vm86_32.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5. * stack - Manfred Spraul <manfred@colorfullife.com>
  6. *
  7. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8. * them correctly. Now the emulation will be in a
  9. * consistent state after stackfaults - Kasper Dupont
  10. * <kasperd@daimi.au.dk>
  11. *
  12. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13. * <kasperd@daimi.au.dk>
  14. *
  15. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16. * caused by Kasper Dupont's changes - Stas Sergeev
  17. *
  18. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19. * Kasper Dupont <kasperd@daimi.au.dk>
  20. *
  21. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22. * Kasper Dupont <kasperd@daimi.au.dk>
  23. *
  24. * 9 apr 2002 - Changed stack access macros to jump to a label
  25. * instead of returning to userspace. This simplifies
  26. * do_int, and is needed by handle_vm6_fault. Kasper
  27. * Dupont <kasperd@daimi.au.dk>
  28. *
  29. */
  30. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/sched.h>
  36. #include <linux/sched/task_stack.h>
  37. #include <linux/kernel.h>
  38. #include <linux/signal.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/smp.h>
  42. #include <linux/highmem.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/audit.h>
  45. #include <linux/stddef.h>
  46. #include <linux/slab.h>
  47. #include <linux/security.h>
  48. #include <linux/uaccess.h>
  49. #include <asm/io.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/irq.h>
  52. #include <asm/traps.h>
  53. #include <asm/vm86.h>
  54. /*
  55. * Known problems:
  56. *
  57. * Interrupt handling is not guaranteed:
  58. * - a real x86 will disable all interrupts for one instruction
  59. * after a "mov ss,xx" to make stack handling atomic even without
  60. * the 'lss' instruction. We can't guarantee this in v86 mode,
  61. * as the next instruction might result in a page fault or similar.
  62. * - a real x86 will have interrupts disabled for one instruction
  63. * past the 'sti' that enables them. We don't bother with all the
  64. * details yet.
  65. *
  66. * Let's hope these problems do not actually matter for anything.
  67. */
  68. /*
  69. * 8- and 16-bit register defines..
  70. */
  71. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  72. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  73. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  74. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  75. /*
  76. * virtual flags (16 and 32-bit versions)
  77. */
  78. #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
  79. #define VEFLAGS (current->thread.vm86->veflags)
  80. #define set_flags(X, new, mask) \
  81. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  82. #define SAFE_MASK (0xDD5)
  83. #define RETURN_MASK (0xDFF)
  84. void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  85. {
  86. struct tss_struct *tss;
  87. struct task_struct *tsk = current;
  88. struct vm86plus_struct __user *user;
  89. struct vm86 *vm86 = current->thread.vm86;
  90. long err = 0;
  91. /*
  92. * This gets called from entry.S with interrupts disabled, but
  93. * from process context. Enable interrupts here, before trying
  94. * to access user space.
