caamhash.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_first_dma;
  96. dma_addr_t sh_desc_fin_dma;
  97. dma_addr_t sh_desc_digest_dma;
  98. struct device *jrdev;
  99. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  100. int ctx_len;
  101. struct alginfo adata;
  102. };
  103. /* ahash state */
  104. struct caam_hash_state {
  105. dma_addr_t buf_dma;
  106. dma_addr_t ctx_dma;
  107. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  108. int buflen_0;
  109. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  110. int buflen_1;
  111. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  112. int (*update)(struct ahash_request *req);
  113. int (*final)(struct ahash_request *req);
  114. int (*finup)(struct ahash_request *req);
  115. int current_buf;
  116. };
  117. struct caam_export_state {
  118. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int buflen;
  121. int (*update)(struct ahash_request *req);
  122. int (*final)(struct ahash_request *req);
  123. int (*finup)(struct ahash_request *req);
  124. };
  125. static inline void switch_buf(struct caam_hash_state *state)
  126. {
  127. state->current_buf ^= 1;
  128. }
  129. static inline u8 *current_buf(struct caam_hash_state *state)
  130. {
  131. return state->current_buf ? state->buf_1 : state->buf_0;
  132. }
  133. static inline u8 *alt_buf(struct caam_hash_state *state)
  134. {
  135. return state->current_buf ? state->buf_0 : state->buf_1;
  136. }
  137. static inline int *current_buflen(struct caam_hash_state *state)
  138. {
  139. return state->current_buf ? &state->buflen_1 : &state->buflen_0;
  140. }
  141. static inline int *alt_buflen(struct caam_hash_state *state)
  142. {
  143. return state->current_buf ? &state->buflen_0 : &state->buflen_1;
  144. }
  145. /* Common job descriptor seq in/out ptr routines */
  146. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  147. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  148. struct caam_hash_state *state,
  149. int ctx_len)
  150. {
  151. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  152. ctx_len, DMA_FROM_DEVICE);
  153. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  154. dev_err(jrdev, "unable to map ctx\n");
  155. state->ctx_dma = 0;
  156. return -ENOMEM;
  157. }
  158. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  159. return 0;
  160. }
  161. /* Map req->result, and append seq_out_ptr command that points to it */
  162. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  163. u8 *result, int digestsize)
  164. {
  165. dma_addr_t dst_dma;
  166. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  167. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  168. return dst_dma;
  169. }
  170. /* Map current buffer in state (if length > 0) and put it in link table */
  171. static inline int buf_map_to_sec4_sg(struct device *jrdev,
  172. struct sec4_sg_entry *sec4_sg,
  173. struct caam_hash_state *state)
  174. {
  175. int buflen = *current_buflen(state);
  176. if (!buflen)
  177. return 0;
  178. state->buf_dma = dma_map_single(jrdev, current_buf(state), buflen,
  179. DMA_TO_DEVICE);
  180. if (dma_mapping_error(jrdev, state->buf_dma)) {
  181. dev_err(jrdev, "unable to map buf\n");
  182. state->buf_dma = 0;
  183. return -ENOMEM;
  184. }
  185. dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
  186. return 0;
  187. }
  188. /* Map state->caam_ctx, and add it to link table */
  189. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  190. struct caam_hash_state *state, int ctx_len,
  191. struct sec4_sg_entry *sec4_sg, u32 flag)
  192. {
  193. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  194. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  195. dev_err(jrdev, "unable to map ctx\n");
  196. state->ctx_dma = 0;
  197. return -ENOMEM;
  198. }
  199. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  200. return 0;
  201. }
  202. /*
  203. * For ahash update, final and finup (import_ctx = true)
  204. * import context, read and write to seqout
  205. * For ahash firsts and digest (import_ctx = false)
  206. * read and write to seqout
  207. */
  208. static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
  209. struct caam_hash_ctx *ctx, bool import_ctx)
  210. {
  211. u32 op = ctx->adata.algtype;
  212. u32 *skip_key_load;
  213. init_sh_desc(desc, HDR_SHARE_SERIAL);
  214. /* Append key if it has been set; ahash update excluded */
  215. if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
  216. /* Skip key loading if already shared */
  217. skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  218. JUMP_COND_SHRD);
  219. append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
  220. ctx->adata.keylen, CLASS_2 |
  221. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  222. set_jump_tgt_here(desc, skip_key_load);
  223. op |= OP_ALG_AAI_HMAC_PRECOMP;
  224. }
  225. /* If needed, import context from software */
  226. if (import_ctx)
  227. append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
  228. LDST_SRCDST_BYTE_CONTEXT);
  229. /* Class 2 operation */
  230. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  231. /*
  232. * Load from buf and/or src and write to req->result or state->context
  233. * Calculate remaining bytes to read
  234. */
  235. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  236. /* Read remaining bytes */
  237. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  238. FIFOLD_TYPE_MSG | KEY_VLF);
  239. /* Store class2 context bytes */
  240. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  241. LDST_SRCDST_BYTE_CONTEXT);
  242. }
  243. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  244. {
  245. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  246. int digestsize = crypto_ahash_digestsize(ahash);
  247. struct device *jrdev = ctx->jrdev;
  248. u32 *desc;
  249. /* ahash_update shared descriptor */
  250. desc = ctx->sh_desc_update;
  251. ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true);
  252. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
  253. desc_bytes(desc), DMA_TO_DEVICE);
  254. #ifdef DEBUG
  255. print_hex_dump(KERN_ERR,
  256. "ahash update shdesc@"__stringify(__LINE__)": ",
  257. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  258. #endif
  259. /* ahash_update_first shared descriptor */
  260. desc = ctx->sh_desc_update_first;
  261. ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false);
  262. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
  263. desc_bytes(desc), DMA_TO_DEVICE);
  264. #ifdef DEBUG
  265. print_hex_dump(KERN_ERR,
  266. "ahash update first shdesc@"__stringify(__LINE__)": ",
  267. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  268. #endif
  269. /* ahash_final shared descriptor */
  270. desc = ctx->sh_desc_fin;
  271. ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true);
  272. dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
  273. desc_bytes(desc), DMA_TO_DEVICE);
  274. #ifdef DEBUG
  275. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  276. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  277. desc_bytes(desc), 1);
  278. #endif
  279. /* ahash_digest shared descriptor */
  280. desc = ctx->sh_desc_digest;
  281. ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false);
  282. dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
  283. desc_bytes(desc), DMA_TO_DEVICE);
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR,
  286. "ahash digest shdesc@"__stringify(__LINE__)": ",
  287. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  288. desc_bytes(desc), 1);
  289. #endif
  290. return 0;
  291. }
  292. /* Digest hash size if it is too large */
  293. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  294. u32 *keylen, u8 *key_out, u32 digestsize)
  295. {
  296. struct device *jrdev = ctx->jrdev;
  297. u32 *desc;
  298. struct split_key_result result;
  299. dma_addr_t src_dma, dst_dma;
  300. int ret;
  301. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  302. if (!desc) {
  303. dev_err(jrdev, "unable to allocate key input memory\n");
  304. return -ENOMEM;
  305. }
  306. init_job_desc(desc, 0);
  307. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, src_dma)) {
  310. dev_err(jrdev, "unable to map key input memory\n");
  311. kfree(desc);
  312. return -ENOMEM;
  313. }
  314. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  315. DMA_FROM_DEVICE);
  316. if (dma_mapping_error(jrdev, dst_dma)) {
  317. dev_err(jrdev, "unable to map key output memory\n");
  318. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  319. kfree(desc);
  320. return -ENOMEM;
  321. }
  322. /* Job descriptor to perform unkeyed hash on key_in */
  323. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  324. OP_ALG_AS_INITFINAL);
