init_64.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/memory.h>
  30. #include <linux/memory_hotplug.h>
  31. #include <linux/memremap.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <linux/kcore.h>
  35. #include <asm/processor.h>
  36. #include <asm/bios_ebda.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/pgalloc.h>
  40. #include <asm/dma.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/e820/api.h>
  43. #include <asm/apic.h>
  44. #include <asm/tlb.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/proto.h>
  47. #include <asm/smp.h>
  48. #include <asm/sections.h>
  49. #include <asm/kdebug.h>
  50. #include <asm/numa.h>
  51. #include <asm/set_memory.h>
  52. #include <asm/init.h>
  53. #include <asm/uv/uv.h>
  54. #include <asm/setup.h>
  55. #include "mm_internal.h"
  56. #include "ident_map.c"
  57. /*
  58. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  59. * physical space so we can cache the place of the first one and move
  60. * around without checking the pgd every time.
  61. */
  62. pteval_t __supported_pte_mask __read_mostly = ~0;
  63. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  64. int force_personality32;
  65. /*
  66. * noexec32=on|off
  67. * Control non executable heap for 32bit processes.
  68. * To control the stack too use noexec=off
  69. *
  70. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  71. * off PROT_READ implies PROT_EXEC
  72. */
  73. static int __init nonx32_setup(char *str)
  74. {
  75. if (!strcmp(str, "on"))
  76. force_personality32 &= ~READ_IMPLIES_EXEC;
  77. else if (!strcmp(str, "off"))
  78. force_personality32 |= READ_IMPLIES_EXEC;
  79. return 1;
  80. }
  81. __setup("noexec32=", nonx32_setup);
  82. /*
  83. * When memory was added make sure all the processes MM have
  84. * suitable PGD entries in the local PGD level page.
  85. */
  86. void sync_global_pgds(unsigned long start, unsigned long end)
  87. {
  88. unsigned long addr;
  89. for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
  90. pgd_t *pgd_ref = pgd_offset_k(addr);
  91. const p4d_t *p4d_ref;
  92. struct page *page;
  93. /*
  94. * With folded p4d, pgd_none() is always false, we need to
  95. * handle synchonization on p4d level.
  96. */
  97. BUILD_BUG_ON(pgd_none(*pgd_ref));
  98. p4d_ref = p4d_offset(pgd_ref, addr);
  99. if (p4d_none(*p4d_ref))
  100. continue;
  101. spin_lock(&pgd_lock);
  102. list_for_each_entry(page, &pgd_list, lru) {
  103. pgd_t *pgd;
  104. p4d_t *p4d;
  105. spinlock_t *pgt_lock;
  106. pgd = (pgd_t *)page_address(page) + pgd_index(addr);
  107. p4d = p4d_offset(pgd, addr);
  108. /* the pgt_lock only for Xen */
  109. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  110. spin_lock(pgt_lock);
  111. if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
  112. BUG_ON(p4d_page_vaddr(*p4d)
  113. != p4d_page_vaddr(*p4d_ref));
  114. if (p4d_none(*p4d))
  115. set_p4d(p4d, *p4d_ref);
  116. spin_unlock(pgt_lock);
  117. }
  118. spin_unlock(&pgd_lock);
  119. }
  120. }
  121. /*
  122. * NOTE: This function is marked __ref because it calls __init function
  123. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  124. */
  125. static __ref void *spp_getpage(void)
  126. {
  127. void *ptr;
  128. if (after_bootmem)
  129. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  130. else
  131. ptr = alloc_bootmem_pages(PAGE_SIZE);
  132. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  133. panic("set_pte_phys: cannot allocate page data %s\n",
  134. after_bootmem ? "after bootmem" : "");
  135. }
  136. pr_debug("spp_getpage %p\n", ptr);
  137. return ptr;
  138. }
  139. static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
  140. {
  141. if (pgd_none(*pgd)) {
  142. p4d_t *p4d = (p4d_t *)spp_getpage();
  143. pgd_populate(&init_mm, pgd, p4d);
  144. if (p4d != p4d_offset(pgd, 0))
  145. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  146. p4d, p4d_offset(pgd, 0));
  147. }
  148. return p4d_offset(pgd, vaddr);
  149. }
  150. static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
  151. {
  152. if (p4d_none(*p4d)) {
  153. pud_t *pud = (pud_t *)spp_getpage();
  154. p4d_populate(&init_mm, p4d, pud);
  155. if (pud != pud_offset(p4d, 0))
  156. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  157. pud, pud_offset(p4d, 0));
  158. }
  159. return pud_offset(p4d, vaddr);
  160. }
  161. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  162. {
  163. if (pud_none(*pud)) {
  164. pmd_t *pmd = (pmd_t *) spp_getpage();
  165. pud_populate(&init_mm, pud, pmd);
  166. if (pmd != pmd_offset(pud, 0))
  167. printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
  168. pmd, pmd_offset(pud, 0));
  169. }
  170. return pmd_offset(pud, vaddr);
  171. }
  172. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  173. {
  174. if (pmd_none(*pmd)) {
  175. pte_t *pte = (pte_t *) spp_getpage();
  176. pmd_populate_kernel(&init_mm, pmd, pte);
  177. if (pte != pte_offset_kernel(pmd, 0))
  178. printk(KERN_ERR "PAGETABLE BUG #03!\n");
  179. }
  180. return pte_offset_kernel(pmd, vaddr);
  181. }
  182. static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
  183. {
  184. pmd_t *pmd = fill_pmd(pud, vaddr);
  185. pte_t *pte = fill_pte(pmd, vaddr);
  186. set_pte(pte, new_pte);
  187. /*
  188. * It's enough to flush this one mapping.
