tsc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/sched/clock.h>
  5. #include <linux/init.h>
  6. #include <linux/export.h>
  7. #include <linux/timer.h>
  8. #include <linux/acpi_pmtmr.h>
  9. #include <linux/cpufreq.h>
  10. #include <linux/delay.h>
  11. #include <linux/clocksource.h>
  12. #include <linux/percpu.h>
  13. #include <linux/timex.h>
  14. #include <linux/static_key.h>
  15. #include <asm/hpet.h>
  16. #include <asm/timer.h>
  17. #include <asm/vgtod.h>
  18. #include <asm/time.h>
  19. #include <asm/delay.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/nmi.h>
  22. #include <asm/x86_init.h>
  23. #include <asm/geode.h>
  24. #include <asm/apic.h>
  25. #include <asm/intel-family.h>
  26. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  27. EXPORT_SYMBOL(cpu_khz);
  28. unsigned int __read_mostly tsc_khz;
  29. EXPORT_SYMBOL(tsc_khz);
  30. /*
  31. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32. */
  33. static int __read_mostly tsc_unstable;
  34. /* native_sched_clock() is called before tsc_init(), so
  35. we must start with the TSC soft disabled to prevent
  36. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  37. static int __read_mostly tsc_disabled = -1;
  38. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  39. int tsc_clocksource_reliable;
  40. static u32 art_to_tsc_numerator;
  41. static u32 art_to_tsc_denominator;
  42. static u64 art_to_tsc_offset;
  43. struct clocksource *art_related_clocksource;
  44. /*
  45. * Use a ring-buffer like data structure, where a writer advances the head by
  46. * writing a new data entry and a reader advances the tail when it observes a
  47. * new entry.
  48. *
  49. * Writers are made to wait on readers until there's space to write a new
  50. * entry.
  51. *
  52. * This means that we can always use an {offset, mul} pair to compute a ns
  53. * value that is 'roughly' in the right direction, even if we're writing a new
  54. * {offset, mul} pair during the clock read.
  55. *
  56. * The down-side is that we can no longer guarantee strict monotonicity anymore
  57. * (assuming the TSC was that to begin with), because while we compute the
  58. * intersection point of the two clock slopes and make sure the time is
  59. * continuous at the point of switching; we can no longer guarantee a reader is
  60. * strictly before or after the switch point.
  61. *
  62. * It does mean a reader no longer needs to disable IRQs in order to avoid
  63. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  64. * no longer run the risk of hitting half-written state.
  65. */
  66. struct cyc2ns {
  67. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  68. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  69. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  70. }; /* exactly fits one cacheline */
  71. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  72. struct cyc2ns_data *cyc2ns_read_begin(void)
  73. {
  74. struct cyc2ns_data *head;
  75. preempt_disable();
  76. head = this_cpu_read(cyc2ns.head);
  77. /*
  78. * Ensure we observe the entry when we observe the pointer to it.
  79. * matches the wmb from cyc2ns_write_end().
  80. */
  81. smp_read_barrier_depends();
  82. head->__count++;
  83. barrier();
  84. return head;
  85. }
  86. void cyc2ns_read_end(struct cyc2ns_data *head)
  87. {
  88. barrier();
  89. /*
  90. * If we're the outer most nested read; update the tail pointer
  91. * when we're done. This notifies possible pending writers
  92. * that we've observed the head pointer and that the other
  93. * entry is now free.
  94. */
  95. if (!--head->__count) {
  96. /*
  97. * x86-TSO does not reorder writes with older reads;
  98. * therefore once this write becomes visible to another
  99. * cpu, we must be finished reading the cyc2ns_data.
  100. *
  101. * matches with cyc2ns_write_begin().
  102. */
  103. this_cpu_write(cyc2ns.tail, head);
  104. }
  105. preempt_enable();
  106. }
  107. /*
  108. * Begin writing a new @data entry for @cpu.
  109. *
  110. * Assumes some sort of write side lock; currently 'provided' by the assumption
  111. * that cpufreq will call its notifiers sequentially.
  112. */
  113. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  114. {
  115. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  116. struct cyc2ns_data *data = c2n->data;
  117. if (data == c2n->head)
  118. data++;
  119. /* XXX send an IPI to @cpu in order to guarantee a read? */
  120. /*
  121. * When we observe the tail write from cyc2ns_read_end(),
  122. * the cpu must be done with that entry and its safe
  123. * to start writing to it.
  124. */
  125. while (c2n->tail == data)
  126. cpu_relax();
  127. return data;
  128. }
  129. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  130. {
  131. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  132. /*
  133. * Ensure the @data writes are visible before we publish the
  134. * entry. Matches the data-depencency in cyc2ns_read_begin().
  135. */
  136. smp_wmb();
  137. ACCESS_ONCE(c2n->head) = data;
  138. }
  139. /*
  140. * Accelerators for sched_clock()
  141. * convert from cycles(64bits) => nanoseconds (64bits)
  142. * basic equation:
  143. * ns = cycles / (freq / ns_per_sec)
  144. * ns = cycles * (ns_per_sec / freq)
  145. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  146. * ns = cycles * (10^6 / cpu_khz)
  147. *
  148. * Then we use scaling math (suggested by george@mvista.com) to get:
  149. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  150. * ns = cycles * cyc2ns_scale / SC
  151. *
  152. * And since SC is a constant power of two, we can convert the div
  153. * into a shift. The larger SC is, the more accurate the conversion, but
  154. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  155. * (64-bit result) can be used.
