bpf_jit_comp.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339
  1. /*
  2. * BPF Jit compiler for s390.
  3. *
  4. * Minimum build requirements:
  5. *
  6. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  7. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  8. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  9. * - PACK_STACK
  10. * - 64BIT
  11. *
  12. * Copyright IBM Corp. 2012,2015
  13. *
  14. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16. */
  17. #define KMSG_COMPONENT "bpf_jit"
  18. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19. #include <linux/netdevice.h>
  20. #include <linux/filter.h>
  21. #include <linux/init.h>
  22. #include <linux/bpf.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/dis.h>
  25. #include <asm/set_memory.h>
  26. #include "bpf_jit.h"
  27. int bpf_jit_enable __read_mostly;
  28. struct bpf_jit {
  29. u32 seen; /* Flags to remember seen eBPF instructions */
  30. u32 seen_reg[16]; /* Array to remember which registers are used */
  31. u32 *addrs; /* Array with relative instruction addresses */
  32. u8 *prg_buf; /* Start of program */
  33. int size; /* Size of program and literal pool */
  34. int size_prg; /* Size of program */
  35. int prg; /* Current position in program */
  36. int lit_start; /* Start of literal pool */
  37. int lit; /* Current position in literal pool */
  38. int base_ip; /* Base address for literal pool */
  39. int ret0_ip; /* Address of return 0 */
  40. int exit_ip; /* Address of exit */
  41. int tail_call_start; /* Tail call start offset */
  42. int labels[1]; /* Labels for local jumps */
  43. };
  44. #define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
  45. #define SEEN_SKB 1 /* skb access */
  46. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  47. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  48. #define SEEN_LITERAL 8 /* code uses literals */
  49. #define SEEN_FUNC 16 /* calls C functions */
  50. #define SEEN_TAIL_CALL 32 /* code uses tail calls */
  51. #define SEEN_SKB_CHANGE 64 /* code changes skb data */
  52. #define SEEN_REG_AX 128 /* code uses constant blinding */
  53. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  54. /*
  55. * s390 registers
  56. */
  57. #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
  58. #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
  59. #define REG_SKB_DATA (MAX_BPF_JIT_REG + 2) /* SKB data register */
  60. #define REG_L (MAX_BPF_JIT_REG + 3) /* Literal pool register */
  61. #define REG_15 (MAX_BPF_JIT_REG + 4) /* Register 15 */
  62. #define REG_0 REG_W0 /* Register 0 */
  63. #define REG_1 REG_W1 /* Register 1 */
  64. #define REG_2 BPF_REG_1 /* Register 2 */
  65. #define REG_14 BPF_REG_0 /* Register 14 */
  66. /*
  67. * Mapping of BPF registers to s390 registers
  68. */
  69. static const int reg2hex[] = {
  70. /* Return code */
  71. [BPF_REG_0] = 14,
  72. /* Function parameters */
  73. [BPF_REG_1] = 2,
  74. [BPF_REG_2] = 3,
  75. [BPF_REG_3] = 4,
  76. [BPF_REG_4] = 5,
  77. [BPF_REG_5] = 6,
  78. /* Call saved registers */
  79. [BPF_REG_6] = 7,
  80. [BPF_REG_7] = 8,
  81. [BPF_REG_8] = 9,
  82. [BPF_REG_9] = 10,
  83. /* BPF stack pointer */
  84. [BPF_REG_FP] = 13,
  85. /* Register for blinding (shared with REG_SKB_DATA) */
  86. [BPF_REG_AX] = 12,
  87. /* SKB data pointer */
  88. [REG_SKB_DATA] = 12,
  89. /* Work registers for s390x backend */
  90. [REG_W0] = 0,
  91. [REG_W1] = 1,
  92. [REG_L] = 11,
  93. [REG_15] = 15,
  94. };
  95. static inline u32 reg(u32 dst_reg, u32 src_reg)
  96. {
  97. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  98. }
  99. static inline u32 reg_high(u32 reg)
  100. {
  101. return reg2hex[reg] << 4;
  102. }
  103. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  104. {
  105. u32 r1 = reg2hex[b1];
  106. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  107. jit->seen_reg[r1] = 1;
  108. }
  109. #define REG_SET_SEEN(b1) \
  110. ({ \
  111. reg_set_seen(jit, b1); \
  112. })
  113. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  114. /*
  115. * EMIT macros for code generation
  116. */
  117. #define _EMIT2(op) \
  118. ({ \
  119. if (jit->prg_buf) \
  120. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  121. jit->prg += 2; \
  122. })
  123. #define EMIT2(op, b1, b2) \
  124. ({ \
  125. _EMIT2(op | reg(b1, b2)); \
  126. REG_SET_SEEN(b1); \
  127. REG_SET_SEEN(b2); \
  128. })
  129. #define _EMIT4(op) \
  130. ({ \
  131. if (jit->prg_buf) \
  132. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  133. jit->prg += 4; \
  134. })
  135. #define EMIT4(op, b1, b2) \
  136. ({ \
  137. _EMIT4(op | reg(b1, b2)); \
  138. REG_SET_SEEN(b1); \
  139. REG_SET_SEEN(b2); \
  140. })
  141. #define EMIT4_RRF(op, b1, b2, b3) \
  142. ({ \
  143. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  144. REG_SET_SEEN(b1); \
  145. REG_SET_SEEN(b2); \
  146. REG_SET_SEEN(b3); \
  147. })
  148. #define _EMIT4_DISP(op, disp) \
  149. ({ \
  150. unsigned int __disp = (disp) & 0xfff; \
  151. _EMIT4(op | __disp); \
  152. })
  153. #define EMIT4_DISP(op, b1, b2, disp) \
  154. ({ \
  155. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  156. reg_high(b2) << 8, disp); \
