vmem.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/init.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <linux/memblock.h>
  13. #include <asm/cacheflush.h>
  14. #include <asm/pgalloc.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/setup.h>
  17. #include <asm/tlbflush.h>
  18. #include <asm/sections.h>
  19. #include <asm/set_memory.h>
  20. static DEFINE_MUTEX(vmem_mutex);
  21. struct memory_segment {
  22. struct list_head list;
  23. unsigned long start;
  24. unsigned long size;
  25. };
  26. static LIST_HEAD(mem_segs);
  27. static void __ref *vmem_alloc_pages(unsigned int order)
  28. {
  29. unsigned long size = PAGE_SIZE << order;
  30. if (slab_is_available())
  31. return (void *)__get_free_pages(GFP_KERNEL, order);
  32. return (void *) memblock_alloc(size, size);
  33. }
  34. static inline pud_t *vmem_pud_alloc(void)
  35. {
  36. pud_t *pud = NULL;
  37. pud = vmem_alloc_pages(2);
  38. if (!pud)
  39. return NULL;
  40. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  41. return pud;
  42. }
  43. pmd_t *vmem_pmd_alloc(void)
  44. {
  45. pmd_t *pmd = NULL;
  46. pmd = vmem_alloc_pages(2);
  47. if (!pmd)
  48. return NULL;
  49. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  50. return pmd;
  51. }
  52. pte_t __ref *vmem_pte_alloc(void)
  53. {
  54. unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
  55. pte_t *pte;
  56. if (slab_is_available())
  57. pte = (pte_t *) page_table_alloc(&init_mm);
  58. else
  59. pte = (pte_t *) memblock_alloc(size, size);
  60. if (!pte)
  61. return NULL;
  62. clear_table((unsigned long *) pte, _PAGE_INVALID, size);
  63. return pte;
  64. }
  65. /*
  66. * Add a physical memory range to the 1:1 mapping.
  67. */
  68. static int vmem_add_mem(unsigned long start, unsigned long size)
  69. {
  70. unsigned long pgt_prot, sgt_prot, r3_prot;
  71. unsigned long pages4k, pages1m, pages2g;
  72. unsigned long end = start + size;
  73. unsigned long address = start;
  74. pgd_t *pg_dir;
  75. pud_t *pu_dir;
  76. pmd_t *pm_dir;
  77. pte_t *pt_dir;
  78. int ret = -ENOMEM;
  79. pgt_prot = pgprot_val(PAGE_KERNEL);
  80. sgt_prot = pgprot_val(SEGMENT_KERNEL);
  81. r3_prot = pgprot_val(REGION3_KERNEL);
  82. if (!MACHINE_HAS_NX) {
  83. pgt_prot &= ~_PAGE_NOEXEC;
  84. sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
  85. r3_prot &= ~_REGION_ENTRY_NOEXEC;
  86. }
  87. pages4k = pages1m = pages2g = 0;
  88. while (address < end) {
  89. pg_dir = pgd_offset_k(address);
  90. if (pgd_none(*pg_dir)) {
  91. pu_dir = vmem_pud_alloc();
  92. if (!pu_dir)
  93. goto out;
  94. pgd_populate(&init_mm, pg_dir, pu_dir);
  95. }
  96. pu_dir = pud_offset(pg_dir, address);
  97. if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
  98. !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
  99. !debug_pagealloc_enabled()) {
  100. pud_val(*pu_dir) = address | r3_prot;
  101. address += PUD_SIZE;
  102. pages2g++;
  103. continue;
  104. }
  105. if (pud_none(*pu_dir)) {
  106. pm_dir = vmem_pmd_alloc();
  107. if (!pm_dir)
  108. goto out;
  109. pud_populate(&init_mm, pu_dir, pm_dir);
  110. }
  111. pm_dir = pmd_offset(pu_dir, address);
  112. if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
  113. !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
  114. !debug_pagealloc_enabled()) {
  115. pmd_val(*pm_dir) = address | sgt_prot;
  116. address += PMD_SIZE;
  117. pages1m++;
  118. continue;
  119. }
  120. if (pmd_none(*pm_dir)) {
  121. pt_dir = vmem_pte_alloc();
  122. if (!pt_dir)
  123. goto out;
  124. pmd_populate(&init_mm, pm_dir, pt_dir);
  125. }
  126. pt_dir = pte_offset_kernel(pm_dir, address);
  127. pte_val(*pt_dir) = address | pgt_prot;
  128. address += PAGE_SIZE;
  129. pages4k++;
  130. }
  131. ret = 0;
  132. out:
  133. update_page_count(PG_DIRECT_MAP_4K, pages4k);
  134. update_page_count(PG_DIRECT_MAP_1M, pages1m);
  135. update_page_count(PG_DIRECT_MAP_2G, pages2g);
  136. return ret;
  137. }
  138. /*
  139. * Remove a physical memory range from the 1:1 mapping.
