clk-bcm2835.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188
  1. /*
  2. * Copyright (C) 2010,2015 Broadcom
  3. * Copyright (C) 2012 Stephen Warren
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. /**
  17. * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
  18. *
  19. * The clock tree on the 2835 has several levels. There's a root
  20. * oscillator running at 19.2Mhz. After the oscillator there are 5
  21. * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  22. * and "HDMI displays". Those 5 PLLs each can divide their output to
  23. * produce up to 4 channels. Finally, there is the level of clocks to
  24. * be consumed by other hardware components (like "H264" or "HDMI
  25. * state machine"), which divide off of some subset of the PLL
  26. * channels.
  27. *
  28. * All of the clocks in the tree are exposed in the DT, because the DT
  29. * may want to make assignments of the final layer of clocks to the
  30. * PLL channels, and some components of the hardware will actually
  31. * skip layers of the tree (for example, the pixel clock comes
  32. * directly from the PLLH PIX channel without using a CM_*CTL clock
  33. * generator).
  34. */
  35. #include <linux/clk-provider.h>
  36. #include <linux/clkdev.h>
  37. #include <linux/clk.h>
  38. #include <linux/clk/bcm2835.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/delay.h>
  41. #include <linux/module.h>
  42. #include <linux/of.h>
  43. #include <linux/platform_device.h>
  44. #include <linux/slab.h>
  45. #include <dt-bindings/clock/bcm2835.h>
  46. #define CM_PASSWORD 0x5a000000
  47. #define CM_GNRICCTL 0x000
  48. #define CM_GNRICDIV 0x004
  49. # define CM_DIV_FRAC_BITS 12
  50. # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  51. #define CM_VPUCTL 0x008
  52. #define CM_VPUDIV 0x00c
  53. #define CM_SYSCTL 0x010
  54. #define CM_SYSDIV 0x014
  55. #define CM_PERIACTL 0x018
  56. #define CM_PERIADIV 0x01c
  57. #define CM_PERIICTL 0x020
  58. #define CM_PERIIDIV 0x024
  59. #define CM_H264CTL 0x028
  60. #define CM_H264DIV 0x02c
  61. #define CM_ISPCTL 0x030
  62. #define CM_ISPDIV 0x034
  63. #define CM_V3DCTL 0x038
  64. #define CM_V3DDIV 0x03c
  65. #define CM_CAM0CTL 0x040
  66. #define CM_CAM0DIV 0x044
  67. #define CM_CAM1CTL 0x048
  68. #define CM_CAM1DIV 0x04c
  69. #define CM_CCP2CTL 0x050
  70. #define CM_CCP2DIV 0x054
  71. #define CM_DSI0ECTL 0x058
  72. #define CM_DSI0EDIV 0x05c
  73. #define CM_DSI0PCTL 0x060
  74. #define CM_DSI0PDIV 0x064
  75. #define CM_DPICTL 0x068
  76. #define CM_DPIDIV 0x06c
  77. #define CM_GP0CTL 0x070
  78. #define CM_GP0DIV 0x074
  79. #define CM_GP1CTL 0x078
  80. #define CM_GP1DIV 0x07c
  81. #define CM_GP2CTL 0x080
  82. #define CM_GP2DIV 0x084
  83. #define CM_HSMCTL 0x088
  84. #define CM_HSMDIV 0x08c
  85. #define CM_OTPCTL 0x090
  86. #define CM_OTPDIV 0x094
  87. #define CM_PCMCTL 0x098
  88. #define CM_PCMDIV 0x09c
  89. #define CM_PWMCTL 0x0a0
  90. #define CM_PWMDIV 0x0a4
  91. #define CM_SLIMCTL 0x0a8
  92. #define CM_SLIMDIV 0x0ac
  93. #define CM_SMICTL 0x0b0
  94. #define CM_SMIDIV 0x0b4
  95. /* no definition for 0x0b8 and 0x0bc */
  96. #define CM_TCNTCTL 0x0c0
  97. # define CM_TCNT_SRC1_SHIFT 12
  98. #define CM_TCNTCNT 0x0c4
  99. #define CM_TECCTL 0x0c8
  100. #define CM_TECDIV 0x0cc
  101. #define CM_TD0CTL 0x0d0
  102. #define CM_TD0DIV 0x0d4
  103. #define CM_TD1CTL 0x0d8
  104. #define CM_TD1DIV 0x0dc
  105. #define CM_TSENSCTL 0x0e0
  106. #define CM_TSENSDIV 0x0e4
  107. #define CM_TIMERCTL 0x0e8
  108. #define CM_TIMERDIV 0x0ec
  109. #define CM_UARTCTL 0x0f0
  110. #define CM_UARTDIV 0x0f4
  111. #define CM_VECCTL 0x0f8
  112. #define CM_VECDIV 0x0fc
  113. #define CM_PULSECTL 0x190
  114. #define CM_PULSEDIV 0x194
  115. #define CM_SDCCTL 0x1a8
  116. #define CM_SDCDIV 0x1ac
  117. #define CM_ARMCTL 0x1b0
  118. #define CM_AVEOCTL 0x1b8
  119. #define CM_AVEODIV 0x1bc
  120. #define CM_EMMCCTL 0x1c0
  121. #define CM_EMMCDIV 0x1c4
  122. /* General bits for the CM_*CTL regs */
  123. # define CM_ENABLE BIT(4)
  124. # define CM_KILL BIT(5)
  125. # define CM_GATE_BIT 6
  126. # define CM_GATE BIT(CM_GATE_BIT)
  127. # define CM_BUSY BIT(7)
  128. # define CM_BUSYD BIT(8)
  129. # define CM_FRAC BIT(9)
  130. # define CM_SRC_SHIFT 0
  131. # define CM_SRC_BITS 4
  132. # define CM_SRC_MASK 0xf
  133. # define CM_SRC_GND 0
  134. # define CM_SRC_OSC 1
  135. # define CM_SRC_TESTDEBUG0 2
  136. # define CM_SRC_TESTDEBUG1 3
  137. # define CM_SRC_PLLA_CORE 4
  138. # define CM_SRC_PLLA_PER 4
  139. # define CM_SRC_PLLC_CORE0 5
  140. # define CM_SRC_PLLC_PER 5
  141. # define CM_SRC_PLLC_CORE1 8
  142. # define CM_SRC_PLLD_CORE 6
  143. # define CM_SRC_PLLD_PER 6
  144. # define CM_SRC_PLLH_AUX 7
  145. # define CM_SRC_PLLC_CORE1 8
  146. # define CM_SRC_PLLC_CORE2 9
  147. #define CM_OSCCOUNT 0x100
  148. #define CM_PLLA 0x104
  149. # define CM_PLL_ANARST BIT(8)
  150. # define CM_PLLA_HOLDPER BIT(7)
  151. # define CM_PLLA_LOADPER BIT(6)
  152. # define CM_PLLA_HOLDCORE BIT(5)
  153. # define CM_PLLA_LOADCORE BIT(4)
  154. # define CM_PLLA_HOLDCCP2 BIT(3)
  155. # define CM_PLLA_LOADCCP2 BIT(2)
  156. # define CM_PLLA_HOLDDSI0 BIT(1)
  157. # define CM_PLLA_LOADDSI0 BIT(0)
  158. #define CM_PLLC 0x108
  159. # define CM_PLLC_HOLDPER BIT(7)
  160. # define CM_PLLC_LOADPER BIT(6)
  161. # define CM_PLLC_HOLDCORE2 BIT(5)
  162. # define CM_PLLC_LOADCORE2 BIT(4)
  163. # define CM_PLLC_HOLDCORE1 BIT(3)
  164. # define CM_PLLC_LOADCORE1 BIT(2)
  165. # define CM_PLLC_HOLDCORE0 BIT(1)
  166. # define CM_PLLC_LOADCORE0 BIT(0)
  167. #define CM_PLLD 0x10c
  168. # define CM_PLLD_HOLDPER BIT(7)
  169. # define CM_PLLD_LOADPER BIT(6)
  170. # define CM_PLLD_HOLDCORE BIT(5)
  171. # define CM_PLLD_LOADCORE BIT(4)
  172. # define CM_PLLD_HOLDDSI1 BIT(3)
  173. # define CM_PLLD_LOADDSI1 BIT(2)
  174. # define CM_PLLD_HOLDDSI0 BIT(1)
  175. # define CM_PLLD_LOADDSI0 BIT(0)
  176. #define CM_PLLH 0x110
  177. # define CM_PLLH_LOADRCAL BIT(2)
  178. # define CM_PLLH_LOADAUX BIT(1)
  179. # define CM_PLLH_LOADPIX BIT(0)
  180. #define CM_LOCK 0x114
  181. # define CM_LOCK_FLOCKH BIT(12)
  182. # define CM_LOCK_FLOCKD BIT(11)
  183. # define CM_LOCK_FLOCKC BIT(10)
  184. # define CM_LOCK_FLOCKB BIT(9)
  185. # define CM_LOCK_FLOCKA BIT(8)
  186. #define CM_EVENT 0x118
  187. #define CM_DSI1ECTL 0x158
  188. #define CM_DSI1EDIV 0x15c
  189. #define CM_DSI1PCTL 0x160
  190. #define CM_DSI1PDIV 0x164
  191. #define CM_DFTCTL 0x168
  192. #define CM_DFTDIV 0x16c
  193. #define CM_PLLB 0x170
  194. # define CM_PLLB_HOLDARM BIT(1)
  195. # define CM_PLLB_LOADARM BIT(0)
  196. #define A2W_PLLA_CTRL 0x1100
  197. #define A2W_PLLC_CTRL 0x1120
  198. #define A2W_PLLD_CTRL 0x1140
  199. #define A2W_PLLH_CTRL 0x1160
  200. #define A2W_PLLB_CTRL 0x11e0
  201. # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
  202. # define A2W_PLL_CTRL_PWRDN BIT(16)
  203. # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
  204. # define A2W_PLL_CTRL_PDIV_SHIFT 12
  205. # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
  206. # define A2W_PLL_CTRL_NDIV_SHIFT 0
  207. #define A2W_PLLA_ANA0 0x1010
  208. #define A2W_PLLC_ANA0 0x1030
  209. #define A2W_PLLD_ANA0 0x1050
  210. #define A2W_PLLH_ANA0 0x1070