  156. *
  157. * We can use khz divisor instead of mhz to keep a better precision.
  158. * (mathieu.desnoyers@polymtl.ca)
  159. *
  160. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  161. */
  162. static void cyc2ns_data_init(struct cyc2ns_data *data)
  163. {
  164. data->cyc2ns_mul = 0;
  165. data->cyc2ns_shift = 0;
  166. data->cyc2ns_offset = 0;
  167. data->__count = 0;
  168. }
  169. static void cyc2ns_init(int cpu)
  170. {
  171. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  172. cyc2ns_data_init(&c2n->data[0]);
  173. cyc2ns_data_init(&c2n->data[1]);
  174. c2n->head = c2n->data;
  175. c2n->tail = c2n->data;
  176. }
  177. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  178. {
  179. struct cyc2ns_data *data, *tail;
  180. unsigned long long ns;
  181. /*
  182. * See cyc2ns_read_*() for details; replicated in order to avoid
  183. * an extra few instructions that came with the abstraction.
  184. * Notable, it allows us to only do the __count and tail update
  185. * dance when its actually needed.
  186. */
  187. preempt_disable_notrace();
  188. data = this_cpu_read(cyc2ns.head);
  189. tail = this_cpu_read(cyc2ns.tail);
  190. if (likely(data == tail)) {
  191. ns = data->cyc2ns_offset;
  192. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  193. } else {
  194. data->__count++;
  195. barrier();
  196. ns = data->cyc2ns_offset;
  197. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  198. barrier();
  199. if (!--data->__count)
  200. this_cpu_write(cyc2ns.tail, data);
  201. }
  202. preempt_enable_notrace();
  203. return ns;
  204. }
  205. static void set_cyc2ns_scale(unsigned long khz, int cpu)
  206. {
  207. unsigned long long tsc_now, ns_now;
  208. struct cyc2ns_data *data;
  209. unsigned long flags;
  210. local_irq_save(flags);
  211. sched_clock_idle_sleep_event();
  212. if (!khz)
  213. goto done;
  214. data = cyc2ns_write_begin(cpu);
  215. tsc_now = rdtsc();
  216. ns_now = cycles_2_ns(tsc_now);
  217. /*
  218. * Compute a new multiplier as per the above comment and ensure our
  219. * time function is continuous; see the comment near struct
  220. * cyc2ns_data.
  221. */
  222. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
  223. NSEC_PER_MSEC, 0);
  224. /*
  225. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  226. * not expected to be greater than 31 due to the original published
  227. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  228. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  229. */
  230. if (data->cyc2ns_shift == 32) {
  231. data->cyc2ns_shift = 31;
  232. data->cyc2ns_mul >>= 1;
  233. }
  234. data->cyc2ns_offset = ns_now -
  235. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  236. cyc2ns_write_end(cpu, data);
  237. done:
  238. sched_clock_idle_wakeup_event(0);
  239. local_irq_restore(flags);
  240. }
  241. /*
  242. * Scheduler clock - returns current time in nanosec units.
  243. */
  244. u64 native_sched_clock(void)
  245. {
  246. if (static_branch_likely(&__use_tsc)) {
  247. u64 tsc_now = rdtsc();
  248. /* return the value in ns */
  249. return cycles_2_ns(tsc_now);
  250. }
  251. /*
  252. * Fall back to jiffies if there's no TSC available:
  253. * ( But note that we still use it if the TSC is marked
  254. * unstable. We do this because unlike Time Of Day,
  255. * the scheduler clock tolerates small errors and it's
  256. * very important for it to be as fast as the platform
  257. * can achieve it. )
  258. */
  259. /* No locking but a rare wrong value is not a big deal: */
  260. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  261. }
  262. /*
  263. * Generate a sched_clock if you already have a TSC value.
