process.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614
  1. /*
  2. * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  3. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  4. * Licensed under the GPL
  5. */
  6. #include <stdlib.h>
  7. #include <unistd.h>
  8. #include <sched.h>
  9. #include <errno.h>
  10. #include <string.h>
  11. #include <sys/mman.h>
  12. #include <sys/wait.h>
  13. #include <asm/unistd.h>
  14. #include <as-layout.h>
  15. #include <init.h>
  16. #include <kern_util.h>
  17. #include <mem.h>
  18. #include <os.h>
  19. #include <ptrace_user.h>
  20. #include <registers.h>
  21. #include <skas.h>
  22. #include <sysdep/stub.h>
  23. #include <linux/threads.h>
  24. int is_skas_winch(int pid, int fd, void *data)
  25. {
  26. return pid == getpgrp();
  27. }
  28. static int ptrace_dump_regs(int pid)
  29. {
  30. unsigned long regs[MAX_REG_NR];
  31. int i;
  32. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  33. return -errno;
  34. printk(UM_KERN_ERR "Stub registers -\n");
  35. for (i = 0; i < ARRAY_SIZE(regs); i++)
  36. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  37. return 0;
  38. }
  39. /*
  40. * Signals that are OK to receive in the stub - we'll just continue it.
  41. * SIGWINCH will happen when UML is inside a detached screen.
  42. */
  43. #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
  44. /* Signals that the stub will finish with - anything else is an error */
  45. #define STUB_DONE_MASK (1 << SIGTRAP)
  46. void wait_stub_done(int pid)
  47. {
  48. int n, status, err;
  49. while (1) {
  50. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  51. if ((n < 0) || !WIFSTOPPED(status))
  52. goto bad_wait;
  53. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  54. break;
  55. err = ptrace(PTRACE_CONT, pid, 0, 0);
  56. if (err) {
  57. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  58. "errno = %d\n", errno);
  59. fatal_sigsegv();
  60. }
  61. }
  62. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  63. return;
  64. bad_wait:
  65. err = ptrace_dump_regs(pid);
  66. if (err)
  67. printk(UM_KERN_ERR "Failed to get registers from stub, "
  68. "errno = %d\n", -err);
  69. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  70. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  71. status);
  72. fatal_sigsegv();
  73. }
  74. extern unsigned long current_stub_stack(void);
  75. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  76. {
  77. int err;
  78. unsigned long fpregs[FP_SIZE];
  79. err = get_fp_registers(pid, fpregs);
  80. if (err < 0) {
  81. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  82. err);
  83. fatal_sigsegv();
  84. }
  85. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  86. if (err) {
  87. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  88. "errno = %d\n", pid, errno);
  89. fatal_sigsegv();
  90. }
  91. wait_stub_done(pid);
  92. /*
  93. * faultinfo is prepared by the stub-segv-handler at start of
  94. * the stub stack page. We just have to copy it.
  95. */
  96. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  97. err = put_fp_registers(pid, fpregs);
  98. if (err < 0) {
  99. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  100. err);
  101. fatal_sigsegv();
  102. }
  103. }
  104. static void handle_segv(int pid, struct uml_pt_regs * regs)
  105. {
  106. get_skas_faultinfo(pid, &regs->faultinfo);
  107. segv(regs->faultinfo, 0, 1, NULL);
  108. }
  109. /*
  110. * To use the same value of using_sysemu as the caller, ask it that value
  111. * (in local_using_sysemu
  112. */
  113. static void handle_trap(int pid, struct uml_pt_regs *regs,
  114. int local_using_sysemu)
  115. {
  116. int err, status;
  117. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  118. fatal_sigsegv();
  119. if (!local_using_sysemu)
  120. {
  121. err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
  122. __NR_getpid);
  123. if (err < 0) {
  124. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  125. "failed, errno = %d\n", errno);
  126. fatal_sigsegv();
  127. }
  128. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  129. if (err < 0) {
  130. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  131. "syscall failed, errno = %d\n", errno);
  132. fatal_sigsegv();
  133. }
  134. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  135. if ((err < 0) || !WIFSTOPPED(status) ||
  136. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  137. err = ptrace_dump_regs(pid);
  138. if (err)
  139. printk(UM_KERN_ERR "Failed to get registers "
  140. "from process, errno = %d\n", -err);