  211. #define A2W_PLLB_ANA0 0x10f0
  212. #define A2W_PLL_KA_SHIFT 7
  213. #define A2W_PLL_KA_MASK GENMASK(9, 7)
  214. #define A2W_PLL_KI_SHIFT 19
  215. #define A2W_PLL_KI_MASK GENMASK(21, 19)
  216. #define A2W_PLL_KP_SHIFT 15
  217. #define A2W_PLL_KP_MASK GENMASK(18, 15)
  218. #define A2W_PLLH_KA_SHIFT 19
  219. #define A2W_PLLH_KA_MASK GENMASK(21, 19)
  220. #define A2W_PLLH_KI_LOW_SHIFT 22
  221. #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
  222. #define A2W_PLLH_KI_HIGH_SHIFT 0
  223. #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
  224. #define A2W_PLLH_KP_SHIFT 1
  225. #define A2W_PLLH_KP_MASK GENMASK(4, 1)
  226. #define A2W_XOSC_CTRL 0x1190
  227. # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
  228. # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
  229. # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
  230. # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
  231. # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
  232. # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
  233. # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
  234. # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
  235. #define A2W_PLLA_FRAC 0x1200
  236. #define A2W_PLLC_FRAC 0x1220
  237. #define A2W_PLLD_FRAC 0x1240
  238. #define A2W_PLLH_FRAC 0x1260
  239. #define A2W_PLLB_FRAC 0x12e0
  240. # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
  241. # define A2W_PLL_FRAC_BITS 20
  242. #define A2W_PLL_CHANNEL_DISABLE BIT(8)
  243. #define A2W_PLL_DIV_BITS 8
  244. #define A2W_PLL_DIV_SHIFT 0
  245. #define A2W_PLLA_DSI0 0x1300
  246. #define A2W_PLLA_CORE 0x1400
  247. #define A2W_PLLA_PER 0x1500
  248. #define A2W_PLLA_CCP2 0x1600
  249. #define A2W_PLLC_CORE2 0x1320
  250. #define A2W_PLLC_CORE1 0x1420
  251. #define A2W_PLLC_PER 0x1520
  252. #define A2W_PLLC_CORE0 0x1620
  253. #define A2W_PLLD_DSI0 0x1340
  254. #define A2W_PLLD_CORE 0x1440
  255. #define A2W_PLLD_PER 0x1540
  256. #define A2W_PLLD_DSI1 0x1640
  257. #define A2W_PLLH_AUX 0x1360
  258. #define A2W_PLLH_RCAL 0x1460
  259. #define A2W_PLLH_PIX 0x1560
  260. #define A2W_PLLH_STS 0x1660
  261. #define A2W_PLLH_CTRLR 0x1960
  262. #define A2W_PLLH_FRACR 0x1a60
  263. #define A2W_PLLH_AUXR 0x1b60
  264. #define A2W_PLLH_RCALR 0x1c60
  265. #define A2W_PLLH_PIXR 0x1d60
  266. #define A2W_PLLH_STSR 0x1e60
  267. #define A2W_PLLB_ARM 0x13e0
  268. #define A2W_PLLB_SP0 0x14e0
  269. #define A2W_PLLB_SP1 0x15e0
  270. #define A2W_PLLB_SP2 0x16e0
  271. #define LOCK_TIMEOUT_NS 100000000
  272. #define BCM2835_MAX_FB_RATE 1750000000u
  273. /*
  274. * Names of clocks used within the driver that need to be replaced
  275. * with an external parent's name. This array is in the order that
  276. * the clocks node in the DT references external clocks.
  277. */
  278. static const char *const cprman_parent_names[] = {
  279. "xosc",
  280. "dsi0_byte",
  281. "dsi0_ddr2",
  282. "dsi0_ddr",
  283. "dsi1_byte",
  284. "dsi1_ddr2",
  285. "dsi1_ddr",
  286. };
  287. struct bcm2835_cprman {
  288. struct device *dev;
  289. void __iomem *regs;
  290. spinlock_t regs_lock; /* spinlock for all clocks */
  291. /*
  292. * Real names of cprman clock parents looked up through
  293. * of_clk_get_parent_name(), which will be used in the
  294. * parent_names[] arrays for clock registration.
  295. */
  296. const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
  297. /* Must be last */
  298. struct clk_hw_onecell_data onecell;
  299. };
  300. static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
  301. {
  302. writel(CM_PASSWORD | val, cprman->regs + reg);
  303. }
  304. static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
  305. {
  306. return readl(cprman->regs + reg);
  307. }
  308. /* Does a cycle of measuring a clock through the TCNT clock, which may
  309. * source from many other clocks in the system.
  310. */
  311. static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
  312. u32 tcnt_mux)
  313. {
  314. u32 osccount = 19200; /* 1ms */
  315. u32 count;
  316. ktime_t timeout;
  317. spin_lock(&cprman->regs_lock);
  318. cprman_write(cprman, CM_TCNTCTL, CM_KILL);
  319. cprman_write(cprman, CM_TCNTCTL,
  320. (tcnt_mux & CM_SRC_MASK) |
  321. (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
  322. cprman_write(cprman, CM_OSCCOUNT, osccount);
  323. /* do a kind delay at the start */
  324. mdelay(1);
  325. /* Finish off whatever is left of OSCCOUNT */
  326. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  327. while (cprman_read(cprman, CM_OSCCOUNT)) {
  328. if (ktime_after(ktime_get(), timeout)) {
  329. dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
  330. count = 0;
  331. goto out;
  332. }
  333. cpu_relax();
  334. }
  335. /* Wait for BUSY to clear. */
  336. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  337. while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
  338. if (ktime_after(ktime_get(), timeout)) {
  339. dev_err(cprman->dev, "timeout waiting for !BUSY\n");
  340. count = 0;
  341. goto out;
  342. }
  343. cpu_relax();
  344. }
  345. count = cprman_read(cprman, CM_TCNTCNT);
  346. cprman_write(cprman, CM_TCNTCTL, 0);
  347. out:
  348. spin_unlock(&cprman->regs_lock);
  349. return count * 1000;
  350. }
  351. static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
  352. struct debugfs_reg32 *regs, size_t nregs,
  353. struct dentry *dentry)
  354. {
  355. struct dentry *regdump;
  356. struct debugfs_regset32 *regset;
  357. regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
  358. if (!regset)
  359. return -ENOMEM;
  360. regset->regs = regs;
  361. regset->nregs = nregs;
  362. regset->base = cprman->regs + base;
  363. regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
  364. regset);
  365. return regdump ? 0 : -ENOMEM;
  366. }
  367. /*
  368. * These are fixed clocks. They're probably not all root clocks and it may
  369. * be possible to turn them on and off but until this is mapped out better
  370. * it's the only way they can be used.
  371. */
  372. void __init bcm2835_init_clocks(void)
  373. {
  374. struct clk_hw *hw;
  375. int ret;
  376. hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
  377. if (IS_ERR(hw))
  378. pr_err("apb_pclk not registered\n");
  379. hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
  380. if (IS_ERR(hw))
  381. pr_err("uart0_pclk not registered\n");
  382. ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
  383. if (ret)
  384. pr_err("uart0_pclk alias not registered\n");
  385. hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
  386. if (IS_ERR(hw))
  387. pr_err("uart1_pclk not registered\n");
  388. ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
  389. if (ret)
  390. pr_err("uart1_pclk alias not registered\n");
  391. }
  392. struct bcm2835_pll_data {
  393. const char *name;
  394. u32 cm_ctrl_reg;
  395. u32 a2w_ctrl_reg;
  396. u32 frac_reg;
  397. u32 ana_reg_base;
  398. u32 reference_enable_mask;
  399. /* Bit in CM_LOCK to indicate when the PLL has locked. */
  400. u32 lock_mask;
  401. const struct bcm2835_pll_ana_bits *ana;
  402. unsigned long min_rate;
  403. unsigned long max_rate;
  404. /*
  405. * Highest rate for the VCO before we have to use the
  406. * pre-divide-by-2.