  264. */
  265. u64 native_sched_clock_from_tsc(u64 tsc)
  266. {
  267. return cycles_2_ns(tsc);
  268. }
  269. /* We need to define a real function for sched_clock, to override the
  270. weak default version */
  271. #ifdef CONFIG_PARAVIRT
  272. unsigned long long sched_clock(void)
  273. {
  274. return paravirt_sched_clock();
  275. }
  276. bool using_native_sched_clock(void)
  277. {
  278. return pv_time_ops.sched_clock == native_sched_clock;
  279. }
  280. #else
  281. unsigned long long
  282. sched_clock(void) __attribute__((alias("native_sched_clock")));
  283. bool using_native_sched_clock(void) { return true; }
  284. #endif
  285. int check_tsc_unstable(void)
  286. {
  287. return tsc_unstable;
  288. }
  289. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  290. #ifdef CONFIG_X86_TSC
  291. int __init notsc_setup(char *str)
  292. {
  293. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  294. tsc_disabled = 1;
  295. return 1;
  296. }
  297. #else
  298. /*
  299. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  300. * in cpu/common.c
  301. */
  302. int __init notsc_setup(char *str)
  303. {
  304. setup_clear_cpu_cap(X86_FEATURE_TSC);
  305. return 1;
  306. }
  307. #endif
  308. __setup("notsc", notsc_setup);
  309. static int no_sched_irq_time;
  310. static int __init tsc_setup(char *str)
  311. {
  312. if (!strcmp(str, "reliable"))
  313. tsc_clocksource_reliable = 1;
  314. if (!strncmp(str, "noirqtime", 9))
  315. no_sched_irq_time = 1;
  316. return 1;
  317. }
  318. __setup("tsc=", tsc_setup);
  319. #define MAX_RETRIES 5
  320. #define SMI_TRESHOLD 50000
  321. /*
  322. * Read TSC and the reference counters. Take care of SMI disturbance
  323. */
  324. static u64 tsc_read_refs(u64 *p, int hpet)
  325. {
  326. u64 t1, t2;
  327. int i;
  328. for (i = 0; i < MAX_RETRIES; i++) {
  329. t1 = get_cycles();
  330. if (hpet)
  331. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  332. else
  333. *p = acpi_pm_read_early();
  334. t2 = get_cycles();
  335. if ((t2 - t1) < SMI_TRESHOLD)
  336. return t2;
  337. }
  338. return ULLONG_MAX;
  339. }
  340. /*
  341. * Calculate the TSC frequency from HPET reference
  342. */
  343. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  344. {
  345. u64 tmp;
  346. if (hpet2 < hpet1)
  347. hpet2 += 0x100000000ULL;
  348. hpet2 -= hpet1;
  349. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  350. do_div(tmp, 1000000);
  351. do_div(deltatsc, tmp);
  352. return (unsigned long) deltatsc;
  353. }
  354. /*
  355. * Calculate the TSC frequency from PMTimer reference
  356. */
  357. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  358. {
  359. u64 tmp;
  360. if (!pm1 && !pm2)
  361. return ULONG_MAX;
  362. if (pm2 < pm1)
  363. pm2 += (u64)ACPI_PM_OVRRUN;
  364. pm2 -= pm1;
  365. tmp = pm2 * 1000000000LL;
  366. do_div(tmp, PMTMR_TICKS_PER_SEC);
  367. do_div(deltatsc, tmp);
  368. return (unsigned long) deltatsc;
  369. }
  370. #define CAL_MS 10
  371. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  372. #define CAL_PIT_LOOPS 1000
  373. #define CAL2_MS 50
  374. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  375. #define CAL2_PIT_LOOPS 5000
  376. /*
  377. * Try to calibrate the TSC against the Programmable
  378. * Interrupt Timer and return the frequency of the TSC
  379. * in kHz.
  380. *
  381. * Return ULONG_MAX on failure to calibrate.
  382. */
  383. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  384. {
  385. u64 tsc, t1, t2, delta;
  386. unsigned long tscmin, tscmax;
  387. int pitcnt;
  388. /* Set the Gate high, disable speaker */
  389. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  390. /*
  391. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  392. * count mode), binary count. Set the latch register to 50ms
  393. * (LSB then MSB) to begin countdown.
  394. */
  395. outb(0xb0, 0x43);
  396. outb(latch & 0xff, 0x42);
  397. outb(latch >> 8, 0x42);
  398. tsc = t1 = t2 = get_cycles();
  399. pitcnt = 0;
  400. tscmax = 0;
  401. tscmin = ULONG_MAX;
  402. while ((inb(0x61) & 0x20) == 0) {
  403. t2 = get_cycles();
  404. delta = t2 - tsc;
  405. tsc = t2;
  406. if ((unsigned long) delta < tscmin)
  407. tscmin = (unsigned int) delta;
  408. if ((unsigned long) delta > tscmax)
  409. tscmax = (unsigned int) delta;
  410. pitcnt++;
  411. }
  412. /*
  413. * Sanity checks:
  414. *
  415. * If we were not able to read the PIT more than loopmin
  416. * times, then we have been hit by a massive SMI
  417. *
  418. * If the maximum is 10 times larger than the minimum,
  419. * then we got hit by an SMI as well.
  420. */
  421. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  422. return ULONG_MAX;
  423. /* Calculate the PIT value */
  424. delta = t2 - t1;
  425. do_div(delta, ms);
  426. return delta;
  427. }
  428. /*
  429. * This reads the current MSB of the PIT counter, and
  430. * checks if we are running on sufficiently fast and
  431. * non-virtualized hardware.
  432. *
  433. * Our expectations are:
  434. *
  435. * - the PIT is running at roughly 1.19MHz
  436. *
  437. * - each IO is going to take about 1us on real hardware,
  438. * but we allow it to be much faster (by a factor of 10) or
  439. * _slightly_ slower (ie we allow up to a 2us read+counter
  440. * update - anything else implies a unacceptably slow CPU
  441. * or PIT for the fast calibration to work.
  442. *
  443. * - with 256 PIT ticks to read the value, we have 214us to
  444. * see the same MSB (and overhead like doing a single TSC
  445. * read per MSB value etc).
  446. *
  447. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  448. * them each to take about a microsecond on real hardware.
  449. * So we expect a count value of around 100. But we'll be
  450. * generous, and accept anything over 50.
  451. *
  452. * - if the PIT is stuck, and we see *many* more reads, we
  453. * return early (and the next caller of pit_expect_msb()
  454. * then consider it a failure when they don't see the
  455. * next expected value).
  456. *
  457. * These expectations mean that we know that we have seen the
  458. * transition from one expected value to another with a fairly
  459. * high accuracy, and we didn't miss any events. We can thus
  460. * use the TSC value at the transitions to calculate a pretty
  461. * good value for the TSC frequencty.