  189. * (PGE mappings get flushed as well)
  190. */
  191. __flush_tlb_one(vaddr);
  192. }
  193. void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
  194. {
  195. p4d_t *p4d = p4d_page + p4d_index(vaddr);
  196. pud_t *pud = fill_pud(p4d, vaddr);
  197. __set_pte_vaddr(pud, vaddr, new_pte);
  198. }
  199. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  200. {
  201. pud_t *pud = pud_page + pud_index(vaddr);
  202. __set_pte_vaddr(pud, vaddr, new_pte);
  203. }
  204. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  205. {
  206. pgd_t *pgd;
  207. p4d_t *p4d_page;
  208. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  209. pgd = pgd_offset_k(vaddr);
  210. if (pgd_none(*pgd)) {
  211. printk(KERN_ERR
  212. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  213. return;
  214. }
  215. p4d_page = p4d_offset(pgd, 0);
  216. set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
  217. }
  218. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  219. {
  220. pgd_t *pgd;
  221. p4d_t *p4d;
  222. pud_t *pud;
  223. pgd = pgd_offset_k(vaddr);
  224. p4d = fill_p4d(pgd, vaddr);
  225. pud = fill_pud(p4d, vaddr);
  226. return fill_pmd(pud, vaddr);
  227. }
  228. pte_t * __init populate_extra_pte(unsigned long vaddr)
  229. {
  230. pmd_t *pmd;
  231. pmd = populate_extra_pmd(vaddr);
  232. return fill_pte(pmd, vaddr);
  233. }
  234. /*
  235. * Create large page table mappings for a range of physical addresses.
  236. */
  237. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  238. enum page_cache_mode cache)
  239. {
  240. pgd_t *pgd;
  241. p4d_t *p4d;
  242. pud_t *pud;
  243. pmd_t *pmd;
  244. pgprot_t prot;
  245. pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
  246. pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
  247. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  248. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  249. pgd = pgd_offset_k((unsigned long)__va(phys));
  250. if (pgd_none(*pgd)) {
  251. p4d = (p4d_t *) spp_getpage();
  252. set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
  253. _PAGE_USER));
  254. }
  255. p4d = p4d_offset(pgd, (unsigned long)__va(phys));
  256. if (p4d_none(*p4d)) {
  257. pud = (pud_t *) spp_getpage();
  258. set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
  259. _PAGE_USER));
  260. }
  261. pud = pud_offset(p4d, (unsigned long)__va(phys));
  262. if (pud_none(*pud)) {
  263. pmd = (pmd_t *) spp_getpage();
  264. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  265. _PAGE_USER));
  266. }
  267. pmd = pmd_offset(pud, phys);
  268. BUG_ON(!pmd_none(*pmd));
  269. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  270. }
  271. }
  272. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  273. {
  274. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
  275. }
  276. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  277. {
  278. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
  279. }
  280. /*
  281. * The head.S code sets up the kernel high mapping:
  282. *
  283. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  284. *
  285. * phys_base holds the negative offset to the kernel, which is added
  286. * to the compile time generated pmds. This results in invalid pmds up
  287. * to the point where we hit the physaddr 0 mapping.
  288. *
  289. * We limit the mappings to the region from _text to _brk_end. _brk_end
  290. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  291. * well, as they are located before _text:
  292. */
  293. void __init cleanup_highmap(void)
  294. {
  295. unsigned long vaddr = __START_KERNEL_map;
  296. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  297. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  298. pmd_t *pmd = level2_kernel_pgt;
  299. /*
  300. * Native path, max_pfn_mapped is not set yet.
  301. * Xen has valid max_pfn_mapped set in
  302. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  303. */
  304. if (max_pfn_mapped)
  305. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  306. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  307. if (pmd_none(*pmd))
  308. continue;
  309. if (vaddr < (unsigned long) _text || vaddr > end)
  310. set_pmd(pmd, __pmd(0));
  311. }
  312. }
  313. /*
  314. * Create PTE level page table mapping for physical addresses.
  315. * It returns the last physical address mapped.
  316. */
  317. static unsigned long __meminit
  318. phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
  319. pgprot_t prot)
  320. {
  321. unsigned long pages = 0, paddr_next;
  322. unsigned long paddr_last = paddr_end;
  323. pte_t *pte;
  324. int i;
  325. pte = pte_page + pte_index(paddr);
  326. i = pte_index(paddr);
  327. for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
  328. paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
  329. if (paddr >= paddr_end) {
  330. if (!after_bootmem &&
  331. !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
  332. E820_TYPE_RAM) &&
  333. !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
  334. E820_TYPE_RESERVED_KERN))
  335. set_pte(pte, __pte(0));
  336. continue;
  337. }
  338. /*
  339. * We will re-use the existing mapping.
