt->scheduler.sched_ops->init(gvt);
  278. }
  279. void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
  280. {
  281. gvt->scheduler.sched_ops->clean(gvt);
  282. }
  283. int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
  284. {
  285. return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
  286. }
  287. void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
  288. {
  289. vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
  290. }
  291. void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
  292. {
  293. gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
  294. vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
  295. }
  296. void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
  297. {
  298. struct intel_gvt_workload_scheduler *scheduler =
  299. &vgpu->gvt->scheduler;
  300. gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
  301. scheduler->sched_ops->stop_schedule(vgpu);
  302. if (scheduler->next_vgpu == vgpu)
  303. scheduler->next_vgpu = NULL;
  304. if (scheduler->current_vgpu == vgpu) {
  305. /* stop workload dispatching */
  306. scheduler->need_reschedule = true;
  307. scheduler->current_vgpu = NULL;
  308. }
  309. }