process.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/sched/idle.h>
  10. #include <linux/sched/debug.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/sched/task_stack.h>
  13. #include <linux/init.h>
  14. #include <linux/export.h>
  15. #include <linux/pm.h>
  16. #include <linux/tick.h>
  17. #include <linux/random.h>
  18. #include <linux/user-return-notifier.h>
  19. #include <linux/dmi.h>
  20. #include <linux/utsname.h>
  21. #include <linux/stackprotector.h>
  22. #include <linux/tick.h>
  23. #include <linux/cpuidle.h>
  24. #include <trace/events/power.h>
  25. #include <linux/hw_breakpoint.h>
  26. #include <asm/cpu.h>
  27. #include <asm/apic.h>
  28. #include <asm/syscalls.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/mwait.h>
  31. #include <asm/fpu/internal.h>
  32. #include <asm/debugreg.h>
  33. #include <asm/nmi.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/mce.h>
  36. #include <asm/vm86.h>
  37. #include <asm/switch_to.h>
  38. #include <asm/desc.h>
  39. #include <asm/prctl.h>
  40. /*
  41. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  42. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  43. * so they are allowed to end up in the .data..cacheline_aligned
  44. * section. Since TSS's are completely CPU-local, we want them
  45. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  46. */
  47. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  48. .x86_tss = {
  49. .sp0 = TOP_OF_INIT_STACK,
  50. #ifdef CONFIG_X86_32
  51. .ss0 = __KERNEL_DS,
  52. .ss1 = __KERNEL_CS,
  53. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  54. #endif
  55. },
  56. #ifdef CONFIG_X86_32
  57. /*
  58. * Note that the .io_bitmap member must be extra-big. This is because
  59. * the CPU will access an additional byte beyond the end of the IO
  60. * permission bitmap. The extra byte must be all 1 bits, and must
  61. * be within the limit.
  62. */
  63. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  64. #endif
  65. #ifdef CONFIG_X86_32
  66. .SYSENTER_stack_canary = STACK_END_MAGIC,
  67. #endif
  68. };
  69. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  70. DEFINE_PER_CPU(bool, __tss_limit_invalid);
  71. EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  72. /*
  73. * this gets called so that we can store lazy state into memory and copy the
  74. * current task into the new thread.
  75. */
  76. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  77. {
  78. memcpy(dst, src, arch_task_struct_size);
  79. #ifdef CONFIG_VM86
  80. dst->thread.vm86 = NULL;
  81. #endif
  82. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  83. }
  84. /*
  85. * Free current thread data structures etc..
  86. */
  87. void exit_thread(struct task_struct *tsk)
  88. {
  89. struct thread_struct *t = &tsk->thread;
  90. unsigned long *bp = t->io_bitmap_ptr;
  91. struct fpu *fpu = &t->fpu;
  92. if (bp) {
  93. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  94. t->io_bitmap_ptr = NULL;
  95. clear_thread_flag(TIF_IO_BITMAP);
  96. /*
  97. * Careful, clear this in the TSS too:
  98. */
  99. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  100. t->io_bitmap_max = 0;
  101. put_cpu();
  102. kfree(bp);
  103. }
  104. free_vm86(t);
  105. fpu__drop(fpu);
  106. }
  107. void flush_thread(void)
  108. {
  109. struct task_struct *tsk = current;
  110. flush_ptrace_hw_breakpoint(tsk);
  111. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  112. fpu__clear(&tsk->thread.fpu);
  113. }
  114. void disable_TSC(void)
  115. {
  116. preempt_disable();
  117. if (!test_and_set_thread_flag(TIF_NOTSC))
  118. /*
  119. * Must flip the CPU state synchronously with
  120. * TIF_NOTSC in the current running context.
  121. */
  122. cr4_set_bits(X86_CR4_TSD);
  123. preempt_enable();
  124. }
  125. static void enable_TSC(void)
  126. {
  127. preempt_disable();
  128. if (test_and_clear_thread_flag(TIF_NOTSC))
  129. /*
  130. * Must flip the CPU state synchronously with
  131. * TIF_NOTSC in the current running context.
