s5p-sss.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for Samsung S5PV210 HW acceleration.
  5. *
  6. * Copyright (C) 2011 NetUP Inc. All rights reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as published
  10. * by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/crypto.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/err.h>
  17. #include <linux/errno.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/io.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/of.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/scatterlist.h>
  26. #include <crypto/ctr.h>
  27. #include <crypto/aes.h>
  28. #include <crypto/algapi.h>
  29. #include <crypto/scatterwalk.h>
  30. #define _SBF(s, v) ((v) << (s))
  31. /* Feed control registers */
  32. #define SSS_REG_FCINTSTAT 0x0000
  33. #define SSS_FCINTSTAT_BRDMAINT BIT(3)
  34. #define SSS_FCINTSTAT_BTDMAINT BIT(2)
  35. #define SSS_FCINTSTAT_HRDMAINT BIT(1)
  36. #define SSS_FCINTSTAT_PKDMAINT BIT(0)
  37. #define SSS_REG_FCINTENSET 0x0004
  38. #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
  39. #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
  40. #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
  41. #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
  42. #define SSS_REG_FCINTENCLR 0x0008
  43. #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
  44. #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
  45. #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
  46. #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
  47. #define SSS_REG_FCINTPEND 0x000C
  48. #define SSS_FCINTPEND_BRDMAINTP BIT(3)
  49. #define SSS_FCINTPEND_BTDMAINTP BIT(2)
  50. #define SSS_FCINTPEND_HRDMAINTP BIT(1)
  51. #define SSS_FCINTPEND_PKDMAINTP BIT(0)
  52. #define SSS_REG_FCFIFOSTAT 0x0010
  53. #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
  54. #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
  55. #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
  56. #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
  57. #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
  58. #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
  59. #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
  60. #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
  61. #define SSS_REG_FCFIFOCTRL 0x0014
  62. #define SSS_FCFIFOCTRL_DESSEL BIT(2)
  63. #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
  64. #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
  65. #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
  66. #define SSS_REG_FCBRDMAS 0x0020
  67. #define SSS_REG_FCBRDMAL 0x0024
  68. #define SSS_REG_FCBRDMAC 0x0028
  69. #define SSS_FCBRDMAC_BYTESWAP BIT(1)
  70. #define SSS_FCBRDMAC_FLUSH BIT(0)
  71. #define SSS_REG_FCBTDMAS 0x0030
  72. #define SSS_REG_FCBTDMAL 0x0034
  73. #define SSS_REG_FCBTDMAC 0x0038
  74. #define SSS_FCBTDMAC_BYTESWAP BIT(1)
  75. #define SSS_FCBTDMAC_FLUSH BIT(0)
  76. #define SSS_REG_FCHRDMAS 0x0040
  77. #define SSS_REG_FCHRDMAL 0x0044
  78. #define SSS_REG_FCHRDMAC 0x0048
  79. #define SSS_FCHRDMAC_BYTESWAP BIT(1)
  80. #define SSS_FCHRDMAC_FLUSH BIT(0)
  81. #define SSS_REG_FCPKDMAS 0x0050
  82. #define SSS_REG_FCPKDMAL 0x0054
  83. #define SSS_REG_FCPKDMAC 0x0058
  84. #define SSS_FCPKDMAC_BYTESWAP BIT(3)
  85. #define SSS_FCPKDMAC_DESCEND BIT(2)
  86. #define SSS_FCPKDMAC_TRANSMIT BIT(1)
  87. #define SSS_FCPKDMAC_FLUSH BIT(0)
  88. #define SSS_REG_FCPKDMAO 0x005C
  89. /* AES registers */
  90. #define SSS_REG_AES_CONTROL 0x00
  91. #define SSS_AES_BYTESWAP_DI BIT(11)
  92. #define SSS_AES_BYTESWAP_DO BIT(10)
  93. #define SSS_AES_BYTESWAP_IV BIT(9)
  94. #define SSS_AES_BYTESWAP_CNT BIT(8)