  95. */
  96. local_irq_enable();
  97. if (!vm86 || !vm86->user_vm86) {
  98. pr_alert("no user_vm86: BAD\n");
  99. do_exit(SIGSEGV);
  100. }
  101. set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
  102. user = vm86->user_vm86;
  103. if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
  104. sizeof(struct vm86plus_struct) :
  105. sizeof(struct vm86_struct))) {
  106. pr_alert("could not access userspace vm86 info\n");
  107. do_exit(SIGSEGV);
  108. }
  109. put_user_try {
  110. put_user_ex(regs->pt.bx, &user->regs.ebx);
  111. put_user_ex(regs->pt.cx, &user->regs.ecx);
  112. put_user_ex(regs->pt.dx, &user->regs.edx);
  113. put_user_ex(regs->pt.si, &user->regs.esi);
  114. put_user_ex(regs->pt.di, &user->regs.edi);
  115. put_user_ex(regs->pt.bp, &user->regs.ebp);
  116. put_user_ex(regs->pt.ax, &user->regs.eax);
  117. put_user_ex(regs->pt.ip, &user->regs.eip);
  118. put_user_ex(regs->pt.cs, &user->regs.cs);
  119. put_user_ex(regs->pt.flags, &user->regs.eflags);
  120. put_user_ex(regs->pt.sp, &user->regs.esp);
  121. put_user_ex(regs->pt.ss, &user->regs.ss);
  122. put_user_ex(regs->es, &user->regs.es);
  123. put_user_ex(regs->ds, &user->regs.ds);
  124. put_user_ex(regs->fs, &user->regs.fs);
  125. put_user_ex(regs->gs, &user->regs.gs);
  126. put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
  127. } put_user_catch(err);
  128. if (err) {
  129. pr_alert("could not access userspace vm86 info\n");
  130. do_exit(SIGSEGV);
  131. }
  132. tss = &per_cpu(cpu_tss, get_cpu());
  133. tsk->thread.sp0 = vm86->saved_sp0;
  134. tsk->thread.sysenter_cs = __KERNEL_CS;
  135. load_sp0(tss, &tsk->thread);
  136. vm86->saved_sp0 = 0;
  137. put_cpu();
  138. memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
  139. lazy_load_gs(vm86->regs32.gs);
  140. regs->pt.ax = retval;
  141. }
  142. static void mark_screen_rdonly(struct mm_struct *mm)
  143. {
  144. struct vm_area_struct *vma;
  145. spinlock_t *ptl;
  146. pgd_t *pgd;
  147. p4d_t *p4d;
  148. pud_t *pud;
  149. pmd_t *pmd;
  150. pte_t *pte;
  151. int i;
  152. down_write(&mm->mmap_sem);
  153. pgd = pgd_offset(mm, 0xA0000);
  154. if (pgd_none_or_clear_bad(pgd))
  155. goto out;
  156. p4d = p4d_offset(pgd, 0xA0000);
  157. if (p4d_none_or_clear_bad(p4d))
  158. goto out;
  159. pud = pud_offset(p4d, 0xA0000);
  160. if (pud_none_or_clear_bad(pud))
  161. goto out;
  162. pmd = pmd_offset(pud, 0xA0000);
  163. if (pmd_trans_huge(*pmd)) {
  164. vma = find_vma(mm, 0xA0000);
  165. split_huge_pmd(vma, pmd, 0xA0000);
  166. }
  167. if (pmd_none_or_clear_bad(pmd))
  168. goto out;
  169. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  170. for (i = 0; i < 32; i++) {
  171. if (pte_present(*pte))
  172. set_pte(pte, pte_wrprotect(*pte));
  173. pte++;
  174. }
  175. pte_unmap_unlock(pte, ptl);
  176. out:
  177. up_write(&mm->mmap_sem);
  178. flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
  179. }
  180. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  181. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
  182. SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
  183. {
  184. return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
  185. }
  186. SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
  187. {
  188. switch (cmd) {
  189. case VM86_REQUEST_IRQ:
  190. case VM86_FREE_IRQ:
  191. case VM86_GET_IRQ_BITS:
  192. case VM86_GET_AND_RESET_IRQ:
  193. return do_vm86_irq_handling(cmd, (int)arg);
  194. case VM86_PLUS_INSTALL_CHECK:
  195. /*
  196. * NOTE: on old vm86 stuff this will return the error
  197. * from access_ok(), because the subfunction is
  198. * interpreted as (invalid) address to vm86_struct.
  199. * So the installation check works.
  200. */
  201. return 0;
  202. }
  203. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  204. return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
  205. }
  206. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
  207. {
  208. struct tss_struct *tss;
  209. struct task_struct *tsk = current;
  210. struct vm86 *vm86 = tsk->thread.vm86;
  211. struct kernel_vm86_regs vm86regs;
  212. struct pt_regs *regs = current_pt_regs();
  213. unsigned long err = 0;
  214. err = security_mmap_addr(0);
  215. if (err) {
  216. /*
  217. * vm86 cannot virtualize the address space, so vm86 users
  218. * need to manage the low 1MB themselves using mmap. Given
  219. * that BIOS places important data in the first page, vm86
  220. * is essentially useless if mmap_min_addr != 0. DOSEMU,
  221. * for example, won't even bother trying to use vm86 if it
  222. * can't map a page at virtual address 0.