  340. * Xen for example has some special requirements, like mapping
  341. * pagetable pages as RO. So assume someone who pre-setup
  342. * these mappings are more intelligent.
  343. */
  344. if (!pte_none(*pte)) {
  345. if (!after_bootmem)
  346. pages++;
  347. continue;
  348. }
  349. if (0)
  350. pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
  351. pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  352. pages++;
  353. set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
  354. paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
  355. }
  356. update_page_count(PG_LEVEL_4K, pages);
  357. return paddr_last;
  358. }
  359. /*
  360. * Create PMD level page table mapping for physical addresses. The virtual
  361. * and physical address have to be aligned at this level.
  362. * It returns the last physical address mapped.
  363. */
  364. static unsigned long __meminit
  365. phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
  366. unsigned long page_size_mask, pgprot_t prot)
  367. {
  368. unsigned long pages = 0, paddr_next;
  369. unsigned long paddr_last = paddr_end;
  370. int i = pmd_index(paddr);
  371. for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
  372. pmd_t *pmd = pmd_page + pmd_index(paddr);
  373. pte_t *pte;
  374. pgprot_t new_prot = prot;
  375. paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
  376. if (paddr >= paddr_end) {
  377. if (!after_bootmem &&
  378. !e820__mapped_any(paddr & PMD_MASK, paddr_next,
  379. E820_TYPE_RAM) &&
  380. !e820__mapped_any(paddr & PMD_MASK, paddr_next,
  381. E820_TYPE_RESERVED_KERN))
  382. set_pmd(pmd, __pmd(0));
  383. continue;
  384. }
  385. if (!pmd_none(*pmd)) {
  386. if (!pmd_large(*pmd)) {
  387. spin_lock(&init_mm.page_table_lock);
  388. pte = (pte_t *)pmd_page_vaddr(*pmd);
  389. paddr_last = phys_pte_init(pte, paddr,
  390. paddr_end, prot);
  391. spin_unlock(&init_mm.page_table_lock);
  392. continue;
  393. }
  394. /*
  395. * If we are ok with PG_LEVEL_2M mapping, then we will
  396. * use the existing mapping,
  397. *
  398. * Otherwise, we will split the large page mapping but
  399. * use the same existing protection bits except for
  400. * large page, so that we don't violate Intel's TLB
  401. * Application note (317080) which says, while changing
  402. * the page sizes, new and old translations should
  403. * not differ with respect to page frame and
  404. * attributes.
  405. */
  406. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  407. if (!after_bootmem)
  408. pages++;
  409. paddr_last = paddr_next;
  410. continue;
  411. }
  412. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  413. }
  414. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  415. pages++;
  416. spin_lock(&init_mm.page_table_lock);
  417. set_pte((pte_t *)pmd,
  418. pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
  419. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  420. spin_unlock(&init_mm.page_table_lock);
  421. paddr_last = paddr_next;
  422. continue;
  423. }
  424. pte = alloc_low_page();
  425. paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
  426. spin_lock(&init_mm.page_table_lock);
  427. pmd_populate_kernel(&init_mm, pmd, pte);
  428. spin_unlock(&init_mm.page_table_lock);
  429. }
  430. update_page_count(PG_LEVEL_2M, pages);
  431. return paddr_last;
  432. }
  433. /*
  434. * Create PUD level page table mapping for physical addresses. The virtual
  435. * and physical address do not have to be aligned at this level. KASLR can
  436. * randomize virtual addresses up to this level.
  437. * It returns the last physical address mapped.
  438. */
  439. static unsigned long __meminit
  440. phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
  441. unsigned long page_size_mask)
  442. {
  443. unsigned long pages = 0, paddr_next;
  444. unsigned long paddr_last = paddr_end;
  445. unsigned long vaddr = (unsigned long)__va(paddr);
  446. int i = pud_index(vaddr);
  447. for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
  448. pud_t *pud;
  449. pmd_t *pmd;
  450. pgprot_t prot = PAGE_KERNEL;
  451. vaddr = (unsigned long)__va(paddr);
  452. pud = pud_page + pud_index(vaddr);
  453. paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
  454. if (paddr >= paddr_end) {
  455. if (!after_bootmem &&
  456. !e820__mapped_any(paddr & PUD_MASK, paddr_next,
  457. E820_TYPE_RAM) &&
  458. !e820__mapped_any(paddr & PUD_MASK, paddr_next,
  459. E820_TYPE_RESERVED_KERN))
  460. set_pud(pud, __pud(0));
  461. continue;
  462. }
  463. if (!pud_none(*pud)) {
  464. if (!pud_large(*pud)) {
  465. pmd = pmd_offset(pud, 0);
  466. paddr_last = phys_pmd_init(pmd, paddr,
  467. paddr_end,
  468. page_size_mask,
  469. prot);
  470. __flush_tlb_all();
  471. continue;
  472. }
  473. /*
  474. * If we are ok with PG_LEVEL_1G mapping, then we will
  475. * use the existing mapping.
  476. *
  477. * Otherwise, we will split the gbpage mapping but use
  478. * the same existing protection bits except for large
  479. * page, so that we don't violate Intel's TLB
  480. * Application note (317080) which says, while changing
  481. * the page sizes, new and old translations should
  482. * not differ with respect to page frame and
  483. * attributes.