  462. */
  463. static inline int pit_verify_msb(unsigned char val)
  464. {
  465. /* Ignore LSB */
  466. inb(0x42);
  467. return inb(0x42) == val;
  468. }
  469. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  470. {
  471. int count;
  472. u64 tsc = 0, prev_tsc = 0;
  473. for (count = 0; count < 50000; count++) {
  474. if (!pit_verify_msb(val))
  475. break;
  476. prev_tsc = tsc;
  477. tsc = get_cycles();
  478. }
  479. *deltap = get_cycles() - prev_tsc;
  480. *tscp = tsc;
  481. /*
  482. * We require _some_ success, but the quality control
  483. * will be based on the error terms on the TSC values.
  484. */
  485. return count > 5;
  486. }
  487. /*
  488. * How many MSB values do we want to see? We aim for
  489. * a maximum error rate of 500ppm (in practice the
  490. * real error is much smaller), but refuse to spend
  491. * more than 50ms on it.
  492. */
  493. #define MAX_QUICK_PIT_MS 50
  494. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  495. static unsigned long quick_pit_calibrate(void)
  496. {
  497. int i;
  498. u64 tsc, delta;
  499. unsigned long d1, d2;
  500. /* Set the Gate high, disable speaker */
  501. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  502. /*
  503. * Counter 2, mode 0 (one-shot), binary count
  504. *
  505. * NOTE! Mode 2 decrements by two (and then the
  506. * output is flipped each time, giving the same
  507. * final output frequency as a decrement-by-one),
  508. * so mode 0 is much better when looking at the
  509. * individual counts.
  510. */
  511. outb(0xb0, 0x43);
  512. /* Start at 0xffff */
  513. outb(0xff, 0x42);
  514. outb(0xff, 0x42);
  515. /*
  516. * The PIT starts counting at the next edge, so we
  517. * need to delay for a microsecond. The easiest way
  518. * to do that is to just read back the 16-bit counter
  519. * once from the PIT.
  520. */
  521. pit_verify_msb(0);
  522. if (pit_expect_msb(0xff, &tsc, &d1)) {
  523. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  524. if (!pit_expect_msb(0xff-i, &delta, &d2))
  525. break;
  526. delta -= tsc;
  527. /*
  528. * Extrapolate the error and fail fast if the error will
  529. * never be below 500 ppm.
  530. */
  531. if (i == 1 &&
  532. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  533. return 0;
  534. /*
  535. * Iterate until the error is less than 500 ppm
  536. */
  537. if (d1+d2 >= delta >> 11)
  538. continue;
  539. /*
  540. * Check the PIT one more time to verify that
  541. * all TSC reads were stable wrt the PIT.
  542. *
  543. * This also guarantees serialization of the
  544. * last cycle read ('d2') in pit_expect_msb.
  545. */
  546. if (!pit_verify_msb(0xfe - i))
  547. break;
  548. goto success;
  549. }
  550. }
  551. pr_info("Fast TSC calibration failed\n");
  552. return 0;
  553. success:
  554. /*
  555. * Ok, if we get here, then we've seen the
  556. * MSB of the PIT decrement 'i' times, and the
  557. * error has shrunk to less than 500 ppm.
  558. *
  559. * As a result, we can depend on there not being
  560. * any odd delays anywhere, and the TSC reads are
  561. * reliable (within the error).
  562. *
  563. * kHz = ticks / time-in-seconds / 1000;
  564. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  565. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  566. */
  567. delta *= PIT_TICK_RATE;
  568. do_div(delta, i*256*1000);
  569. pr_info("Fast TSC calibration using PIT\n");
  570. return delta;
  571. }
  572. /**
  573. * native_calibrate_tsc
  574. * Determine TSC frequency via CPUID, else return 0.
  575. */
  576. unsigned long native_calibrate_tsc(void)
  577. {
  578. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  579. unsigned int crystal_khz;
  580. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  581. return 0;
  582. if (boot_cpu_data.cpuid_level < 0x15)
  583. return 0;
  584. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  585. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  586. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  587. if (ebx_numerator == 0 || eax_denominator == 0)
  588. return 0;
  589. crystal_khz = ecx_hz / 1000;
  590. if (crystal_khz == 0) {
  591. switch (boot_cpu_data.x86_model) {
  592. case INTEL_FAM6_SKYLAKE_MOBILE:
  593. case INTEL_FAM6_SKYLAKE_DESKTOP:
  594. case INTEL_FAM6_KABYLAKE_MOBILE:
  595. case INTEL_FAM6_KABYLAKE_DESKTOP:
  596. crystal_khz = 24000; /* 24.0 MHz */
  597. break;
  598. case INTEL_FAM6_SKYLAKE_X:
  599. case INTEL_FAM6_ATOM_DENVERTON:
  600. crystal_khz = 25000; /* 25.0 MHz */
  601. break;
  602. case INTEL_FAM6_ATOM_GOLDMONT:
  603. crystal_khz = 19200; /* 19.2 MHz */
  604. break;
  605. }
  606. }
  607. /*
  608. * TSC frequency determined by CPUID is a "hardware reported"
  609. * frequency and is the most accurate one so far we have. This
  610. * is considered a known frequency.
  611. */
  612. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  613. /*
  614. * For Atom SoCs TSC is the only reliable clocksource.
  615. * Mark TSC reliable so no watchdog on it.