  140. * Currently only invalidates page table entries.
  141. */
  142. static void vmem_remove_range(unsigned long start, unsigned long size)
  143. {
  144. unsigned long pages4k, pages1m, pages2g;
  145. unsigned long end = start + size;
  146. unsigned long address = start;
  147. pgd_t *pg_dir;
  148. pud_t *pu_dir;
  149. pmd_t *pm_dir;
  150. pte_t *pt_dir;
  151. pages4k = pages1m = pages2g = 0;
  152. while (address < end) {
  153. pg_dir = pgd_offset_k(address);
  154. if (pgd_none(*pg_dir)) {
  155. address += PGDIR_SIZE;
  156. continue;
  157. }
  158. pu_dir = pud_offset(pg_dir, address);
  159. if (pud_none(*pu_dir)) {
  160. address += PUD_SIZE;
  161. continue;
  162. }
  163. if (pud_large(*pu_dir)) {
  164. pud_clear(pu_dir);
  165. address += PUD_SIZE;
  166. pages2g++;
  167. continue;
  168. }
  169. pm_dir = pmd_offset(pu_dir, address);
  170. if (pmd_none(*pm_dir)) {
  171. address += PMD_SIZE;
  172. continue;
  173. }
  174. if (pmd_large(*pm_dir)) {
  175. pmd_clear(pm_dir);
  176. address += PMD_SIZE;
  177. pages1m++;
  178. continue;
  179. }
  180. pt_dir = pte_offset_kernel(pm_dir, address);
  181. pte_clear(&init_mm, address, pt_dir);
  182. address += PAGE_SIZE;
  183. pages4k++;
  184. }
  185. flush_tlb_kernel_range(start, end);
  186. update_page_count(PG_DIRECT_MAP_4K, -pages4k);
  187. update_page_count(PG_DIRECT_MAP_1M, -pages1m);
  188. update_page_count(PG_DIRECT_MAP_2G, -pages2g);
  189. }
  190. /*
  191. * Add a backed mem_map array to the virtual mem_map array.
  192. */
  193. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  194. {
  195. unsigned long pgt_prot, sgt_prot;
  196. unsigned long address = start;
  197. pgd_t *pg_dir;
  198. pud_t *pu_dir;
  199. pmd_t *pm_dir;
  200. pte_t *pt_dir;
  201. int ret = -ENOMEM;
  202. pgt_prot = pgprot_val(PAGE_KERNEL);
  203. sgt_prot = pgprot_val(SEGMENT_KERNEL);
  204. if (!MACHINE_HAS_NX) {
  205. pgt_prot &= ~_PAGE_NOEXEC;
  206. sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
  207. }
  208. for (address = start; address < end;) {
  209. pg_dir = pgd_offset_k(address);
  210. if (pgd_none(*pg_dir)) {
  211. pu_dir = vmem_pud_alloc();
  212. if (!pu_dir)
  213. goto out;
  214. pgd_populate(&init_mm, pg_dir, pu_dir);
  215. }
  216. pu_dir = pud_offset(pg_dir, address);
  217. if (pud_none(*pu_dir)) {
  218. pm_dir = vmem_pmd_alloc();
  219. if (!pm_dir)
  220. goto out;
  221. pud_populate(&init_mm, pu_dir, pm_dir);
  222. }
  223. pm_dir = pmd_offset(pu_dir, address);
  224. if (pmd_none(*pm_dir)) {
  225. /* Use 1MB frames for vmemmap if available. We always
  226. * use large frames even if they are only partially
  227. * used.
  228. * Otherwise we would have also page tables since
  229. * vmemmap_populate gets called for each section
  230. * separately. */
  231. if (MACHINE_HAS_EDAT1) {
  232. void *new_page;
  233. new_page = vmemmap_alloc_block(PMD_SIZE, node);
  234. if (!new_page)
  235. goto out;
  236. pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
  237. address = (address + PMD_SIZE) & PMD_MASK;
  238. continue;
  239. }
  240. pt_dir = vmem_pte_alloc();
  241. if (!pt_dir)
  242. goto out;
  243. pmd_populate(&init_mm, pm_dir, pt_dir);
  244. } else if (pmd_large(*pm_dir)) {
  245. address = (address + PMD_SIZE) & PMD_MASK;
  246. continue;
  247. }
  248. pt_dir = pte_offset_kernel(pm_dir, address);
  249. if (pte_none(*pt_dir)) {
  250. void *new_page;
  251. new_page = vmemmap_alloc_block(PAGE_SIZE, node);
  252. if (!new_page)
  253. goto out;
  254. pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
  255. }
  256. address += PAGE_SIZE;
  257. }
  258. ret = 0;
  259. out:
  260. return ret;
  261. }
  262. void vmemmap_free(unsigned long start, unsigned long end)
  263. {
  264. }
  265. /*
  266. * Add memory segment to the segment list if it doesn't overlap with
  267. * an already present segment.
