pgtable.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /*
  2. * include/asm-xtensa/pgtable.h
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * Copyright (C) 2001 - 2013 Tensilica Inc.
  9. */
  10. #ifndef _XTENSA_PGTABLE_H
  11. #define _XTENSA_PGTABLE_H
  12. #define __ARCH_USE_5LEVEL_HACK
  13. #include <asm-generic/pgtable-nopmd.h>
  14. #include <asm/page.h>
  15. #include <asm/kmem_layout.h>
  16. /*
  17. * We only use two ring levels, user and kernel space.
  18. */
  19. #ifdef CONFIG_MMU
  20. #define USER_RING 1 /* user ring level */
  21. #else
  22. #define USER_RING 0
  23. #endif
  24. #define KERNEL_RING 0 /* kernel ring level */
  25. /*
  26. * The Xtensa architecture port of Linux has a two-level page table system,
  27. * i.e. the logical three-level Linux page table layout is folded.
  28. * Each task has the following memory page tables:
  29. *
  30. * PGD table (page directory), ie. 3rd-level page table:
  31. * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
  32. * (Architectures that don't have the PMD folded point to the PMD tables)
  33. *
  34. * The pointer to the PGD table for a given task can be retrieved from
  35. * the task structure (struct task_struct*) t, e.g. current():
  36. * (t->mm ? t->mm : t->active_mm)->pgd
  37. *
  38. * PMD tables (page middle-directory), ie. 2nd-level page tables:
  39. * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
  40. *
  41. * PTE tables (page table entry), ie. 1st-level page tables:
  42. * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
  43. * invalid_pte_table for absent mappings.
  44. *
  45. * The individual pages are 4 kB big with special pages for the empty_zero_page.
  46. */
  47. #define PGDIR_SHIFT 22
  48. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  49. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  50. /*
  51. * Entries per page directory level: we use two-level, so
  52. * we don't really have any PMD directory physically.
  53. */
  54. #define PTRS_PER_PTE 1024
  55. #define PTRS_PER_PTE_SHIFT 10
  56. #define PTRS_PER_PGD 1024
  57. #define PGD_ORDER 0
  58. #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
  59. #define FIRST_USER_ADDRESS 0UL
  60. #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
  61. /*
  62. * Virtual memory area. We keep a distance to other memory regions to be
  63. * on the safe side. We also use this area for cache aliasing.
  64. */
  65. #define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
  66. #define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
  67. #define TLBTEMP_BASE_1 (VMALLOC_END + 1)
  68. #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
  69. #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
  70. #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
  71. #else
  72. #define TLBTEMP_SIZE ICACHE_WAY_SIZE
  73. #endif
  74. /*
  75. * For the Xtensa architecture, the PTE layout is as follows:
  76. *
  77. * 31------12 11 10-9 8-6 5-4 3-2 1-0
  78. * +-----------------------------------------+
  79. * | | Software | HARDWARE |
  80. * | PPN | ADW | RI |Attribute|
  81. * +-----------------------------------------+
  82. * pte_none | MBZ | 01 | 11 | 00 |
  83. * +-----------------------------------------+
  84. * present | PPN | 0 | 00 | ADW | RI | CA | wx |
  85. * +- - - - - - - - - - - - - - - - - - - - -+
  86. * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
  87. * +-----------------------------------------+
  88. * swap | index | type | 01 | 11 | 00 |
  89. * +-----------------------------------------+
  90. *
  91. * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
  92. * +-----------------------------------------+
  93. * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
  94. * +-----------------------------------------+
  95. * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
  96. * +-----------------------------------------+
  97. *
  98. * Legend:
  99. * PPN Physical Page Number
  100. * ADW software: accessed (young) / dirty / writable
  101. * RI ring (0=privileged, 1=user, 2 and 3 are unused)
  102. * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
  103. * (11 is invalid and used to mark pages that are not present)
  104. * w page is writable (hw)
  105. * x page is executable (hw)
  106. * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
  107. * (note that the index is always non-zero)
  108. * type swap type (5 bits -> 32 types)
  109. *
  110. * Notes:
  111. * - (PROT_NONE) is a special case of 'present' but causes an exception for
  112. * any access (read, write, and execute).
  113. * - 'multihit-exception' has the highest priority of all MMU exceptions,
  114. * so the ring must be set to 'RING_USER' even for 'non-present' pages.
  115. * - on older hardware, the exectuable flag was not supported and
  116. * used as a 'valid' flag, so it needs to be always set.
  117. * - we need to keep track of certain flags in software (dirty and young)
  118. * to do this, we use write exceptions and have a separate software w-flag.