  484. */
  485. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  486. if (!after_bootmem)
  487. pages++;
  488. paddr_last = paddr_next;
  489. continue;
  490. }
  491. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  492. }
  493. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  494. pages++;
  495. spin_lock(&init_mm.page_table_lock);
  496. set_pte((pte_t *)pud,
  497. pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
  498. PAGE_KERNEL_LARGE));
  499. spin_unlock(&init_mm.page_table_lock);
  500. paddr_last = paddr_next;
  501. continue;
  502. }
  503. pmd = alloc_low_page();
  504. paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
  505. page_size_mask, prot);
  506. spin_lock(&init_mm.page_table_lock);
  507. pud_populate(&init_mm, pud, pmd);
  508. spin_unlock(&init_mm.page_table_lock);
  509. }
  510. __flush_tlb_all();
  511. update_page_count(PG_LEVEL_1G, pages);
  512. return paddr_last;
  513. }
  514. /*
  515. * Create page table mapping for the physical memory for specific physical
  516. * addresses. The virtual and physical addresses have to be aligned on PMD level
  517. * down. It returns the last physical address mapped.
  518. */
  519. unsigned long __meminit
  520. kernel_physical_mapping_init(unsigned long paddr_start,
  521. unsigned long paddr_end,
  522. unsigned long page_size_mask)
  523. {
  524. bool pgd_changed = false;
  525. unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
  526. paddr_last = paddr_end;
  527. vaddr = (unsigned long)__va(paddr_start);
  528. vaddr_end = (unsigned long)__va(paddr_end);
  529. vaddr_start = vaddr;
  530. for (; vaddr < vaddr_end; vaddr = vaddr_next) {
  531. pgd_t *pgd = pgd_offset_k(vaddr);
  532. p4d_t *p4d;
  533. pud_t *pud;
  534. vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
  535. BUILD_BUG_ON(pgd_none(*pgd));
  536. p4d = p4d_offset(pgd, vaddr);
  537. if (p4d_val(*p4d)) {
  538. pud = (pud_t *)p4d_page_vaddr(*p4d);
  539. paddr_last = phys_pud_init(pud, __pa(vaddr),
  540. __pa(vaddr_end),
  541. page_size_mask);
  542. continue;
  543. }
  544. pud = alloc_low_page();
  545. paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
  546. page_size_mask);
  547. spin_lock(&init_mm.page_table_lock);
  548. p4d_populate(&init_mm, p4d, pud);
  549. spin_unlock(&init_mm.page_table_lock);
  550. pgd_changed = true;
  551. }
  552. if (pgd_changed)
  553. sync_global_pgds(vaddr_start, vaddr_end - 1);
  554. __flush_tlb_all();
  555. return paddr_last;
  556. }
  557. #ifndef CONFIG_NUMA
  558. void __init initmem_init(void)
  559. {
  560. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
  561. }
  562. #endif
  563. void __init paging_init(void)
  564. {
  565. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  566. sparse_init();
  567. /*
  568. * clear the default setting with node 0
  569. * note: don't use nodes_clear here, that is really clearing when
  570. * numa support is not compiled in, and later node_set_state
  571. * will not set it back.
  572. */
  573. node_clear_state(0, N_MEMORY);
  574. if (N_MEMORY != N_NORMAL_MEMORY)
  575. node_clear_state(0, N_NORMAL_MEMORY);
  576. zone_sizes_init();
  577. }
  578. /*
  579. * Memory hotplug specific functions
  580. */
  581. #ifdef CONFIG_MEMORY_HOTPLUG
  582. /*
  583. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  584. * updating.
  585. */
  586. static void update_end_of_memory_vars(u64 start, u64 size)
  587. {
  588. unsigned long end_pfn = PFN_UP(start + size);
  589. if (end_pfn > max_pfn) {
  590. max_pfn = end_pfn;
  591. max_low_pfn = end_pfn;
  592. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  593. }
  594. }
  595. /*
  596. * Memory is added always to NORMAL zone. This means you will never get
  597. * additional DMA/DMA32 memory.