  616. */
  617. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  618. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  619. return crystal_khz * ebx_numerator / eax_denominator;
  620. }
  621. static unsigned long cpu_khz_from_cpuid(void)
  622. {
  623. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  624. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  625. return 0;
  626. if (boot_cpu_data.cpuid_level < 0x16)
  627. return 0;
  628. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  629. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  630. return eax_base_mhz * 1000;
  631. }
  632. /**
  633. * native_calibrate_cpu - calibrate the cpu on boot
  634. */
  635. unsigned long native_calibrate_cpu(void)
  636. {
  637. u64 tsc1, tsc2, delta, ref1, ref2;
  638. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  639. unsigned long flags, latch, ms, fast_calibrate;
  640. int hpet = is_hpet_enabled(), i, loopmin;
  641. fast_calibrate = cpu_khz_from_cpuid();
  642. if (fast_calibrate)
  643. return fast_calibrate;
  644. fast_calibrate = cpu_khz_from_msr();
  645. if (fast_calibrate)
  646. return fast_calibrate;
  647. local_irq_save(flags);
  648. fast_calibrate = quick_pit_calibrate();
  649. local_irq_restore(flags);
  650. if (fast_calibrate)
  651. return fast_calibrate;
  652. /*
  653. * Run 5 calibration loops to get the lowest frequency value
  654. * (the best estimate). We use two different calibration modes
  655. * here:
  656. *
  657. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  658. * load a timeout of 50ms. We read the time right after we
  659. * started the timer and wait until the PIT count down reaches
  660. * zero. In each wait loop iteration we read the TSC and check
  661. * the delta to the previous read. We keep track of the min
  662. * and max values of that delta. The delta is mostly defined
  663. * by the IO time of the PIT access, so we can detect when a
  664. * SMI/SMM disturbance happened between the two reads. If the
  665. * maximum time is significantly larger than the minimum time,
  666. * then we discard the result and have another try.
  667. *
  668. * 2) Reference counter. If available we use the HPET or the
  669. * PMTIMER as a reference to check the sanity of that value.
  670. * We use separate TSC readouts and check inside of the
  671. * reference read for a SMI/SMM disturbance. We dicard
  672. * disturbed values here as well. We do that around the PIT
  673. * calibration delay loop as we have to wait for a certain
  674. * amount of time anyway.
  675. */
  676. /* Preset PIT loop values */
  677. latch = CAL_LATCH;
  678. ms = CAL_MS;
  679. loopmin = CAL_PIT_LOOPS;
  680. for (i = 0; i < 3; i++) {
  681. unsigned long tsc_pit_khz;
  682. /*
  683. * Read the start value and the reference count of
  684. * hpet/pmtimer when available. Then do the PIT
  685. * calibration, which will take at least 50ms, and
  686. * read the end value.
  687. */
  688. local_irq_save(flags);
  689. tsc1 = tsc_read_refs(&ref1, hpet);
  690. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  691. tsc2 = tsc_read_refs(&ref2, hpet);
  692. local_irq_restore(flags);
  693. /* Pick the lowest PIT TSC calibration so far */
  694. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  695. /* hpet or pmtimer available ? */
  696. if (ref1 == ref2)
  697. continue;
  698. /* Check, whether the sampling was disturbed by an SMI */
  699. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  700. continue;
  701. tsc2 = (tsc2 - tsc1) * 1000000LL;
  702. if (hpet)
  703. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  704. else
  705. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  706. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  707. /* Check the reference deviation */
  708. delta = ((u64) tsc_pit_min) * 100;
  709. do_div(delta, tsc_ref_min);
  710. /*
  711. * If both calibration results are inside a 10% window
  712. * then we can be sure, that the calibration
  713. * succeeded. We break out of the loop right away. We
  714. * use the reference value, as it is more precise.
  715. */
  716. if (delta >= 90 && delta <= 110) {
  717. pr_info("PIT calibration matches %s. %d loops\n",
  718. hpet ? "HPET" : "PMTIMER", i + 1);
  719. return tsc_ref_min;
  720. }
  721. /*
  722. * Check whether PIT failed more than once. This
  723. * happens in virtualized environments. We need to
  724. * give the virtual PC a slightly longer timeframe for
  725. * the HPET/PMTIMER to make the result precise.
  726. */
  727. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  728. latch = CAL2_LATCH;
  729. ms = CAL2_MS;
  730. loopmin = CAL2_PIT_LOOPS;
  731. }
  732. }
  733. /*
  734. * Now check the results.