  325. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  326. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  327. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  328. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  329. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  330. LDST_SRCDST_BYTE_CONTEXT);
  331. #ifdef DEBUG
  332. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  333. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  334. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  335. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  336. #endif
  337. result.err = 0;
  338. init_completion(&result.completion);
  339. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  340. if (!ret) {
  341. /* in progress */
  342. wait_for_completion_interruptible(&result.completion);
  343. ret = result.err;
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR,
  346. "digested key@"__stringify(__LINE__)": ",
  347. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  348. digestsize, 1);
  349. #endif
  350. }
  351. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  352. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  353. *keylen = digestsize;
  354. kfree(desc);
  355. return ret;
  356. }
  357. static int ahash_setkey(struct crypto_ahash *ahash,
  358. const u8 *key, unsigned int keylen)
  359. {
  360. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  361. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  362. int digestsize = crypto_ahash_digestsize(ahash);
  363. int ret;
  364. u8 *hashed_key = NULL;
  365. #ifdef DEBUG
  366. printk(KERN_ERR "keylen %d\n", keylen);
  367. #endif
  368. if (keylen > blocksize) {
  369. hashed_key = kmalloc_array(digestsize,
  370. sizeof(*hashed_key),
  371. GFP_KERNEL | GFP_DMA);
  372. if (!hashed_key)
  373. return -ENOMEM;
  374. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  375. digestsize);
  376. if (ret)
  377. goto bad_free_key;
  378. key = hashed_key;
  379. }
  380. ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen,
  381. CAAM_MAX_HASH_KEY_SIZE);
  382. if (ret)
  383. goto bad_free_key;
  384. #ifdef DEBUG
  385. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  386. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  387. ctx->adata.keylen_pad, 1);
  388. #endif
  389. kfree(hashed_key);
  390. return ahash_set_sh_desc(ahash);
  391. bad_free_key:
  392. kfree(hashed_key);
  393. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  394. return -EINVAL;
  395. }
  396. /*
  397. * ahash_edesc - s/w-extended ahash descriptor
  398. * @dst_dma: physical mapped address of req->result
  399. * @sec4_sg_dma: physical mapped address of h/w link table
  400. * @src_nents: number of segments in input scatterlist
  401. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  402. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  403. * @sec4_sg: h/w link table
  404. */
  405. struct ahash_edesc {
  406. dma_addr_t dst_dma;
  407. dma_addr_t sec4_sg_dma;
  408. int src_nents;
  409. int sec4_sg_bytes;
  410. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  411. struct sec4_sg_entry sec4_sg[0];
  412. };
  413. static inline void ahash_unmap(struct device *dev,
  414. struct ahash_edesc *edesc,
  415. struct ahash_request *req, int dst_len)
  416. {
  417. struct caam_hash_state *state = ahash_request_ctx(req);
  418. if (edesc->src_nents)
  419. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  420. if (edesc->dst_dma)
  421. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  422. if (edesc->sec4_sg_bytes)
  423. dma_unmap_single(dev, edesc->sec4_sg_dma,
  424. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  425. if (state->buf_dma) {
  426. dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
  427. DMA_TO_DEVICE);
  428. state->buf_dma = 0;
  429. }
  430. }
  431. static inline void ahash_unmap_ctx(struct device *dev,
  432. struct ahash_edesc *edesc,
  433. struct ahash_request *req, int dst_len, u32 flag)
  434. {
  435. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  436. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  437. struct caam_hash_state *state = ahash_request_ctx(req);
  438. if (state->ctx_dma) {
  439. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  440. state->ctx_dma = 0;
  441. }
  442. ahash_unmap(dev, edesc, req, dst_len);
  443. }
  444. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  445. void *context)
  446. {
  447. struct ahash_request *req = context;
  448. struct ahash_edesc *edesc;
  449. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  450. int digestsize = crypto_ahash_digestsize(ahash);
  451. #ifdef DEBUG
  452. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  453. struct caam_hash_state *state = ahash_request_ctx(req);
  454. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  455. #endif
  456. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  457. if (err)
  458. caam_jr_strstatus(jrdev, err);
  459. ahash_unmap(jrdev, edesc, req, digestsize);
  460. kfree(edesc);
  461. #ifdef DEBUG
  462. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  463. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  464. ctx->ctx_len, 1);
  465. if (req->result)
  466. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  467. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  468. digestsize, 1);
  469. #endif
  470. req->base.complete(&req->base, err);
  471. }
  472. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  473. void *context)
  474. {
  475. struct ahash_request *req = context;
  476. struct ahash_edesc *edesc;
  477. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  478. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  479. struct caam_hash_state *state = ahash_request_ctx(req);
  480. #ifdef DEBUG
  481. int digestsize = crypto_ahash_digestsize(ahash);
  482. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  483. #endif
  484. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  485. if (err)
  486. caam_jr_strstatus(jrdev, err);
  487. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  488. switch_buf(state);
  489. kfree(edesc);
  490. #ifdef DEBUG
  491. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  492. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  493. ctx->ctx_len, 1);
  494. if (req->result)
  495. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  496. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  497. digestsize, 1);
  498. #endif
  499. req->base.complete(&req->base, err);
  500. }
  501. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  502. void *context)
  503. {
  504. struct ahash_request *req = context;
  505. struct ahash_edesc *edesc;
  506. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  507. int digestsize = crypto_ahash_digestsize(ahash);
  508. #ifdef DEBUG
  509. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  510. struct caam_hash_state *state = ahash_request_ctx(req);
  511. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  512. #endif
  513. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  514. if (err)
  515. caam_jr_strstatus(jrdev, err);
  516. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  517. kfree(edesc);
  518. #ifdef DEBUG
  519. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  520. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  521. ctx->ctx_len, 1);
  522. if (req->result)
  523. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  524. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  525. digestsize, 1);
  526. #endif
  527. req->base.complete(&req->base, err);
  528. }
  529. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  530. void *context)
  531. {
  532. struct ahash_request *req = context;
  533. struct ahash_edesc *edesc;
  534. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  535. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  536. struct caam_hash_state *state = ahash_request_ctx(req);
  537. #ifdef DEBUG
  538. int digestsize = crypto_ahash_digestsize(ahash);
  539. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  540. #endif
  541. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  542. if (err)
  543. caam_jr_strstatus(jrdev, err);
  544. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  545. switch_buf(state);
  546. kfree(edesc);
  547. #ifdef DEBUG
  548. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  549. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  550. ctx->ctx_len, 1);
  551. if (req->result)
  552. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  553. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  554. digestsize, 1);
  555. #endif
  556. req->base.complete(&req->base, err);
  557. }
  558. /*
  559. * Allocate an enhanced descriptor, which contains the hardware descriptor
  560. * and space for hardware scatter table containing sg_num entries.