  141. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  142. "end of syscall, errno = %d, status = %d\n",
  143. errno, status);
  144. fatal_sigsegv();
  145. }
  146. }
  147. handle_syscall(regs);
  148. }
  149. extern char __syscall_stub_start[];
  150. static int userspace_tramp(void *stack)
  151. {
  152. void *addr;
  153. int fd;
  154. unsigned long long offset;
  155. ptrace(PTRACE_TRACEME, 0, 0, 0);
  156. signal(SIGTERM, SIG_DFL);
  157. signal(SIGWINCH, SIG_IGN);
  158. /*
  159. * This has a pte, but it can't be mapped in with the usual
  160. * tlb_flush mechanism because this is part of that mechanism
  161. */
  162. fd = phys_mapping(to_phys(__syscall_stub_start), &offset);
  163. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  164. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  165. if (addr == MAP_FAILED) {
  166. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  167. "errno = %d\n", STUB_CODE, errno);
  168. exit(1);
  169. }
  170. if (stack != NULL) {
  171. fd = phys_mapping(to_phys(stack), &offset);
  172. addr = mmap((void *) STUB_DATA,
  173. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  174. MAP_FIXED | MAP_SHARED, fd, offset);
  175. if (addr == MAP_FAILED) {
  176. printk(UM_KERN_ERR "mapping segfault stack "
  177. "at 0x%lx failed, errno = %d\n",
  178. STUB_DATA, errno);
  179. exit(1);
  180. }
  181. }
  182. if (stack != NULL) {
  183. struct sigaction sa;
  184. unsigned long v = STUB_CODE +
  185. (unsigned long) stub_segv_handler -
  186. (unsigned long) __syscall_stub_start;
  187. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  188. sigemptyset(&sa.sa_mask);
  189. sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
  190. sa.sa_sigaction = (void *) v;
  191. sa.sa_restorer = NULL;
  192. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  193. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  194. "handler failed - errno = %d\n", errno);
  195. exit(1);
  196. }
  197. }
  198. kill(os_getpid(), SIGSTOP);
  199. return 0;
  200. }
  201. int userspace_pid[NR_CPUS];
  202. int start_userspace(unsigned long stub_stack)
  203. {
  204. void *stack;
  205. unsigned long sp;
  206. int pid, status, n, flags, err;
  207. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  208. PROT_READ | PROT_WRITE | PROT_EXEC,
  209. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  210. if (stack == MAP_FAILED) {
  211. err = -errno;
  212. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  213. "errno = %d\n", errno);
  214. return err;
  215. }
  216. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  217. flags = CLONE_FILES | SIGCHLD;
  218. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  219. if (pid < 0) {
  220. err = -errno;
  221. printk(UM_KERN_ERR "start_userspace : clone failed, "
  222. "errno = %d\n", errno);
  223. return err;
  224. }
  225. do {
  226. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  227. if (n < 0) {
  228. err = -errno;
  229. printk(UM_KERN_ERR "start_userspace : wait failed, "
  230. "errno = %d\n", errno);
  231. goto out_kill;
  232. }
  233. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
  234. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  235. err = -EINVAL;
  236. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  237. "status = %d\n", status);
  238. goto out_kill;
  239. }
  240. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  241. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  242. err = -errno;
  243. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  244. "failed, errno = %d\n", errno);
  245. goto out_kill;
  246. }
  247. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  248. err = -errno;
  249. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  250. "errno = %d\n", errno);
  251. goto out_kill;
  252. }
  253. return pid;
  254. out_kill:
  255. os_kill_ptraced_process(pid, 1);
  256. return err;
  257. }
  258. void userspace(struct uml_pt_regs *regs)
  259. {
  260. int err, status, op, pid = userspace_pid[0];
  261. /* To prevent races if using_sysemu changes under us.*/
  262. int local_using_sysemu;
  263. siginfo_t si;
  264. /* Handle any immediate reschedules or signals */
  265. interrupt_end();
  266. while (1) {
  267. /*
  268. * This can legitimately fail if the process loads a
  269. * bogus value into a segment register. It will
  270. * segfault and PTRACE_GETREGS will read that value
  271. * out of the process. However, PTRACE_SETREGS will
  272. * fail. In this case, there is nothing to do but
  273. * just kill the process.