  598. */
  599. int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
  600. {
  601. struct pglist_data *pgdat = NODE_DATA(nid);
  602. struct zone *zone = pgdat->node_zones +
  603. zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
  604. unsigned long start_pfn = start >> PAGE_SHIFT;
  605. unsigned long nr_pages = size >> PAGE_SHIFT;
  606. int ret;
  607. init_memory_mapping(start, start + size);
  608. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  609. WARN_ON_ONCE(ret);
  610. /* update max_pfn, max_low_pfn and high_memory */
  611. update_end_of_memory_vars(start, size);
  612. return ret;
  613. }
  614. EXPORT_SYMBOL_GPL(arch_add_memory);
  615. #define PAGE_INUSE 0xFD
  616. static void __meminit free_pagetable(struct page *page, int order)
  617. {
  618. unsigned long magic;
  619. unsigned int nr_pages = 1 << order;
  620. struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
  621. if (altmap) {
  622. vmem_altmap_free(altmap, nr_pages);
  623. return;
  624. }
  625. /* bootmem page has reserved flag */
  626. if (PageReserved(page)) {
  627. __ClearPageReserved(page);
  628. magic = (unsigned long)page->freelist;
  629. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  630. while (nr_pages--)
  631. put_page_bootmem(page++);
  632. } else
  633. while (nr_pages--)
  634. free_reserved_page(page++);
  635. } else
  636. free_pages((unsigned long)page_address(page), order);
  637. }
  638. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  639. {
  640. pte_t *pte;
  641. int i;
  642. for (i = 0; i < PTRS_PER_PTE; i++) {
  643. pte = pte_start + i;
  644. if (!pte_none(*pte))
  645. return;
  646. }
  647. /* free a pte talbe */
  648. free_pagetable(pmd_page(*pmd), 0);
  649. spin_lock(&init_mm.page_table_lock);
  650. pmd_clear(pmd);
  651. spin_unlock(&init_mm.page_table_lock);
  652. }
  653. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  654. {
  655. pmd_t *pmd;
  656. int i;
  657. for (i = 0; i < PTRS_PER_PMD; i++) {
  658. pmd = pmd_start + i;
  659. if (!pmd_none(*pmd))
  660. return;
  661. }
  662. /* free a pmd talbe */
  663. free_pagetable(pud_page(*pud), 0);
  664. spin_lock(&init_mm.page_table_lock);
  665. pud_clear(pud);
  666. spin_unlock(&init_mm.page_table_lock);
  667. }
  668. static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
  669. {
  670. pud_t *pud;
  671. int i;
  672. for (i = 0; i < PTRS_PER_PUD; i++) {
  673. pud = pud_start + i;
  674. if (!pud_none(*pud))
  675. return;
  676. }
  677. /* free a pud talbe */
  678. free_pagetable(p4d_page(*p4d), 0);
  679. spin_lock(&init_mm.page_table_lock);
  680. p4d_clear(p4d);
  681. spin_unlock(&init_mm.page_table_lock);
  682. }
  683. static void __meminit
  684. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  685. bool direct)
  686. {
  687. unsigned long next, pages = 0;
  688. pte_t *pte;
  689. void *page_addr;
  690. phys_addr_t phys_addr;
  691. pte = pte_start + pte_index(addr);
  692. for (; addr < end; addr = next, pte++) {
  693. next = (addr + PAGE_SIZE) & PAGE_MASK;
  694. if (next > end)
  695. next = end;
  696. if (!pte_present(*pte))
  697. continue;
  698. /*
  699. * We mapped [0,1G) memory as identity mapping when
  700. * initializing, in arch/x86/kernel/head_64.S. These
  701. * pagetables cannot be removed.
  702. */
  703. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  704. if (phys_addr < (phys_addr_t)0x40000000)
  705. return;
  706. if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
  707. /*
  708. * Do not free direct mapping pages since they were
  709. * freed when offlining, or simplely not in use.
  710. */
  711. if (!direct)
  712. free_pagetable(pte_page(*pte), 0);
  713. spin_lock(&init_mm.page_table_lock);
  714. pte_clear(&init_mm, addr, pte);
  715. spin_unlock(&init_mm.page_table_lock);
  716. /* For non-direct mapping, pages means nothing. */
  717. pages++;
  718. } else {
  719. /*
  720. * If we are here, we are freeing vmemmap pages since
  721. * direct mapped memory ranges to be freed are aligned.
  722. *
  723. * If we are not removing the whole page, it means
  724. * other page structs in this page are being used and
  725. * we canot remove them. So fill the unused page_structs
  726. * with 0xFD, and remove the page when it is wholly
  727. * filled with 0xFD.
  728. */
  729. memset((void *)addr, PAGE_INUSE, next - addr);
  730. page_addr = page_address(pte_page(*pte));
  731. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  732. free_pagetable(pte_page(*pte), 0);
  733. spin_lock(&init_mm.page_table_lock);
  734. pte_clear(&init_mm, addr, pte);
  735. spin_unlock(&init_mm.page_table_lock);
  736. }
  737. }
  738. }
  739. /* Call free_pte_table() in remove_pmd_table(). */
  740. flush_tlb_all();
  741. if (direct)
  742. update_page_count(PG_LEVEL_4K, -pages);
  743. }
  744. static void __meminit
  745. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  746. bool direct)
  747. {