  407. */
  408. unsigned long max_fb_rate;
  409. };
  410. struct bcm2835_pll_ana_bits {
  411. u32 mask0;
  412. u32 set0;
  413. u32 mask1;
  414. u32 set1;
  415. u32 mask3;
  416. u32 set3;
  417. u32 fb_prediv_mask;
  418. };
  419. static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
  420. .mask0 = 0,
  421. .set0 = 0,
  422. .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
  423. .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
  424. .mask3 = (u32)~A2W_PLL_KA_MASK,
  425. .set3 = (2 << A2W_PLL_KA_SHIFT),
  426. .fb_prediv_mask = BIT(14),
  427. };
  428. static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
  429. .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
  430. .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
  431. .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
  432. .set1 = (6 << A2W_PLLH_KP_SHIFT),
  433. .mask3 = 0,
  434. .set3 = 0,
  435. .fb_prediv_mask = BIT(11),
  436. };
  437. struct bcm2835_pll_divider_data {
  438. const char *name;
  439. const char *source_pll;
  440. u32 cm_reg;
  441. u32 a2w_reg;
  442. u32 load_mask;
  443. u32 hold_mask;
  444. u32 fixed_divider;
  445. u32 flags;
  446. };
  447. struct bcm2835_clock_data {
  448. const char *name;
  449. const char *const *parents;
  450. int num_mux_parents;
  451. /* Bitmap encoding which parents accept rate change propagation. */
  452. unsigned int set_rate_parent;
  453. u32 ctl_reg;
  454. u32 div_reg;
  455. /* Number of integer bits in the divider */
  456. u32 int_bits;
  457. /* Number of fractional bits in the divider */
  458. u32 frac_bits;
  459. u32 flags;
  460. bool is_vpu_clock;
  461. bool is_mash_clock;
  462. u32 tcnt_mux;
  463. };
  464. struct bcm2835_gate_data {
  465. const char *name;
  466. const char *parent;
  467. u32 ctl_reg;
  468. };
  469. struct bcm2835_pll {
  470. struct clk_hw hw;
  471. struct bcm2835_cprman *cprman;
  472. const struct bcm2835_pll_data *data;
  473. };
  474. static int bcm2835_pll_is_on(struct clk_hw *hw)
  475. {
  476. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  477. struct bcm2835_cprman *cprman = pll->cprman;
  478. const struct bcm2835_pll_data *data = pll->data;
  479. return cprman_read(cprman, data->a2w_ctrl_reg) &
  480. A2W_PLL_CTRL_PRST_DISABLE;
  481. }
  482. static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
  483. unsigned long parent_rate,
  484. u32 *ndiv, u32 *fdiv)
  485. {
  486. u64 div;
  487. div = (u64)rate << A2W_PLL_FRAC_BITS;
  488. do_div(div, parent_rate);
  489. *ndiv = div >> A2W_PLL_FRAC_BITS;
  490. *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
  491. }
  492. static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
  493. u32 ndiv, u32 fdiv, u32 pdiv)
  494. {
  495. u64 rate;
  496. if (pdiv == 0)
  497. return 0;
  498. rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
  499. do_div(rate, pdiv);
  500. return rate >> A2W_PLL_FRAC_BITS;
  501. }
  502. static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  503. unsigned long *parent_rate)
  504. {
  505. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  506. const struct bcm2835_pll_data *data = pll->data;
  507. u32 ndiv, fdiv;
  508. rate = clamp(rate, data->min_rate, data->max_rate);
  509. bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
  510. return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
  511. }
  512. static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
  513. unsigned long parent_rate)
  514. {
  515. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  516. struct bcm2835_cprman *cprman = pll->cprman;
  517. const struct bcm2835_pll_data *data = pll->data;
  518. u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
  519. u32 ndiv, pdiv, fdiv;
  520. bool using_prediv;
  521. if (parent_rate == 0)
  522. return 0;
  523. fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
  524. ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
  525. pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
  526. using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
  527. data->ana->fb_prediv_mask;
  528. if (using_prediv)
  529. ndiv *= 2;
  530. return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
  531. }
  532. static void bcm2835_pll_off(struct clk_hw *hw)
  533. {
  534. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  535. struct bcm2835_cprman *cprman = pll->cprman;
  536. const struct bcm2835_pll_data *data = pll->data;
  537. spin_lock(&cprman->regs_lock);
  538. cprman_write(cprman, data->cm_ctrl_reg,
  539. cprman_read(cprman, data->cm_ctrl_reg) |
  540. CM_PLL_ANARST);
  541. cprman_write(cprman, data->a2w_ctrl_reg,
  542. cprman_read(cprman, data->a2w_ctrl_reg) |
  543. A2W_PLL_CTRL_PWRDN);
  544. spin_unlock(&cprman->regs_lock);
  545. }
  546. static int bcm2835_pll_on(struct clk_hw *hw)
  547. {
  548. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  549. struct bcm2835_cprman *cprman = pll->cprman;
  550. const struct bcm2835_pll_data *data = pll->data;
  551. ktime_t timeout;
  552. cprman_write(cprman, data->a2w_ctrl_reg,
  553. cprman_read(cprman, data->a2w_ctrl_reg) &
  554. ~A2W_PLL_CTRL_PWRDN);
  555. /* Take the PLL out of reset. */
  556. cprman_write(cprman, data->cm_ctrl_reg,
  557. cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
  558. /* Wait for the PLL to lock. */
  559. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  560. while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
  561. if (ktime_after(ktime_get(), timeout)) {
  562. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  563. clk_hw_get_name(hw));
  564. return -ETIMEDOUT;
  565. }
  566. cpu_relax();
  567. }
  568. return 0;
  569. }
  570. static void
  571. bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
  572. {
  573. int i;
  574. /*
  575. * ANA register setup is done as a series of writes to
  576. * ANA3-ANA0, in that order. This lets us write all 4
  577. * registers as a single cycle of the serdes interface (taking
  578. * 100 xosc clocks), whereas if we were to update ana0, 1, and
  579. * 3 individually through their partial-write registers, each
  580. * would be their own serdes cycle.
  581. */
  582. for (i = 3; i >= 0; i--)
  583. cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
  584. }
  585. static int bcm2835_pll_set_rate(struct clk_hw *hw,
  586. unsigned long rate, unsigned long parent_rate)
  587. {
  588. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  589. struct bcm2835_cprman *cprman = pll->cprman;
  590. const struct bcm2835_pll_data *data = pll->data;
  591. bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
  592. u32 ndiv, fdiv, a2w_ctl;
  593. u32 ana[4];
  594. int i;
  595. if (rate > data->max_fb_rate) {
  596. use_fb_prediv = true;
  597. rate /= 2;
  598. } else {
  599. use_fb_prediv = false;
  600. }
  601. bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
  602. for (i = 3; i >= 0; i--)
  603. ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
  604. was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
  605. ana[0] &= ~data->ana->mask0;
  606. ana[0] |= data->ana->set0;
  607. ana[1] &= ~data->ana->mask1;
  608. ana[1] |= data->ana->set1;
  609. ana[3] &= ~data->ana->mask3;
  610. ana[3] |= data->ana->set3;
  611. if (was_using_prediv && !use_fb_prediv) {
  612. ana[1] &= ~data->ana->fb_prediv_mask;
  613. do_ana_setup_first = true;
  614. } else if (!was_using_prediv && use_fb_prediv) {
  615. ana[1] |= data->ana->fb_prediv_mask;
  616. do_ana_setup_first = false;
  617. } else {
  618. do_ana_setup_first = true;
  619. }
  620. /* Unmask the reference clock from the oscillator. */
  621. cprman_write(cprman, A2W_XOSC_CTRL,
  622. cprman_read(cprman, A2W_XOSC_CTRL) |
  623. data->reference_enable_mask);
  624. if (do_ana_setup_first)
  625. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  626. /* Set the PLL multiplier from the oscillator. */
  627. cprman_write(cprman, data->frac_reg, fdiv);
  628. a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
  629. a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
  630. a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
  631. a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
  632. a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
  633. cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
  634. if (!do_ana_setup_first)
  635. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  636. return 0;
  637. }
  638. static int bcm2835_pll_debug_init(struct clk_hw *hw,
  639. struct dentry *dentry)
  640. {
  641. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  642. struct bcm2835_cprman *cprman = pll->cprman;
  643. const struct bcm2835_pll_data *data = pll->data;
  644. struct debugfs_reg32 *regs;
  645. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  646. if (!regs)
  647. return -ENOMEM;
  648. regs[0].name = "cm_ctrl";
  649. regs[0].offset = data->cm_ctrl_reg;
  650. regs[1].name = "a2w_ctrl";
  651. regs[1].offset = data->a2w_ctrl_reg;
  652. regs[2].name = "frac";
  653. regs[2].offset = data->frac_reg;
  654. regs[3].name = "ana0";
  655. regs[3].offset = data->ana_reg_base + 0 * 4;
  656. regs[4].name = "ana1";
  657. regs[4].offset = data->ana_reg_base + 1 * 4;
  658. regs[5].name = "ana2";
  659. regs[5].offset = data->ana_reg_base + 2 * 4;
  660. regs[6].name = "ana3";
  661. regs[6].offset = data->ana_reg_base + 3 * 4;
  662. return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
  663. }
  664. static const struct clk_ops bcm2835_pll_clk_ops = {
  665. .is_prepared = bcm2835_pll_is_on,
  666. .prepare = bcm2835_pll_on,
  667. .unprepare = bcm2835_pll_off,
  668. .recalc_rate = bcm2835_pll_get_rate,
  669. .set_rate = bcm2835_pll_set_rate,
  670. .round_rate = bcm2835_pll_round_rate,
  671. .debug_init = bcm2835_pll_debug_init,
  672. };
  673. struct bcm2835_pll_divider {
  674. struct clk_divider div;
  675. struct bcm2835_cprman *cprman;
  676. const struct bcm2835_pll_divider_data *data;