  274. */
  275. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  276. fatal_sigsegv();
  277. if (put_fp_registers(pid, regs->fp))
  278. fatal_sigsegv();
  279. /* Now we set local_using_sysemu to be used for one loop */
  280. local_using_sysemu = get_using_sysemu();
  281. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  282. singlestepping(NULL));
  283. if (ptrace(op, pid, 0, 0)) {
  284. printk(UM_KERN_ERR "userspace - ptrace continue "
  285. "failed, op = %d, errno = %d\n", op, errno);
  286. fatal_sigsegv();
  287. }
  288. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  289. if (err < 0) {
  290. printk(UM_KERN_ERR "userspace - wait failed, "
  291. "errno = %d\n", errno);
  292. fatal_sigsegv();
  293. }
  294. regs->is_user = 1;
  295. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  296. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  297. "errno = %d\n", errno);
  298. fatal_sigsegv();
  299. }
  300. if (get_fp_registers(pid, regs->fp)) {
  301. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  302. "errno = %d\n", errno);
  303. fatal_sigsegv();
  304. }
  305. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  306. if (WIFSTOPPED(status)) {
  307. int sig = WSTOPSIG(status);
  308. ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
  309. switch (sig) {
  310. case SIGSEGV:
  311. if (PTRACE_FULL_FAULTINFO) {
  312. get_skas_faultinfo(pid,
  313. &regs->faultinfo);
  314. (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
  315. regs);
  316. }
  317. else handle_segv(pid, regs);
  318. break;
  319. case SIGTRAP + 0x80:
  320. handle_trap(pid, regs, local_using_sysemu);
  321. break;
  322. case SIGTRAP:
  323. relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
  324. break;
  325. case SIGALRM:
  326. break;
  327. case SIGIO:
  328. case SIGILL:
  329. case SIGBUS:
  330. case SIGFPE:
  331. case SIGWINCH:
  332. block_signals();
  333. (*sig_info[sig])(sig, (struct siginfo *)&si, regs);
  334. unblock_signals();
  335. break;
  336. default:
  337. printk(UM_KERN_ERR "userspace - child stopped "
  338. "with signal %d\n", sig);
  339. fatal_sigsegv();
  340. }
  341. pid = userspace_pid[0];
  342. interrupt_end();
  343. /* Avoid -ERESTARTSYS handling in host */
  344. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  345. PT_SYSCALL_NR(regs->gp) = -1;
  346. }
  347. }
  348. }
  349. static unsigned long thread_regs[MAX_REG_NR];
  350. static unsigned long thread_fp_regs[FP_SIZE];
  351. static int __init init_thread_regs(void)
  352. {
  353. get_safe_registers(thread_regs, thread_fp_regs);
  354. /* Set parent's instruction pointer to start of clone-stub */
  355. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  356. (unsigned long) stub_clone_handler -
  357. (unsigned long) __syscall_stub_start;
  358. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  359. sizeof(void *);
  360. #ifdef __SIGNAL_FRAMESIZE
  361. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  362. #endif
  363. return 0;
  364. }
  365. __initcall(init_thread_regs);
  366. int copy_context_skas0(unsigned long new_stack, int pid)
  367. {
  368. int err;
  369. unsigned long current_stack = current_stub_stack();
  370. struct stub_data *data = (struct stub_data *) current_stack;
  371. struct stub_data *child_data = (struct stub_data *) new_stack;
  372. unsigned long long new_offset;
  373. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  374. /*
  375. * prepare offset and fd of child's stack as argument for parent's
  376. * and child's mmap2 calls
  377. */
  378. *data = ((struct stub_data) {
  379. .offset = MMAP_OFFSET(new_offset),
  380. .fd = new_fd
  381. });
  382. err = ptrace_setregs(pid, thread_regs);
  383. if (err < 0) {
  384. err = -errno;
  385. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  386. "failed, pid = %d, errno = %d\n", pid, -err);
  387. return err;
  388. }
  389. err = put_fp_registers(pid, thread_fp_regs);
  390. if (err < 0) {
  391. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  392. "failed, pid = %d, err = %d\n", pid, err);
  393. return err;
  394. }
  395. /* set a well known return code for detection of child write failure */
  396. child_data->err = 12345678;
  397. /*
  398. * Wait, until parent has finished its work: read child's pid from
  399. * parent's stack, and check, if bad result.