  748. unsigned long next, pages = 0;
  749. pte_t *pte_base;
  750. pmd_t *pmd;
  751. void *page_addr;
  752. pmd = pmd_start + pmd_index(addr);
  753. for (; addr < end; addr = next, pmd++) {
  754. next = pmd_addr_end(addr, end);
  755. if (!pmd_present(*pmd))
  756. continue;
  757. if (pmd_large(*pmd)) {
  758. if (IS_ALIGNED(addr, PMD_SIZE) &&
  759. IS_ALIGNED(next, PMD_SIZE)) {
  760. if (!direct)
  761. free_pagetable(pmd_page(*pmd),
  762. get_order(PMD_SIZE));
  763. spin_lock(&init_mm.page_table_lock);
  764. pmd_clear(pmd);
  765. spin_unlock(&init_mm.page_table_lock);
  766. pages++;
  767. } else {
  768. /* If here, we are freeing vmemmap pages. */
  769. memset((void *)addr, PAGE_INUSE, next - addr);
  770. page_addr = page_address(pmd_page(*pmd));
  771. if (!memchr_inv(page_addr, PAGE_INUSE,
  772. PMD_SIZE)) {
  773. free_pagetable(pmd_page(*pmd),
  774. get_order(PMD_SIZE));
  775. spin_lock(&init_mm.page_table_lock);
  776. pmd_clear(pmd);
  777. spin_unlock(&init_mm.page_table_lock);
  778. }
  779. }
  780. continue;
  781. }
  782. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  783. remove_pte_table(pte_base, addr, next, direct);
  784. free_pte_table(pte_base, pmd);
  785. }
  786. /* Call free_pmd_table() in remove_pud_table(). */
  787. if (direct)
  788. update_page_count(PG_LEVEL_2M, -pages);
  789. }
  790. static void __meminit
  791. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  792. bool direct)
  793. {
  794. unsigned long next, pages = 0;
  795. pmd_t *pmd_base;
  796. pud_t *pud;
  797. void *page_addr;
  798. pud = pud_start + pud_index(addr);
  799. for (; addr < end; addr = next, pud++) {
  800. next = pud_addr_end(addr, end);
  801. if (!pud_present(*pud))
  802. continue;
  803. if (pud_large(*pud)) {
  804. if (IS_ALIGNED(addr, PUD_SIZE) &&
  805. IS_ALIGNED(next, PUD_SIZE)) {
  806. if (!direct)
  807. free_pagetable(pud_page(*pud),
  808. get_order(PUD_SIZE));
  809. spin_lock(&init_mm.page_table_lock);
  810. pud_clear(pud);
  811. spin_unlock(&init_mm.page_table_lock);
  812. pages++;
  813. } else {
  814. /* If here, we are freeing vmemmap pages. */
  815. memset((void *)addr, PAGE_INUSE, next - addr);
  816. page_addr = page_address(pud_page(*pud));
  817. if (!memchr_inv(page_addr, PAGE_INUSE,
  818. PUD_SIZE)) {
  819. free_pagetable(pud_page(*pud),
  820. get_order(PUD_SIZE));
  821. spin_lock(&init_mm.page_table_lock);
  822. pud_clear(pud);
  823. spin_unlock(&init_mm.page_table_lock);
  824. }
  825. }
  826. continue;
  827. }
  828. pmd_base = pmd_offset(pud, 0);
  829. remove_pmd_table(pmd_base, addr, next, direct);
  830. free_pmd_table(pmd_base, pud);
  831. }
  832. if (direct)
  833. update_page_count(PG_LEVEL_1G, -pages);
  834. }
  835. static void __meminit
  836. remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
  837. bool direct)
  838. {
  839. unsigned long next, pages = 0;
  840. pud_t *pud_base;
  841. p4d_t *p4d;
  842. p4d = p4d_start + p4d_index(addr);
  843. for (; addr < end; addr = next, p4d++) {
  844. next = p4d_addr_end(addr, end);
  845. if (!p4d_present(*p4d))
  846. continue;
  847. BUILD_BUG_ON(p4d_large(*p4d));
  848. pud_base = pud_offset(p4d, 0);
  849. remove_pud_table(pud_base, addr, next, direct);
  850. free_pud_table(pud_base, p4d);
  851. }
  852. if (direct)
  853. update_page_count(PG_LEVEL_512G, -pages);
  854. }
  855. /* start and end are both virtual address. */
  856. static void __meminit
  857. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  858. {
  859. unsigned long next;
  860. unsigned long addr;
  861. pgd_t *pgd;
  862. p4d_t *p4d;
  863. for (addr = start; addr < end; addr = next) {
  864. next = pgd_addr_end(addr, end);
  865. pgd = pgd_offset_k(addr);
  866. if (!pgd_present(*pgd))
  867. continue;
  868. p4d = p4d_offset(pgd, 0);
  869. remove_p4d_table(p4d, addr, next, direct);
  870. }
  871. flush_tlb_all();
  872. }
  873. void __ref vmemmap_free(unsigned long start, unsigned long end)
  874. {
  875. remove_pagetable(start, end, false);
  876. }
  877. #ifdef CONFIG_MEMORY_HOTREMOVE
  878. static void __meminit
  879. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  880. {
  881. start = (unsigned long)__va(start);
  882. end = (unsigned long)__va(end);
  883. remove_pagetable(start, end, true);
  884. }
  885. int __ref arch_remove_memory(u64 start, u64 size)
  886. {
  887. unsigned long start_pfn = start >> PAGE_SHIFT;
  888. unsigned long nr_pages = size >> PAGE_SHIFT;
  889. struct page *page = pfn_to_page(start_pfn);
  890. struct vmem_altmap *altmap;
  891. struct zone *zone;
  892. int ret;
  893. /* With altmap the first mapped page is offset from @start */
  894. altmap = to_vmem_altmap((unsigned long) page);
  895. if (altmap)
  896. page += vmem_altmap_offset(altmap);
  897. zone = page_zone(page);
  898. ret = __remove_pages(zone, start_pfn, nr_pages);
  899. WARN_ON_ONCE(ret);
  900. kernel_physical_mapping_remove(start, start + size);
  901. return ret;