  157. REG_SET_SEEN(b1); \
  158. REG_SET_SEEN(b2); \
  159. })
  160. #define EMIT4_IMM(op, b1, imm) \
  161. ({ \
  162. unsigned int __imm = (imm) & 0xffff; \
  163. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  164. REG_SET_SEEN(b1); \
  165. })
  166. #define EMIT4_PCREL(op, pcrel) \
  167. ({ \
  168. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  169. _EMIT4(op | __pcrel); \
  170. })
  171. #define _EMIT6(op1, op2) \
  172. ({ \
  173. if (jit->prg_buf) { \
  174. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  175. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  176. } \
  177. jit->prg += 6; \
  178. })
  179. #define _EMIT6_DISP(op1, op2, disp) \
  180. ({ \
  181. unsigned int __disp = (disp) & 0xfff; \
  182. _EMIT6(op1 | __disp, op2); \
  183. })
  184. #define _EMIT6_DISP_LH(op1, op2, disp) \
  185. ({ \
  186. u32 _disp = (u32) disp; \
  187. unsigned int __disp_h = _disp & 0xff000; \
  188. unsigned int __disp_l = _disp & 0x00fff; \
  189. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  190. })
  191. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  192. ({ \
  193. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  194. reg_high(b3) << 8, op2, disp); \
  195. REG_SET_SEEN(b1); \
  196. REG_SET_SEEN(b2); \
  197. REG_SET_SEEN(b3); \
  198. })
  199. #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
  200. ({ \
  201. int rel = (jit->labels[label] - jit->prg) >> 1; \
  202. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
  203. op2 | mask << 12); \
  204. REG_SET_SEEN(b1); \
  205. REG_SET_SEEN(b2); \
  206. })
  207. #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
  208. ({ \
  209. int rel = (jit->labels[label] - jit->prg) >> 1; \
  210. _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
  211. (rel & 0xffff), op2 | (imm & 0xff) << 8); \
  212. REG_SET_SEEN(b1); \
  213. BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
  214. })
  215. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  216. ({ \
  217. /* Branch instruction needs 6 bytes */ \
  218. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  219. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
  220. REG_SET_SEEN(b1); \
  221. REG_SET_SEEN(b2); \
  222. })
  223. #define _EMIT6_IMM(op, imm) \
  224. ({ \
  225. unsigned int __imm = (imm); \
  226. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  227. })
  228. #define EMIT6_IMM(op, b1, imm) \
  229. ({ \
  230. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  231. REG_SET_SEEN(b1); \
  232. })
  233. #define EMIT_CONST_U32(val) \
  234. ({ \
  235. unsigned int ret; \
  236. ret = jit->lit - jit->base_ip; \
  237. jit->seen |= SEEN_LITERAL; \
  238. if (jit->prg_buf) \
  239. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  240. jit->lit += 4; \
  241. ret; \
  242. })
  243. #define EMIT_CONST_U64(val) \
  244. ({ \
  245. unsigned int ret; \
  246. ret = jit->lit - jit->base_ip; \
  247. jit->seen |= SEEN_LITERAL; \
  248. if (jit->prg_buf) \
  249. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  250. jit->lit += 8; \
  251. ret; \
  252. })
  253. #define EMIT_ZERO(b1) \
  254. ({ \
  255. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  256. EMIT4(0xb9160000, b1, b1); \
  257. REG_SET_SEEN(b1); \
  258. })
  259. /*
  260. * Fill whole space with illegal instructions
  261. */
  262. static void jit_fill_hole(void *area, unsigned int size)
  263. {
  264. memset(area, 0, size);
  265. }
  266. /*
  267. * Save registers from "rs" (register start) to "re" (register end) on stack
  268. */
  269. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  270. {
  271. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  272. if (rs == re)
  273. /* stg %rs,off(%r15) */
  274. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  275. else
  276. /* stmg %rs,%re,off(%r15) */
  277. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  278. }
  279. /*
  280. * Restore registers from "rs" (register start) to "re" (register end) on stack
  281. */
  282. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
  283. {
  284. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  285. if (jit->seen & SEEN_STACK)
  286. off += STK_OFF;
  287. if (rs == re)
  288. /* lg %rs,off(%r15) */
  289. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  290. else
  291. /* lmg %rs,%re,off(%r15) */
  292. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  293. }
  294. /*
  295. * Return first seen register (from start)
  296. */
  297. static int get_start(struct bpf_jit *jit, int start)
  298. {
  299. int i;
  300. for (i = start; i <= 15; i++) {
  301. if (jit->seen_reg[i])
  302. return i;
  303. }
  304. return 0;
  305. }
  306. /*
  307. * Return last seen register (from start) (gap >= 2)
  308. */
  309. static int get_end(struct bpf_jit *jit, int start)
  310. {
  311. int i;
  312. for (i = start; i < 15; i++) {
  313. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  314. return i - 1;
  315. }
  316. return jit->seen_reg[15] ? 15 : 14;
  317. }
  318. #define REGS_SAVE 1
  319. #define REGS_RESTORE 0
  320. /*
  321. * Save and restore clobbered registers (6-15) on stack.