  677. };
  678. static struct bcm2835_pll_divider *
  679. bcm2835_pll_divider_from_hw(struct clk_hw *hw)
  680. {
  681. return container_of(hw, struct bcm2835_pll_divider, div.hw);
  682. }
  683. static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
  684. {
  685. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  686. struct bcm2835_cprman *cprman = divider->cprman;
  687. const struct bcm2835_pll_divider_data *data = divider->data;
  688. return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
  689. }
  690. static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
  691. unsigned long rate,
  692. unsigned long *parent_rate)
  693. {
  694. return clk_divider_ops.round_rate(hw, rate, parent_rate);
  695. }
  696. static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
  697. unsigned long parent_rate)
  698. {
  699. return clk_divider_ops.recalc_rate(hw, parent_rate);
  700. }
  701. static void bcm2835_pll_divider_off(struct clk_hw *hw)
  702. {
  703. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  704. struct bcm2835_cprman *cprman = divider->cprman;
  705. const struct bcm2835_pll_divider_data *data = divider->data;
  706. spin_lock(&cprman->regs_lock);
  707. cprman_write(cprman, data->cm_reg,
  708. (cprman_read(cprman, data->cm_reg) &
  709. ~data->load_mask) | data->hold_mask);
  710. cprman_write(cprman, data->a2w_reg,
  711. cprman_read(cprman, data->a2w_reg) |
  712. A2W_PLL_CHANNEL_DISABLE);
  713. spin_unlock(&cprman->regs_lock);
  714. }
  715. static int bcm2835_pll_divider_on(struct clk_hw *hw)
  716. {
  717. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  718. struct bcm2835_cprman *cprman = divider->cprman;
  719. const struct bcm2835_pll_divider_data *data = divider->data;
  720. spin_lock(&cprman->regs_lock);
  721. cprman_write(cprman, data->a2w_reg,
  722. cprman_read(cprman, data->a2w_reg) &
  723. ~A2W_PLL_CHANNEL_DISABLE);
  724. cprman_write(cprman, data->cm_reg,
  725. cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
  726. spin_unlock(&cprman->regs_lock);
  727. return 0;
  728. }
  729. static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
  730. unsigned long rate,
  731. unsigned long parent_rate)
  732. {
  733. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  734. struct bcm2835_cprman *cprman = divider->cprman;
  735. const struct bcm2835_pll_divider_data *data = divider->data;
  736. u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
  737. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  738. div = min(div, max_div);
  739. if (div == max_div)
  740. div = 0;
  741. cprman_write(cprman, data->a2w_reg, div);
  742. cm = cprman_read(cprman, data->cm_reg);
  743. cprman_write(cprman, data->cm_reg, cm | data->load_mask);
  744. cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
  745. return 0;
  746. }
  747. static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
  748. struct dentry *dentry)
  749. {
  750. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  751. struct bcm2835_cprman *cprman = divider->cprman;
  752. const struct bcm2835_pll_divider_data *data = divider->data;
  753. struct debugfs_reg32 *regs;
  754. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  755. if (!regs)
  756. return -ENOMEM;
  757. regs[0].name = "cm";
  758. regs[0].offset = data->cm_reg;
  759. regs[1].name = "a2w";
  760. regs[1].offset = data->a2w_reg;
  761. return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
  762. }
  763. static const struct clk_ops bcm2835_pll_divider_clk_ops = {
  764. .is_prepared = bcm2835_pll_divider_is_on,
  765. .prepare = bcm2835_pll_divider_on,
  766. .unprepare = bcm2835_pll_divider_off,
  767. .recalc_rate = bcm2835_pll_divider_get_rate,
  768. .set_rate = bcm2835_pll_divider_set_rate,
  769. .round_rate = bcm2835_pll_divider_round_rate,
  770. .debug_init = bcm2835_pll_divider_debug_init,
  771. };
  772. /*
  773. * The CM dividers do fixed-point division, so we can't use the
  774. * generic integer divider code like the PLL dividers do (and we can't
  775. * fake it by having some fixed shifts preceding it in the clock tree,
  776. * because we'd run out of bits in a 32-bit unsigned long).
  777. */
  778. struct bcm2835_clock {
  779. struct clk_hw hw;
  780. struct bcm2835_cprman *cprman;
  781. const struct bcm2835_clock_data *data;
  782. };
  783. static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
  784. {
  785. return container_of(hw, struct bcm2835_clock, hw);
  786. }
  787. static int bcm2835_clock_is_on(struct clk_hw *hw)
  788. {
  789. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  790. struct bcm2835_cprman *cprman = clock->cprman;
  791. const struct bcm2835_clock_data *data = clock->data;
  792. return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
  793. }
  794. static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
  795. unsigned long rate,
  796. unsigned long parent_rate,
  797. bool round_up)
  798. {
  799. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  800. const struct bcm2835_clock_data *data = clock->data;
  801. u32 unused_frac_mask =
  802. GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
  803. u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
  804. u64 rem;
  805. u32 div, mindiv, maxdiv;
  806. rem = do_div(temp, rate);
  807. div = temp;
  808. /* Round up and mask off the unused bits */
  809. if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
  810. div += unused_frac_mask + 1;
  811. div &= ~unused_frac_mask;
  812. /* different clamping limits apply for a mash clock */
  813. if (data->is_mash_clock) {
  814. /* clamp to min divider of 2 */
  815. mindiv = 2 << CM_DIV_FRAC_BITS;
  816. /* clamp to the highest possible integer divider */
  817. maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
  818. } else {
  819. /* clamp to min divider of 1 */
  820. mindiv = 1 << CM_DIV_FRAC_BITS;
  821. /* clamp to the highest possible fractional divider */
  822. maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
  823. CM_DIV_FRAC_BITS - data->frac_bits);
  824. }
  825. /* apply the clamping limits */
  826. div = max_t(u32, div, mindiv);
  827. div = min_t(u32, div, maxdiv);
  828. return div;
  829. }
  830. static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
  831. unsigned long parent_rate,
  832. u32 div)
  833. {
  834. const struct bcm2835_clock_data *data = clock->data;
  835. u64 temp;
  836. if (data->int_bits == 0 && data->frac_bits == 0)
  837. return parent_rate;
  838. /*
  839. * The divisor is a 12.12 fixed point field, but only some of
  840. * the bits are populated in any given clock.
  841. */
  842. div >>= CM_DIV_FRAC_BITS - data->frac_bits;
  843. div &= (1 << (data->int_bits + data->frac_bits)) - 1;
  844. if (div == 0)
  845. return 0;
  846. temp = (u64)parent_rate << data->frac_bits;
  847. do_div(temp, div);
  848. return temp;
  849. }
  850. static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
  851. unsigned long parent_rate)
  852. {
  853. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  854. struct bcm2835_cprman *cprman = clock->cprman;
  855. const struct bcm2835_clock_data *data = clock->data;
  856. u32 div;
  857. if (data->int_bits == 0 && data->frac_bits == 0)
  858. return parent_rate;
  859. div = cprman_read(cprman, data->div_reg);
  860. return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
  861. }
  862. static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
  863. {
  864. struct bcm2835_cprman *cprman = clock->cprman;
  865. const struct bcm2835_clock_data *data = clock->data;
  866. ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  867. while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
  868. if (ktime_after(ktime_get(), timeout)) {
  869. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  870. clk_hw_get_name(&clock->hw));
  871. return;
  872. }
  873. cpu_relax();
  874. }
  875. }
  876. static void bcm2835_clock_off(struct clk_hw *hw)
  877. {
  878. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  879. struct bcm2835_cprman *cprman = clock->cprman;
  880. const struct bcm2835_clock_data *data = clock->data;
  881. spin_lock(&cprman->regs_lock);
  882. cprman_write(cprman, data->ctl_reg,
  883. cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
  884. spin_unlock(&cprman->regs_lock);
  885. /* BUSY will remain high until the divider completes its cycle. */
  886. bcm2835_clock_wait_busy(clock);
  887. }
  888. static int bcm2835_clock_on(struct clk_hw *hw)
  889. {
  890. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  891. struct bcm2835_cprman *cprman = clock->cprman;
  892. const struct bcm2835_clock_data *data = clock->data;
  893. spin_lock(&cprman->regs_lock);
  894. cprman_write(cprman, data->ctl_reg,
  895. cprman_read(cprman, data->ctl_reg) |
  896. CM_ENABLE |
  897. CM_GATE);
  898. spin_unlock(&cprman->regs_lock);
  899. /* Debug code to measure the clock once it's turned on to see
  900. * if it's ticking at the rate we expect.
  901. */
  902. if (data->tcnt_mux && false) {
  903. dev_info(cprman->dev,
  904. "clk %s: rate %ld, measure %ld\n",
  905. data->name,
  906. clk_hw_get_rate(hw),
  907. bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
  908. }
  909. return 0;
  910. }
  911. static int bcm2835_clock_set_rate(struct clk_hw *hw,
  912. unsigned long rate, unsigned long parent_rate)
  913. {
  914. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  915. struct bcm2835_cprman *cprman = clock->cprman;
  916. const struct bcm2835_clock_data *data = clock->data;
  917. u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
  918. u32 ctl;
  919. spin_lock(&cprman->regs_lock);
  920. /*
  921. * Setting up frac support
  922. *
  923. * In principle it is recommended to stop/start the clock first,
  924. * but as we set CLK_SET_RATE_GATE during registration of the
  925. * clock this requirement should be take care of by the
  926. * clk-framework.