  902. }
  903. #endif
  904. #endif /* CONFIG_MEMORY_HOTPLUG */
  905. static struct kcore_list kcore_vsyscall;
  906. static void __init register_page_bootmem_info(void)
  907. {
  908. #ifdef CONFIG_NUMA
  909. int i;
  910. for_each_online_node(i)
  911. register_page_bootmem_info_node(NODE_DATA(i));
  912. #endif
  913. }
  914. void __init mem_init(void)
  915. {
  916. pci_iommu_alloc();
  917. /* clear_bss() already clear the empty_zero_page */
  918. register_page_bootmem_info();
  919. /* this will put all memory onto the freelists */
  920. free_all_bootmem();
  921. after_bootmem = 1;
  922. /* Register memory areas for /proc/kcore */
  923. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
  924. PAGE_SIZE, KCORE_OTHER);
  925. mem_init_print_info(NULL);
  926. }
  927. int kernel_set_to_readonly;
  928. void set_kernel_text_rw(void)
  929. {
  930. unsigned long start = PFN_ALIGN(_text);
  931. unsigned long end = PFN_ALIGN(__stop___ex_table);
  932. if (!kernel_set_to_readonly)
  933. return;
  934. pr_debug("Set kernel text: %lx - %lx for read write\n",
  935. start, end);
  936. /*
  937. * Make the kernel identity mapping for text RW. Kernel text
  938. * mapping will always be RO. Refer to the comment in
  939. * static_protections() in pageattr.c
  940. */
  941. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  942. }
  943. void set_kernel_text_ro(void)
  944. {
  945. unsigned long start = PFN_ALIGN(_text);
  946. unsigned long end = PFN_ALIGN(__stop___ex_table);
  947. if (!kernel_set_to_readonly)
  948. return;
  949. pr_debug("Set kernel text: %lx - %lx for read only\n",
  950. start, end);
  951. /*
  952. * Set the kernel identity mapping for text RO.
  953. */
  954. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  955. }
  956. void mark_rodata_ro(void)
  957. {
  958. unsigned long start = PFN_ALIGN(_text);
  959. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  960. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  961. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  962. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  963. unsigned long all_end;
  964. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  965. (end - start) >> 10);
  966. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  967. kernel_set_to_readonly = 1;
  968. /*
  969. * The rodata/data/bss/brk section (but not the kernel text!)
  970. * should also be not-executable.
  971. *
  972. * We align all_end to PMD_SIZE because the existing mapping
  973. * is a full PMD. If we would align _brk_end to PAGE_SIZE we
  974. * split the PMD and the reminder between _brk_end and the end
  975. * of the PMD will remain mapped executable.
  976. *
  977. * Any PMD which was setup after the one which covers _brk_end
  978. * has been zapped already via cleanup_highmem().
  979. */
  980. all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
  981. set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
  982. #ifdef CONFIG_CPA_DEBUG
  983. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  984. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  985. printk(KERN_INFO "Testing CPA: again\n");
  986. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  987. #endif
  988. free_init_pages("unused kernel",
  989. (unsigned long) __va(__pa_symbol(text_end)),
  990. (unsigned long) __va(__pa_symbol(rodata_start)));
  991. free_init_pages("unused kernel",
  992. (unsigned long) __va(__pa_symbol(rodata_end)),
  993. (unsigned long) __va(__pa_symbol(_sdata)));
  994. debug_checkwx();
  995. }
  996. int kern_addr_valid(unsigned long addr)
  997. {
  998. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  999. pgd_t *pgd;
  1000. p4d_t *p4d;
  1001. pud_t *pud;
  1002. pmd_t *pmd;
  1003. pte_t *pte;
  1004. if (above != 0 && above != -1UL)
  1005. return 0;
  1006. pgd = pgd_offset_k(addr);
  1007. if (pgd_none(*pgd))
  1008. return 0;
  1009. p4d = p4d_offset(pgd, addr);
  1010. if (p4d_none(*p4d))
  1011. return 0;
  1012. pud = pud_offset(p4d, addr);
  1013. if (pud_none(*pud))
  1014. return 0;
  1015. if (pud_large(*pud))
  1016. return pfn_valid(pud_pfn(*pud));
  1017. pmd = pmd_offset(pud, addr);
  1018. if (pmd_none(*pmd))
  1019. return 0;
  1020. if (pmd_large(*pmd))
  1021. return pfn_valid(pmd_pfn(*pmd));
  1022. pte = pte_offset_kernel(pmd, addr);
  1023. if (pte_none(*pte))
  1024. return 0;
  1025. return pfn_valid(pte_pfn(*pte));
  1026. }
  1027. static unsigned long probe_memory_block_size(void)
  1028. {
  1029. unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
  1030. /* if system is UV or has 64GB of RAM or more, use large blocks */
  1031. if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
  1032. bz = 2UL << 30; /* 2GB */
  1033. pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
  1034. return bz;
  1035. }
  1036. static unsigned long memory_block_size_probed;
  1037. unsigned long memory_block_size_bytes(void)
  1038. {
  1039. if (!memory_block_size_probed)