  223. *
  224. * To reduce the available kernel attack surface, simply
  225. * disallow vm86(old) for users who cannot mmap at va 0.
  226. *
  227. * The implementation of security_mmap_addr will allow
  228. * suitably privileged users to map va 0 even if
  229. * vm.mmap_min_addr is set above 0, and we want this
  230. * behavior for vm86 as well, as it ensures that legacy
  231. * tools like vbetool will not fail just because of
  232. * vm.mmap_min_addr.
  233. */
  234. pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
  235. current->comm, task_pid_nr(current),
  236. from_kuid_munged(&init_user_ns, current_uid()));
  237. return -EPERM;
  238. }
  239. if (!vm86) {
  240. if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
  241. return -ENOMEM;
  242. tsk->thread.vm86 = vm86;
  243. }
  244. if (vm86->saved_sp0)
  245. return -EPERM;
  246. if (!access_ok(VERIFY_READ, user_vm86, plus ?
  247. sizeof(struct vm86_struct) :
  248. sizeof(struct vm86plus_struct)))
  249. return -EFAULT;
  250. memset(&vm86regs, 0, sizeof(vm86regs));
  251. get_user_try {
  252. unsigned short seg;
  253. get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
  254. get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
  255. get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
  256. get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
  257. get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
  258. get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
  259. get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
  260. get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
  261. get_user_ex(seg, &user_vm86->regs.cs);
  262. vm86regs.pt.cs = seg;
  263. get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
  264. get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
  265. get_user_ex(seg, &user_vm86->regs.ss);
  266. vm86regs.pt.ss = seg;
  267. get_user_ex(vm86regs.es, &user_vm86->regs.es);
  268. get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
  269. get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
  270. get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
  271. get_user_ex(vm86->flags, &user_vm86->flags);
  272. get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
  273. get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
  274. } get_user_catch(err);
  275. if (err)
  276. return err;
  277. if (copy_from_user(&vm86->int_revectored,
  278. &user_vm86->int_revectored,
  279. sizeof(struct revectored_struct)))
  280. return -EFAULT;
  281. if (copy_from_user(&vm86->int21_revectored,
  282. &user_vm86->int21_revectored,
  283. sizeof(struct revectored_struct)))
  284. return -EFAULT;
  285. if (plus) {
  286. if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
  287. sizeof(struct vm86plus_info_struct)))
  288. return -EFAULT;
  289. vm86->vm86plus.is_vm86pus = 1;
  290. } else
  291. memset(&vm86->vm86plus, 0,
  292. sizeof(struct vm86plus_info_struct));
  293. memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
  294. vm86->user_vm86 = user_vm86;
  295. /*
  296. * The flags register is also special: we cannot trust that the user
  297. * has set it up safely, so this makes sure interrupt etc flags are
  298. * inherited from protected mode.