  322. * We save/restore registers in chunks with gap >= 2 registers.
  323. */
  324. static void save_restore_regs(struct bpf_jit *jit, int op)
  325. {
  326. int re = 6, rs;
  327. do {
  328. rs = get_start(jit, re);
  329. if (!rs)
  330. break;
  331. re = get_end(jit, rs + 1);
  332. if (op == REGS_SAVE)
  333. save_regs(jit, rs, re);
  334. else
  335. restore_regs(jit, rs, re);
  336. re++;
  337. } while (re <= 15);
  338. }
  339. /*
  340. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  341. * we store the SKB header length on the stack and the SKB data
  342. * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
  343. */
  344. static void emit_load_skb_data_hlen(struct bpf_jit *jit)
  345. {
  346. /* Header length: llgf %w1,<len>(%b1) */
  347. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  348. offsetof(struct sk_buff, len));
  349. /* s %w1,<data_len>(%b1) */
  350. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  351. offsetof(struct sk_buff, data_len));
  352. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  353. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
  354. if (!(jit->seen & SEEN_REG_AX))
  355. /* lg %skb_data,data_off(%b1) */
  356. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  357. BPF_REG_1, offsetof(struct sk_buff, data));
  358. }
  359. /*
  360. * Emit function prologue
  361. *
  362. * Save registers and create stack frame if necessary.
  363. * See stack frame layout desription in "bpf_jit.h"!
  364. */
  365. static void bpf_jit_prologue(struct bpf_jit *jit)
  366. {
  367. if (jit->seen & SEEN_TAIL_CALL) {
  368. /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
  369. _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
  370. } else {
  371. /* j tail_call_start: NOP if no tail calls are used */
  372. EMIT4_PCREL(0xa7f40000, 6);
  373. _EMIT2(0);
  374. }
  375. /* Tail calls have to skip above initialization */
  376. jit->tail_call_start = jit->prg;
  377. /* Save registers */
  378. save_restore_regs(jit, REGS_SAVE);
  379. /* Setup literal pool */
  380. if (jit->seen & SEEN_LITERAL) {
  381. /* basr %r13,0 */
  382. EMIT2(0x0d00, REG_L, REG_0);
  383. jit->base_ip = jit->prg;
  384. }
  385. /* Setup stack and backchain */
  386. if (jit->seen & SEEN_STACK) {
  387. if (jit->seen & SEEN_FUNC)
  388. /* lgr %w1,%r15 (backchain) */
  389. EMIT4(0xb9040000, REG_W1, REG_15);
  390. /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
  391. EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
  392. /* aghi %r15,-STK_OFF */
  393. EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
  394. if (jit->seen & SEEN_FUNC)
  395. /* stg %w1,152(%r15) (backchain) */
  396. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
  397. REG_15, 152);
  398. }
  399. if (jit->seen & SEEN_SKB)
  400. emit_load_skb_data_hlen(jit);
  401. if (jit->seen & SEEN_SKB_CHANGE)
  402. /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
  403. EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
  404. STK_OFF_SKBP);
  405. }
  406. /*
  407. * Function epilogue
  408. */
  409. static void bpf_jit_epilogue(struct bpf_jit *jit)
  410. {
  411. /* Return 0 */
  412. if (jit->seen & SEEN_RET0) {
  413. jit->ret0_ip = jit->prg;
  414. /* lghi %b0,0 */
  415. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  416. }
  417. jit->exit_ip = jit->prg;
  418. /* Load exit code: lgr %r2,%b0 */
  419. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  420. /* Restore registers */
  421. save_restore_regs(jit, REGS_RESTORE);
  422. /* br %r14 */
  423. _EMIT2(0x07fe);
  424. }
  425. /*
  426. * Compile one eBPF instruction into s390x code
  427. *
  428. * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
  429. * stack space for the large switch statement.