  119. * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
  120. */
  121. #define _PAGE_ATTRIB_MASK 0xf
  122. #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
  123. #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
  124. #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
  125. #define _PAGE_CA_WB (1<<2) /* write-back */
  126. #define _PAGE_CA_WT (2<<2) /* write-through */
  127. #define _PAGE_CA_MASK (3<<2)
  128. #define _PAGE_CA_INVALID (3<<2)
  129. /* We use invalid attribute values to distinguish special pte entries */
  130. #if XCHAL_HW_VERSION_MAJOR < 2000
  131. #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
  132. #define _PAGE_NONE 0x04
  133. #else
  134. #define _PAGE_HW_VALID 0x00
  135. #define _PAGE_NONE 0x0f
  136. #endif
  137. #define _PAGE_USER (1<<4) /* user access (ring=1) */
  138. /* Software */
  139. #define _PAGE_WRITABLE_BIT 6
  140. #define _PAGE_WRITABLE (1<<6) /* software: page writable */
  141. #define _PAGE_DIRTY (1<<7) /* software: page dirty */
  142. #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
  143. #ifdef CONFIG_MMU
  144. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  145. #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
  146. #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
  147. #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
  148. #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
  149. #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
  150. #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
  151. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
  152. #define PAGE_SHARED_EXEC \
  153. __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
  154. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
  155. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
  156. #if (DCACHE_WAY_SIZE > PAGE_SIZE)
  157. # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
  158. #else
  159. # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
  160. #endif
  161. #else /* no mmu */
  162. # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  163. # define PAGE_NONE __pgprot(0)
  164. # define PAGE_SHARED __pgprot(0)
  165. # define PAGE_COPY __pgprot(0)
  166. # define PAGE_READONLY __pgprot(0)
  167. # define PAGE_KERNEL __pgprot(0)
  168. #endif
  169. /*
  170. * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
  171. * the MMU can't do page protection for execute, and considers that the same as
  172. * read. Also, write permissions may imply read permissions.
  173. * What follows is the closest we can get by reasonable means..
  174. * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
  175. */
  176. #define __P000 PAGE_NONE /* private --- */
  177. #define __P001 PAGE_READONLY /* private --r */
  178. #define __P010 PAGE_COPY /* private -w- */
  179. #define __P011 PAGE_COPY /* private -wr */
  180. #define __P100 PAGE_READONLY_EXEC /* private x-- */
  181. #define __P101 PAGE_READONLY_EXEC /* private x-r */
  182. #define __P110 PAGE_COPY_EXEC /* private xw- */
  183. #define __P111 PAGE_COPY_EXEC /* private xwr */
  184. #define __S000 PAGE_NONE /* shared --- */
  185. #define __S001 PAGE_READONLY /* shared --r */
  186. #define __S010 PAGE_SHARED /* shared -w- */
  187. #define __S011 PAGE_SHARED /* shared -wr */
  188. #define __S100 PAGE_READONLY_EXEC /* shared x-- */
  189. #define __S101 PAGE_READONLY_EXEC /* shared x-r */
  190. #define __S110 PAGE_SHARED_EXEC /* shared xw- */
  191. #define __S111 PAGE_SHARED_EXEC /* shared xwr */
  192. #ifndef __ASSEMBLY__
  193. #define pte_ERROR(e) \
  194. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  195. #define pgd_ERROR(e) \
  196. printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  197. extern unsigned long empty_zero_page[1024];
  198. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  199. #ifdef CONFIG_MMU
  200. extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
  201. extern void paging_init(void);
  202. #else
  203. # define swapper_pg_dir NULL
  204. static inline void paging_init(void) { }
  205. #endif
  206. static inline void pgtable_cache_init(void) { }
  207. /*
  208. * The pmd contains the kernel virtual address of the pte page.
  209. */
  210. #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
  211. #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
  212. /*
  213. * pte status.
  214. */
  215. # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
  216. #if XCHAL_HW_VERSION_MAJOR < 2000
  217. # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
  218. #else
  219. # define pte_present(pte) \
  220. (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
  221. || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
  222. #endif
  223. #define pte_clear(mm,addr,ptep) \
  224. do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
  225. #define pmd_none(pmd) (!pmd_val(pmd))
  226. #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
  227. #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
  228. #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
  229. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
  230. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
  231. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
  232. static inline int pte_special(pte_t pte) { return 0; }
  233. static inline pte_t pte_wrprotect(pte_t pte)
  234. { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
  235. static inline pte_t pte_mkclean(pte_t pte)
  236. { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
  237. static inline pte_t pte_mkold(pte_t pte)
  238. { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  239. static inline pte_t pte_mkdirty(pte_t pte)
  240. { pte_val(pte) |= _PAGE_DIRTY; return pte; }
  241. static inline pte_t pte_mkyoung(pte_t pte)
  242. { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  243. static inline pte_t pte_mkwrite(pte_t pte)
  244. { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
  245. static inline pte_t pte_mkspecial(pte_t pte)
  246. { return pte; }
  247. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
  248. /*
  249. * Conversion functions: convert a page and protection to a page entry,
  250. * and a page entry and page directory to the page they refer to.