  95. #define SSS_AES_BYTESWAP_KEY BIT(7)
  96. #define SSS_AES_KEY_CHANGE_MODE BIT(6)
  97. #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
  98. #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
  99. #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
  100. #define SSS_AES_FIFO_MODE BIT(3)
  101. #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
  102. #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
  103. #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
  104. #define SSS_AES_MODE_DECRYPT BIT(0)
  105. #define SSS_REG_AES_STATUS 0x04
  106. #define SSS_AES_BUSY BIT(2)
  107. #define SSS_AES_INPUT_READY BIT(1)
  108. #define SSS_AES_OUTPUT_READY BIT(0)
  109. #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
  110. #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
  111. #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
  112. #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
  113. #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
  114. #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
  115. #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
  116. #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
  117. #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
  118. #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
  119. SSS_AES_REG(dev, reg))
  120. /* HW engine modes */
  121. #define FLAGS_AES_DECRYPT BIT(0)
  122. #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
  123. #define FLAGS_AES_CBC _SBF(1, 0x01)
  124. #define FLAGS_AES_CTR _SBF(1, 0x02)
  125. #define AES_KEY_LEN 16
  126. #define CRYPTO_QUEUE_LEN 1
  127. /**
  128. * struct samsung_aes_variant - platform specific SSS driver data
  129. * @aes_offset: AES register offset from SSS module's base.
  130. *
  131. * Specifies platform specific configuration of SSS module.
  132. * Note: A structure for driver specific platform data is used for future
  133. * expansion of its usage.
  134. */
  135. struct samsung_aes_variant {
  136. unsigned int aes_offset;
  137. };
  138. struct s5p_aes_reqctx {
  139. unsigned long mode;
  140. };
  141. struct s5p_aes_ctx {
  142. struct s5p_aes_dev *dev;
  143. uint8_t aes_key[AES_MAX_KEY_SIZE];
  144. uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
  145. int keylen;
  146. };
  147. /**
  148. * struct s5p_aes_dev - Crypto device state container
  149. * @dev: Associated device
  150. * @clk: Clock for accessing hardware
  151. * @ioaddr: Mapped IO memory region
  152. * @aes_ioaddr: Per-varian offset for AES block IO memory
  153. * @irq_fc: Feed control interrupt line
  154. * @req: Crypto request currently handled by the device
  155. * @ctx: Configuration for currently handled crypto request
  156. * @sg_src: Scatter list with source data for currently handled block
  157. * in device. This is DMA-mapped into device.
  158. * @sg_dst: Scatter list with destination data for currently handled block
  159. * in device. This is DMA-mapped into device.
  160. * @sg_src_cpy: In case of unaligned access, copied scatter list
  161. * with source data.
  162. * @sg_dst_cpy: In case of unaligned access, copied scatter list
  163. * with destination data.
  164. * @tasklet: New request scheduling jib
  165. * @queue: Crypto queue
  166. * @busy: Indicates whether the device is currently handling some request
  167. * thus it uses some of the fields from this state, like:
  168. * req, ctx, sg_src/dst (and copies). This essentially
  169. * protects against concurrent access to these fields.
  170. * @lock: Lock for protecting both access to device hardware registers
  171. * and fields related to current request (including the busy field).