  561. */
  562. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  563. int sg_num, u32 *sh_desc,
  564. dma_addr_t sh_desc_dma,
  565. gfp_t flags)
  566. {
  567. struct ahash_edesc *edesc;
  568. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  569. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  570. if (!edesc) {
  571. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  572. return NULL;
  573. }
  574. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  575. HDR_SHARE_DEFER | HDR_REVERSE);
  576. return edesc;
  577. }
  578. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  579. struct ahash_edesc *edesc,
  580. struct ahash_request *req, int nents,
  581. unsigned int first_sg,
  582. unsigned int first_bytes, size_t to_hash)
  583. {
  584. dma_addr_t src_dma;
  585. u32 options;
  586. if (nents > 1 || first_sg) {
  587. struct sec4_sg_entry *sg = edesc->sec4_sg;
  588. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  589. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  590. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  591. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  592. dev_err(ctx->jrdev, "unable to map S/G table\n");
  593. return -ENOMEM;
  594. }
  595. edesc->sec4_sg_bytes = sgsize;
  596. edesc->sec4_sg_dma = src_dma;
  597. options = LDST_SGF;
  598. } else {
  599. src_dma = sg_dma_address(req->src);
  600. options = 0;
  601. }
  602. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  603. options);
  604. return 0;
  605. }
  606. /* submit update job descriptor */
  607. static int ahash_update_ctx(struct ahash_request *req)
  608. {
  609. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  610. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  611. struct caam_hash_state *state = ahash_request_ctx(req);
  612. struct device *jrdev = ctx->jrdev;
  613. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  614. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  615. u8 *buf = current_buf(state);
  616. int *buflen = current_buflen(state);
  617. u8 *next_buf = alt_buf(state);
  618. int *next_buflen = alt_buflen(state), last_buflen;
  619. int in_len = *buflen + req->nbytes, to_hash;
  620. u32 *desc;
  621. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  622. struct ahash_edesc *edesc;
  623. int ret = 0;
  624. last_buflen = *next_buflen;
  625. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  626. to_hash = in_len - *next_buflen;
  627. if (to_hash) {
  628. src_nents = sg_nents_for_len(req->src,
  629. req->nbytes - (*next_buflen));
  630. if (src_nents < 0) {
  631. dev_err(jrdev, "Invalid number of src SG.\n");
  632. return src_nents;
  633. }
  634. if (src_nents) {
  635. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  636. DMA_TO_DEVICE);
  637. if (!mapped_nents) {
  638. dev_err(jrdev, "unable to DMA map source\n");
  639. return -ENOMEM;
  640. }
  641. } else {
  642. mapped_nents = 0;
  643. }
  644. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  645. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  646. sizeof(struct sec4_sg_entry);
  647. /*
  648. * allocate space for base edesc and hw desc commands,
  649. * link tables
  650. */
  651. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  652. ctx->sh_desc_update,
  653. ctx->sh_desc_update_dma, flags);
  654. if (!edesc) {
  655. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  656. return -ENOMEM;
  657. }
  658. edesc->src_nents = src_nents;
  659. edesc->sec4_sg_bytes = sec4_sg_bytes;
  660. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  661. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  662. if (ret)
  663. goto unmap_ctx;
  664. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  665. if (ret)
  666. goto unmap_ctx;
  667. if (mapped_nents) {
  668. sg_to_sec4_sg_last(req->src, mapped_nents,
  669. edesc->sec4_sg + sec4_sg_src_index,
  670. 0);
  671. if (*next_buflen)
  672. scatterwalk_map_and_copy(next_buf, req->src,
  673. to_hash - *buflen,
  674. *next_buflen, 0);
  675. } else {
  676. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  677. cpu_to_caam32(SEC4_SG_LEN_FIN);
  678. }
  679. desc = edesc->hw_desc;
  680. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  681. sec4_sg_bytes,
  682. DMA_TO_DEVICE);
  683. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  684. dev_err(jrdev, "unable to map S/G table\n");
  685. ret = -ENOMEM;
  686. goto unmap_ctx;
  687. }
  688. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  689. to_hash, LDST_SGF);
  690. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  691. #ifdef DEBUG
  692. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  693. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  694. desc_bytes(desc), 1);
  695. #endif
  696. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  697. if (ret)
  698. goto unmap_ctx;
  699. ret = -EINPROGRESS;
  700. } else if (*next_buflen) {
  701. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  702. req->nbytes, 0);
  703. *buflen = *next_buflen;
  704. *next_buflen = last_buflen;
  705. }
  706. #ifdef DEBUG
  707. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  708. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  709. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  710. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  711. *next_buflen, 1);
  712. #endif
  713. return ret;
  714. unmap_ctx:
  715. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  716. kfree(edesc);
  717. return ret;
  718. }
  719. static int ahash_final_ctx(struct ahash_request *req)
  720. {
  721. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  722. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  723. struct caam_hash_state *state = ahash_request_ctx(req);
  724. struct device *jrdev = ctx->jrdev;
  725. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  726. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  727. int buflen = *current_buflen(state);
  728. u32 *desc;
  729. int sec4_sg_bytes, sec4_sg_src_index;
  730. int digestsize = crypto_ahash_digestsize(ahash);
  731. struct ahash_edesc *edesc;
  732. int ret;
  733. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  734. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  735. /* allocate space for base edesc and hw desc commands, link tables */
  736. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  737. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  738. flags);