  927. */
  928. ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
  929. ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
  930. cprman_write(cprman, data->ctl_reg, ctl);
  931. cprman_write(cprman, data->div_reg, div);
  932. spin_unlock(&cprman->regs_lock);
  933. return 0;
  934. }
  935. static bool
  936. bcm2835_clk_is_pllc(struct clk_hw *hw)
  937. {
  938. if (!hw)
  939. return false;
  940. return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
  941. }
  942. static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
  943. int parent_idx,
  944. unsigned long rate,
  945. u32 *div,
  946. unsigned long *prate)
  947. {
  948. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  949. struct bcm2835_cprman *cprman = clock->cprman;
  950. const struct bcm2835_clock_data *data = clock->data;
  951. unsigned long best_rate = 0;
  952. u32 curdiv, mindiv, maxdiv;
  953. struct clk_hw *parent;
  954. parent = clk_hw_get_parent_by_index(hw, parent_idx);
  955. if (!(BIT(parent_idx) & data->set_rate_parent)) {
  956. *prate = clk_hw_get_rate(parent);
  957. *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
  958. return bcm2835_clock_rate_from_divisor(clock, *prate,
  959. *div);
  960. }
  961. if (data->frac_bits)
  962. dev_warn(cprman->dev,
  963. "frac bits are not used when propagating rate change");
  964. /* clamp to min divider of 2 if we're dealing with a mash clock */
  965. mindiv = data->is_mash_clock ? 2 : 1;
  966. maxdiv = BIT(data->int_bits) - 1;
  967. /* TODO: Be smart, and only test a subset of the available divisors. */
  968. for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
  969. unsigned long tmp_rate;
  970. tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
  971. tmp_rate /= curdiv;
  972. if (curdiv == mindiv ||
  973. (tmp_rate > best_rate && tmp_rate <= rate))
  974. best_rate = tmp_rate;
  975. if (best_rate == rate)
  976. break;
  977. }
  978. *div = curdiv << CM_DIV_FRAC_BITS;
  979. *prate = curdiv * best_rate;
  980. return best_rate;
  981. }
  982. static int bcm2835_clock_determine_rate(struct clk_hw *hw,
  983. struct clk_rate_request *req)
  984. {
  985. struct clk_hw *parent, *best_parent = NULL;
  986. bool current_parent_is_pllc;
  987. unsigned long rate, best_rate = 0;
  988. unsigned long prate, best_prate = 0;
  989. size_t i;
  990. u32 div;
  991. current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
  992. /*
  993. * Select parent clock that results in the closest but lower rate
  994. */
  995. for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
  996. parent = clk_hw_get_parent_by_index(hw, i);
  997. if (!parent)
  998. continue;
  999. /*
  1000. * Don't choose a PLLC-derived clock as our parent
  1001. * unless it had been manually set that way. PLLC's
  1002. * frequency gets adjusted by the firmware due to
  1003. * over-temp or under-voltage conditions, without
  1004. * prior notification to our clock consumer.
  1005. */
  1006. if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
  1007. continue;
  1008. rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
  1009. &div, &prate);
  1010. if (rate > best_rate && rate <= req->rate) {
  1011. best_parent = parent;
  1012. best_prate = prate;
  1013. best_rate = rate;
  1014. }
  1015. }
  1016. if (!best_parent)
  1017. return -EINVAL;
  1018. req->best_parent_hw = best_parent;
  1019. req->best_parent_rate = best_prate;
  1020. req->rate = best_rate;
  1021. return 0;
  1022. }
  1023. static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
  1024. {
  1025. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  1026. struct bcm2835_cprman *cprman = clock->cprman;
  1027. const struct bcm2835_clock_data *data = clock->data;
  1028. u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
  1029. cprman_write(cprman, data->ctl_reg, src);
  1030. return 0;
  1031. }
  1032. static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
  1033. {
  1034. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  1035. struct bcm2835_cprman *cprman = clock->cprman;
  1036. const struct bcm2835_clock_data *data = clock->data;
  1037. u32 src = cprman_read(cprman, data->ctl_reg);
  1038. return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
  1039. }
  1040. static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
  1041. {
  1042. .name = "ctl",
  1043. .offset = 0,
  1044. },
  1045. {
  1046. .name = "div",
  1047. .offset = 4,
  1048. },
  1049. };
  1050. static int bcm2835_clock_debug_init(struct clk_hw *hw,
  1051. struct dentry *dentry)
  1052. {
  1053. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  1054. struct bcm2835_cprman *cprman = clock->cprman;
  1055. const struct bcm2835_clock_data *data = clock->data;
  1056. return bcm2835_debugfs_regset(
  1057. cprman, data->ctl_reg,
  1058. bcm2835_debugfs_clock_reg32,
  1059. ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
  1060. dentry);
  1061. }
  1062. static const struct clk_ops bcm2835_clock_clk_ops = {
  1063. .is_prepared = bcm2835_clock_is_on,
  1064. .prepare = bcm2835_clock_on,
  1065. .unprepare = bcm2835_clock_off,
  1066. .recalc_rate = bcm2835_clock_get_rate,
  1067. .set_rate = bcm2835_clock_set_rate,
  1068. .determine_rate = bcm2835_clock_determine_rate,
  1069. .set_parent = bcm2835_clock_set_parent,
  1070. .get_parent = bcm2835_clock_get_parent,
  1071. .debug_init = bcm2835_clock_debug_init,
  1072. };
  1073. static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
  1074. {
  1075. return true;
  1076. }
  1077. /*
  1078. * The VPU clock can never be disabled (it doesn't have an ENABLE
  1079. * bit), so it gets its own set of clock ops.
  1080. */
  1081. static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
  1082. .is_prepared = bcm2835_vpu_clock_is_on,
  1083. .recalc_rate = bcm2835_clock_get_rate,
  1084. .set_rate = bcm2835_clock_set_rate,
  1085. .determine_rate = bcm2835_clock_determine_rate,
  1086. .set_parent = bcm2835_clock_set_parent,
  1087. .get_parent = bcm2835_clock_get_parent,
  1088. .debug_init = bcm2835_clock_debug_init,
  1089. };
  1090. static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
  1091. const struct bcm2835_pll_data *data)
  1092. {
  1093. struct bcm2835_pll *pll;
  1094. struct clk_init_data init;
  1095. int ret;
  1096. memset(&init, 0, sizeof(init));
  1097. /* All of the PLLs derive from the external oscillator. */
  1098. init.parent_names = &cprman->real_parent_names[0];
  1099. init.num_parents = 1;
  1100. init.name = data->name;
  1101. init.ops = &bcm2835_pll_clk_ops;
  1102. init.flags = CLK_IGNORE_UNUSED;
  1103. pll = kzalloc(sizeof(*pll), GFP_KERNEL);
  1104. if (!pll)
  1105. return NULL;
  1106. pll->cprman = cprman;
  1107. pll->data = data;
  1108. pll->hw.init = &init;
  1109. ret = devm_clk_hw_register(cprman->dev, &pll->hw);
  1110. if (ret)
  1111. return NULL;
  1112. return &pll->hw;
  1113. }
  1114. static struct clk_hw *
  1115. bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
  1116. const struct bcm2835_pll_divider_data *data)
  1117. {
  1118. struct bcm2835_pll_divider *divider;
  1119. struct clk_init_data init;
  1120. const char *divider_name;
  1121. int ret;
  1122. if (data->fixed_divider != 1) {
  1123. divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
  1124. "%s_prediv", data->name);
  1125. if (!divider_name)
  1126. return NULL;
  1127. } else {
  1128. divider_name = data->name;
  1129. }
  1130. memset(&init, 0, sizeof(init));
  1131. init.parent_names = &data->source_pll;
  1132. init.num_parents = 1;
  1133. init.name = divider_name;
  1134. init.ops = &bcm2835_pll_divider_clk_ops;
  1135. init.flags = data->flags | CLK_IGNORE_UNUSED;
  1136. divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
  1137. if (!divider)
  1138. return NULL;
  1139. divider->div.reg = cprman->regs + data->a2w_reg;
  1140. divider->div.shift = A2W_PLL_DIV_SHIFT;
  1141. divider->div.width = A2W_PLL_DIV_BITS;
  1142. divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
  1143. divider->div.lock = &cprman->regs_lock;
  1144. divider->div.hw.init = &init;
  1145. divider->div.table = NULL;
  1146. divider->cprman = cprman;
  1147. divider->data = data;
  1148. ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
  1149. if (ret)
  1150. return ERR_PTR(ret);
  1151. /*
  1152. * PLLH's channels have a fixed divide by 10 afterwards, which
  1153. * is what our consumers are actually using.
  1154. */
  1155. if (data->fixed_divider != 1) {
  1156. return clk_hw_register_fixed_factor(cprman->dev, data->name,
  1157. divider_name,
  1158. CLK_SET_RATE_PARENT,
  1159. 1,
  1160. data->fixed_divider);
  1161. }
  1162. return &divider->div.hw;
  1163. }
  1164. static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
  1165. const struct bcm2835_clock_data *data)
  1166. {
  1167. struct bcm2835_clock *clock;
  1168. struct clk_init_data init;
  1169. const char *parents[1 << CM_SRC_BITS];
  1170. size_t i, j;
  1171. int ret;
  1172. /*
  1173. * Replace our strings referencing parent clocks with the
  1174. * actual clock-output-name of the parent.
  1175. */
  1176. for (i = 0; i < data->num_mux_parents; i++) {
  1177. parents[i] = data->parents[i];
  1178. for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
  1179. if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
  1180. parents[i] = cprman->real_parent_names[j];
  1181. break;
  1182. }
  1183. }
  1184. }
  1185. memset(&init, 0, sizeof(init));
  1186. init.parent_names = parents;
  1187. init.num_parents = data->num_mux_parents;
  1188. init.name = data->name;
  1189. init.flags = data->flags | CLK_IGNORE_UNUSED;
  1190. /*
  1191. * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
  1192. * rate changes on at least of the parents.
  1193. */
  1194. if (data->set_rate_parent)
  1195. init.flags |= CLK_SET_RATE_PARENT;
  1196. if (data->is_vpu_clock) {
  1197. init.ops = &bcm2835_vpu_clock_clk_ops;
  1198. } else {
  1199. init.ops = &bcm2835_clock_clk_ops;
  1200. init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
  1201. /* If the clock wasn't actually enabled at boot, it's not
  1202. * critical.