  132. */
  133. cr4_clear_bits(X86_CR4_TSD);
  134. preempt_enable();
  135. }
  136. int get_tsc_mode(unsigned long adr)
  137. {
  138. unsigned int val;
  139. if (test_thread_flag(TIF_NOTSC))
  140. val = PR_TSC_SIGSEGV;
  141. else
  142. val = PR_TSC_ENABLE;
  143. return put_user(val, (unsigned int __user *)adr);
  144. }
  145. int set_tsc_mode(unsigned int val)
  146. {
  147. if (val == PR_TSC_SIGSEGV)
  148. disable_TSC();
  149. else if (val == PR_TSC_ENABLE)
  150. enable_TSC();
  151. else
  152. return -EINVAL;
  153. return 0;
  154. }
  155. DEFINE_PER_CPU(u64, msr_misc_features_shadow);
  156. static void set_cpuid_faulting(bool on)
  157. {
  158. u64 msrval;
  159. msrval = this_cpu_read(msr_misc_features_shadow);
  160. msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
  161. msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
  162. this_cpu_write(msr_misc_features_shadow, msrval);
  163. wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
  164. }
  165. static void disable_cpuid(void)
  166. {
  167. preempt_disable();
  168. if (!test_and_set_thread_flag(TIF_NOCPUID)) {
  169. /*
  170. * Must flip the CPU state synchronously with
  171. * TIF_NOCPUID in the current running context.
  172. */
  173. set_cpuid_faulting(true);
  174. }
  175. preempt_enable();
  176. }
  177. static void enable_cpuid(void)
  178. {
  179. preempt_disable();
  180. if (test_and_clear_thread_flag(TIF_NOCPUID)) {
  181. /*
  182. * Must flip the CPU state synchronously with
  183. * TIF_NOCPUID in the current running context.
  184. */
  185. set_cpuid_faulting(false);
  186. }
  187. preempt_enable();
  188. }
  189. static int get_cpuid_mode(void)
  190. {
  191. return !test_thread_flag(TIF_NOCPUID);
  192. }
  193. static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
  194. {
  195. if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
  196. return -ENODEV;
  197. if (cpuid_enabled)
  198. enable_cpuid();
  199. else
  200. disable_cpuid();
  201. return 0;
  202. }
  203. /*
  204. * Called immediately after a successful exec.
  205. */
  206. void arch_setup_new_exec(void)
  207. {
  208. /* If cpuid was previously disabled for this task, re-enable it. */
  209. if (test_thread_flag(TIF_NOCPUID))
  210. enable_cpuid();
  211. }
  212. static inline void switch_to_bitmap(struct tss_struct *tss,
  213. struct thread_struct *prev,
  214. struct thread_struct *next,
  215. unsigned long tifp, unsigned long tifn)
  216. {
  217. if (tifn & _TIF_IO_BITMAP) {
  218. /*
  219. * Copy the relevant range of the IO bitmap.
  220. * Normally this is 128 bytes or less:
  221. */
  222. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  223. max(prev->io_bitmap_max, next->io_bitmap_max));
  224. /*
  225. * Make sure that the TSS limit is correct for the CPU
  226. * to notice the IO bitmap.
  227. */
  228. refresh_tss_limit();
  229. } else if (tifp & _TIF_IO_BITMAP) {
  230. /*
  231. * Clear any possible leftover bits:
  232. */
  233. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  234. }
  235. }
  236. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  237. struct tss_struct *tss)
  238. {
  239. struct thread_struct *prev, *next;
  240. unsigned long tifp, tifn;
  241. prev = &prev_p->thread;
  242. next = &next_p->thread;
  243. tifn = READ_ONCE(task_thread_info(next_p)->flags);
  244. tifp = READ_ONCE(task_thread_info(prev_p)->flags);
  245. switch_to_bitmap(tss, prev, next, tifp, tifn);
  246. propagate_user_return_notify(prev_p, next_p);
  247. if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
  248. arch_has_block_step()) {
  249. unsigned long debugctl, msk;
  250. rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  251. debugctl &= ~DEBUGCTLMSR_BTF;
  252. msk = tifn & _TIF_BLOCKSTEP;
  253. debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
  254. wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  255. }
  256. if ((tifp ^ tifn) & _TIF_NOTSC)
  257. cr4_toggle_bits(X86_CR4_TSD);
  258. if ((tifp ^ tifn) & _TIF_NOCPUID)
  259. set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
  260. }
  261. /*
  262. * Idle related variables and functions
  263. */
  264. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  265. EXPORT_SYMBOL(boot_option_idle_override);
  266. static void (*x86_idle)(void);
  267. #ifndef CONFIG_SMP
  268. static inline void play_dead(void)
  269. {
  270. BUG();
  271. }
  272. #endif
  273. void arch_cpu_idle_enter(void)
  274. {
  275. tsc_verify_tsc_adjust(false);
  276. local_touch_nmi();
  277. }
  278. void arch_cpu_idle_dead(void)
  279. {
  280. play_dead();
  281. }
  282. /*
  283. * Called from the generic idle code.