  739. if (!edesc)
  740. return -ENOMEM;
  741. desc = edesc->hw_desc;
  742. edesc->sec4_sg_bytes = sec4_sg_bytes;
  743. edesc->src_nents = 0;
  744. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  745. edesc->sec4_sg, DMA_TO_DEVICE);
  746. if (ret)
  747. goto unmap_ctx;
  748. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  749. if (ret)
  750. goto unmap_ctx;
  751. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  752. cpu_to_caam32(SEC4_SG_LEN_FIN);
  753. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  754. sec4_sg_bytes, DMA_TO_DEVICE);
  755. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  756. dev_err(jrdev, "unable to map S/G table\n");
  757. ret = -ENOMEM;
  758. goto unmap_ctx;
  759. }
  760. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  761. LDST_SGF);
  762. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  763. digestsize);
  764. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  765. dev_err(jrdev, "unable to map dst\n");
  766. ret = -ENOMEM;
  767. goto unmap_ctx;
  768. }
  769. #ifdef DEBUG
  770. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  771. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  772. #endif
  773. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  774. if (ret)
  775. goto unmap_ctx;
  776. return -EINPROGRESS;
  777. unmap_ctx:
  778. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  779. kfree(edesc);
  780. return ret;
  781. }
  782. static int ahash_finup_ctx(struct ahash_request *req)
  783. {
  784. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  785. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  786. struct caam_hash_state *state = ahash_request_ctx(req);
  787. struct device *jrdev = ctx->jrdev;
  788. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  789. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  790. int buflen = *current_buflen(state);
  791. u32 *desc;
  792. int sec4_sg_src_index;
  793. int src_nents, mapped_nents;
  794. int digestsize = crypto_ahash_digestsize(ahash);
  795. struct ahash_edesc *edesc;
  796. int ret;
  797. src_nents = sg_nents_for_len(req->src, req->nbytes);
  798. if (src_nents < 0) {
  799. dev_err(jrdev, "Invalid number of src SG.\n");
  800. return src_nents;
  801. }
  802. if (src_nents) {
  803. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  804. DMA_TO_DEVICE);
  805. if (!mapped_nents) {
  806. dev_err(jrdev, "unable to DMA map source\n");
  807. return -ENOMEM;
  808. }
  809. } else {
  810. mapped_nents = 0;
  811. }
  812. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  813. /* allocate space for base edesc and hw desc commands, link tables */
  814. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  815. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  816. flags);
  817. if (!edesc) {
  818. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  819. return -ENOMEM;
  820. }
  821. desc = edesc->hw_desc;
  822. edesc->src_nents = src_nents;
  823. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  824. edesc->sec4_sg, DMA_TO_DEVICE);
  825. if (ret)
  826. goto unmap_ctx;
  827. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  828. if (ret)
  829. goto unmap_ctx;
  830. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  831. sec4_sg_src_index, ctx->ctx_len + buflen,
  832. req->nbytes);
  833. if (ret)
  834. goto unmap_ctx;
  835. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  836. digestsize);
  837. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  838. dev_err(jrdev, "unable to map dst\n");
  839. ret = -ENOMEM;
  840. goto unmap_ctx;
  841. }
  842. #ifdef DEBUG
  843. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  844. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  845. #endif
  846. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  847. if (ret)
  848. goto unmap_ctx;
  849. return -EINPROGRESS;
  850. unmap_ctx:
  851. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  852. kfree(edesc);
  853. return ret;
  854. }
  855. static int ahash_digest(struct ahash_request *req)
  856. {
  857. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  858. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  859. struct caam_hash_state *state = ahash_request_ctx(req);
  860. struct device *jrdev = ctx->jrdev;
  861. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  862. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  863. u32 *desc;
  864. int digestsize = crypto_ahash_digestsize(ahash);
  865. int src_nents, mapped_nents;
  866. struct ahash_edesc *edesc;
  867. int ret;
  868. state->buf_dma = 0;
  869. src_nents = sg_nents_for_len(req->src, req->nbytes);
  870. if (src_nents < 0) {
  871. dev_err(jrdev, "Invalid number of src SG.\n");
  872. return src_nents;
  873. }
  874. if (src_nents) {
  875. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  876. DMA_TO_DEVICE);
  877. if (!mapped_nents) {
  878. dev_err(jrdev, "unable to map source for DMA\n");
  879. return -ENOMEM;
  880. }
  881. } else {
  882. mapped_nents = 0;
  883. }
  884. /* allocate space for base edesc and hw desc commands, link tables */
  885. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  886. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  887. flags);
  888. if (!edesc) {
  889. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  890. return -ENOMEM;
  891. }
  892. edesc->src_nents = src_nents;
  893. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  894. req->nbytes);
  895. if (ret) {
  896. ahash_unmap(jrdev, edesc, req, digestsize);
  897. kfree(edesc);
  898. return ret;
  899. }
  900. desc = edesc->hw_desc;
  901. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  902. digestsize);
  903. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  904. dev_err(jrdev, "unable to map dst\n");
  905. ahash_unmap(jrdev, edesc, req, digestsize);
  906. kfree(edesc);
  907. return -ENOMEM;
  908. }
  909. #ifdef DEBUG
  910. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  911. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  912. #endif
  913. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  914. if (!ret) {
  915. ret = -EINPROGRESS;
  916. } else {
  917. ahash_unmap(jrdev, edesc, req, digestsize);
  918. kfree(edesc);
  919. }
  920. return ret;
  921. }
  922. /* submit ahash final if it the first job descriptor */
  923. static int ahash_final_no_ctx(struct ahash_request *req)
  924. {