  1203. */
  1204. if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
  1205. init.flags &= ~CLK_IS_CRITICAL;
  1206. }
  1207. clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
  1208. if (!clock)
  1209. return NULL;
  1210. clock->cprman = cprman;
  1211. clock->data = data;
  1212. clock->hw.init = &init;
  1213. ret = devm_clk_hw_register(cprman->dev, &clock->hw);
  1214. if (ret)
  1215. return ERR_PTR(ret);
  1216. return &clock->hw;
  1217. }
  1218. static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
  1219. const struct bcm2835_gate_data *data)
  1220. {
  1221. return clk_register_gate(cprman->dev, data->name, data->parent,
  1222. CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
  1223. cprman->regs + data->ctl_reg,
  1224. CM_GATE_BIT, 0, &cprman->regs_lock);
  1225. }
  1226. typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
  1227. const void *data);
  1228. struct bcm2835_clk_desc {
  1229. bcm2835_clk_register clk_register;
  1230. const void *data;
  1231. };
  1232. /* assignment helper macros for different clock types */
  1233. #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
  1234. .data = __VA_ARGS__ }
  1235. #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
  1236. &(struct bcm2835_pll_data) \
  1237. {__VA_ARGS__})
  1238. #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
  1239. &(struct bcm2835_pll_divider_data) \
  1240. {__VA_ARGS__})
  1241. #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
  1242. &(struct bcm2835_clock_data) \
  1243. {__VA_ARGS__})
  1244. #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
  1245. &(struct bcm2835_gate_data) \
  1246. {__VA_ARGS__})
  1247. /* parent mux arrays plus helper macros */
  1248. /* main oscillator parent mux */
  1249. static const char *const bcm2835_clock_osc_parents[] = {
  1250. "gnd",
  1251. "xosc",
  1252. "testdebug0",
  1253. "testdebug1"
  1254. };
  1255. #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
  1256. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
  1257. .parents = bcm2835_clock_osc_parents, \
  1258. __VA_ARGS__)
  1259. /* main peripherial parent mux */
  1260. static const char *const bcm2835_clock_per_parents[] = {
  1261. "gnd",
  1262. "xosc",
  1263. "testdebug0",
  1264. "testdebug1",
  1265. "plla_per",
  1266. "pllc_per",
  1267. "plld_per",
  1268. "pllh_aux",
  1269. };
  1270. #define REGISTER_PER_CLK(...) REGISTER_CLK( \
  1271. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
  1272. .parents = bcm2835_clock_per_parents, \
  1273. __VA_ARGS__)
  1274. /* main vpu parent mux */
  1275. static const char *const bcm2835_clock_vpu_parents[] = {
  1276. "gnd",
  1277. "xosc",
  1278. "testdebug0",
  1279. "testdebug1",
  1280. "plla_core",
  1281. "pllc_core0",
  1282. "plld_core",
  1283. "pllh_aux",
  1284. "pllc_core1",
  1285. "pllc_core2",
  1286. };
  1287. #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
  1288. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
  1289. .parents = bcm2835_clock_vpu_parents, \
  1290. __VA_ARGS__)
  1291. /*
  1292. * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
  1293. * analog PHY. The _inv variants are generated internally to cprman,
  1294. * but we don't use them so they aren't hooked up.
  1295. */
  1296. static const char *const bcm2835_clock_dsi0_parents[] = {
  1297. "gnd",
  1298. "xosc",
  1299. "testdebug0",
  1300. "testdebug1",
  1301. "dsi0_ddr",
  1302. "dsi0_ddr_inv",
  1303. "dsi0_ddr2",
  1304. "dsi0_ddr2_inv",
  1305. "dsi0_byte",
  1306. "dsi0_byte_inv",
  1307. };
  1308. static const char *const bcm2835_clock_dsi1_parents[] = {
  1309. "gnd",
  1310. "xosc",
  1311. "testdebug0",
  1312. "testdebug1",
  1313. "dsi1_ddr",
  1314. "dsi1_ddr_inv",
  1315. "dsi1_ddr2",
  1316. "dsi1_ddr2_inv",
  1317. "dsi1_byte",
  1318. "dsi1_byte_inv",
  1319. };
  1320. #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
  1321. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
  1322. .parents = bcm2835_clock_dsi0_parents, \
  1323. __VA_ARGS__)
  1324. #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
  1325. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
  1326. .parents = bcm2835_clock_dsi1_parents, \
  1327. __VA_ARGS__)
  1328. /*
  1329. * the real definition of all the pll, pll_dividers and clocks
  1330. * these make use of the above REGISTER_* macros
  1331. */
  1332. static const struct bcm2835_clk_desc clk_desc_array[] = {
  1333. /* the PLL + PLL dividers */
  1334. /*
  1335. * PLLA is the auxiliary PLL, used to drive the CCP2
  1336. * (Compact Camera Port 2) transmitter clock.
  1337. *
  1338. * It is in the PX LDO power domain, which is on when the
  1339. * AUDIO domain is on.
  1340. */
  1341. [BCM2835_PLLA] = REGISTER_PLL(
  1342. .name = "plla",
  1343. .cm_ctrl_reg = CM_PLLA,
  1344. .a2w_ctrl_reg = A2W_PLLA_CTRL,
  1345. .frac_reg = A2W_PLLA_FRAC,
  1346. .ana_reg_base = A2W_PLLA_ANA0,
  1347. .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
  1348. .lock_mask = CM_LOCK_FLOCKA,
  1349. .ana = &bcm2835_ana_default,
  1350. .min_rate = 600000000u,
  1351. .max_rate = 2400000000u,
  1352. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1353. [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
  1354. .name = "plla_core",
  1355. .source_pll = "plla",
  1356. .cm_reg = CM_PLLA,
  1357. .a2w_reg = A2W_PLLA_CORE,
  1358. .load_mask = CM_PLLA_LOADCORE,
  1359. .hold_mask = CM_PLLA_HOLDCORE,
  1360. .fixed_divider = 1,
  1361. .flags = CLK_SET_RATE_PARENT),
  1362. [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
  1363. .name = "plla_per",
  1364. .source_pll = "plla",
  1365. .cm_reg = CM_PLLA,
  1366. .a2w_reg = A2W_PLLA_PER,
  1367. .load_mask = CM_PLLA_LOADPER,
  1368. .hold_mask = CM_PLLA_HOLDPER,
  1369. .fixed_divider = 1,
  1370. .flags = CLK_SET_RATE_PARENT),
  1371. [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
  1372. .name = "plla_dsi0",
  1373. .source_pll = "plla",
  1374. .cm_reg = CM_PLLA,
  1375. .a2w_reg = A2W_PLLA_DSI0,
  1376. .load_mask = CM_PLLA_LOADDSI0,
  1377. .hold_mask = CM_PLLA_HOLDDSI0,
  1378. .fixed_divider = 1),
  1379. [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
  1380. .name = "plla_ccp2",
  1381. .source_pll = "plla",
  1382. .cm_reg = CM_PLLA,
  1383. .a2w_reg = A2W_PLLA_CCP2,
  1384. .load_mask = CM_PLLA_LOADCCP2,
  1385. .hold_mask = CM_PLLA_HOLDCCP2,
  1386. .fixed_divider = 1,
  1387. .flags = CLK_SET_RATE_PARENT),
  1388. /* PLLB is used for the ARM's clock. */
  1389. [BCM2835_PLLB] = REGISTER_PLL(
  1390. .name = "pllb",
  1391. .cm_ctrl_reg = CM_PLLB,
  1392. .a2w_ctrl_reg = A2W_PLLB_CTRL,
  1393. .frac_reg = A2W_PLLB_FRAC,
  1394. .ana_reg_base = A2W_PLLB_ANA0,
  1395. .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
  1396. .lock_mask = CM_LOCK_FLOCKB,
  1397. .ana = &bcm2835_ana_default,
  1398. .min_rate = 600000000u,
  1399. .max_rate = 3000000000u,
  1400. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1401. [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
  1402. .name = "pllb_arm",
  1403. .source_pll = "pllb",
  1404. .cm_reg = CM_PLLB,
  1405. .a2w_reg = A2W_PLLB_ARM,
  1406. .load_mask = CM_PLLB_LOADARM,
  1407. .hold_mask = CM_PLLB_HOLDARM,
  1408. .fixed_divider = 1,
  1409. .flags = CLK_SET_RATE_PARENT),
  1410. /*
  1411. * PLLC is the core PLL, used to drive the core VPU clock.
  1412. *
  1413. * It is in the PX LDO power domain, which is on when the
  1414. * AUDIO domain is on.