  172. */
  173. struct s5p_aes_dev {
  174. struct device *dev;
  175. struct clk *clk;
  176. void __iomem *ioaddr;
  177. void __iomem *aes_ioaddr;
  178. int irq_fc;
  179. struct ablkcipher_request *req;
  180. struct s5p_aes_ctx *ctx;
  181. struct scatterlist *sg_src;
  182. struct scatterlist *sg_dst;
  183. struct scatterlist *sg_src_cpy;
  184. struct scatterlist *sg_dst_cpy;
  185. struct tasklet_struct tasklet;
  186. struct crypto_queue queue;
  187. bool busy;
  188. spinlock_t lock;
  189. };
  190. static struct s5p_aes_dev *s5p_dev;
  191. static const struct samsung_aes_variant s5p_aes_data = {
  192. .aes_offset = 0x4000,
  193. };
  194. static const struct samsung_aes_variant exynos_aes_data = {
  195. .aes_offset = 0x200,
  196. };
  197. static const struct of_device_id s5p_sss_dt_match[] = {
  198. {
  199. .compatible = "samsung,s5pv210-secss",
  200. .data = &s5p_aes_data,
  201. },
  202. {
  203. .compatible = "samsung,exynos4210-secss",
  204. .data = &exynos_aes_data,
  205. },
  206. { },
  207. };
  208. MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
  209. static inline struct samsung_aes_variant *find_s5p_sss_version
  210. (struct platform_device *pdev)
  211. {
  212. if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
  213. const struct of_device_id *match;
  214. match = of_match_node(s5p_sss_dt_match,
  215. pdev->dev.of_node);
  216. return (struct samsung_aes_variant *)match->data;
  217. }
  218. return (struct samsung_aes_variant *)
  219. platform_get_device_id(pdev)->driver_data;
  220. }
  221. static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  222. {
  223. SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
  224. SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
  225. }
  226. static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  227. {
  228. SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
  229. SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
  230. }
  231. static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
  232. {
  233. int len;
  234. if (!*sg)
  235. return;
  236. len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
  237. free_pages((unsigned long)sg_virt(*sg), get_order(len));
  238. kfree(*sg);
  239. *sg = NULL;
  240. }
  241. static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
  242. unsigned int nbytes, int out)
  243. {
  244. struct scatter_walk walk;
  245. if (!nbytes)
  246. return;
  247. scatterwalk_start(&walk, sg);
  248. scatterwalk_copychunks(buf, &walk, nbytes, out);
  249. scatterwalk_done(&walk, out, 0);
  250. }
  251. static void s5p_sg_done(struct s5p_aes_dev *dev)
  252. {
  253. if (dev->sg_dst_cpy) {
  254. dev_dbg(dev->dev,
  255. "Copying %d bytes of output data back to original place\n",
  256. dev->req->nbytes);
  257. s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
  258. dev->req->nbytes, 1);
  259. }
  260. s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
  261. s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
  262. }
  263. /* Calls the completion. Cannot be called with dev->lock hold. */
  264. static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
  265. {
  266. dev->req->base.complete(&dev->req->base, err);
  267. }
  268. static void s5p_unset_outdata(struct s5p_aes_dev *dev)
  269. {
  270. dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
  271. }
  272. static void s5p_unset_indata(struct s5p_aes_dev *dev)
  273. {
  274. dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
  275. }
  276. static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
  277. struct scatterlist **dst)
  278. {
  279. void *pages;
  280. int len;
  281. *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
  282. if (!*dst)
  283. return -ENOMEM;
  284. len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
  285. pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
  286. if (!pages) {
  287. kfree(*dst);
  288. *dst = NULL;
  289. return -ENOMEM;
  290. }
  291. s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
  292. sg_init_table(*dst, 1);
  293. sg_set_buf(*dst, pages, len);
  294. return 0;
  295. }
  296. static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  297. {
  298. int err;
  299. if (!sg->length) {
  300. err = -EINVAL;
  301. goto exit;
  302. }
  303. err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
  304. if (!err) {
  305. err = -ENOMEM;
  306. goto exit;
  307. }
  308. dev->sg_dst = sg;
  309. err = 0;
  310. exit:
  311. return err;
  312. }
  313. static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  314. {
  315. int err;
  316. if (!sg->length) {
  317. err = -EINVAL;
  318. goto exit;
  319. }
  320. err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
  321. if (!err) {
  322. err = -ENOMEM;
  323. goto exit;
  324. }
  325. dev->sg_src = sg;
  326. err = 0;
  327. exit:
  328. return err;
  329. }
  330. /*
  331. * Returns -ERRNO on error (mapping of new data failed).
  332. * On success returns:
  333. * - 0 if there is no more data,
  334. * - 1 if new transmitting (output) data is ready and its address+length
  335. * have to be written to device (by calling s5p_set_dma_outdata()).