  925. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  926. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  927. struct caam_hash_state *state = ahash_request_ctx(req);
  928. struct device *jrdev = ctx->jrdev;
  929. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  930. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  931. u8 *buf = current_buf(state);
  932. int buflen = *current_buflen(state);
  933. u32 *desc;
  934. int digestsize = crypto_ahash_digestsize(ahash);
  935. struct ahash_edesc *edesc;
  936. int ret;
  937. /* allocate space for base edesc and hw desc commands, link tables */
  938. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  939. ctx->sh_desc_digest_dma, flags);
  940. if (!edesc)
  941. return -ENOMEM;
  942. desc = edesc->hw_desc;
  943. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  944. if (dma_mapping_error(jrdev, state->buf_dma)) {
  945. dev_err(jrdev, "unable to map src\n");
  946. goto unmap;
  947. }
  948. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  949. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  950. digestsize);
  951. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  952. dev_err(jrdev, "unable to map dst\n");
  953. goto unmap;
  954. }
  955. edesc->src_nents = 0;
  956. #ifdef DEBUG
  957. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  958. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  959. #endif
  960. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  961. if (!ret) {
  962. ret = -EINPROGRESS;
  963. } else {
  964. ahash_unmap(jrdev, edesc, req, digestsize);
  965. kfree(edesc);
  966. }
  967. return ret;
  968. unmap:
  969. ahash_unmap(jrdev, edesc, req, digestsize);
  970. kfree(edesc);
  971. return -ENOMEM;
  972. }
  973. /* submit ahash update if it the first job descriptor after update */
  974. static int ahash_update_no_ctx(struct ahash_request *req)
  975. {
  976. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  977. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  978. struct caam_hash_state *state = ahash_request_ctx(req);
  979. struct device *jrdev = ctx->jrdev;
  980. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  981. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  982. u8 *buf = current_buf(state);
  983. int *buflen = current_buflen(state);
  984. u8 *next_buf = alt_buf(state);
  985. int *next_buflen = alt_buflen(state);
  986. int in_len = *buflen + req->nbytes, to_hash;
  987. int sec4_sg_bytes, src_nents, mapped_nents;
  988. struct ahash_edesc *edesc;
  989. u32 *desc;
  990. int ret = 0;
  991. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  992. to_hash = in_len - *next_buflen;
  993. if (to_hash) {
  994. src_nents = sg_nents_for_len(req->src,
  995. req->nbytes - *next_buflen);
  996. if (src_nents < 0) {
  997. dev_err(jrdev, "Invalid number of src SG.\n");
  998. return src_nents;
  999. }
  1000. if (src_nents) {
  1001. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1002. DMA_TO_DEVICE);
  1003. if (!mapped_nents) {
  1004. dev_err(jrdev, "unable to DMA map source\n");
  1005. return -ENOMEM;
  1006. }
  1007. } else {
  1008. mapped_nents = 0;
  1009. }
  1010. sec4_sg_bytes = (1 + mapped_nents) *
  1011. sizeof(struct sec4_sg_entry);
  1012. /*
  1013. * allocate space for base edesc and hw desc commands,
  1014. * link tables
  1015. */
  1016. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1017. ctx->sh_desc_update_first,
  1018. ctx->sh_desc_update_first_dma,
  1019. flags);
  1020. if (!edesc) {
  1021. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1022. return -ENOMEM;
  1023. }
  1024. edesc->src_nents = src_nents;
  1025. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1026. edesc->dst_dma = 0;
  1027. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1028. if (ret)
  1029. goto unmap_ctx;
  1030. sg_to_sec4_sg_last(req->src, mapped_nents,
  1031. edesc->sec4_sg + 1, 0);
  1032. if (*next_buflen) {
  1033. scatterwalk_map_and_copy(next_buf, req->src,
  1034. to_hash - *buflen,
  1035. *next_buflen, 0);
  1036. }
  1037. desc = edesc->hw_desc;
  1038. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1039. sec4_sg_bytes,
  1040. DMA_TO_DEVICE);
  1041. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1042. dev_err(jrdev, "unable to map S/G table\n");
  1043. ret = -ENOMEM;
  1044. goto unmap_ctx;
  1045. }
  1046. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1047. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1048. if (ret)
  1049. goto unmap_ctx;
  1050. #ifdef DEBUG
  1051. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1052. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1053. desc_bytes(desc), 1);
  1054. #endif
  1055. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1056. if (ret)
  1057. goto unmap_ctx;
  1058. ret = -EINPROGRESS;
  1059. state->update = ahash_update_ctx;
  1060. state->finup = ahash_finup_ctx;
  1061. state->final = ahash_final_ctx;
  1062. } else if (*next_buflen) {
  1063. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1064. req->nbytes, 0);
  1065. *buflen = *next_buflen;
  1066. *next_buflen = 0;
  1067. }
  1068. #ifdef DEBUG
  1069. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1070. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1071. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1072. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1073. *next_buflen, 1);
  1074. #endif
  1075. return ret;
  1076. unmap_ctx:
  1077. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1078. kfree(edesc);
  1079. return ret;
  1080. }
  1081. /* submit ahash finup if it the first job descriptor after update */
  1082. static int ahash_finup_no_ctx(struct ahash_request *req)
  1083. {
  1084. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1085. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1086. struct caam_hash_state *state = ahash_request_ctx(req);
  1087. struct device *jrdev = ctx->jrdev;
  1088. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1089. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1090. int buflen = *current_buflen(state);
  1091. u32 *desc;
  1092. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1093. int digestsize = crypto_ahash_digestsize(ahash);
  1094. struct ahash_edesc *edesc;
  1095. int ret;
  1096. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1097. if (src_nents < 0) {
  1098. dev_err(jrdev, "Invalid number of src SG.\n");
  1099. return src_nents;
  1100. }