  735. */
  736. if (tsc_pit_min == ULONG_MAX) {
  737. /* PIT gave no useful value */
  738. pr_warn("Unable to calibrate against PIT\n");
  739. /* We don't have an alternative source, disable TSC */
  740. if (!hpet && !ref1 && !ref2) {
  741. pr_notice("No reference (HPET/PMTIMER) available\n");
  742. return 0;
  743. }
  744. /* The alternative source failed as well, disable TSC */
  745. if (tsc_ref_min == ULONG_MAX) {
  746. pr_warn("HPET/PMTIMER calibration failed\n");
  747. return 0;
  748. }
  749. /* Use the alternative source */
  750. pr_info("using %s reference calibration\n",
  751. hpet ? "HPET" : "PMTIMER");
  752. return tsc_ref_min;
  753. }
  754. /* We don't have an alternative source, use the PIT calibration value */
  755. if (!hpet && !ref1 && !ref2) {
  756. pr_info("Using PIT calibration value\n");
  757. return tsc_pit_min;
  758. }
  759. /* The alternative source failed, use the PIT calibration value */
  760. if (tsc_ref_min == ULONG_MAX) {
  761. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  762. return tsc_pit_min;
  763. }
  764. /*
  765. * The calibration values differ too much. In doubt, we use
  766. * the PIT value as we know that there are PMTIMERs around
  767. * running at double speed. At least we let the user know:
  768. */
  769. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  770. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  771. pr_info("Using PIT calibration value\n");
  772. return tsc_pit_min;
  773. }
  774. int recalibrate_cpu_khz(void)
  775. {
  776. #ifndef CONFIG_SMP
  777. unsigned long cpu_khz_old = cpu_khz;
  778. if (!boot_cpu_has(X86_FEATURE_TSC))
  779. return -ENODEV;
  780. cpu_khz = x86_platform.calibrate_cpu();
  781. tsc_khz = x86_platform.calibrate_tsc();
  782. if (tsc_khz == 0)
  783. tsc_khz = cpu_khz;
  784. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  785. cpu_khz = tsc_khz;
  786. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  787. cpu_khz_old, cpu_khz);
  788. return 0;
  789. #else
  790. return -ENODEV;
  791. #endif
  792. }
  793. EXPORT_SYMBOL(recalibrate_cpu_khz);
  794. static unsigned long long cyc2ns_suspend;
  795. void tsc_save_sched_clock_state(void)
  796. {
  797. if (!sched_clock_stable())
  798. return;
  799. cyc2ns_suspend = sched_clock();
  800. }
  801. /*
  802. * Even on processors with invariant TSC, TSC gets reset in some the
  803. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  804. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  805. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  806. * that sched_clock() continues from the point where it was left off during
  807. * suspend.
  808. */
  809. void tsc_restore_sched_clock_state(void)
  810. {
  811. unsigned long long offset;
  812. unsigned long flags;
  813. int cpu;
  814. if (!sched_clock_stable())
  815. return;
  816. local_irq_save(flags);
  817. /*
  818. * We're coming out of suspend, there's no concurrency yet; don't
  819. * bother being nice about the RCU stuff, just write to both
  820. * data fields.
  821. */
  822. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  823. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  824. offset = cyc2ns_suspend - sched_clock();
  825. for_each_possible_cpu(cpu) {
  826. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  827. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  828. }
  829. local_irq_restore(flags);
  830. }
  831. #ifdef CONFIG_CPU_FREQ
  832. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  833. * changes.
  834. *
  835. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  836. * not that important because current Opteron setups do not support
  837. * scaling on SMP anyroads.
  838. *
  839. * Should fix up last_tsc too. Currently gettimeofday in the
  840. * first tick after the change will be slightly wrong.
  841. */
  842. static unsigned int ref_freq;
  843. static unsigned long loops_per_jiffy_ref;
  844. static unsigned long tsc_khz_ref;
  845. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  846. void *data)
  847. {
  848. struct cpufreq_freqs *freq = data;
  849. unsigned long *lpj;
  850. lpj = &boot_cpu_data.loops_per_jiffy;
  851. #ifdef CONFIG_SMP
  852. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  853. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  854. #endif
  855. if (!ref_freq) {
  856. ref_freq = freq->old;
  857. loops_per_jiffy_ref = *lpj;
  858. tsc_khz_ref = tsc_khz;
  859. }
  860. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  861. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  862. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  863. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  864. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  865. mark_tsc_unstable("cpufreq changes");
  866. set_cyc2ns_scale(tsc_khz, freq->cpu);
  867. }
  868. return 0;
  869. }
  870. static struct notifier_block time_cpufreq_notifier_block = {
  871. .notifier_call = time_cpufreq_notifier
  872. };
  873. static int __init cpufreq_register_tsc_scaling(void)
  874. {
  875. if (!boot_cpu_has(X86_FEATURE_TSC))
  876. return 0;
  877. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  878. return 0;
  879. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  880. CPUFREQ_TRANSITION_NOTIFIER);
  881. return 0;
  882. }
  883. core_initcall(cpufreq_register_tsc_scaling);
  884. #endif /* CONFIG_CPU_FREQ */
  885. #define ART_CPUID_LEAF (0x15)
  886. #define ART_MIN_DENOMINATOR (1)
  887. /*
  888. * If ART is present detect the numerator:denominator to convert to TSC
  889. */
  890. static void detect_art(void)
  891. {
  892. unsigned int unused[2];
  893. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  894. return;
  895. /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
  896. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  897. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  898. !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
  899. return;
  900. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  901. &art_to_tsc_numerator, unused, unused+1);
  902. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  903. return;
  904. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  905. /* Make this sticky over multiple CPU init calls */
  906. setup_force_cpu_cap(X86_FEATURE_ART);
  907. }
  908. /* clocksource code */
  909. static struct clocksource clocksource_tsc;
  910. static void tsc_resume(struct clocksource *cs)
  911. {
  912. tsc_verify_tsc_adjust(true);
  913. }
  914. /*
  915. * We used to compare the TSC to the cycle_last value in the clocksource
  916. * structure to avoid a nasty time-warp. This can be observed in a
  917. * very small window right after one CPU updated cycle_last under
  918. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  919. * is smaller than the cycle_last reference value due to a TSC which
  920. * is slighty behind. This delta is nowhere else observable, but in
  921. * that case it results in a forward time jump in the range of hours
  922. * due to the unsigned delta calculation of the time keeping core
  923. * code, which is necessary to support wrapping clocksources like pm
  924. * timer.
