kasan_init_64.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. #define DISABLE_BRANCH_PROFILING
  2. #define pr_fmt(fmt) "kasan: " fmt
  3. #include <linux/bootmem.h>
  4. #include <linux/kasan.h>
  5. #include <linux/kdebug.h>
  6. #include <linux/mm.h>
  7. #include <linux/sched.h>
  8. #include <linux/sched/task.h>
  9. #include <linux/vmalloc.h>
  10. #include <asm/e820/types.h>
  11. #include <asm/tlbflush.h>
  12. #include <asm/sections.h>
  13. extern pgd_t early_level4_pgt[PTRS_PER_PGD];
  14. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  15. static int __init map_range(struct range *range)
  16. {
  17. unsigned long start;
  18. unsigned long end;
  19. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  20. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  21. /*
  22. * end + 1 here is intentional. We check several shadow bytes in advance
  23. * to slightly speed up fastpath. In some rare cases we could cross
  24. * boundary of mapped shadow, so we just map some more here.
  25. */
  26. return vmemmap_populate(start, end + 1, NUMA_NO_NODE);
  27. }
  28. static void __init clear_pgds(unsigned long start,
  29. unsigned long end)
  30. {
  31. pgd_t *pgd;
  32. for (; start < end; start += PGDIR_SIZE) {
  33. pgd = pgd_offset_k(start);
  34. /*
  35. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  36. * instead.
  37. */
  38. if (CONFIG_PGTABLE_LEVELS < 5)
  39. p4d_clear(p4d_offset(pgd, start));
  40. else
  41. pgd_clear(pgd);
  42. }
  43. }
  44. static void __init kasan_map_early_shadow(pgd_t *pgd)
  45. {
  46. int i;
  47. unsigned long start = KASAN_SHADOW_START;
  48. unsigned long end = KASAN_SHADOW_END;
  49. for (i = pgd_index(start); start < end; i++) {
  50. switch (CONFIG_PGTABLE_LEVELS) {
  51. case 4:
  52. pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud) |
  53. _KERNPG_TABLE);
  54. break;
  55. case 5:
  56. pgd[i] = __pgd(__pa_nodebug(kasan_zero_p4d) |
  57. _KERNPG_TABLE);
  58. break;
  59. default:
  60. BUILD_BUG();
  61. }
  62. start += PGDIR_SIZE;
  63. }
  64. }
  65. #ifdef CONFIG_KASAN_INLINE
  66. static int kasan_die_handler(struct notifier_block *self,
  67. unsigned long val,
  68. void *data)
  69. {
  70. if (val == DIE_GPF) {
  71. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  72. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  73. }
  74. return NOTIFY_OK;
  75. }
  76. static struct notifier_block kasan_die_notifier = {
  77. .notifier_call = kasan_die_handler,
  78. };
  79. #endif
  80. void __init kasan_early_init(void)
  81. {
  82. int i;
  83. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL;
  84. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  85. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  86. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  87. for (i = 0; i < PTRS_PER_PTE; i++)
  88. kasan_zero_pte[i] = __pte(pte_val);
  89. for (i = 0; i < PTRS_PER_PMD; i++)
  90. kasan_zero_pmd[i] = __pmd(pmd_val);
  91. for (i = 0; i < PTRS_PER_PUD; i++)
  92. kasan_zero_pud[i] = __pud(pud_val);
  93. for (i = 0; CONFIG_PGTABLE_LEVELS >= 5 && i < PTRS_PER_P4D; i++)
  94. kasan_zero_p4d[i] = __p4d(p4d_val);
  95. kasan_map_early_shadow(early_level4_pgt);
  96. kasan_map_early_shadow(init_level4_pgt);
  97. }
  98. void __init kasan_init(void)
  99. {
  100. int i;
  101. #ifdef CONFIG_KASAN_INLINE
  102. register_die_notifier(&kasan_die_notifier);
  103. #endif
  104. memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt));
  105. load_cr3(early_level4_pgt);
  106. __flush_tlb_all();
  107. clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
  108. kasan_populate_zero_shadow((void *)KASAN_SHADOW_START,
  109. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  110. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  111. if (pfn_mapped[i].end == 0)
  112. break;
  113. if (map_range(&pfn_mapped[i]))
  114. panic("kasan: unable to allocate shadow!");
  115. }
  116. kasan_populate_zero_shadow(
  117. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  118. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  119. vmemmap_populate((unsigned long)kasan_mem_to_shadow(_stext),
  120. (unsigned long)kasan_mem_to_shadow(_end),
  121. NUMA_NO_NODE);
  122. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  123. (void *)KASAN_SHADOW_END);
  124. load_cr3(init_level4_pgt);
  125. __flush_tlb_all();
  126. /*
  127. * kasan_zero_page has been used as early shadow memory, thus it may
  128. * contain some garbage. Now we can clear and write protect it, since
  129. * after the TLB flush no one should write to it.
  130. */
  131. memset(kasan_zero_page, 0, PAGE_SIZE);
  132. for (i = 0; i < PTRS_PER_PTE; i++) {
  133. pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO);
  134. set_pte(&kasan_zero_pte[i], pte);
  135. }
  136. /* Flush TLBs again to be sure that write protection applied. */
  137. __flush_tlb_all();
  138. init_task.kasan_depth = 0;
  139. pr_info("KernelAddressSanitizer initialized\n");
  140. }