  284. */
  285. void arch_cpu_idle(void)
  286. {
  287. x86_idle();
  288. }
  289. /*
  290. * We use this if we don't have any better idle routine..
  291. */
  292. void __cpuidle default_idle(void)
  293. {
  294. trace_cpu_idle_rcuidle(1, smp_processor_id());
  295. safe_halt();
  296. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  297. }
  298. #ifdef CONFIG_APM_MODULE
  299. EXPORT_SYMBOL(default_idle);
  300. #endif
  301. #ifdef CONFIG_XEN
  302. bool xen_set_default_idle(void)
  303. {
  304. bool ret = !!x86_idle;
  305. x86_idle = default_idle;
  306. return ret;
  307. }
  308. #endif
  309. void stop_this_cpu(void *dummy)
  310. {
  311. local_irq_disable();
  312. /*
  313. * Remove this CPU:
  314. */
  315. set_cpu_online(smp_processor_id(), false);
  316. disable_local_APIC();
  317. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  318. for (;;)
  319. halt();
  320. }
  321. /*
  322. * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
  323. * states (local apic timer and TSC stop).
  324. */
  325. static void amd_e400_idle(void)
  326. {
  327. /*
  328. * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
  329. * gets set after static_cpu_has() places have been converted via
  330. * alternatives.
  331. */
  332. if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  333. default_idle();
  334. return;
  335. }
  336. tick_broadcast_enter();
  337. default_idle();
  338. /*
  339. * The switch back from broadcast mode needs to be called with
  340. * interrupts disabled.
  341. */
  342. local_irq_disable();
  343. tick_broadcast_exit();
  344. local_irq_enable();
  345. }
  346. /*
  347. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  348. * We can't rely on cpuidle installing MWAIT, because it will not load
  349. * on systems that support only C1 -- so the boot default must be MWAIT.
  350. *
  351. * Some AMD machines are the opposite, they depend on using HALT.
  352. *
  353. * So for default C1, which is used during boot until cpuidle loads,
  354. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  355. */
  356. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  357. {
  358. if (c->x86_vendor != X86_VENDOR_INTEL)
  359. return 0;
  360. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  361. return 0;
  362. return 1;
  363. }
  364. /*
  365. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  366. * with interrupts enabled and no flags, which is backwards compatible with the
  367. * original MWAIT implementation.
  368. */
  369. static __cpuidle void mwait_idle(void)
  370. {
  371. if (!current_set_polling_and_test()) {
  372. trace_cpu_idle_rcuidle(1, smp_processor_id());
  373. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  374. mb(); /* quirk */
  375. clflush((void *)&current_thread_info()->flags);
  376. mb(); /* quirk */
  377. }
  378. __monitor((void *)&current_thread_info()->flags, 0, 0);
  379. if (!need_resched())
  380. __sti_mwait(0, 0);
  381. else
  382. local_irq_enable();
  383. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  384. } else {
  385. local_irq_enable();
  386. }
  387. __current_clr_polling();
  388. }
  389. void select_idle_routine(const struct cpuinfo_x86 *c)
  390. {
  391. #ifdef CONFIG_SMP
  392. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  393. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  394. #endif
  395. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  396. return;
  397. if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
  398. pr_info("using AMD E400 aware idle routine\n");
  399. x86_idle = amd_e400_idle;
  400. } else if (prefer_mwait_c1_over_halt(c)) {
  401. pr_info("using mwait in idle threads\n");
  402. x86_idle = mwait_idle;
  403. } else
  404. x86_idle = default_idle;
  405. }
  406. void amd_e400_c1e_apic_setup(void)
  407. {
  408. if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  409. pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
  410. local_irq_disable();
  411. tick_broadcast_force();
  412. local_irq_enable();
  413. }
  414. }
  415. void __init arch_post_acpi_subsys_init(void)
  416. {
  417. u32 lo, hi;
  418. if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
  419. return;
  420. /*
  421. * AMD E400 detection needs to happen after ACPI has been enabled. If
  422. * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
  423. * MSR_K8_INT_PENDING_MSG.