  1101. if (src_nents) {
  1102. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1103. DMA_TO_DEVICE);
  1104. if (!mapped_nents) {
  1105. dev_err(jrdev, "unable to DMA map source\n");
  1106. return -ENOMEM;
  1107. }
  1108. } else {
  1109. mapped_nents = 0;
  1110. }
  1111. sec4_sg_src_index = 2;
  1112. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1113. sizeof(struct sec4_sg_entry);
  1114. /* allocate space for base edesc and hw desc commands, link tables */
  1115. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1116. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1117. flags);
  1118. if (!edesc) {
  1119. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1120. return -ENOMEM;
  1121. }
  1122. desc = edesc->hw_desc;
  1123. edesc->src_nents = src_nents;
  1124. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1125. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1126. if (ret)
  1127. goto unmap;
  1128. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1129. req->nbytes);
  1130. if (ret) {
  1131. dev_err(jrdev, "unable to map S/G table\n");
  1132. goto unmap;
  1133. }
  1134. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1135. digestsize);
  1136. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1137. dev_err(jrdev, "unable to map dst\n");
  1138. goto unmap;
  1139. }
  1140. #ifdef DEBUG
  1141. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1142. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1143. #endif
  1144. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1145. if (!ret) {
  1146. ret = -EINPROGRESS;
  1147. } else {
  1148. ahash_unmap(jrdev, edesc, req, digestsize);
  1149. kfree(edesc);
  1150. }
  1151. return ret;
  1152. unmap:
  1153. ahash_unmap(jrdev, edesc, req, digestsize);
  1154. kfree(edesc);
  1155. return -ENOMEM;
  1156. }
  1157. /* submit first update job descriptor after init */
  1158. static int ahash_update_first(struct ahash_request *req)
  1159. {
  1160. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1161. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1162. struct caam_hash_state *state = ahash_request_ctx(req);
  1163. struct device *jrdev = ctx->jrdev;
  1164. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1165. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1166. u8 *next_buf = alt_buf(state);
  1167. int *next_buflen = alt_buflen(state);
  1168. int to_hash;
  1169. u32 *desc;
  1170. int src_nents, mapped_nents;
  1171. struct ahash_edesc *edesc;
  1172. int ret = 0;
  1173. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1174. 1);
  1175. to_hash = req->nbytes - *next_buflen;
  1176. if (to_hash) {
  1177. src_nents = sg_nents_for_len(req->src,
  1178. req->nbytes - *next_buflen);
  1179. if (src_nents < 0) {
  1180. dev_err(jrdev, "Invalid number of src SG.\n");
  1181. return src_nents;
  1182. }
  1183. if (src_nents) {
  1184. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1185. DMA_TO_DEVICE);
  1186. if (!mapped_nents) {
  1187. dev_err(jrdev, "unable to map source for DMA\n");
  1188. return -ENOMEM;
  1189. }
  1190. } else {
  1191. mapped_nents = 0;
  1192. }
  1193. /*
  1194. * allocate space for base edesc and hw desc commands,
  1195. * link tables
  1196. */
  1197. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1198. mapped_nents : 0,
  1199. ctx->sh_desc_update_first,
  1200. ctx->sh_desc_update_first_dma,
  1201. flags);
  1202. if (!edesc) {
  1203. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1204. return -ENOMEM;
  1205. }
  1206. edesc->src_nents = src_nents;
  1207. edesc->dst_dma = 0;
  1208. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1209. to_hash);
  1210. if (ret)
  1211. goto unmap_ctx;
  1212. if (*next_buflen)
  1213. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1214. *next_buflen, 0);
  1215. desc = edesc->hw_desc;
  1216. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1217. if (ret)
  1218. goto unmap_ctx;
  1219. #ifdef DEBUG
  1220. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1221. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1222. desc_bytes(desc), 1);
  1223. #endif
  1224. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1225. if (ret)
  1226. goto unmap_ctx;
  1227. ret = -EINPROGRESS;
  1228. state->update = ahash_update_ctx;
  1229. state->finup = ahash_finup_ctx;
  1230. state->final = ahash_final_ctx;
  1231. } else if (*next_buflen) {
  1232. state->update = ahash_update_no_ctx;
  1233. state->finup = ahash_finup_no_ctx;
  1234. state->final = ahash_final_no_ctx;
  1235. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1236. req->nbytes, 0);
  1237. switch_buf(state);
  1238. }
  1239. #ifdef DEBUG
  1240. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1241. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1242. *next_buflen, 1);
  1243. #endif
  1244. return ret;
  1245. unmap_ctx:
  1246. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1247. kfree(edesc);
  1248. return ret;
  1249. }
  1250. static int ahash_finup_first(struct ahash_request *req)
  1251. {
  1252. return ahash_digest(req);
  1253. }
  1254. static int ahash_init(struct ahash_request *req)
  1255. {
  1256. struct caam_hash_state *state = ahash_request_ctx(req);
  1257. state->update = ahash_update_first;
  1258. state->finup = ahash_finup_first;
  1259. state->final = ahash_final_no_ctx;
  1260. state->ctx_dma = 0;
  1261. state->current_buf = 0;
  1262. state->buf_dma = 0;
  1263. state->buflen_0 = 0;
  1264. state->buflen_1 = 0;
  1265. return 0;
  1266. }
  1267. static int ahash_update(struct ahash_request *req)
  1268. {
  1269. struct caam_hash_state *state = ahash_request_ctx(req);
  1270. return state->update(req);
  1271. }
  1272. static int ahash_finup(struct ahash_request *req)
  1273. {
  1274. struct caam_hash_state *state = ahash_request_ctx(req);
  1275. return state->finup(req);
  1276. }
  1277. static int ahash_final(struct ahash_request *req)
  1278. {
  1279. struct caam_hash_state *state = ahash_request_ctx(req);
  1280. return state->final(req);
  1281. }
  1282. static int ahash_export(struct ahash_request *req, void *out)
  1283. {
  1284. struct caam_hash_state *state = ahash_request_ctx(req);
  1285. struct caam_export_state *export = out;
  1286. int len;
  1287. u8 *buf;
  1288. if (state->current_buf) {
  1289. buf = state->buf_1;
  1290. len = state->buflen_1;
  1291. } else {
  1292. buf = state->buf_0;
  1293. len = state->buflen_0;
  1294. }