  299. */
  300. VEFLAGS = vm86regs.pt.flags;
  301. vm86regs.pt.flags &= SAFE_MASK;
  302. vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
  303. vm86regs.pt.flags |= X86_VM_MASK;
  304. vm86regs.pt.orig_ax = regs->orig_ax;
  305. switch (vm86->cpu_type) {
  306. case CPU_286:
  307. vm86->veflags_mask = 0;
  308. break;
  309. case CPU_386:
  310. vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  311. break;
  312. case CPU_486:
  313. vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  314. break;
  315. default:
  316. vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  317. break;
  318. }
  319. /*
  320. * Save old state
  321. */
  322. vm86->saved_sp0 = tsk->thread.sp0;
  323. lazy_save_gs(vm86->regs32.gs);
  324. tss = &per_cpu(cpu_tss, get_cpu());
  325. /* make room for real-mode segments */
  326. tsk->thread.sp0 += 16;
  327. if (static_cpu_has(X86_FEATURE_SEP))
  328. tsk->thread.sysenter_cs = 0;
  329. load_sp0(tss, &tsk->thread);
  330. put_cpu();
  331. if (vm86->flags & VM86_SCREEN_BITMAP)
  332. mark_screen_rdonly(tsk->mm);
  333. memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
  334. force_iret();
  335. return regs->ax;
  336. }
  337. static inline void set_IF(struct kernel_vm86_regs *regs)
  338. {
  339. VEFLAGS |= X86_EFLAGS_VIF;
  340. }
  341. static inline void clear_IF(struct kernel_vm86_regs *regs)
  342. {
  343. VEFLAGS &= ~X86_EFLAGS_VIF;
  344. }
  345. static inline void clear_TF(struct kernel_vm86_regs *regs)
  346. {
  347. regs->pt.flags &= ~X86_EFLAGS_TF;
  348. }
  349. static inline void clear_AC(struct kernel_vm86_regs *regs)
  350. {
  351. regs->pt.flags &= ~X86_EFLAGS_AC;
  352. }
  353. /*
  354. * It is correct to call set_IF(regs) from the set_vflags_*
  355. * functions. However someone forgot to call clear_IF(regs)
  356. * in the opposite case.
  357. * After the command sequence CLI PUSHF STI POPF you should
  358. * end up with interrupts disabled, but you ended up with
  359. * interrupts enabled.
  360. * ( I was testing my own changes, but the only bug I
  361. * could find was in a function I had not changed. )
  362. * [KD]
  363. */
  364. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
  365. {
  366. set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
  367. set_flags(regs->pt.flags, flags, SAFE_MASK);
  368. if (flags & X86_EFLAGS_IF)
  369. set_IF(regs);
  370. else
  371. clear_IF(regs);
  372. }
  373. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
  374. {
  375. set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
  376. set_flags(regs->pt.flags, flags, SAFE_MASK);
  377. if (flags & X86_EFLAGS_IF)
  378. set_IF(regs);
  379. else
  380. clear_IF(regs);
  381. }
  382. static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
  383. {
  384. unsigned long flags = regs->pt.flags & RETURN_MASK;
  385. if (VEFLAGS & X86_EFLAGS_VIF)
  386. flags |= X86_EFLAGS_IF;
  387. flags |= X86_EFLAGS_IOPL;
  388. return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
  389. }
  390. static inline int is_revectored(int nr, struct revectored_struct *bitmap)
  391. {
  392. return test_bit(nr, bitmap->__map);
  393. }
  394. #define val_byte(val, n) (((__u8 *)&val)[n])
  395. #define pushb(base, ptr, val, err_label) \
  396. do { \
  397. __u8 __val = val; \
  398. ptr--; \
  399. if (put_user(__val, base + ptr) < 0) \
  400. goto err_label; \
  401. } while (0)
  402. #define pushw(base, ptr, val, err_label) \
  403. do { \
  404. __u16 __val = val; \
  405. ptr--; \
  406. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  407. goto err_label; \
  408. ptr--; \
  409. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  410. goto err_label; \
  411. } while (0)
  412. #define pushl(base, ptr, val, err_label) \
  413. do { \