  400. */
  401. err = ptrace(PTRACE_CONT, pid, 0, 0);
  402. if (err) {
  403. err = -errno;
  404. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  405. "errno = %d\n", pid, errno);
  406. return err;
  407. }
  408. wait_stub_done(pid);
  409. pid = data->err;
  410. if (pid < 0) {
  411. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  412. "error %d\n", -pid);
  413. return pid;
  414. }
  415. /*
  416. * Wait, until child has finished too: read child's result from
  417. * child's stack and check it.
  418. */
  419. wait_stub_done(pid);
  420. if (child_data->err != STUB_DATA) {
  421. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  422. "error %ld\n", child_data->err);
  423. err = child_data->err;
  424. goto out_kill;
  425. }
  426. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  427. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  428. err = -errno;
  429. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  430. "failed, errno = %d\n", errno);
  431. goto out_kill;
  432. }
  433. return pid;
  434. out_kill:
  435. os_kill_ptraced_process(pid, 1);
  436. return err;
  437. }
  438. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  439. {
  440. (*buf)[0].JB_IP = (unsigned long) handler;
  441. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  442. sizeof(void *);
  443. }
  444. #define INIT_JMP_NEW_THREAD 0
  445. #define INIT_JMP_CALLBACK 1
  446. #define INIT_JMP_HALT 2
  447. #define INIT_JMP_REBOOT 3
  448. void switch_threads(jmp_buf *me, jmp_buf *you)
  449. {
  450. if (UML_SETJMP(me) == 0)
  451. UML_LONGJMP(you, 1);
  452. }
  453. static jmp_buf initial_jmpbuf;
  454. /* XXX Make these percpu */
  455. static void (*cb_proc)(void *arg);
  456. static void *cb_arg;
  457. static jmp_buf *cb_back;
  458. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  459. {
  460. int n;
  461. set_handler(SIGWINCH);
  462. /*
  463. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  464. * and restore signals, with the possible side-effect of
  465. * trying to handle any signals which came when they were
  466. * blocked, which can't be done on this stack.
  467. * Signals must be blocked when jumping back here and restored
  468. * after returning to the jumper.
  469. */
  470. n = setjmp(initial_jmpbuf);
  471. switch (n) {
  472. case INIT_JMP_NEW_THREAD:
  473. (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
  474. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  475. UM_THREAD_SIZE - sizeof(void *);
  476. break;
  477. case INIT_JMP_CALLBACK:
  478. (*cb_proc)(cb_arg);
  479. longjmp(*cb_back, 1);
  480. break;
  481. case INIT_JMP_HALT:
  482. kmalloc_ok = 0;
  483. return 0;
  484. case INIT_JMP_REBOOT:
  485. kmalloc_ok = 0;
  486. return 1;
  487. default:
  488. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  489. "start_idle_thread - %d\n", n);
  490. fatal_sigsegv();
  491. }
  492. longjmp(*switch_buf, 1);
  493. }
  494. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  495. {
  496. jmp_buf here;
  497. cb_proc = proc;
  498. cb_arg = arg;
  499. cb_back = &here;
  500. block_signals();
  501. if (UML_SETJMP(&here) == 0)
  502. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  503. unblock_signals();
  504. cb_proc = NULL;
  505. cb_arg = NULL;
  506. cb_back = NULL;
  507. }
  508. void halt_skas(void)
  509. {
  510. block_signals();
  511. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  512. }
  513. void reboot_skas(void)
  514. {
  515. block_signals();
  516. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  517. }
  518. void __switch_mm(struct mm_id *mm_idp)
  519. {
  520. userspace_pid[0] = mm_idp->u.pid;
  521. }