  268. */
  269. static int insert_memory_segment(struct memory_segment *seg)
  270. {
  271. struct memory_segment *tmp;
  272. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  273. seg->start + seg->size < seg->start)
  274. return -ERANGE;
  275. list_for_each_entry(tmp, &mem_segs, list) {
  276. if (seg->start >= tmp->start + tmp->size)
  277. continue;
  278. if (seg->start + seg->size <= tmp->start)
  279. continue;
  280. return -ENOSPC;
  281. }
  282. list_add(&seg->list, &mem_segs);
  283. return 0;
  284. }
  285. /*
  286. * Remove memory segment from the segment list.
  287. */
  288. static void remove_memory_segment(struct memory_segment *seg)
  289. {
  290. list_del(&seg->list);
  291. }
  292. static void __remove_shared_memory(struct memory_segment *seg)
  293. {
  294. remove_memory_segment(seg);
  295. vmem_remove_range(seg->start, seg->size);
  296. }
  297. int vmem_remove_mapping(unsigned long start, unsigned long size)
  298. {
  299. struct memory_segment *seg;
  300. int ret;
  301. mutex_lock(&vmem_mutex);
  302. ret = -ENOENT;
  303. list_for_each_entry(seg, &mem_segs, list) {
  304. if (seg->start == start && seg->size == size)
  305. break;
  306. }
  307. if (seg->start != start || seg->size != size)
  308. goto out;
  309. ret = 0;
  310. __remove_shared_memory(seg);
  311. kfree(seg);
  312. out:
  313. mutex_unlock(&vmem_mutex);
  314. return ret;
  315. }
  316. int vmem_add_mapping(unsigned long start, unsigned long size)
  317. {
  318. struct memory_segment *seg;
  319. int ret;
  320. mutex_lock(&vmem_mutex);
  321. ret = -ENOMEM;
  322. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  323. if (!seg)
  324. goto out;
  325. seg->start = start;
  326. seg->size = size;
  327. ret = insert_memory_segment(seg);
  328. if (ret)
  329. goto out_free;
  330. ret = vmem_add_mem(start, size);
  331. if (ret)
  332. goto out_remove;
  333. goto out;
  334. out_remove:
  335. __remove_shared_memory(seg);
  336. out_free:
  337. kfree(seg);
  338. out:
  339. mutex_unlock(&vmem_mutex);
  340. return ret;
  341. }
  342. /*
  343. * map whole physical memory to virtual memory (identity mapping)
  344. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  345. * additional memory segments.
  346. */
  347. void __init vmem_map_init(void)
  348. {
  349. struct memblock_region *reg;
  350. for_each_memblock(memory, reg)
  351. vmem_add_mem(reg->base, reg->size);
  352. __set_memory((unsigned long) _stext,
  353. (_etext - _stext) >> PAGE_SHIFT,
  354. SET_MEMORY_RO | SET_MEMORY_X);
  355. __set_memory((unsigned long) _etext,
  356. (_eshared - _etext) >> PAGE_SHIFT,
  357. SET_MEMORY_RO);
  358. __set_memory((unsigned long) _sinittext,
  359. (_einittext - _sinittext) >> PAGE_SHIFT,
  360. SET_MEMORY_RO | SET_MEMORY_X);
  361. pr_info("Write protected kernel read-only data: %luk\n",
  362. (_eshared - _stext) >> 10);
  363. }
  364. /*
  365. * Convert memblock.memory to a memory segment list so there is a single
  366. * list that contains all memory segments.
  367. */
  368. static int __init vmem_convert_memory_chunk(void)
  369. {
  370. struct memblock_region *reg;
  371. struct memory_segment *seg;
  372. mutex_lock(&vmem_mutex);
  373. for_each_memblock(memory, reg) {
  374. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  375. if (!seg)
  376. panic("Out of memory...\n");
  377. seg->start = reg->base;
  378. seg->size = reg->size;
  379. insert_memory_segment(seg);
  380. }
  381. mutex_unlock(&vmem_mutex);
  382. return 0;
  383. }
  384. core_initcall(vmem_convert_memory_chunk);