  336. */
  337. static int s5p_aes_tx(struct s5p_aes_dev *dev)
  338. {
  339. int ret = 0;
  340. s5p_unset_outdata(dev);
  341. if (!sg_is_last(dev->sg_dst)) {
  342. ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
  343. if (!ret)
  344. ret = 1;
  345. }
  346. return ret;
  347. }
  348. /*
  349. * Returns -ERRNO on error (mapping of new data failed).
  350. * On success returns:
  351. * - 0 if there is no more data,
  352. * - 1 if new receiving (input) data is ready and its address+length
  353. * have to be written to device (by calling s5p_set_dma_indata()).
  354. */
  355. static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
  356. {
  357. int ret = 0;
  358. s5p_unset_indata(dev);
  359. if (!sg_is_last(dev->sg_src)) {
  360. ret = s5p_set_indata(dev, sg_next(dev->sg_src));
  361. if (!ret)
  362. ret = 1;
  363. }
  364. return ret;
  365. }
  366. static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
  367. {
  368. struct platform_device *pdev = dev_id;
  369. struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
  370. int err_dma_tx = 0;
  371. int err_dma_rx = 0;
  372. bool tx_end = false;
  373. unsigned long flags;
  374. uint32_t status;
  375. int err;
  376. spin_lock_irqsave(&dev->lock, flags);
  377. /*
  378. * Handle rx or tx interrupt. If there is still data (scatterlist did not
  379. * reach end), then map next scatterlist entry.
  380. * In case of such mapping error, s5p_aes_complete() should be called.
  381. *
  382. * If there is no more data in tx scatter list, call s5p_aes_complete()
  383. * and schedule new tasklet.
  384. */
  385. status = SSS_READ(dev, FCINTSTAT);
  386. if (status & SSS_FCINTSTAT_BRDMAINT)
  387. err_dma_rx = s5p_aes_rx(dev);
  388. if (status & SSS_FCINTSTAT_BTDMAINT) {
  389. if (sg_is_last(dev->sg_dst))
  390. tx_end = true;
  391. err_dma_tx = s5p_aes_tx(dev);
  392. }
  393. SSS_WRITE(dev, FCINTPEND, status);
  394. if (err_dma_rx < 0) {
  395. err = err_dma_rx;
  396. goto error;
  397. }
  398. if (err_dma_tx < 0) {
  399. err = err_dma_tx;
  400. goto error;
  401. }
  402. if (tx_end) {
  403. s5p_sg_done(dev);
  404. spin_unlock_irqrestore(&dev->lock, flags);
  405. s5p_aes_complete(dev, 0);
  406. /* Device is still busy */
  407. tasklet_schedule(&dev->tasklet);
  408. } else {
  409. /*
  410. * Writing length of DMA block (either receiving or
  411. * transmitting) will start the operation immediately, so this
  412. * should be done at the end (even after clearing pending
  413. * interrupts to not miss the interrupt).