  414. __u32 __val = val; \
  415. ptr--; \
  416. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  417. goto err_label; \
  418. ptr--; \
  419. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  420. goto err_label; \
  421. ptr--; \
  422. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  423. goto err_label; \
  424. ptr--; \
  425. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  426. goto err_label; \
  427. } while (0)
  428. #define popb(base, ptr, err_label) \
  429. ({ \
  430. __u8 __res; \
  431. if (get_user(__res, base + ptr) < 0) \
  432. goto err_label; \
  433. ptr++; \
  434. __res; \
  435. })
  436. #define popw(base, ptr, err_label) \
  437. ({ \
  438. __u16 __res; \
  439. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  440. goto err_label; \
  441. ptr++; \
  442. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  443. goto err_label; \
  444. ptr++; \
  445. __res; \
  446. })
  447. #define popl(base, ptr, err_label) \
  448. ({ \
  449. __u32 __res; \
  450. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  451. goto err_label; \
  452. ptr++; \
  453. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  454. goto err_label; \
  455. ptr++; \
  456. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  457. goto err_label; \
  458. ptr++; \
  459. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  460. goto err_label; \
  461. ptr++; \
  462. __res; \
  463. })
  464. /* There are so many possible reasons for this function to return
  465. * VM86_INTx, so adding another doesn't bother me. We can expect
  466. * userspace programs to be able to handle it. (Getting a problem
  467. * in userspace is always better than an Oops anyway.) [KD]
  468. */
  469. static void do_int(struct kernel_vm86_regs *regs, int i,
  470. unsigned char __user *ssp, unsigned short sp)
  471. {
  472. unsigned long __user *intr_ptr;
  473. unsigned long segoffs;
  474. struct vm86 *vm86 = current->thread.vm86;
  475. if (regs->pt.cs == BIOSSEG)
  476. goto cannot_handle;
  477. if (is_revectored(i, &vm86->int_revectored))
  478. goto cannot_handle;
  479. if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
  480. goto cannot_handle;
  481. intr_ptr = (unsigned long __user *) (i << 2);
  482. if (get_user(segoffs, intr_ptr))
  483. goto cannot_handle;
  484. if ((segoffs >> 16) == BIOSSEG)
  485. goto cannot_handle;
  486. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  487. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  488. pushw(ssp, sp, IP(regs), cannot_handle);
  489. regs->pt.cs = segoffs >> 16;
  490. SP(regs) -= 6;
  491. IP(regs) = segoffs & 0xffff;
  492. clear_TF(regs);
  493. clear_IF(regs);
  494. clear_AC(regs);
  495. return;
  496. cannot_handle:
  497. save_v86_state(regs, VM86_INTx + (i << 8));
  498. }
  499. int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
  500. {
  501. struct vm86 *vm86 = current->thread.vm86;
  502. if (vm86->vm86plus.is_vm86pus) {
  503. if ((trapno == 3) || (trapno == 1)) {
  504. save_v86_state(regs, VM86_TRAP + (trapno << 8));
  505. return 0;
  506. }
  507. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  508. return 0;
  509. }
  510. if (trapno != 1)
  511. return 1; /* we let this handle by the calling routine */
  512. current->thread.trap_nr = trapno;
  513. current->thread.error_code = error_code;
  514. force_sig(SIGTRAP, current);
  515. return 0;
  516. }
  517. void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
  518. {
  519. unsigned char opcode;
  520. unsigned char __user *csp;
  521. unsigned char __user *ssp;
  522. unsigned short ip, sp, orig_flags;
  523. int data32, pref_done;
  524. struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
  525. #define CHECK_IF_IN_TRAP \
  526. if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