  424. */
  425. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  426. if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
  427. return;
  428. boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
  429. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  430. mark_tsc_unstable("TSC halt in AMD C1E");
  431. pr_info("System has AMD C1E enabled\n");
  432. }
  433. static int __init idle_setup(char *str)
  434. {
  435. if (!str)
  436. return -EINVAL;
  437. if (!strcmp(str, "poll")) {
  438. pr_info("using polling idle threads\n");
  439. boot_option_idle_override = IDLE_POLL;
  440. cpu_idle_poll_ctrl(true);
  441. } else if (!strcmp(str, "halt")) {
  442. /*
  443. * When the boot option of idle=halt is added, halt is
  444. * forced to be used for CPU idle. In such case CPU C2/C3
  445. * won't be used again.
  446. * To continue to load the CPU idle driver, don't touch
  447. * the boot_option_idle_override.
  448. */
  449. x86_idle = default_idle;
  450. boot_option_idle_override = IDLE_HALT;
  451. } else if (!strcmp(str, "nomwait")) {
  452. /*
  453. * If the boot option of "idle=nomwait" is added,
  454. * it means that mwait will be disabled for CPU C2/C3
  455. * states. In such case it won't touch the variable
  456. * of boot_option_idle_override.
  457. */
  458. boot_option_idle_override = IDLE_NOMWAIT;
  459. } else
  460. return -1;
  461. return 0;
  462. }
  463. early_param("idle", idle_setup);
  464. unsigned long arch_align_stack(unsigned long sp)
  465. {
  466. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  467. sp -= get_random_int() % 8192;
  468. return sp & ~0xf;
  469. }
  470. unsigned long arch_randomize_brk(struct mm_struct *mm)
  471. {
  472. return randomize_page(mm->brk, 0x02000000);
  473. }
  474. /*
  475. * Return saved PC of a blocked thread.
  476. * What is this good for? it will be always the scheduler or ret_from_fork.
  477. */
  478. unsigned long thread_saved_pc(struct task_struct *tsk)
  479. {
  480. struct inactive_task_frame *frame =
  481. (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
  482. return READ_ONCE_NOCHECK(frame->ret_addr);
  483. }
  484. /*
  485. * Called from fs/proc with a reference on @p to find the function
  486. * which called into schedule(). This needs to be done carefully
  487. * because the task might wake up and we might look at a stack
  488. * changing under us.
  489. */
  490. unsigned long get_wchan(struct task_struct *p)
  491. {
  492. unsigned long start, bottom, top, sp, fp, ip, ret = 0;
  493. int count = 0;
  494. if (!p || p == current || p->state == TASK_RUNNING)
  495. return 0;
  496. if (!try_get_task_stack(p))
  497. return 0;
  498. start = (unsigned long)task_stack_page(p);
  499. if (!start)
  500. goto out;
  501. /*
  502. * Layout of the stack page:
  503. *
  504. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  505. * PADDING
  506. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  507. * stack
  508. * ----------- bottom = start
  509. *
  510. * The tasks stack pointer points at the location where the
  511. * framepointer is stored. The data on the stack is:
  512. * ... IP FP ... IP FP
  513. *
  514. * We need to read FP and IP, so we need to adjust the upper
  515. * bound by another unsigned long.
  516. */
  517. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  518. top -= 2 * sizeof(unsigned long);
  519. bottom = start;
  520. sp = READ_ONCE(p->thread.sp);
  521. if (sp < bottom || sp > top)
  522. goto out;
  523. fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
  524. do {
  525. if (fp < bottom || fp > top)
  526. goto out;
  527. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  528. if (!in_sched_functions(ip)) {
  529. ret = ip;
  530. goto out;
  531. }
  532. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  533. } while (count++ < 16 && p->state != TASK_RUNNING);
  534. out:
  535. put_task_stack(p);
  536. return ret;
  537. }
  538. long do_arch_prctl_common(struct task_struct *task, int option,
  539. unsigned long cpuid_enabled)
  540. {
  541. switch (option) {
  542. case ARCH_GET_CPUID:
  543. return get_cpuid_mode();
  544. case ARCH_SET_CPUID:
  545. return set_cpuid_mode(task, cpuid_enabled);
  546. }
  547. return -EINVAL;
  548. }