  414. */
  415. if (err_dma_tx == 1)
  416. s5p_set_dma_outdata(dev, dev->sg_dst);
  417. if (err_dma_rx == 1)
  418. s5p_set_dma_indata(dev, dev->sg_src);
  419. spin_unlock_irqrestore(&dev->lock, flags);
  420. }
  421. return IRQ_HANDLED;
  422. error:
  423. s5p_sg_done(dev);
  424. dev->busy = false;
  425. spin_unlock_irqrestore(&dev->lock, flags);
  426. s5p_aes_complete(dev, err);
  427. return IRQ_HANDLED;
  428. }
  429. static void s5p_set_aes(struct s5p_aes_dev *dev,
  430. uint8_t *key, uint8_t *iv, unsigned int keylen)
  431. {
  432. void __iomem *keystart;
  433. if (iv)
  434. memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
  435. if (keylen == AES_KEYSIZE_256)
  436. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
  437. else if (keylen == AES_KEYSIZE_192)
  438. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
  439. else
  440. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
  441. memcpy_toio(keystart, key, keylen);
  442. }
  443. static bool s5p_is_sg_aligned(struct scatterlist *sg)
  444. {
  445. while (sg) {
  446. if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
  447. return false;
  448. sg = sg_next(sg);
  449. }
  450. return true;
  451. }
  452. static int s5p_set_indata_start(struct s5p_aes_dev *dev,
  453. struct ablkcipher_request *req)
  454. {
  455. struct scatterlist *sg;
  456. int err;
  457. dev->sg_src_cpy = NULL;
  458. sg = req->src;
  459. if (!s5p_is_sg_aligned(sg)) {
  460. dev_dbg(dev->dev,
  461. "At least one unaligned source scatter list, making a copy\n");
  462. err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
  463. if (err)
  464. return err;
  465. sg = dev->sg_src_cpy;
  466. }
  467. err = s5p_set_indata(dev, sg);
  468. if (err) {
  469. s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
  470. return err;
  471. }
  472. return 0;
  473. }
  474. static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
  475. struct ablkcipher_request *req)
  476. {
  477. struct scatterlist *sg;
  478. int err;
  479. dev->sg_dst_cpy = NULL;
  480. sg = req->dst;
  481. if (!s5p_is_sg_aligned(sg)) {
  482. dev_dbg(dev->dev,
  483. "At least one unaligned dest scatter list, making a copy\n");
  484. err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
  485. if (err)
  486. return err;
  487. sg = dev->sg_dst_cpy;
  488. }
  489. err = s5p_set_outdata(dev, sg);
  490. if (err) {
  491. s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
  492. return err;
  493. }
  494. return 0;
  495. }
  496. static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
  497. {
  498. struct ablkcipher_request *req = dev->req;
  499. uint32_t aes_control;
  500. unsigned long flags;
  501. int err;
  502. aes_control = SSS_AES_KEY_CHANGE_MODE;
  503. if (mode & FLAGS_AES_DECRYPT)
  504. aes_control |= SSS_AES_MODE_DECRYPT;
  505. if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
  506. aes_control |= SSS_AES_CHAIN_MODE_CBC;
  507. else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
  508. aes_control |= SSS_AES_CHAIN_MODE_CTR;
  509. if (dev->ctx->keylen == AES_KEYSIZE_192)
  510. aes_control |= SSS_AES_KEY_SIZE_192;
  511. else if (dev->ctx->keylen == AES_KEYSIZE_256)
  512. aes_control |= SSS_AES_KEY_SIZE_256;
  513. aes_control |= SSS_AES_FIFO_MODE;
  514. /* as a variant it is possible to use byte swapping on DMA side */
  515. aes_control |= SSS_AES_BYTESWAP_DI
  516. | SSS_AES_BYTESWAP_DO
  517. | SSS_AES_BYTESWAP_IV
  518. | SSS_AES_BYTESWAP_KEY
  519. | SSS_AES_BYTESWAP_CNT;
  520. spin_lock_irqsave(&dev->lock, flags);
  521. SSS_WRITE(dev, FCINTENCLR,
  522. SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
  523. SSS_WRITE(dev, FCFIFOCTRL, 0x00);
  524. err = s5p_set_indata_start(dev, req);
  525. if (err)
  526. goto indata_error;
  527. err = s5p_set_outdata_start(dev, req);
  528. if (err)
  529. goto outdata_error;
  530. SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
  531. s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
  532. s5p_set_dma_indata(dev, dev->sg_src);
  533. s5p_set_dma_outdata(dev, dev->sg_dst);