  1295. memcpy(export->buf, buf, len);
  1296. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1297. export->buflen = len;
  1298. export->update = state->update;
  1299. export->final = state->final;
  1300. export->finup = state->finup;
  1301. return 0;
  1302. }
  1303. static int ahash_import(struct ahash_request *req, const void *in)
  1304. {
  1305. struct caam_hash_state *state = ahash_request_ctx(req);
  1306. const struct caam_export_state *export = in;
  1307. memset(state, 0, sizeof(*state));
  1308. memcpy(state->buf_0, export->buf, export->buflen);
  1309. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1310. state->buflen_0 = export->buflen;
  1311. state->update = export->update;
  1312. state->final = export->final;
  1313. state->finup = export->finup;
  1314. return 0;
  1315. }
  1316. struct caam_hash_template {
  1317. char name[CRYPTO_MAX_ALG_NAME];
  1318. char driver_name[CRYPTO_MAX_ALG_NAME];
  1319. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1320. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1321. unsigned int blocksize;
  1322. struct ahash_alg template_ahash;
  1323. u32 alg_type;
  1324. };
  1325. /* ahash descriptors */
  1326. static struct caam_hash_template driver_hash[] = {
  1327. {
  1328. .name = "sha1",
  1329. .driver_name = "sha1-caam",
  1330. .hmac_name = "hmac(sha1)",
  1331. .hmac_driver_name = "hmac-sha1-caam",
  1332. .blocksize = SHA1_BLOCK_SIZE,
  1333. .template_ahash = {
  1334. .init = ahash_init,
  1335. .update = ahash_update,
  1336. .final = ahash_final,
  1337. .finup = ahash_finup,
  1338. .digest = ahash_digest,
  1339. .export = ahash_export,
  1340. .import = ahash_import,
  1341. .setkey = ahash_setkey,
  1342. .halg = {
  1343. .digestsize = SHA1_DIGEST_SIZE,
  1344. .statesize = sizeof(struct caam_export_state),
  1345. },
  1346. },
  1347. .alg_type = OP_ALG_ALGSEL_SHA1,
  1348. }, {
  1349. .name = "sha224",
  1350. .driver_name = "sha224-caam",
  1351. .hmac_name = "hmac(sha224)",
  1352. .hmac_driver_name = "hmac-sha224-caam",
  1353. .blocksize = SHA224_BLOCK_SIZE,
  1354. .template_ahash = {
  1355. .init = ahash_init,
  1356. .update = ahash_update,
  1357. .final = ahash_final,
  1358. .finup = ahash_finup,
  1359. .digest = ahash_digest,
  1360. .export = ahash_export,
  1361. .import = ahash_import,
  1362. .setkey = ahash_setkey,
  1363. .halg = {
  1364. .digestsize = SHA224_DIGEST_SIZE,
  1365. .statesize = sizeof(struct caam_export_state),
  1366. },
  1367. },
  1368. .alg_type = OP_ALG_ALGSEL_SHA224,
  1369. }, {
  1370. .name = "sha256",
  1371. .driver_name = "sha256-caam",
  1372. .hmac_name = "hmac(sha256)",
  1373. .hmac_driver_name = "hmac-sha256-caam",
  1374. .blocksize = SHA256_BLOCK_SIZE,
  1375. .template_ahash = {
  1376. .init = ahash_init,
  1377. .update = ahash_update,
  1378. .final = ahash_final,
  1379. .finup = ahash_finup,
  1380. .digest = ahash_digest,
  1381. .export = ahash_export,
  1382. .import = ahash_import,
  1383. .setkey = ahash_setkey,
  1384. .halg = {
  1385. .digestsize = SHA256_DIGEST_SIZE,
  1386. .statesize = sizeof(struct caam_export_state),
  1387. },
  1388. },
  1389. .alg_type = OP_ALG_ALGSEL_SHA256,
  1390. }, {
  1391. .name = "sha384",
  1392. .driver_name = "sha384-caam",
  1393. .hmac_name = "hmac(sha384)",
  1394. .hmac_driver_name = "hmac-sha384-caam",
  1395. .blocksize = SHA384_BLOCK_SIZE,
  1396. .template_ahash = {
  1397. .init = ahash_init,
  1398. .update = ahash_update,
  1399. .final = ahash_final,
  1400. .finup = ahash_finup,
  1401. .digest = ahash_digest,
  1402. .export = ahash_export,
  1403. .import = ahash_import,
  1404. .setkey = ahash_setkey,
  1405. .halg = {
  1406. .digestsize = SHA384_DIGEST_SIZE,
  1407. .statesize = sizeof(struct caam_export_state),
  1408. },
  1409. },
  1410. .alg_type = OP_ALG_ALGSEL_SHA384,
  1411. }, {
  1412. .name = "sha512",
  1413. .driver_name = "sha512-caam",
  1414. .hmac_name = "hmac(sha512)",
  1415. .hmac_driver_name = "hmac-sha512-caam",
  1416. .blocksize = SHA512_BLOCK_SIZE,
  1417. .template_ahash = {
  1418. .init = ahash_init,
  1419. .update = ahash_update,
  1420. .final = ahash_final,
  1421. .finup = ahash_finup,
  1422. .digest = ahash_digest,
  1423. .export = ahash_export,
  1424. .import = ahash_import,
  1425. .setkey = ahash_setkey,
  1426. .halg = {
  1427. .digestsize = SHA512_DIGEST_SIZE,
  1428. .statesize = sizeof(struct caam_export_state),
  1429. },
  1430. },
  1431. .alg_type = OP_ALG_ALGSEL_SHA512,
  1432. }, {
  1433. .name = "md5",
  1434. .driver_name = "md5-caam",
  1435. .hmac_name = "hmac(md5)",
  1436. .hmac_driver_name = "hmac-md5-caam",
  1437. .blocksize = MD5_BLOCK_WORDS * 4,
  1438. .template_ahash = {
  1439. .init = ahash_init,
  1440. .update = ahash_update,
  1441. .final = ahash_final,
  1442. .finup = ahash_finup,
  1443. .digest = ahash_digest,
  1444. .export = ahash_export,
  1445. .import = ahash_import,
  1446. .setkey = ahash_setkey,
  1447. .halg = {
  1448. .digestsize = MD5_DIGEST_SIZE,
  1449. .statesize = sizeof(struct caam_export_state),
  1450. },
  1451. },
  1452. .alg_type = OP_ALG_ALGSEL_MD5,
  1453. },
  1454. };
  1455. struct caam_hash_alg {
  1456. struct list_head entry;
  1457. int alg_type;
  1458. struct ahash_alg ahash_alg;
  1459. };
  1460. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1461. {
  1462. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1463. struct crypto_alg *base = tfm->__crt_alg;
  1464. struct hash_alg_common *halg =
  1465. container_of(base, struct hash_alg_common, base);
  1466. struct ahash_alg *alg =
  1467. container_of(halg, struct ahash_alg, halg);
  1468. struct caam_hash_alg *caam_hash =
  1469. container_of(alg, struct caam_hash_alg, ahash_alg);
  1470. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1471. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1472. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1473. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1474. HASH_MSG_LEN + 32,
  1475. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1476. HASH_MSG_LEN + 64,
  1477. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1478. dma_addr_t dma_addr;
  1479. /*
  1480. * Get a Job ring from Job Ring driver to ensure in-order
  1481. * crypto request processing per tfm
  1482. */
  1483. ctx->jrdev = caam_jr_alloc();
  1484. if (IS_ERR(ctx->jrdev)) {
  1485. pr_err("Job Ring Device allocation for transform failed\n");
  1486. return PTR_ERR(ctx->jrdev);