  925. *
  926. * This sanity check is now done in the core timekeeping code.
  927. * checking the result of read_tsc() - cycle_last for being negative.
  928. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  929. */
  930. static u64 read_tsc(struct clocksource *cs)
  931. {
  932. return (u64)rdtsc_ordered();
  933. }
  934. static void tsc_cs_mark_unstable(struct clocksource *cs)
  935. {
  936. if (tsc_unstable)
  937. return;
  938. tsc_unstable = 1;
  939. if (using_native_sched_clock())
  940. clear_sched_clock_stable();
  941. disable_sched_clock_irqtime();
  942. pr_info("Marking TSC unstable due to clocksource watchdog\n");
  943. }
  944. /*
  945. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  946. */
  947. static struct clocksource clocksource_tsc = {
  948. .name = "tsc",
  949. .rating = 300,
  950. .read = read_tsc,
  951. .mask = CLOCKSOURCE_MASK(64),
  952. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  953. CLOCK_SOURCE_MUST_VERIFY,
  954. .archdata = { .vclock_mode = VCLOCK_TSC },
  955. .resume = tsc_resume,
  956. .mark_unstable = tsc_cs_mark_unstable,
  957. };
  958. void mark_tsc_unstable(char *reason)
  959. {
  960. if (tsc_unstable)
  961. return;
  962. tsc_unstable = 1;
  963. if (using_native_sched_clock())
  964. clear_sched_clock_stable();
  965. disable_sched_clock_irqtime();
  966. pr_info("Marking TSC unstable due to %s\n", reason);
  967. /* Change only the rating, when not registered */
  968. if (clocksource_tsc.mult) {
  969. clocksource_mark_unstable(&clocksource_tsc);
  970. } else {
  971. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  972. clocksource_tsc.rating = 0;
  973. }
  974. }
  975. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  976. static void __init check_system_tsc_reliable(void)
  977. {
  978. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  979. if (is_geode_lx()) {
  980. /* RTSC counts during suspend */
  981. #define RTSC_SUSP 0x100
  982. unsigned long res_low, res_high;
  983. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  984. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  985. if (res_low & RTSC_SUSP)
  986. tsc_clocksource_reliable = 1;
  987. }
  988. #endif
  989. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  990. tsc_clocksource_reliable = 1;
  991. }
  992. /*
  993. * Make an educated guess if the TSC is trustworthy and synchronized
  994. * over all CPUs.
  995. */
  996. int unsynchronized_tsc(void)
  997. {
  998. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  999. return 1;
  1000. #ifdef CONFIG_SMP
  1001. if (apic_is_clustered_box())
  1002. return 1;
  1003. #endif
  1004. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  1005. return 0;
  1006. if (tsc_clocksource_reliable)
  1007. return 0;
  1008. /*
  1009. * Intel systems are normally all synchronized.
  1010. * Exceptions must mark TSC as unstable:
  1011. */
  1012. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  1013. /* assume multi socket systems are not synchronized: */
  1014. if (num_possible_cpus() > 1)
  1015. return 1;
  1016. }
  1017. return 0;
  1018. }
  1019. /*
  1020. * Convert ART to TSC given numerator/denominator found in detect_art()
  1021. */
  1022. struct system_counterval_t convert_art_to_tsc(u64 art)
  1023. {
  1024. u64 tmp, res, rem;
  1025. rem = do_div(art, art_to_tsc_denominator);
  1026. res = art * art_to_tsc_numerator;
  1027. tmp = rem * art_to_tsc_numerator;
  1028. do_div(tmp, art_to_tsc_denominator);
  1029. res += tmp + art_to_tsc_offset;
  1030. return (struct system_counterval_t) {.cs = art_related_clocksource,
  1031. .cycles = res};
  1032. }
  1033. EXPORT_SYMBOL(convert_art_to_tsc);
  1034. static void tsc_refine_calibration_work(struct work_struct *work);
  1035. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  1036. /**
  1037. * tsc_refine_calibration_work - Further refine tsc freq calibration
  1038. * @work - ignored.
  1039. *
  1040. * This functions uses delayed work over a period of a
  1041. * second to further refine the TSC freq value. Since this is
  1042. * timer based, instead of loop based, we don't block the boot
  1043. * process while this longer calibration is done.
  1044. *
  1045. * If there are any calibration anomalies (too many SMIs, etc),
  1046. * or the refined calibration is off by 1% of the fast early
  1047. * calibration, we throw out the new calibration and use the
  1048. * early calibration.
  1049. */
  1050. static void tsc_refine_calibration_work(struct work_struct *work)
  1051. {
  1052. static u64 tsc_start = -1, ref_start;
  1053. static int hpet;
  1054. u64 tsc_stop, ref_stop, delta;
  1055. unsigned long freq;
  1056. /* Don't bother refining TSC on unstable systems */
  1057. if (check_tsc_unstable())
  1058. goto out;
  1059. /*
  1060. * Since the work is started early in boot, we may be
  1061. * delayed the first time we expire. So set the workqueue
  1062. * again once we know timers are working.