  251. */
  252. #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
  253. #define pte_same(a,b) (pte_val(a) == pte_val(b))
  254. #define pte_page(x) pfn_to_page(pte_pfn(x))
  255. #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
  256. #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
  257. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  258. {
  259. return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
  260. }
  261. /*
  262. * Certain architectures need to do special things when pte's
  263. * within a page table are directly modified. Thus, the following
  264. * hook is made available.
  265. */
  266. static inline void update_pte(pte_t *ptep, pte_t pteval)
  267. {
  268. *ptep = pteval;
  269. #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
  270. __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
  271. #endif
  272. }
  273. struct mm_struct;
  274. static inline void
  275. set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
  276. {
  277. update_pte(ptep, pteval);
  278. }
  279. static inline void set_pte(pte_t *ptep, pte_t pteval)
  280. {
  281. update_pte(ptep, pteval);
  282. }
  283. static inline void
  284. set_pmd(pmd_t *pmdp, pmd_t pmdval)
  285. {
  286. *pmdp = pmdval;
  287. }
  288. struct vm_area_struct;
  289. static inline int
  290. ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
  291. pte_t *ptep)
  292. {
  293. pte_t pte = *ptep;
  294. if (!pte_young(pte))
  295. return 0;
  296. update_pte(ptep, pte_mkold(pte));
  297. return 1;
  298. }
  299. static inline pte_t
  300. ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  301. {
  302. pte_t pte = *ptep;
  303. pte_clear(mm, addr, ptep);
  304. return pte;
  305. }
  306. static inline void
  307. ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  308. {
  309. pte_t pte = *ptep;
  310. update_pte(ptep, pte_wrprotect(pte));
  311. }
  312. /* to find an entry in a kernel page-table-directory */
  313. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  314. /* to find an entry in a page-table-directory */
  315. #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
  316. #define pgd_index(address) ((address) >> PGDIR_SHIFT)
  317. /* Find an entry in the second-level page table.. */
  318. #define pmd_offset(dir,address) ((pmd_t*)(dir))
  319. /* Find an entry in the third-level page table.. */
  320. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  321. #define pte_offset_kernel(dir,addr) \
  322. ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
  323. #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
  324. #define pte_unmap(pte) do { } while (0)
  325. /*
  326. * Encode and decode a swap and file entry.
  327. */
  328. #define SWP_TYPE_BITS 5
  329. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
  330. #define __swp_type(entry) (((entry).val >> 6) & 0x1f)
  331. #define __swp_offset(entry) ((entry).val >> 11)
  332. #define __swp_entry(type,offs) \
  333. ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
  334. _PAGE_CA_INVALID | _PAGE_USER})
  335. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  336. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  337. #endif /* !defined (__ASSEMBLY__) */
  338. #ifdef __ASSEMBLY__
  339. /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
  340. * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
  341. * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
  342. * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
  343. *
  344. * Note: We require an additional temporary register which can be the same as
  345. * the register that holds the address.
  346. *
  347. * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
  348. *
  349. */
  350. #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
  351. #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
  352. #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
  353. _PGD_INDEX(tmp, adr); \
  354. addx4 mm, tmp, mm
  355. #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
  356. srli pmd, pmd, PAGE_SHIFT; \
  357. slli pmd, pmd, PAGE_SHIFT; \
  358. addx4 pmd, tmp, pmd
  359. #else
  360. #define kern_addr_valid(addr) (1)
  361. extern void update_mmu_cache(struct vm_area_struct * vma,
  362. unsigned long address, pte_t *ptep);
  363. typedef pte_t *pte_addr_t;
  364. #endif /* !defined (__ASSEMBLY__) */
  365. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  366. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  367. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  368. #define __HAVE_ARCH_PTEP_MKDIRTY
  369. #define __HAVE_ARCH_PTE_SAME
  370. /* We provide our own get_unmapped_area to cope with
  371. * SHM area cache aliasing for userland.
  372. */
  373. #define HAVE_ARCH_UNMAPPED_AREA
  374. #include <asm-generic/pgtable.h>
  375. #endif /* _XTENSA_PGTABLE_H */