  1487. }
  1488. dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
  1489. offsetof(struct caam_hash_ctx,
  1490. sh_desc_update_dma),
  1491. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1492. if (dma_mapping_error(ctx->jrdev, dma_addr)) {
  1493. dev_err(ctx->jrdev, "unable to map shared descriptors\n");
  1494. caam_jr_free(ctx->jrdev);
  1495. return -ENOMEM;
  1496. }
  1497. ctx->sh_desc_update_dma = dma_addr;
  1498. ctx->sh_desc_update_first_dma = dma_addr +
  1499. offsetof(struct caam_hash_ctx,
  1500. sh_desc_update_first);
  1501. ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1502. sh_desc_fin);
  1503. ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1504. sh_desc_digest);
  1505. /* copy descriptor header template value */
  1506. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1507. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  1508. OP_ALG_ALGSEL_SUBMASK) >>
  1509. OP_ALG_ALGSEL_SHIFT];
  1510. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1511. sizeof(struct caam_hash_state));
  1512. return ahash_set_sh_desc(ahash);
  1513. }
  1514. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1515. {
  1516. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1517. dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
  1518. offsetof(struct caam_hash_ctx,
  1519. sh_desc_update_dma),
  1520. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1521. caam_jr_free(ctx->jrdev);
  1522. }
  1523. static void __exit caam_algapi_hash_exit(void)
  1524. {
  1525. struct caam_hash_alg *t_alg, *n;
  1526. if (!hash_list.next)
  1527. return;
  1528. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1529. crypto_unregister_ahash(&t_alg->ahash_alg);
  1530. list_del(&t_alg->entry);
  1531. kfree(t_alg);
  1532. }
  1533. }
  1534. static struct caam_hash_alg *
  1535. caam_hash_alloc(struct caam_hash_template *template,
  1536. bool keyed)
  1537. {
  1538. struct caam_hash_alg *t_alg;
  1539. struct ahash_alg *halg;
  1540. struct crypto_alg *alg;
  1541. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1542. if (!t_alg) {
  1543. pr_err("failed to allocate t_alg\n");
  1544. return ERR_PTR(-ENOMEM);
  1545. }
  1546. t_alg->ahash_alg = template->template_ahash;
  1547. halg = &t_alg->ahash_alg;
  1548. alg = &halg->halg.base;
  1549. if (keyed) {
  1550. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1551. template->hmac_name);
  1552. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1553. template->hmac_driver_name);
  1554. } else {
  1555. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1556. template->name);
  1557. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1558. template->driver_name);
  1559. t_alg->ahash_alg.setkey = NULL;
  1560. }
  1561. alg->cra_module = THIS_MODULE;
  1562. alg->cra_init = caam_hash_cra_init;
  1563. alg->cra_exit = caam_hash_cra_exit;
  1564. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1565. alg->cra_priority = CAAM_CRA_PRIORITY;
  1566. alg->cra_blocksize = template->blocksize;
  1567. alg->cra_alignmask = 0;
  1568. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1569. alg->cra_type = &crypto_ahash_type;
  1570. t_alg->alg_type = template->alg_type;
  1571. return t_alg;
  1572. }
  1573. static int __init caam_algapi_hash_init(void)
  1574. {
  1575. struct device_node *dev_node;
  1576. struct platform_device *pdev;
  1577. struct device *ctrldev;
  1578. int i = 0, err = 0;
  1579. struct caam_drv_private *priv;
  1580. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1581. u32 cha_inst, cha_vid;
  1582. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1583. if (!dev_node) {
  1584. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1585. if (!dev_node)
  1586. return -ENODEV;
  1587. }
  1588. pdev = of_find_device_by_node(dev_node);
  1589. if (!pdev) {
  1590. of_node_put(dev_node);
  1591. return -ENODEV;
  1592. }
  1593. ctrldev = &pdev->dev;
  1594. priv = dev_get_drvdata(ctrldev);
  1595. of_node_put(dev_node);
  1596. /*
  1597. * If priv is NULL, it's probably because the caam driver wasn't
  1598. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1599. */
  1600. if (!priv)
  1601. return -ENODEV;
  1602. /*
  1603. * Register crypto algorithms the device supports. First, identify
  1604. * presence and attributes of MD block.
  1605. */
  1606. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1607. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1608. /*
  1609. * Skip registration of any hashing algorithms if MD block
  1610. * is not present.
  1611. */
  1612. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1613. return -ENODEV;
  1614. /* Limit digest size based on LP256 */
  1615. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1616. md_limit = SHA256_DIGEST_SIZE;
  1617. INIT_LIST_HEAD(&hash_list);
  1618. /* register crypto algorithms the device supports */
  1619. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1620. struct caam_hash_alg *t_alg;
  1621. struct caam_hash_template *alg = driver_hash + i;
  1622. /* If MD size is not supported by device, skip registration */
  1623. if (alg->template_ahash.halg.digestsize > md_limit)
  1624. continue;
  1625. /* register hmac version */
  1626. t_alg = caam_hash_alloc(alg, true);
  1627. if (IS_ERR(t_alg)) {
  1628. err = PTR_ERR(t_alg);
  1629. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1630. continue;
  1631. }
  1632. err = crypto_register_ahash(&t_alg->ahash_alg);
  1633. if (err) {
  1634. pr_warn("%s alg registration failed: %d\n",
  1635. t_alg->ahash_alg.halg.base.cra_driver_name,
  1636. err);
  1637. kfree(t_alg);
  1638. } else
  1639. list_add_tail(&t_alg->entry, &hash_list);
  1640. /* register unkeyed version */
  1641. t_alg = caam_hash_alloc(alg, false);
  1642. if (IS_ERR(t_alg)) {
  1643. err = PTR_ERR(t_alg);
  1644. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1645. continue;
  1646. }
  1647. err = crypto_register_ahash(&t_alg->ahash_alg);
  1648. if (err) {
  1649. pr_warn("%s alg registration failed: %d\n",
  1650. t_alg->ahash_alg.halg.base.cra_driver_name,
  1651. err);
  1652. kfree(t_alg);
  1653. } else
  1654. list_add_tail(&t_alg->entry, &hash_list);
  1655. }
  1656. return err;
  1657. }
  1658. module_init(caam_algapi_hash_init);
  1659. module_exit(caam_algapi_hash_exit);
  1660. MODULE_LICENSE("GPL");
  1661. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1662. MODULE_AUTHOR("Freescale Semiconductor - NMG");