  527. newflags |= X86_EFLAGS_TF
  528. orig_flags = *(unsigned short *)&regs->pt.flags;
  529. csp = (unsigned char __user *) (regs->pt.cs << 4);
  530. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  531. sp = SP(regs);
  532. ip = IP(regs);
  533. data32 = 0;
  534. pref_done = 0;
  535. do {
  536. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  537. case 0x66: /* 32-bit data */ data32 = 1; break;
  538. case 0x67: /* 32-bit address */ break;
  539. case 0x2e: /* CS */ break;
  540. case 0x3e: /* DS */ break;
  541. case 0x26: /* ES */ break;
  542. case 0x36: /* SS */ break;
  543. case 0x65: /* GS */ break;
  544. case 0x64: /* FS */ break;
  545. case 0xf2: /* repnz */ break;
  546. case 0xf3: /* rep */ break;
  547. default: pref_done = 1;
  548. }
  549. } while (!pref_done);
  550. switch (opcode) {
  551. /* pushf */
  552. case 0x9c:
  553. if (data32) {
  554. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  555. SP(regs) -= 4;
  556. } else {
  557. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  558. SP(regs) -= 2;
  559. }
  560. IP(regs) = ip;
  561. goto vm86_fault_return;
  562. /* popf */
  563. case 0x9d:
  564. {
  565. unsigned long newflags;
  566. if (data32) {
  567. newflags = popl(ssp, sp, simulate_sigsegv);
  568. SP(regs) += 4;
  569. } else {
  570. newflags = popw(ssp, sp, simulate_sigsegv);
  571. SP(regs) += 2;
  572. }
  573. IP(regs) = ip;
  574. CHECK_IF_IN_TRAP;
  575. if (data32)
  576. set_vflags_long(newflags, regs);
  577. else
  578. set_vflags_short(newflags, regs);
  579. goto check_vip;
  580. }
  581. /* int xx */
  582. case 0xcd: {
  583. int intno = popb(csp, ip, simulate_sigsegv);
  584. IP(regs) = ip;
  585. if (vmpi->vm86dbg_active) {
  586. if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
  587. save_v86_state(regs, VM86_INTx + (intno << 8));
  588. return;
  589. }
  590. }
  591. do_int(regs, intno, ssp, sp);
  592. return;
  593. }
  594. /* iret */
  595. case 0xcf:
  596. {
  597. unsigned long newip;
  598. unsigned long newcs;
  599. unsigned long newflags;
  600. if (data32) {
  601. newip = popl(ssp, sp, simulate_sigsegv);
  602. newcs = popl(ssp, sp, simulate_sigsegv);
  603. newflags = popl(ssp, sp, simulate_sigsegv);
  604. SP(regs) += 12;
  605. } else {
  606. newip = popw(ssp, sp, simulate_sigsegv);
  607. newcs = popw(ssp, sp, simulate_sigsegv);
  608. newflags = popw(ssp, sp, simulate_sigsegv);
  609. SP(regs) += 6;
  610. }
  611. IP(regs) = newip;
  612. regs->pt.cs = newcs;
  613. CHECK_IF_IN_TRAP;
  614. if (data32) {
  615. set_vflags_long(newflags, regs);
  616. } else {
  617. set_vflags_short(newflags, regs);
  618. }
  619. goto check_vip;
  620. }
  621. /* cli */
  622. case 0xfa:
  623. IP(regs) = ip;
  624. clear_IF(regs);
  625. goto vm86_fault_return;
  626. /* sti */
  627. /*
  628. * Damn. This is incorrect: the 'sti' instruction should actually
  629. * enable interrupts after the /next/ instruction. Not good.
  630. *
  631. * Probably needs some horsing around with the TF flag. Aiee..
  632. */
  633. case 0xfb:
  634. IP(regs) = ip;
  635. set_IF(regs);
  636. goto check_vip;
  637. default:
  638. save_v86_state(regs, VM86_UNKNOWN);
  639. }
  640. return;
  641. check_vip:
  642. if (VEFLAGS & X86_EFLAGS_VIP) {
  643. save_v86_state(regs, VM86_STI);
  644. return;
  645. }
  646. vm86_fault_return:
  647. if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
  648. save_v86_state(regs, VM86_PICRETURN);
  649. return;
  650. }
  651. if (orig_flags & X86_EFLAGS_TF)
  652. handle_vm86_trap(regs, 0, X86_TRAP_DB);
  653. return;
  654. simulate_sigsegv:
  655. /* FIXME: After a long discussion with Stas we finally
  656. * agreed, that this is wrong. Here we should
  657. * really send a SIGSEGV to the user program.