  430. */
  431. static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  432. {
  433. struct bpf_insn *insn = &fp->insnsi[i];
  434. int jmp_off, last, insn_count = 1;
  435. unsigned int func_addr, mask;
  436. u32 dst_reg = insn->dst_reg;
  437. u32 src_reg = insn->src_reg;
  438. u32 *addrs = jit->addrs;
  439. s32 imm = insn->imm;
  440. s16 off = insn->off;
  441. if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
  442. jit->seen |= SEEN_REG_AX;
  443. switch (insn->code) {
  444. /*
  445. * BPF_MOV
  446. */
  447. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  448. /* llgfr %dst,%src */
  449. EMIT4(0xb9160000, dst_reg, src_reg);
  450. break;
  451. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  452. /* lgr %dst,%src */
  453. EMIT4(0xb9040000, dst_reg, src_reg);
  454. break;
  455. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  456. /* llilf %dst,imm */
  457. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  458. break;
  459. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  460. /* lgfi %dst,imm */
  461. EMIT6_IMM(0xc0010000, dst_reg, imm);
  462. break;
  463. /*
  464. * BPF_LD 64
  465. */
  466. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  467. {
  468. /* 16 byte instruction that uses two 'struct bpf_insn' */
  469. u64 imm64;
  470. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  471. /* lg %dst,<d(imm)>(%l) */
  472. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  473. EMIT_CONST_U64(imm64));
  474. insn_count = 2;
  475. break;
  476. }
  477. /*
  478. * BPF_ADD
  479. */
  480. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  481. /* ar %dst,%src */
  482. EMIT2(0x1a00, dst_reg, src_reg);
  483. EMIT_ZERO(dst_reg);
  484. break;
  485. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  486. /* agr %dst,%src */
  487. EMIT4(0xb9080000, dst_reg, src_reg);
  488. break;
  489. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  490. if (!imm)
  491. break;
  492. /* alfi %dst,imm */
  493. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  494. EMIT_ZERO(dst_reg);
  495. break;
  496. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  497. if (!imm)
  498. break;
  499. /* agfi %dst,imm */
  500. EMIT6_IMM(0xc2080000, dst_reg, imm);
  501. break;
  502. /*
  503. * BPF_SUB
  504. */
  505. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  506. /* sr %dst,%src */
  507. EMIT2(0x1b00, dst_reg, src_reg);
  508. EMIT_ZERO(dst_reg);
  509. break;
  510. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  511. /* sgr %dst,%src */
  512. EMIT4(0xb9090000, dst_reg, src_reg);
  513. break;
  514. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  515. if (!imm)
  516. break;
  517. /* alfi %dst,-imm */
  518. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  519. EMIT_ZERO(dst_reg);
  520. break;
  521. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  522. if (!imm)
  523. break;
  524. /* agfi %dst,-imm */
  525. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  526. break;
  527. /*
  528. * BPF_MUL
  529. */
  530. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  531. /* msr %dst,%src */
  532. EMIT4(0xb2520000, dst_reg, src_reg);
  533. EMIT_ZERO(dst_reg);
  534. break;
  535. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  536. /* msgr %dst,%src */
  537. EMIT4(0xb90c0000, dst_reg, src_reg);
  538. break;
  539. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  540. if (imm == 1)
  541. break;
  542. /* msfi %r5,imm */
  543. EMIT6_IMM(0xc2010000, dst_reg, imm);
  544. EMIT_ZERO(dst_reg);
  545. break;
  546. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  547. if (imm == 1)
  548. break;
  549. /* msgfi %dst,imm */
  550. EMIT6_IMM(0xc2000000, dst_reg, imm);
  551. break;
  552. /*
  553. * BPF_DIV / BPF_MOD
  554. */
  555. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  556. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  557. {
  558. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  559. jit->seen |= SEEN_RET0;
  560. /* ltr %src,%src (if src == 0 goto fail) */
  561. EMIT2(0x1200, src_reg, src_reg);
  562. /* jz <ret0> */
  563. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  564. /* lhi %w0,0 */
  565. EMIT4_IMM(0xa7080000, REG_W0, 0);
  566. /* lr %w1,%dst */
  567. EMIT2(0x1800, REG_W1, dst_reg);
  568. /* dlr %w0,%src */
  569. EMIT4(0xb9970000, REG_W0, src_reg);
  570. /* llgfr %dst,%rc */
  571. EMIT4(0xb9160000, dst_reg, rc_reg);
  572. break;
  573. }
  574. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
  575. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
  576. {
  577. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  578. jit->seen |= SEEN_RET0;
  579. /* ltgr %src,%src (if src == 0 goto fail) */
  580. EMIT4(0xb9020000, src_reg, src_reg);
  581. /* jz <ret0> */
  582. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  583. /* lghi %w0,0 */
  584. EMIT4_IMM(0xa7090000, REG_W0, 0);
  585. /* lgr %w1,%dst */
  586. EMIT4(0xb9040000, REG_W1, dst_reg);
  587. /* dlgr %w0,%dst */
  588. EMIT4(0xb9870000, REG_W0, src_reg);
  589. /* lgr %dst,%rc */
  590. EMIT4(0xb9040000, dst_reg, rc_reg);
  591. break;
  592. }
  593. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  594. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  595. {
  596. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  597. if (imm == 1) {
  598. if (BPF_OP(insn->code) == BPF_MOD)
  599. /* lhgi %dst,0 */
  600. EMIT4_IMM(0xa7090000, dst_reg, 0);
  601. break;
  602. }
