x86.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. #ifndef ARCH_X86_KVM_X86_H
  2. #define ARCH_X86_KVM_X86_H
  3. #include <asm/processor.h>
  4. #include <asm/mwait.h>
  5. #include <linux/kvm_host.h>
  6. #include <asm/pvclock.h>
  7. #include "kvm_cache_regs.h"
  8. #define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL
  9. static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
  10. {
  11. vcpu->arch.exception.pending = false;
  12. }
  13. static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
  14. bool soft)
  15. {
  16. vcpu->arch.interrupt.pending = true;
  17. vcpu->arch.interrupt.soft = soft;
  18. vcpu->arch.interrupt.nr = vector;
  19. }
  20. static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
  21. {
  22. vcpu->arch.interrupt.pending = false;
  23. }
  24. static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
  25. {
  26. return vcpu->arch.exception.pending || vcpu->arch.interrupt.pending ||
  27. vcpu->arch.nmi_injected;
  28. }
  29. static inline bool kvm_exception_is_soft(unsigned int nr)
  30. {
  31. return (nr == BP_VECTOR) || (nr == OF_VECTOR);
  32. }
  33. static inline bool is_protmode(struct kvm_vcpu *vcpu)
  34. {
  35. return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
  36. }
  37. static inline int is_long_mode(struct kvm_vcpu *vcpu)
  38. {
  39. #ifdef CONFIG_X86_64
  40. return vcpu->arch.efer & EFER_LMA;
  41. #else
  42. return 0;
  43. #endif
  44. }
  45. static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
  46. {
  47. int cs_db, cs_l;
  48. if (!is_long_mode(vcpu))
  49. return false;
  50. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  51. return cs_l;
  52. }
  53. static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
  54. {
  55. return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
  56. }
  57. static inline int is_pae(struct kvm_vcpu *vcpu)
  58. {
  59. return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
  60. }
  61. static inline int is_pse(struct kvm_vcpu *vcpu)
  62. {
  63. return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
  64. }
  65. static inline int is_paging(struct kvm_vcpu *vcpu)
  66. {
  67. return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
  68. }
  69. static inline u32 bit(int bitno)
  70. {
  71. return 1 << (bitno & 31);
  72. }
  73. static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
  74. gva_t gva, gfn_t gfn, unsigned access)
  75. {
  76. vcpu->arch.mmio_gva = gva & PAGE_MASK;
  77. vcpu->arch.access = access;
  78. vcpu->arch.mmio_gfn = gfn;
  79. vcpu->arch.mmio_gen = kvm_memslots(vcpu->kvm)->generation;
  80. }
  81. static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
  82. {
  83. return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
  84. }
  85. /*
  86. * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
  87. * clear all mmio cache info.
  88. */
  89. #define MMIO_GVA_ANY (~(gva_t)0)
  90. static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
  91. {
  92. if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
  93. return;
  94. vcpu->arch.mmio_gva = 0;
  95. }
  96. static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
  97. {
  98. if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
  99. vcpu->arch.mmio_gva == (gva & PAGE_MASK))
  100. return true;
  101. return false;
  102. }
  103. static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  104. {
  105. if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
  106. vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
  107. return true;
  108. return false;
  109. }
  110. static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu,
  111. enum kvm_reg reg)
  112. {
  113. unsigned long val = kvm_register_read(vcpu, reg);
  114. return is_64_bit_mode(vcpu) ? val : (u32)val;
  115. }
  116. static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
  117. enum kvm_reg reg,
  118. unsigned long val)
  119. {
  120. if (!is_64_bit_mode(vcpu))
  121. val = (u32)val;
  122. return kvm_register_write(vcpu, reg, val);
  123. }
  124. static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
  125. {
  126. return !(kvm->arch.disabled_quirks & quirk);
  127. }
  128. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu);
  129. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu);
  130. void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
  131. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
  132. void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
  133. u64 get_kvmclock_ns(struct kvm *kvm);
  134. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  135. gva_t addr, void *val, unsigned int bytes,
  136. struct x86_exception *exception);
  137. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  138. gva_t addr, void *val, unsigned int bytes,
  139. struct x86_exception *exception);
  140. void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
  141. u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
  142. bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
  143. int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
  144. int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
  145. bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
  146. int page_num);
  147. bool kvm_vector_hashing_enabled(void);
  148. #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
  149. | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
  150. | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
  151. | XFEATURE_MASK_PKRU)
  152. extern u64 host_xcr0;
  153. extern u64 kvm_supported_xcr0(void);
  154. extern unsigned int min_timer_period_us;
  155. extern unsigned int lapic_timer_advance_ns;
  156. extern struct static_key kvm_no_apic_vcpu;
  157. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  158. {
  159. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  160. vcpu->arch.virtual_tsc_shift);
  161. }
  162. /* Same "calling convention" as do_div:
  163. * - divide (n << 32) by base
  164. * - put result in n
  165. * - return remainder
  166. */
  167. #define do_shl32_div32(n, base) \
  168. ({ \
  169. u32 __quot, __rem; \
  170. asm("divl %2" : "=a" (__quot), "=d" (__rem) \
  171. : "rm" (base), "0" (0), "1" ((u32) n)); \
  172. n = __quot; \
  173. __rem; \
  174. })
  175. static inline bool kvm_mwait_in_guest(void)
  176. {
  177. unsigned int eax, ebx, ecx, edx;
  178. if (!cpu_has(&boot_cpu_data, X86_FEATURE_MWAIT))
  179. return false;
  180. switch (boot_cpu_data.x86_vendor) {
  181. case X86_VENDOR_AMD:
  182. /* All AMD CPUs have a working MWAIT implementation */
  183. return true;
  184. case X86_VENDOR_INTEL:
  185. /* Handle Intel below */
  186. break;
  187. default:
  188. return false;
  189. }
  190. /*
  191. * Intel CPUs without CPUID5_ECX_INTERRUPT_BREAK are problematic as
  192. * they would allow guest to stop the CPU completely by disabling
  193. * interrupts then invoking MWAIT.
  194. */
  195. if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
  196. return false;
  197. cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
  198. if (!(ecx & CPUID5_ECX_INTERRUPT_BREAK))
  199. return false;
  200. return true;
  201. }
  202. #endif