  534. SSS_WRITE(dev, FCINTENSET,
  535. SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
  536. spin_unlock_irqrestore(&dev->lock, flags);
  537. return;
  538. outdata_error:
  539. s5p_unset_indata(dev);
  540. indata_error:
  541. s5p_sg_done(dev);
  542. dev->busy = false;
  543. spin_unlock_irqrestore(&dev->lock, flags);
  544. s5p_aes_complete(dev, err);
  545. }
  546. static void s5p_tasklet_cb(unsigned long data)
  547. {
  548. struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
  549. struct crypto_async_request *async_req, *backlog;
  550. struct s5p_aes_reqctx *reqctx;
  551. unsigned long flags;
  552. spin_lock_irqsave(&dev->lock, flags);
  553. backlog = crypto_get_backlog(&dev->queue);
  554. async_req = crypto_dequeue_request(&dev->queue);
  555. if (!async_req) {
  556. dev->busy = false;
  557. spin_unlock_irqrestore(&dev->lock, flags);
  558. return;
  559. }
  560. spin_unlock_irqrestore(&dev->lock, flags);
  561. if (backlog)
  562. backlog->complete(backlog, -EINPROGRESS);
  563. dev->req = ablkcipher_request_cast(async_req);
  564. dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
  565. reqctx = ablkcipher_request_ctx(dev->req);
  566. s5p_aes_crypt_start(dev, reqctx->mode);
  567. }
  568. static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
  569. struct ablkcipher_request *req)
  570. {
  571. unsigned long flags;
  572. int err;
  573. spin_lock_irqsave(&dev->lock, flags);
  574. err = ablkcipher_enqueue_request(&dev->queue, req);
  575. if (dev->busy) {
  576. spin_unlock_irqrestore(&dev->lock, flags);
  577. goto exit;
  578. }
  579. dev->busy = true;
  580. spin_unlock_irqrestore(&dev->lock, flags);
  581. tasklet_schedule(&dev->tasklet);
  582. exit:
  583. return err;
  584. }
  585. static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  586. {
  587. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  588. struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
  589. struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  590. struct s5p_aes_dev *dev = ctx->dev;
  591. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  592. dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
  593. return -EINVAL;
  594. }
  595. reqctx->mode = mode;
  596. return s5p_aes_handle_req(dev, req);
  597. }
  598. static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
  599. const uint8_t *key, unsigned int keylen)
  600. {
  601. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  602. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  603. if (keylen != AES_KEYSIZE_128 &&
  604. keylen != AES_KEYSIZE_192 &&
  605. keylen != AES_KEYSIZE_256)
  606. return -EINVAL;
  607. memcpy(ctx->aes_key, key, keylen);
  608. ctx->keylen = keylen;
  609. return 0;
  610. }
  611. static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
  612. {
  613. return s5p_aes_crypt(req, 0);
  614. }
  615. static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
  616. {
  617. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
  618. }
  619. static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
  620. {
  621. return s5p_aes_crypt(req, FLAGS_AES_CBC);
  622. }
  623. static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
  624. {
  625. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
  626. }
  627. static int s5p_aes_cra_init(struct crypto_tfm *tfm)
  628. {
  629. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  630. ctx->dev = s5p_dev;
  631. tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
  632. return 0;
  633. }
  634. static struct crypto_alg algs[] = {
  635. {
  636. .cra_name = "ecb(aes)",
  637. .cra_driver_name = "ecb-aes-s5p",
  638. .cra_priority = 100,
  639. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  640. CRYPTO_ALG_ASYNC |
  641. CRYPTO_ALG_KERN_DRIVER_ONLY,
  642. .cra_blocksize = AES_BLOCK_SIZE,
  643. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  644. .cra_alignmask = 0x0f,
  645. .cra_type = &crypto_ablkcipher_type,
  646. .cra_module = THIS_MODULE,
  647. .cra_init = s5p_aes_cra_init,