  603. /* lhi %w0,0 */
  604. EMIT4_IMM(0xa7080000, REG_W0, 0);
  605. /* lr %w1,%dst */
  606. EMIT2(0x1800, REG_W1, dst_reg);
  607. /* dl %w0,<d(imm)>(%l) */
  608. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  609. EMIT_CONST_U32(imm));
  610. /* llgfr %dst,%rc */
  611. EMIT4(0xb9160000, dst_reg, rc_reg);
  612. break;
  613. }
  614. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
  615. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
  616. {
  617. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  618. if (imm == 1) {
  619. if (BPF_OP(insn->code) == BPF_MOD)
  620. /* lhgi %dst,0 */
  621. EMIT4_IMM(0xa7090000, dst_reg, 0);
  622. break;
  623. }
  624. /* lghi %w0,0 */
  625. EMIT4_IMM(0xa7090000, REG_W0, 0);
  626. /* lgr %w1,%dst */
  627. EMIT4(0xb9040000, REG_W1, dst_reg);
  628. /* dlg %w0,<d(imm)>(%l) */
  629. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  630. EMIT_CONST_U64(imm));
  631. /* lgr %dst,%rc */
  632. EMIT4(0xb9040000, dst_reg, rc_reg);
  633. break;
  634. }
  635. /*
  636. * BPF_AND
  637. */
  638. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  639. /* nr %dst,%src */
  640. EMIT2(0x1400, dst_reg, src_reg);
  641. EMIT_ZERO(dst_reg);
  642. break;
  643. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  644. /* ngr %dst,%src */
  645. EMIT4(0xb9800000, dst_reg, src_reg);
  646. break;
  647. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  648. /* nilf %dst,imm */
  649. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  650. EMIT_ZERO(dst_reg);
  651. break;
  652. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  653. /* ng %dst,<d(imm)>(%l) */
  654. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  655. EMIT_CONST_U64(imm));
  656. break;
  657. /*
  658. * BPF_OR
  659. */
  660. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  661. /* or %dst,%src */
  662. EMIT2(0x1600, dst_reg, src_reg);
  663. EMIT_ZERO(dst_reg);
  664. break;
  665. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  666. /* ogr %dst,%src */
  667. EMIT4(0xb9810000, dst_reg, src_reg);
  668. break;
  669. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  670. /* oilf %dst,imm */
  671. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  672. EMIT_ZERO(dst_reg);
  673. break;
  674. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  675. /* og %dst,<d(imm)>(%l) */
  676. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  677. EMIT_CONST_U64(imm));
  678. break;
  679. /*
  680. * BPF_XOR
  681. */
  682. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  683. /* xr %dst,%src */
  684. EMIT2(0x1700, dst_reg, src_reg);
  685. EMIT_ZERO(dst_reg);
  686. break;
  687. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  688. /* xgr %dst,%src */
  689. EMIT4(0xb9820000, dst_reg, src_reg);
  690. break;
  691. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  692. if (!imm)
  693. break;
  694. /* xilf %dst,imm */
  695. EMIT6_IMM(0xc0070000, dst_reg, imm);
  696. EMIT_ZERO(dst_reg);
  697. break;
  698. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  699. /* xg %dst,<d(imm)>(%l) */
  700. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  701. EMIT_CONST_U64(imm));
  702. break;
  703. /*
  704. * BPF_LSH
  705. */
  706. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  707. /* sll %dst,0(%src) */
  708. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  709. EMIT_ZERO(dst_reg);
  710. break;
  711. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  712. /* sllg %dst,%dst,0(%src) */
  713. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  714. break;
  715. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  716. if (imm == 0)
  717. break;
  718. /* sll %dst,imm(%r0) */
  719. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  720. EMIT_ZERO(dst_reg);
  721. break;
  722. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  723. if (imm == 0)
  724. break;
  725. /* sllg %dst,%dst,imm(%r0) */
  726. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  727. break;
  728. /*
  729. * BPF_RSH
  730. */
  731. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  732. /* srl %dst,0(%src) */
  733. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  734. EMIT_ZERO(dst_reg);
  735. break;
  736. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  737. /* srlg %dst,%dst,0(%src) */
  738. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  739. break;
  740. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  741. if (imm == 0)
  742. break;
  743. /* srl %dst,imm(%r0) */
  744. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  745. EMIT_ZERO(dst_reg);
  746. break;
  747. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  748. if (imm == 0)
  749. break;
  750. /* srlg %dst,%dst,imm(%r0) */
  751. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  752. break;
  753. /*
  754. * BPF_ARSH
  755. */
  756. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  757. /* srag %dst,%dst,0(%src) */
  758. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  759. break;
  760. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  761. if (imm == 0)
  762. break;
  763. /* srag %dst,%dst,imm(%r0) */
  764. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  765. break;
  766. /*
  767. * BPF_NEG
  768. */
  769. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  770. /* lcr %dst,%dst */
  771. EMIT2(0x1300, dst_reg, dst_reg);
  772. EMIT_ZERO(dst_reg);
  773. break;
  774. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  775. /* lcgr %dst,%dst */