  1040. memory_block_size_probed = probe_memory_block_size();
  1041. return memory_block_size_probed;
  1042. }
  1043. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1044. /*
  1045. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1046. */
  1047. static long __meminitdata addr_start, addr_end;
  1048. static void __meminitdata *p_start, *p_end;
  1049. static int __meminitdata node_start;
  1050. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1051. unsigned long end, int node, struct vmem_altmap *altmap)
  1052. {
  1053. unsigned long addr;
  1054. unsigned long next;
  1055. pgd_t *pgd;
  1056. p4d_t *p4d;
  1057. pud_t *pud;
  1058. pmd_t *pmd;
  1059. for (addr = start; addr < end; addr = next) {
  1060. next = pmd_addr_end(addr, end);
  1061. pgd = vmemmap_pgd_populate(addr, node);
  1062. if (!pgd)
  1063. return -ENOMEM;
  1064. p4d = vmemmap_p4d_populate(pgd, addr, node);
  1065. if (!p4d)
  1066. return -ENOMEM;
  1067. pud = vmemmap_pud_populate(p4d, addr, node);
  1068. if (!pud)
  1069. return -ENOMEM;
  1070. pmd = pmd_offset(pud, addr);
  1071. if (pmd_none(*pmd)) {
  1072. void *p;
  1073. p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
  1074. if (p) {
  1075. pte_t entry;
  1076. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1077. PAGE_KERNEL_LARGE);
  1078. set_pmd(pmd, __pmd(pte_val(entry)));
  1079. /* check to see if we have contiguous blocks */
  1080. if (p_end != p || node_start != node) {
  1081. if (p_start)
  1082. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1083. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1084. addr_start = addr;
  1085. node_start = node;
  1086. p_start = p;
  1087. }
  1088. addr_end = addr + PMD_SIZE;
  1089. p_end = p + PMD_SIZE;
  1090. continue;
  1091. } else if (altmap)
  1092. return -ENOMEM; /* no fallback */
  1093. } else if (pmd_large(*pmd)) {
  1094. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1095. continue;
  1096. }
  1097. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1098. if (vmemmap_populate_basepages(addr, next, node))
  1099. return -ENOMEM;
  1100. }
  1101. return 0;
  1102. }
  1103. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1104. {
  1105. struct vmem_altmap *altmap = to_vmem_altmap(start);
  1106. int err;
  1107. if (boot_cpu_has(X86_FEATURE_PSE))
  1108. err = vmemmap_populate_hugepages(start, end, node, altmap);
  1109. else if (altmap) {
  1110. pr_err_once("%s: no cpu support for altmap allocations\n",
  1111. __func__);
  1112. err = -ENOMEM;
  1113. } else
  1114. err = vmemmap_populate_basepages(start, end, node);
  1115. if (!err)
  1116. sync_global_pgds(start, end - 1);
  1117. return err;
  1118. }
  1119. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1120. void register_page_bootmem_memmap(unsigned long section_nr,
  1121. struct page *start_page, unsigned long size)
  1122. {
  1123. unsigned long addr = (unsigned long)start_page;
  1124. unsigned long end = (unsigned long)(start_page + size);
  1125. unsigned long next;
  1126. pgd_t *pgd;
  1127. p4d_t *p4d;
  1128. pud_t *pud;
  1129. pmd_t *pmd;
  1130. unsigned int nr_pages;
  1131. struct page *page;
  1132. for (; addr < end; addr = next) {
  1133. pte_t *pte = NULL;
  1134. pgd = pgd_offset_k(addr);
  1135. if (pgd_none(*pgd)) {
  1136. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1137. continue;
  1138. }
  1139. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1140. p4d = p4d_offset(pgd, addr);
  1141. if (p4d_none(*p4d)) {
  1142. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1143. continue;
  1144. }
  1145. get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
  1146. pud = pud_offset(p4d, addr);
  1147. if (pud_none(*pud)) {
  1148. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1149. continue;
  1150. }
  1151. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1152. if (!boot_cpu_has(X86_FEATURE_PSE)) {
  1153. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1154. pmd = pmd_offset(pud, addr);
  1155. if (pmd_none(*pmd))
  1156. continue;
  1157. get_page_bootmem(section_nr, pmd_page(*pmd),
  1158. MIX_SECTION_INFO);
  1159. pte = pte_offset_kernel(pmd, addr);
  1160. if (pte_none(*pte))
  1161. continue;
  1162. get_page_bootmem(section_nr, pte_page(*pte),
  1163. SECTION_INFO);
  1164. } else {
  1165. next = pmd_addr_end(addr, end);
  1166. pmd = pmd_offset(pud, addr);
  1167. if (pmd_none(*pmd))
  1168. continue;
  1169. nr_pages = 1 << (get_order(PMD_SIZE));
  1170. page = pmd_page(*pmd);
  1171. while (nr_pages--)
  1172. get_page_bootmem(section_nr, page++,
  1173. SECTION_INFO);
  1174. }
  1175. }
  1176. }
  1177. #endif
  1178. void __meminit vmemmap_populate_print_last(void)
  1179. {
  1180. if (p_start) {
  1181. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1182. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1183. p_start = NULL;
  1184. p_end = NULL;
  1185. node_start = 0;
  1186. }
  1187. }
  1188. #endif