  1415. */
  1416. [BCM2835_PLLC] = REGISTER_PLL(
  1417. .name = "pllc",
  1418. .cm_ctrl_reg = CM_PLLC,
  1419. .a2w_ctrl_reg = A2W_PLLC_CTRL,
  1420. .frac_reg = A2W_PLLC_FRAC,
  1421. .ana_reg_base = A2W_PLLC_ANA0,
  1422. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1423. .lock_mask = CM_LOCK_FLOCKC,
  1424. .ana = &bcm2835_ana_default,
  1425. .min_rate = 600000000u,
  1426. .max_rate = 3000000000u,
  1427. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1428. [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
  1429. .name = "pllc_core0",
  1430. .source_pll = "pllc",
  1431. .cm_reg = CM_PLLC,
  1432. .a2w_reg = A2W_PLLC_CORE0,
  1433. .load_mask = CM_PLLC_LOADCORE0,
  1434. .hold_mask = CM_PLLC_HOLDCORE0,
  1435. .fixed_divider = 1,
  1436. .flags = CLK_SET_RATE_PARENT),
  1437. [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
  1438. .name = "pllc_core1",
  1439. .source_pll = "pllc",
  1440. .cm_reg = CM_PLLC,
  1441. .a2w_reg = A2W_PLLC_CORE1,
  1442. .load_mask = CM_PLLC_LOADCORE1,
  1443. .hold_mask = CM_PLLC_HOLDCORE1,
  1444. .fixed_divider = 1,
  1445. .flags = CLK_SET_RATE_PARENT),
  1446. [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
  1447. .name = "pllc_core2",
  1448. .source_pll = "pllc",
  1449. .cm_reg = CM_PLLC,
  1450. .a2w_reg = A2W_PLLC_CORE2,
  1451. .load_mask = CM_PLLC_LOADCORE2,
  1452. .hold_mask = CM_PLLC_HOLDCORE2,
  1453. .fixed_divider = 1,
  1454. .flags = CLK_SET_RATE_PARENT),
  1455. [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
  1456. .name = "pllc_per",
  1457. .source_pll = "pllc",
  1458. .cm_reg = CM_PLLC,
  1459. .a2w_reg = A2W_PLLC_PER,
  1460. .load_mask = CM_PLLC_LOADPER,
  1461. .hold_mask = CM_PLLC_HOLDPER,
  1462. .fixed_divider = 1,
  1463. .flags = CLK_SET_RATE_PARENT),
  1464. /*
  1465. * PLLD is the display PLL, used to drive DSI display panels.
  1466. *
  1467. * It is in the PX LDO power domain, which is on when the
  1468. * AUDIO domain is on.
  1469. */
  1470. [BCM2835_PLLD] = REGISTER_PLL(
  1471. .name = "plld",
  1472. .cm_ctrl_reg = CM_PLLD,
  1473. .a2w_ctrl_reg = A2W_PLLD_CTRL,
  1474. .frac_reg = A2W_PLLD_FRAC,
  1475. .ana_reg_base = A2W_PLLD_ANA0,
  1476. .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
  1477. .lock_mask = CM_LOCK_FLOCKD,
  1478. .ana = &bcm2835_ana_default,
  1479. .min_rate = 600000000u,
  1480. .max_rate = 2400000000u,
  1481. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1482. [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
  1483. .name = "plld_core",
  1484. .source_pll = "plld",
  1485. .cm_reg = CM_PLLD,
  1486. .a2w_reg = A2W_PLLD_CORE,
  1487. .load_mask = CM_PLLD_LOADCORE,
  1488. .hold_mask = CM_PLLD_HOLDCORE,
  1489. .fixed_divider = 1,
  1490. .flags = CLK_SET_RATE_PARENT),
  1491. [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
  1492. .name = "plld_per",
  1493. .source_pll = "plld",
  1494. .cm_reg = CM_PLLD,
  1495. .a2w_reg = A2W_PLLD_PER,
  1496. .load_mask = CM_PLLD_LOADPER,
  1497. .hold_mask = CM_PLLD_HOLDPER,
  1498. .fixed_divider = 1,
  1499. .flags = CLK_SET_RATE_PARENT),
  1500. [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
  1501. .name = "plld_dsi0",
  1502. .source_pll = "plld",
  1503. .cm_reg = CM_PLLD,
  1504. .a2w_reg = A2W_PLLD_DSI0,
  1505. .load_mask = CM_PLLD_LOADDSI0,
  1506. .hold_mask = CM_PLLD_HOLDDSI0,
  1507. .fixed_divider = 1),
  1508. [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
  1509. .name = "plld_dsi1",
  1510. .source_pll = "plld",
  1511. .cm_reg = CM_PLLD,
  1512. .a2w_reg = A2W_PLLD_DSI1,
  1513. .load_mask = CM_PLLD_LOADDSI1,
  1514. .hold_mask = CM_PLLD_HOLDDSI1,
  1515. .fixed_divider = 1),
  1516. /*
  1517. * PLLH is used to supply the pixel clock or the AUX clock for the
  1518. * TV encoder.
  1519. *
  1520. * It is in the HDMI power domain.
  1521. */
  1522. [BCM2835_PLLH] = REGISTER_PLL(
  1523. "pllh",
  1524. .cm_ctrl_reg = CM_PLLH,
  1525. .a2w_ctrl_reg = A2W_PLLH_CTRL,
  1526. .frac_reg = A2W_PLLH_FRAC,
  1527. .ana_reg_base = A2W_PLLH_ANA0,
  1528. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1529. .lock_mask = CM_LOCK_FLOCKH,
  1530. .ana = &bcm2835_ana_pllh,
  1531. .min_rate = 600000000u,
  1532. .max_rate = 3000000000u,
  1533. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1534. [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
  1535. .name = "pllh_rcal",
  1536. .source_pll = "pllh",
  1537. .cm_reg = CM_PLLH,
  1538. .a2w_reg = A2W_PLLH_RCAL,
  1539. .load_mask = CM_PLLH_LOADRCAL,
  1540. .hold_mask = 0,
  1541. .fixed_divider = 10,
  1542. .flags = CLK_SET_RATE_PARENT),
  1543. [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
  1544. .name = "pllh_aux",
  1545. .source_pll = "pllh",
  1546. .cm_reg = CM_PLLH,
  1547. .a2w_reg = A2W_PLLH_AUX,
  1548. .load_mask = CM_PLLH_LOADAUX,
  1549. .hold_mask = 0,
  1550. .fixed_divider = 1,
  1551. .flags = CLK_SET_RATE_PARENT),
  1552. [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
  1553. .name = "pllh_pix",
  1554. .source_pll = "pllh",
  1555. .cm_reg = CM_PLLH,
  1556. .a2w_reg = A2W_PLLH_PIX,
  1557. .load_mask = CM_PLLH_LOADPIX,
  1558. .hold_mask = 0,
  1559. .fixed_divider = 10,
  1560. .flags = CLK_SET_RATE_PARENT),
  1561. /* the clocks */
  1562. /* clocks with oscillator parent mux */
  1563. /* One Time Programmable Memory clock. Maximum 10Mhz. */
  1564. [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
  1565. .name = "otp",
  1566. .ctl_reg = CM_OTPCTL,
  1567. .div_reg = CM_OTPDIV,
  1568. .int_bits = 4,
  1569. .frac_bits = 0,
  1570. .tcnt_mux = 6),
  1571. /*
  1572. * Used for a 1Mhz clock for the system clocksource, and also used
  1573. * bythe watchdog timer and the camera pulse generator.
  1574. */
  1575. [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
  1576. .name = "timer",
  1577. .ctl_reg = CM_TIMERCTL,
  1578. .div_reg = CM_TIMERDIV,
  1579. .int_bits = 6,
  1580. .frac_bits = 12),
  1581. /*
  1582. * Clock for the temperature sensor.
  1583. * Generally run at 2Mhz, max 5Mhz.
  1584. */
  1585. [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
  1586. .name = "tsens",
  1587. .ctl_reg = CM_TSENSCTL,
  1588. .div_reg = CM_TSENSDIV,
  1589. .int_bits = 5,
  1590. .frac_bits = 0),
  1591. [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
  1592. .name = "tec",
  1593. .ctl_reg = CM_TECCTL,
  1594. .div_reg = CM_TECDIV,
  1595. .int_bits = 6,
  1596. .frac_bits = 0),
  1597. /* clocks with vpu parent mux */
  1598. [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
  1599. .name = "h264",
  1600. .ctl_reg = CM_H264CTL,
  1601. .div_reg = CM_H264DIV,
  1602. .int_bits = 4,
  1603. .frac_bits = 8,
  1604. .tcnt_mux = 1),
  1605. [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
  1606. .name = "isp",
  1607. .ctl_reg = CM_ISPCTL,
  1608. .div_reg = CM_ISPDIV,
  1609. .int_bits = 4,
  1610. .frac_bits = 8,
  1611. .tcnt_mux = 2),
  1612. /*
  1613. * Secondary SDRAM clock. Used for low-voltage modes when the PLL
  1614. * in the SDRAM controller can't be used.
  1615. */
  1616. [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
  1617. .name = "sdram",
  1618. .ctl_reg = CM_SDCCTL,
  1619. .div_reg = CM_SDCDIV,
  1620. .int_bits = 6,
  1621. .frac_bits = 0,
  1622. .tcnt_mux = 3),
  1623. [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
  1624. .name = "v3d",
  1625. .ctl_reg = CM_V3DCTL,
  1626. .div_reg = CM_V3DDIV,
  1627. .int_bits = 4,
  1628. .frac_bits = 8,
  1629. .tcnt_mux = 4),
  1630. /*
  1631. * VPU clock. This doesn't have an enable bit, since it drives
  1632. * the bus for everything else, and is special so it doesn't need
  1633. * to be gated for rate changes. It is also known as "clk_audio"
  1634. * in various hardware documentation.