  658. * But how do we create the correct context? We
  659. * are inside a general protection fault handler
  660. * and has just returned from a page fault handler.
  661. * The correct context for the signal handler
  662. * should be a mixture of the two, but how do we
  663. * get the information? [KD]
  664. */
  665. save_v86_state(regs, VM86_UNKNOWN);
  666. }
  667. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  668. #define VM86_IRQNAME "vm86irq"
  669. static struct vm86_irqs {
  670. struct task_struct *tsk;
  671. int sig;
  672. } vm86_irqs[16];
  673. static DEFINE_SPINLOCK(irqbits_lock);
  674. static int irqbits;
  675. #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
  676. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  677. | (1 << SIGUNUSED))
  678. static irqreturn_t irq_handler(int intno, void *dev_id)
  679. {
  680. int irq_bit;
  681. unsigned long flags;
  682. spin_lock_irqsave(&irqbits_lock, flags);
  683. irq_bit = 1 << intno;
  684. if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
  685. goto out;
  686. irqbits |= irq_bit;
  687. if (vm86_irqs[intno].sig)
  688. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  689. /*
  690. * IRQ will be re-enabled when user asks for the irq (whether
  691. * polling or as a result of the signal)
  692. */
  693. disable_irq_nosync(intno);
  694. spin_unlock_irqrestore(&irqbits_lock, flags);
  695. return IRQ_HANDLED;
  696. out:
  697. spin_unlock_irqrestore(&irqbits_lock, flags);
  698. return IRQ_NONE;
  699. }
  700. static inline void free_vm86_irq(int irqnumber)
  701. {
  702. unsigned long flags;
  703. free_irq(irqnumber, NULL);
  704. vm86_irqs[irqnumber].tsk = NULL;
  705. spin_lock_irqsave(&irqbits_lock, flags);
  706. irqbits &= ~(1 << irqnumber);
  707. spin_unlock_irqrestore(&irqbits_lock, flags);
  708. }
  709. void release_vm86_irqs(struct task_struct *task)
  710. {
  711. int i;
  712. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  713. if (vm86_irqs[i].tsk == task)
  714. free_vm86_irq(i);
  715. }
  716. static inline int get_and_reset_irq(int irqnumber)
  717. {
  718. int bit;
  719. unsigned long flags;
  720. int ret = 0;
  721. if (invalid_vm86_irq(irqnumber)) return 0;
  722. if (vm86_irqs[irqnumber].tsk != current) return 0;
  723. spin_lock_irqsave(&irqbits_lock, flags);
  724. bit = irqbits & (1 << irqnumber);
  725. irqbits &= ~bit;
  726. if (bit) {
  727. enable_irq(irqnumber);
  728. ret = 1;
  729. }
  730. spin_unlock_irqrestore(&irqbits_lock, flags);
  731. return ret;
  732. }
  733. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  734. {
  735. int ret;
  736. switch (subfunction) {
  737. case VM86_GET_AND_RESET_IRQ: {
  738. return get_and_reset_irq(irqnumber);
  739. }
  740. case VM86_GET_IRQ_BITS: {
  741. return irqbits;
  742. }
  743. case VM86_REQUEST_IRQ: {
  744. int sig = irqnumber >> 8;
  745. int irq = irqnumber & 255;
  746. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  747. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  748. if (invalid_vm86_irq(irq)) return -EPERM;
  749. if (vm86_irqs[irq].tsk) return -EPERM;
  750. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  751. if (ret) return ret;
  752. vm86_irqs[irq].sig = sig;
  753. vm86_irqs[irq].tsk = current;
  754. return irq;
  755. }
  756. case VM86_FREE_IRQ: {
  757. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  758. if (!vm86_irqs[irqnumber].tsk) return 0;
  759. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  760. free_vm86_irq(irqnumber);
  761. return 0;
  762. }
  763. }
  764. return -EINVAL;
  765. }