  776. EMIT4(0xb9130000, dst_reg, dst_reg);
  777. break;
  778. /*
  779. * BPF_FROM_BE/LE
  780. */
  781. case BPF_ALU | BPF_END | BPF_FROM_BE:
  782. /* s390 is big endian, therefore only clear high order bytes */
  783. switch (imm) {
  784. case 16: /* dst = (u16) cpu_to_be16(dst) */
  785. /* llghr %dst,%dst */
  786. EMIT4(0xb9850000, dst_reg, dst_reg);
  787. break;
  788. case 32: /* dst = (u32) cpu_to_be32(dst) */
  789. /* llgfr %dst,%dst */
  790. EMIT4(0xb9160000, dst_reg, dst_reg);
  791. break;
  792. case 64: /* dst = (u64) cpu_to_be64(dst) */
  793. break;
  794. }
  795. break;
  796. case BPF_ALU | BPF_END | BPF_FROM_LE:
  797. switch (imm) {
  798. case 16: /* dst = (u16) cpu_to_le16(dst) */
  799. /* lrvr %dst,%dst */
  800. EMIT4(0xb91f0000, dst_reg, dst_reg);
  801. /* srl %dst,16(%r0) */
  802. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  803. /* llghr %dst,%dst */
  804. EMIT4(0xb9850000, dst_reg, dst_reg);
  805. break;
  806. case 32: /* dst = (u32) cpu_to_le32(dst) */
  807. /* lrvr %dst,%dst */
  808. EMIT4(0xb91f0000, dst_reg, dst_reg);
  809. /* llgfr %dst,%dst */
  810. EMIT4(0xb9160000, dst_reg, dst_reg);
  811. break;
  812. case 64: /* dst = (u64) cpu_to_le64(dst) */
  813. /* lrvgr %dst,%dst */
  814. EMIT4(0xb90f0000, dst_reg, dst_reg);
  815. break;
  816. }
  817. break;
  818. /*
  819. * BPF_ST(X)
  820. */
  821. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  822. /* stcy %src,off(%dst) */
  823. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  824. jit->seen |= SEEN_MEM;
  825. break;
  826. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  827. /* sthy %src,off(%dst) */
  828. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  829. jit->seen |= SEEN_MEM;
  830. break;
  831. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  832. /* sty %src,off(%dst) */
  833. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  834. jit->seen |= SEEN_MEM;
  835. break;
  836. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  837. /* stg %src,off(%dst) */
  838. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  839. jit->seen |= SEEN_MEM;
  840. break;
  841. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  842. /* lhi %w0,imm */
  843. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  844. /* stcy %w0,off(dst) */
  845. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  846. jit->seen |= SEEN_MEM;
  847. break;
  848. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  849. /* lhi %w0,imm */
  850. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  851. /* sthy %w0,off(dst) */
  852. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  853. jit->seen |= SEEN_MEM;
  854. break;
  855. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  856. /* llilf %w0,imm */
  857. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  858. /* sty %w0,off(%dst) */
  859. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  860. jit->seen |= SEEN_MEM;
  861. break;
  862. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  863. /* lgfi %w0,imm */
  864. EMIT6_IMM(0xc0010000, REG_W0, imm);
  865. /* stg %w0,off(%dst) */
  866. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  867. jit->seen |= SEEN_MEM;
  868. break;
  869. /*
  870. * BPF_STX XADD (atomic_add)
  871. */
  872. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  873. /* laal %w0,%src,off(%dst) */
  874. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  875. dst_reg, off);
  876. jit->seen |= SEEN_MEM;
  877. break;
  878. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  879. /* laalg %w0,%src,off(%dst) */
  880. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  881. dst_reg, off);
  882. jit->seen |= SEEN_MEM;
  883. break;
  884. /*
  885. * BPF_LDX
  886. */
  887. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  888. /* llgc %dst,0(off,%src) */
  889. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  890. jit->seen |= SEEN_MEM;
  891. break;
  892. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  893. /* llgh %dst,0(off,%src) */
  894. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  895. jit->seen |= SEEN_MEM;
  896. break;
  897. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  898. /* llgf %dst,off(%src) */
  899. jit->seen |= SEEN_MEM;
  900. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  901. break;
  902. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  903. /* lg %dst,0(off,%src) */
  904. jit->seen |= SEEN_MEM;
  905. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  906. break;
  907. /*
  908. * BPF_JMP / CALL
  909. */
  910. case BPF_JMP | BPF_CALL:
  911. {
  912. /*
  913. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  914. */
  915. const u64 func = (u64)__bpf_call_base + imm;
  916. REG_SET_SEEN(BPF_REG_5);
  917. jit->seen |= SEEN_FUNC;
  918. /* lg %w1,<d(imm)>(%l) */
  919. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  920. EMIT_CONST_U64(func));
  921. /* basr %r14,%w1 */
  922. EMIT2(0x0d00, REG_14, REG_W1);
  923. /* lgr %b0,%r2: load return value into %b0 */
  924. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  925. if (bpf_helper_changes_pkt_data((void *)func)) {
  926. jit->seen |= SEEN_SKB_CHANGE;
  927. /* lg %b1,ST_OFF_SKBP(%r15) */
  928. EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
  929. REG_15, STK_OFF_SKBP);
  930. emit_load_skb_data_hlen(jit);
  931. }
  932. break;
  933. }
  934. case BPF_JMP | BPF_CALL | BPF_X:
  935. /*
  936. * Implicit input:
  937. * B1: pointer to ctx
  938. * B2: pointer to bpf_array
  939. * B3: index in bpf_array
  940. */
  941. jit->seen |= SEEN_TAIL_CALL;
  942. /*
  943. * if (index >= array->map.max_entries)
  944. * goto out;
  945. */
  946. /* llgf %w1,map.max_entries(%b2) */
  947. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
  948. offsetof(struct bpf_array, map.max_entries));
  949. /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
  950. EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
  951. REG_W1, 0, 0xa);
  952. /*
  953. * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
  954. * goto out;
  955. */
  956. if (jit->seen & SEEN_STACK)
  957. off = STK_OFF_TCCNT + STK_OFF;
  958. else
  959. off = STK_OFF_TCCNT;
  960. /* lhi %w0,1 */
  961. EMIT4_IMM(0xa7080000, REG_W0, 1);
  962. /* laal %w1,%w0,off(%r15) */
  963. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
  964. /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
  965. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
  966. MAX_TAIL_CALL_CNT, 0, 0x2);
  967. /*
  968. * prog = array->ptrs[index];
  969. * if (prog == NULL)
  970. * goto out;
  971. */
  972. /* sllg %r1,%b3,3: %r1 = index * 8 */
  973. EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
  974. /* lg %r1,prog(%b2,%r1) */
  975. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
  976. REG_1, offsetof(struct bpf_array, ptrs));
  977. /* clgij %r1,0,0x8,label0 */
  978. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
  979. /*
  980. * Restore registers before calling function
  981. */
  982. save_restore_regs(jit, REGS_RESTORE);
  983. /*
  984. * goto *(prog->bpf_func + tail_call_start);
  985. */
  986. /* lg %r1,bpf_func(%r1) */
  987. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
  988. offsetof(struct bpf_prog, bpf_func));
  989. /* bc 0xf,tail_call_start(%r1) */
  990. _EMIT4(0x47f01000 + jit->tail_call_start);
  991. /* out: */
  992. jit->labels[0] = jit->prg;
  993. break;
  994. case BPF_JMP | BPF_EXIT: /* return b0 */
  995. last = (i == fp->len - 1) ? 1 : 0;
  996. if (last && !(jit->seen & SEEN_RET0))
  997. break;
  998. /* j <exit> */
  999. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  1000. break;
  1001. /*
  1002. * Branch relative (number of skipped instructions) to offset on
  1003. * condition.
  1004. *
  1005. * Condition code to mask mapping:
  1006. *
  1007. * CC | Description | Mask
  1008. * ------------------------------
  1009. * 0 | Operands equal | 8
  1010. * 1 | First operand low | 4
  1011. * 2 | First operand high | 2
  1012. * 3 | Unused | 1
  1013. *
  1014. * For s390x relative branches: ip = ip + off_bytes
  1015. * For BPF relative branches: insn = insn + off_insns + 1
  1016. *
  1017. * For example for s390x with offset 0 we jump to the branch
  1018. * instruction itself (loop) and for BPF with offset 0 we
  1019. * branch to the instruction behind the branch.
  1020. */
  1021. case BPF_JMP | BPF_JA: /* if (true) */
  1022. mask = 0xf000; /* j */
  1023. goto branch_oc;
  1024. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  1025. mask = 0x2000; /* jh */
  1026. goto branch_ks;
  1027. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  1028. mask = 0xa000; /* jhe */
  1029. goto branch_ks;
  1030. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  1031. mask = 0x2000; /* jh */
  1032. goto branch_ku;
  1033. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  1034. mask = 0xa000; /* jhe */
  1035. goto branch_ku;
  1036. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  1037. mask = 0x7000; /* jne */
  1038. goto branch_ku;
  1039. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  1040. mask = 0x8000; /* je */
  1041. goto branch_ku;
  1042. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  1043. mask = 0x7000; /* jnz */
  1044. /* lgfi %w1,imm (load sign extend imm) */
  1045. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1046. /* ngr %w1,%dst */
  1047. EMIT4(0xb9800000, REG_W1, dst_reg);
  1048. goto branch_oc;
  1049. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  1050. mask = 0x2000; /* jh */
  1051. goto branch_xs;
  1052. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  1053. mask = 0xa000; /* jhe */
  1054. goto branch_xs;
  1055. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  1056. mask = 0x2000; /* jh */
  1057. goto branch_xu;
  1058. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  1059. mask = 0xa000; /* jhe */
  1060. goto branch_xu;
  1061. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  1062. mask = 0x7000; /* jne */
  1063. goto branch_xu;
  1064. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  1065. mask = 0x8000; /* je */
  1066. goto branch_xu;
  1067. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  1068. mask = 0x7000; /* jnz */
  1069. /* ngrk %w1,%dst,%src */
  1070. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  1071. goto branch_oc;
  1072. branch_ks:
  1073. /* lgfi %w1,imm (load sign extend imm) */
  1074. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1075. /* cgrj %dst,%w1,mask,off */
  1076. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  1077. break;
  1078. branch_ku:
  1079. /* lgfi %w1,imm (load sign extend imm) */
  1080. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1081. /* clgrj %dst,%w1,mask,off */
  1082. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  1083. break;
  1084. branch_xs:
  1085. /* cgrj %dst,%src,mask,off */
  1086. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  1087. break;