  1063. */
  1064. if (tsc_start == -1) {
  1065. /*
  1066. * Only set hpet once, to avoid mixing hardware
  1067. * if the hpet becomes enabled later.
  1068. */
  1069. hpet = is_hpet_enabled();
  1070. schedule_delayed_work(&tsc_irqwork, HZ);
  1071. tsc_start = tsc_read_refs(&ref_start, hpet);
  1072. return;
  1073. }
  1074. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  1075. /* hpet or pmtimer available ? */
  1076. if (ref_start == ref_stop)
  1077. goto out;
  1078. /* Check, whether the sampling was disturbed by an SMI */
  1079. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1080. goto out;
  1081. delta = tsc_stop - tsc_start;
  1082. delta *= 1000000LL;
  1083. if (hpet)
  1084. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1085. else
  1086. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1087. /* Make sure we're within 1% */
  1088. if (abs(tsc_khz - freq) > tsc_khz/100)
  1089. goto out;
  1090. tsc_khz = freq;
  1091. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1092. (unsigned long)tsc_khz / 1000,
  1093. (unsigned long)tsc_khz % 1000);
  1094. /* Inform the TSC deadline clockevent devices about the recalibration */
  1095. lapic_update_tsc_freq();
  1096. out:
  1097. if (boot_cpu_has(X86_FEATURE_ART))
  1098. art_related_clocksource = &clocksource_tsc;
  1099. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1100. }
  1101. static int __init init_tsc_clocksource(void)
  1102. {
  1103. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1104. return 0;
  1105. if (tsc_clocksource_reliable)
  1106. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1107. /* lower the rating if we already know its unstable: */
  1108. if (check_tsc_unstable()) {
  1109. clocksource_tsc.rating = 0;
  1110. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1111. }
  1112. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1113. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1114. /*
  1115. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1116. * the refined calibration and directly register it as a clocksource.
  1117. */
  1118. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1119. if (boot_cpu_has(X86_FEATURE_ART))
  1120. art_related_clocksource = &clocksource_tsc;
  1121. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1122. return 0;
  1123. }
  1124. schedule_delayed_work(&tsc_irqwork, 0);
  1125. return 0;
  1126. }
  1127. /*
  1128. * We use device_initcall here, to ensure we run after the hpet
  1129. * is fully initialized, which may occur at fs_initcall time.
  1130. */
  1131. device_initcall(init_tsc_clocksource);
  1132. void __init tsc_init(void)
  1133. {
  1134. u64 lpj;
  1135. int cpu;
  1136. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1137. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1138. return;
  1139. }
  1140. cpu_khz = x86_platform.calibrate_cpu();
  1141. tsc_khz = x86_platform.calibrate_tsc();
  1142. /*
  1143. * Trust non-zero tsc_khz as authorative,
  1144. * and use it to sanity check cpu_khz,
  1145. * which will be off if system timer is off.
  1146. */
  1147. if (tsc_khz == 0)
  1148. tsc_khz = cpu_khz;
  1149. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1150. cpu_khz = tsc_khz;
  1151. if (!tsc_khz) {
  1152. mark_tsc_unstable("could not calculate TSC khz");
  1153. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1154. return;
  1155. }
  1156. pr_info("Detected %lu.%03lu MHz processor\n",
  1157. (unsigned long)cpu_khz / 1000,
  1158. (unsigned long)cpu_khz % 1000);
  1159. /* Sanitize TSC ADJUST before cyc2ns gets initialized */
  1160. tsc_store_and_check_tsc_adjust(true);
  1161. /*
  1162. * Secondary CPUs do not run through tsc_init(), so set up
  1163. * all the scale factors for all CPUs, assuming the same
  1164. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1165. * up if their speed diverges)
  1166. */
  1167. for_each_possible_cpu(cpu) {
  1168. cyc2ns_init(cpu);
  1169. set_cyc2ns_scale(tsc_khz, cpu);
  1170. }
  1171. if (tsc_disabled > 0)
  1172. return;
  1173. /* now allow native_sched_clock() to use rdtsc */
  1174. tsc_disabled = 0;
  1175. static_branch_enable(&__use_tsc);
  1176. if (!no_sched_irq_time)
  1177. enable_sched_clock_irqtime();
  1178. lpj = ((u64)tsc_khz * 1000);
  1179. do_div(lpj, HZ);
  1180. lpj_fine = lpj;
  1181. use_tsc_delay();
  1182. if (unsynchronized_tsc())
  1183. mark_tsc_unstable("TSCs unsynchronized");
  1184. check_system_tsc_reliable();
  1185. detect_art();
  1186. }
  1187. #ifdef CONFIG_SMP
  1188. /*
  1189. * If we have a constant TSC and are using the TSC for the delay loop,
  1190. * we can skip clock calibration if another cpu in the same socket has already
  1191. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1192. * cpus in the socket - this should be a safe assumption.
  1193. */
  1194. unsigned long calibrate_delay_is_known(void)
  1195. {
  1196. int sibling, cpu = smp_processor_id();
  1197. struct cpumask *mask = topology_core_cpumask(cpu);
  1198. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1199. return 0;
  1200. if (!mask)
  1201. return 0;
  1202. sibling = cpumask_any_but(mask, cpu);
  1203. if (sibling < nr_cpu_ids)
  1204. return cpu_data(sibling).loops_per_jiffy;
  1205. return 0;
  1206. }
  1207. #endif