  648. .cra_u.ablkcipher = {
  649. .min_keysize = AES_MIN_KEY_SIZE,
  650. .max_keysize = AES_MAX_KEY_SIZE,
  651. .setkey = s5p_aes_setkey,
  652. .encrypt = s5p_aes_ecb_encrypt,
  653. .decrypt = s5p_aes_ecb_decrypt,
  654. }
  655. },
  656. {
  657. .cra_name = "cbc(aes)",
  658. .cra_driver_name = "cbc-aes-s5p",
  659. .cra_priority = 100,
  660. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  661. CRYPTO_ALG_ASYNC |
  662. CRYPTO_ALG_KERN_DRIVER_ONLY,
  663. .cra_blocksize = AES_BLOCK_SIZE,
  664. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  665. .cra_alignmask = 0x0f,
  666. .cra_type = &crypto_ablkcipher_type,
  667. .cra_module = THIS_MODULE,
  668. .cra_init = s5p_aes_cra_init,
  669. .cra_u.ablkcipher = {
  670. .min_keysize = AES_MIN_KEY_SIZE,
  671. .max_keysize = AES_MAX_KEY_SIZE,
  672. .ivsize = AES_BLOCK_SIZE,
  673. .setkey = s5p_aes_setkey,
  674. .encrypt = s5p_aes_cbc_encrypt,
  675. .decrypt = s5p_aes_cbc_decrypt,
  676. }
  677. },
  678. };
  679. static int s5p_aes_probe(struct platform_device *pdev)
  680. {
  681. struct device *dev = &pdev->dev;
  682. int i, j, err = -ENODEV;
  683. struct samsung_aes_variant *variant;
  684. struct s5p_aes_dev *pdata;
  685. struct resource *res;
  686. if (s5p_dev)
  687. return -EEXIST;
  688. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  689. if (!pdata)
  690. return -ENOMEM;
  691. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  692. pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
  693. if (IS_ERR(pdata->ioaddr))
  694. return PTR_ERR(pdata->ioaddr);
  695. variant = find_s5p_sss_version(pdev);
  696. pdata->clk = devm_clk_get(dev, "secss");
  697. if (IS_ERR(pdata->clk)) {
  698. dev_err(dev, "failed to find secss clock source\n");
  699. return -ENOENT;
  700. }
  701. err = clk_prepare_enable(pdata->clk);
  702. if (err < 0) {
  703. dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
  704. return err;
  705. }
  706. spin_lock_init(&pdata->lock);
  707. pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
  708. pdata->irq_fc = platform_get_irq(pdev, 0);
  709. if (pdata->irq_fc < 0) {
  710. err = pdata->irq_fc;
  711. dev_warn(dev, "feed control interrupt is not available.\n");
  712. goto err_irq;
  713. }
  714. err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
  715. s5p_aes_interrupt, IRQF_ONESHOT,
  716. pdev->name, pdev);
  717. if (err < 0) {
  718. dev_warn(dev, "feed control interrupt is not available.\n");
  719. goto err_irq;
  720. }
  721. pdata->busy = false;
  722. pdata->dev = dev;
  723. platform_set_drvdata(pdev, pdata);
  724. s5p_dev = pdata;
  725. tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
  726. crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
  727. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  728. err = crypto_register_alg(&algs[i]);
  729. if (err)
  730. goto err_algs;
  731. }
  732. dev_info(dev, "s5p-sss driver registered\n");
  733. return 0;
  734. err_algs:
  735. dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
  736. for (j = 0; j < i; j++)
  737. crypto_unregister_alg(&algs[j]);
  738. tasklet_kill(&pdata->tasklet);
  739. err_irq:
  740. clk_disable_unprepare(pdata->clk);
  741. s5p_dev = NULL;
  742. return err;
  743. }
  744. static int s5p_aes_remove(struct platform_device *pdev)
  745. {
  746. struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
  747. int i;
  748. if (!pdata)
  749. return -ENODEV;
  750. for (i = 0; i < ARRAY_SIZE(algs); i++)
  751. crypto_unregister_alg(&algs[i]);
  752. tasklet_kill(&pdata->tasklet);
  753. clk_disable_unprepare(pdata->clk);
  754. s5p_dev = NULL;
  755. return 0;
  756. }
  757. static struct platform_driver s5p_aes_crypto = {
  758. .probe = s5p_aes_probe,
  759. .remove = s5p_aes_remove,
  760. .driver = {
  761. .name = "s5p-secss",
  762. .of_match_table = s5p_sss_dt_match,
  763. },
  764. };
  765. module_platform_driver(s5p_aes_crypto);
  766. MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
  767. MODULE_LICENSE("GPL v2");
  768. MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");