  1635. */
  1636. [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
  1637. .name = "vpu",
  1638. .ctl_reg = CM_VPUCTL,
  1639. .div_reg = CM_VPUDIV,
  1640. .int_bits = 12,
  1641. .frac_bits = 8,
  1642. .flags = CLK_IS_CRITICAL,
  1643. .is_vpu_clock = true,
  1644. .tcnt_mux = 5),
  1645. /* clocks with per parent mux */
  1646. [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
  1647. .name = "aveo",
  1648. .ctl_reg = CM_AVEOCTL,
  1649. .div_reg = CM_AVEODIV,
  1650. .int_bits = 4,
  1651. .frac_bits = 0,
  1652. .tcnt_mux = 38),
  1653. [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
  1654. .name = "cam0",
  1655. .ctl_reg = CM_CAM0CTL,
  1656. .div_reg = CM_CAM0DIV,
  1657. .int_bits = 4,
  1658. .frac_bits = 8,
  1659. .tcnt_mux = 14),
  1660. [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
  1661. .name = "cam1",
  1662. .ctl_reg = CM_CAM1CTL,
  1663. .div_reg = CM_CAM1DIV,
  1664. .int_bits = 4,
  1665. .frac_bits = 8,
  1666. .tcnt_mux = 15),
  1667. [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
  1668. .name = "dft",
  1669. .ctl_reg = CM_DFTCTL,
  1670. .div_reg = CM_DFTDIV,
  1671. .int_bits = 5,
  1672. .frac_bits = 0),
  1673. [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
  1674. .name = "dpi",
  1675. .ctl_reg = CM_DPICTL,
  1676. .div_reg = CM_DPIDIV,
  1677. .int_bits = 4,
  1678. .frac_bits = 8,
  1679. .tcnt_mux = 17),
  1680. /* Arasan EMMC clock */
  1681. [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
  1682. .name = "emmc",
  1683. .ctl_reg = CM_EMMCCTL,
  1684. .div_reg = CM_EMMCDIV,
  1685. .int_bits = 4,
  1686. .frac_bits = 8,
  1687. .tcnt_mux = 39),
  1688. /* General purpose (GPIO) clocks */
  1689. [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
  1690. .name = "gp0",
  1691. .ctl_reg = CM_GP0CTL,
  1692. .div_reg = CM_GP0DIV,
  1693. .int_bits = 12,
  1694. .frac_bits = 12,
  1695. .is_mash_clock = true,
  1696. .tcnt_mux = 20),
  1697. [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
  1698. .name = "gp1",
  1699. .ctl_reg = CM_GP1CTL,
  1700. .div_reg = CM_GP1DIV,
  1701. .int_bits = 12,
  1702. .frac_bits = 12,
  1703. .flags = CLK_IS_CRITICAL,
  1704. .is_mash_clock = true,
  1705. .tcnt_mux = 21),
  1706. [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
  1707. .name = "gp2",
  1708. .ctl_reg = CM_GP2CTL,
  1709. .div_reg = CM_GP2DIV,
  1710. .int_bits = 12,
  1711. .frac_bits = 12,
  1712. .flags = CLK_IS_CRITICAL),
  1713. /* HDMI state machine */
  1714. [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
  1715. .name = "hsm",
  1716. .ctl_reg = CM_HSMCTL,
  1717. .div_reg = CM_HSMDIV,
  1718. .int_bits = 4,
  1719. .frac_bits = 8,
  1720. .tcnt_mux = 22),
  1721. [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
  1722. .name = "pcm",
  1723. .ctl_reg = CM_PCMCTL,
  1724. .div_reg = CM_PCMDIV,
  1725. .int_bits = 12,
  1726. .frac_bits = 12,
  1727. .is_mash_clock = true,
  1728. .tcnt_mux = 23),
  1729. [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
  1730. .name = "pwm",
  1731. .ctl_reg = CM_PWMCTL,
  1732. .div_reg = CM_PWMDIV,
  1733. .int_bits = 12,
  1734. .frac_bits = 12,
  1735. .is_mash_clock = true,
  1736. .tcnt_mux = 24),
  1737. [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
  1738. .name = "slim",
  1739. .ctl_reg = CM_SLIMCTL,
  1740. .div_reg = CM_SLIMDIV,
  1741. .int_bits = 12,
  1742. .frac_bits = 12,
  1743. .is_mash_clock = true,
  1744. .tcnt_mux = 25),
  1745. [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
  1746. .name = "smi",
  1747. .ctl_reg = CM_SMICTL,
  1748. .div_reg = CM_SMIDIV,
  1749. .int_bits = 4,
  1750. .frac_bits = 8,
  1751. .tcnt_mux = 27),
  1752. [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
  1753. .name = "uart",
  1754. .ctl_reg = CM_UARTCTL,
  1755. .div_reg = CM_UARTDIV,
  1756. .int_bits = 10,
  1757. .frac_bits = 12,
  1758. .tcnt_mux = 28),
  1759. /* TV encoder clock. Only operating frequency is 108Mhz. */
  1760. [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
  1761. .name = "vec",
  1762. .ctl_reg = CM_VECCTL,
  1763. .div_reg = CM_VECDIV,
  1764. .int_bits = 4,
  1765. .frac_bits = 0,
  1766. /*
  1767. * Allow rate change propagation only on PLLH_AUX which is
  1768. * assigned index 7 in the parent array.
  1769. */
  1770. .set_rate_parent = BIT(7),
  1771. .tcnt_mux = 29),
  1772. /* dsi clocks */
  1773. [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
  1774. .name = "dsi0e",
  1775. .ctl_reg = CM_DSI0ECTL,
  1776. .div_reg = CM_DSI0EDIV,
  1777. .int_bits = 4,
  1778. .frac_bits = 8,
  1779. .tcnt_mux = 18),
  1780. [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
  1781. .name = "dsi1e",
  1782. .ctl_reg = CM_DSI1ECTL,
  1783. .div_reg = CM_DSI1EDIV,
  1784. .int_bits = 4,
  1785. .frac_bits = 8,
  1786. .tcnt_mux = 19),
  1787. [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
  1788. .name = "dsi0p",
  1789. .ctl_reg = CM_DSI0PCTL,
  1790. .div_reg = CM_DSI0PDIV,
  1791. .int_bits = 0,
  1792. .frac_bits = 0,
  1793. .tcnt_mux = 12),
  1794. [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
  1795. .name = "dsi1p",
  1796. .ctl_reg = CM_DSI1PCTL,
  1797. .div_reg = CM_DSI1PDIV,
  1798. .int_bits = 0,
  1799. .frac_bits = 0,
  1800. .tcnt_mux = 13),
  1801. /* the gates */
  1802. /*
  1803. * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
  1804. * you have the debug bit set in the power manager, which we
  1805. * don't bother exposing) are individual gates off of the
  1806. * non-stop vpu clock.
  1807. */
  1808. [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
  1809. .name = "peri_image",
  1810. .parent = "vpu",
  1811. .ctl_reg = CM_PERIICTL),
  1812. };
  1813. /*
  1814. * Permanently take a reference on the parent of the SDRAM clock.
  1815. *
  1816. * While the SDRAM is being driven by its dedicated PLL most of the
  1817. * time, there is a little loop running in the firmware that
  1818. * periodically switches the SDRAM to using our CM clock to do PVT
  1819. * recalibration, with the assumption that the previously configured
  1820. * SDRAM parent is still enabled and running.
  1821. */
  1822. static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
  1823. {
  1824. struct clk *parent = clk_get_parent(sdc);
  1825. if (IS_ERR(parent))
  1826. return PTR_ERR(parent);
  1827. return clk_prepare_enable(parent);
  1828. }
  1829. static int bcm2835_clk_probe(struct platform_device *pdev)
  1830. {
  1831. struct device *dev = &pdev->dev;
  1832. struct clk_hw **hws;
  1833. struct bcm2835_cprman *cprman;
  1834. struct resource *res;
  1835. const struct bcm2835_clk_desc *desc;
  1836. const size_t asize = ARRAY_SIZE(clk_desc_array);
  1837. size_t i;
  1838. int ret;
  1839. cprman = devm_kzalloc(dev, sizeof(*cprman) +
  1840. sizeof(*cprman->onecell.hws) * asize,
  1841. GFP_KERNEL);
  1842. if (!cprman)
  1843. return -ENOMEM;
  1844. spin_lock_init(&cprman->regs_lock);
  1845. cprman->dev = dev;
  1846. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1847. cprman->regs = devm_ioremap_resource(dev, res);
  1848. if (IS_ERR(cprman->regs))
  1849. return PTR_ERR(cprman->regs);
  1850. memcpy(cprman->real_parent_names, cprman_parent_names,
  1851. sizeof(cprman_parent_names));
  1852. of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
  1853. ARRAY_SIZE(cprman_parent_names));
  1854. /*
  1855. * Make sure the external oscillator has been registered.
  1856. *
  1857. * The other (DSI) clocks are not present on older device
  1858. * trees, which we still need to support for backwards
  1859. * compatibility.
  1860. */
  1861. if (!cprman->real_parent_names[0])
  1862. return -ENODEV;
  1863. platform_set_drvdata(pdev, cprman);
  1864. cprman->onecell.num = asize;
  1865. hws = cprman->onecell.hws;
  1866. for (i = 0; i < asize; i++) {
  1867. desc = &clk_desc_array[i];
  1868. if (desc->clk_register && desc->data)
  1869. hws[i] = desc->clk_register(cprman, desc->data);
  1870. }
  1871. ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
  1872. if (ret)
  1873. return ret;
  1874. return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
  1875. &cprman->onecell);
  1876. }
  1877. static const struct of_device_id bcm2835_clk_of_match[] = {
  1878. { .compatible = "brcm,bcm2835-cprman", },
  1879. {}
  1880. };
  1881. MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
  1882. static struct platform_driver bcm2835_clk_driver = {
  1883. .driver = {
  1884. .name = "bcm2835-clk",
  1885. .of_match_table = bcm2835_clk_of_match,
  1886. },
  1887. .probe = bcm2835_clk_probe,
  1888. };
  1889. builtin_platform_driver(bcm2835_clk_driver);
  1890. MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
  1891. MODULE_DESCRIPTION("BCM2835 clock driver");
  1892. MODULE_LICENSE("GPL v2");