  1088. branch_xu:
  1089. /* clgrj %dst,%src,mask,off */
  1090. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  1091. break;
  1092. branch_oc:
  1093. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  1094. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  1095. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  1096. break;
  1097. /*
  1098. * BPF_LD
  1099. */
  1100. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  1101. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1102. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1103. func_addr = __pa(sk_load_byte_pos);
  1104. else
  1105. func_addr = __pa(sk_load_byte);
  1106. goto call_fn;
  1107. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1108. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1109. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1110. func_addr = __pa(sk_load_half_pos);
  1111. else
  1112. func_addr = __pa(sk_load_half);
  1113. goto call_fn;
  1114. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1115. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1116. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1117. func_addr = __pa(sk_load_word_pos);
  1118. else
  1119. func_addr = __pa(sk_load_word);
  1120. goto call_fn;
  1121. call_fn:
  1122. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1123. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1124. /*
  1125. * Implicit input:
  1126. * BPF_REG_6 (R7) : skb pointer
  1127. * REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
  1128. *
  1129. * Calculated input:
  1130. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1131. * BPF_REG_5 (R6) : return address
  1132. *
  1133. * Output:
  1134. * BPF_REG_0 (R14): data read from skb
  1135. *
  1136. * Scratch registers (BPF_REG_1-5)
  1137. */
  1138. /* Call function: llilf %w1,func_addr */
  1139. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1140. /* Offset: lgfi %b2,imm */
  1141. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1142. if (BPF_MODE(insn->code) == BPF_IND)
  1143. /* agfr %b2,%src (%src is s32 here) */
  1144. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1145. /* Reload REG_SKB_DATA if BPF_REG_AX is used */
  1146. if (jit->seen & SEEN_REG_AX)
  1147. /* lg %skb_data,data_off(%b6) */
  1148. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  1149. BPF_REG_6, offsetof(struct sk_buff, data));
  1150. /* basr %b5,%w1 (%b5 is call saved) */
  1151. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1152. /*
  1153. * Note: For fast access we jump directly after the
  1154. * jnz instruction from bpf_jit.S
  1155. */
  1156. /* jnz <ret0> */
  1157. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1158. break;
  1159. default: /* too complex, give up */
  1160. pr_err("Unknown opcode %02x\n", insn->code);
  1161. return -1;
  1162. }
  1163. return insn_count;
  1164. }
  1165. /*
  1166. * Compile eBPF program into s390x code
  1167. */
  1168. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1169. {
  1170. int i, insn_count;
  1171. jit->lit = jit->lit_start;
  1172. jit->prg = 0;
  1173. bpf_jit_prologue(jit);
  1174. for (i = 0; i < fp->len; i += insn_count) {
  1175. insn_count = bpf_jit_insn(jit, fp, i);
  1176. if (insn_count < 0)
  1177. return -1;
  1178. jit->addrs[i + 1] = jit->prg; /* Next instruction address */
  1179. }
  1180. bpf_jit_epilogue(jit);
  1181. jit->lit_start = jit->prg;
  1182. jit->size = jit->lit;
  1183. jit->size_prg = jit->prg;
  1184. return 0;
  1185. }
  1186. /*
  1187. * Compile eBPF program "fp"
  1188. */
  1189. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
  1190. {
  1191. struct bpf_prog *tmp, *orig_fp = fp;
  1192. struct bpf_binary_header *header;
  1193. bool tmp_blinded = false;
  1194. struct bpf_jit jit;
  1195. int pass;
  1196. if (!bpf_jit_enable)
  1197. return orig_fp;
  1198. tmp = bpf_jit_blind_constants(fp);
  1199. /*
  1200. * If blinding was requested and we failed during blinding,
  1201. * we must fall back to the interpreter.
  1202. */
  1203. if (IS_ERR(tmp))
  1204. return orig_fp;
  1205. if (tmp != fp) {
  1206. tmp_blinded = true;
  1207. fp = tmp;
  1208. }
  1209. memset(&jit, 0, sizeof(jit));
  1210. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1211. if (jit.addrs == NULL) {
  1212. fp = orig_fp;
  1213. goto out;
  1214. }
  1215. /*
  1216. * Three initial passes:
  1217. * - 1/2: Determine clobbered registers
  1218. * - 3: Calculate program size and addrs arrray
  1219. */
  1220. for (pass = 1; pass <= 3; pass++) {
  1221. if (bpf_jit_prog(&jit, fp)) {
  1222. fp = orig_fp;
  1223. goto free_addrs;
  1224. }
  1225. }
  1226. /*
  1227. * Final pass: Allocate and generate program
  1228. */
  1229. if (jit.size >= BPF_SIZE_MAX) {
  1230. fp = orig_fp;
  1231. goto free_addrs;
  1232. }
  1233. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1234. if (!header) {
  1235. fp = orig_fp;
  1236. goto free_addrs;
  1237. }
  1238. if (bpf_jit_prog(&jit, fp)) {
  1239. fp = orig_fp;
  1240. goto free_addrs;
  1241. }
  1242. if (bpf_jit_enable > 1) {
  1243. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1244. print_fn_code(jit.prg_buf, jit.size_prg);
  1245. }
  1246. bpf_jit_binary_lock_ro(header);
  1247. fp->bpf_func = (void *) jit.prg_buf;
  1248. fp->jited = 1;
  1249. free_addrs:
  1250. kfree(jit.addrs);
  1251. out:
  1252. if (tmp_blinded)
  1253. bpf_jit_prog_release_other(fp, fp == orig_fp ?
  1254. tmp : orig_fp);
  1255. return fp;
  1256. }