pgtable.h 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup.
  14. * For s390 64 bit we use up to four of the five levels the hardware
  15. * provides (region first tables are not used).
  16. *
  17. * The "pgd_xxx()" functions are trivial for a folded two-level
  18. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  19. * into the pgd entry)
  20. *
  21. * This file contains the functions and defines necessary to modify and use
  22. * the S390 page table tree.
  23. */
  24. #ifndef __ASSEMBLY__
  25. #include <asm-generic/5level-fixup.h>
  26. #include <linux/sched.h>
  27. #include <linux/mm_types.h>
  28. #include <linux/page-flags.h>
  29. #include <linux/radix-tree.h>
  30. #include <linux/atomic.h>
  31. #include <asm/bug.h>
  32. #include <asm/page.h>
  33. extern pgd_t swapper_pg_dir[];
  34. extern void paging_init(void);
  35. extern void vmem_map_init(void);
  36. pmd_t *vmem_pmd_alloc(void);
  37. pte_t *vmem_pte_alloc(void);
  38. enum {
  39. PG_DIRECT_MAP_4K = 0,
  40. PG_DIRECT_MAP_1M,
  41. PG_DIRECT_MAP_2G,
  42. PG_DIRECT_MAP_MAX
  43. };
  44. extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  45. static inline void update_page_count(int level, long count)
  46. {
  47. if (IS_ENABLED(CONFIG_PROC_FS))
  48. atomic_long_add(count, &direct_pages_count[level]);
  49. }
  50. struct seq_file;
  51. void arch_report_meminfo(struct seq_file *m);
  52. /*
  53. * The S390 doesn't have any external MMU info: the kernel page
  54. * tables contain all the necessary information.
  55. */
  56. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  57. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  58. /*
  59. * ZERO_PAGE is a global shared page that is always zero; used
  60. * for zero-mapped memory areas etc..
  61. */
  62. extern unsigned long empty_zero_page;
  63. extern unsigned long zero_page_mask;
  64. #define ZERO_PAGE(vaddr) \
  65. (virt_to_page((void *)(empty_zero_page + \
  66. (((unsigned long)(vaddr)) &zero_page_mask))))
  67. #define __HAVE_COLOR_ZERO_PAGE
  68. /* TODO: s390 cannot support io_remap_pfn_range... */
  69. #endif /* !__ASSEMBLY__ */
  70. /*
  71. * PMD_SHIFT determines the size of the area a second-level page
  72. * table can map
  73. * PGDIR_SHIFT determines what a third-level page table entry can map
  74. */
  75. #define PMD_SHIFT 20
  76. #define PUD_SHIFT 31
  77. #define PGDIR_SHIFT 42
  78. #define PMD_SIZE (1UL << PMD_SHIFT)
  79. #define PMD_MASK (~(PMD_SIZE-1))
  80. #define PUD_SIZE (1UL << PUD_SHIFT)
  81. #define PUD_MASK (~(PUD_SIZE-1))
  82. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  83. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  84. /*
  85. * entries per page directory level: the S390 is two-level, so
  86. * we don't really have any PMD directory physically.
  87. * for S390 segment-table entries are combined to one PGD
  88. * that leads to 1024 pte per pgd
  89. */
  90. #define PTRS_PER_PTE 256
  91. #define PTRS_PER_PMD 2048
  92. #define PTRS_PER_PUD 2048
  93. #define PTRS_PER_PGD 2048
  94. #define FIRST_USER_ADDRESS 0UL
  95. #define pte_ERROR(e) \
  96. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  97. #define pmd_ERROR(e) \
  98. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  99. #define pud_ERROR(e) \
  100. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  101. #define pgd_ERROR(e) \
  102. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  103. #ifndef __ASSEMBLY__
  104. /*
  105. * The vmalloc and module area will always be on the topmost area of the
  106. * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  107. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  108. * modules will reside. That makes sure that inter module branches always
  109. * happen without trampolines and in addition the placement within a 2GB frame
  110. * is branch prediction unit friendly.
  111. */
  112. extern unsigned long VMALLOC_START;
  113. extern unsigned long VMALLOC_END;
  114. extern struct page *vmemmap;
  115. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  116. extern unsigned long MODULES_VADDR;
  117. extern unsigned long MODULES_END;
  118. #define MODULES_VADDR MODULES_VADDR
  119. #define MODULES_END MODULES_END
  120. #define MODULES_LEN (1UL << 31)
  121. static inline int is_module_addr(void *addr)
  122. {
  123. BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
  124. if (addr < (void *)MODULES_VADDR)
  125. return 0;
  126. if (addr > (void *)MODULES_END)
  127. return 0;
  128. return 1;
  129. }
  130. /*
  131. * A 64 bit pagetable entry of S390 has following format:
  132. * | PFRA |0IPC| OS |
  133. * 0000000000111111111122222222223333333333444444444455555555556666
  134. * 0123456789012345678901234567890123456789012345678901234567890123
  135. *
  136. * I Page-Invalid Bit: Page is not available for address-translation
  137. * P Page-Protection Bit: Store access not possible for page
  138. * C Change-bit override: HW is not required to set change bit
  139. *
  140. * A 64 bit segmenttable entry of S390 has following format:
  141. * | P-table origin | TT
  142. * 0000000000111111111122222222223333333333444444444455555555556666
  143. * 0123456789012345678901234567890123456789012345678901234567890123
  144. *
  145. * I Segment-Invalid Bit: Segment is not available for address-translation
  146. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  147. * P Page-Protection Bit: Store access not possible for page
  148. * TT Type 00
  149. *
  150. * A 64 bit region table entry of S390 has following format:
  151. * | S-table origin | TF TTTL
  152. * 0000000000111111111122222222223333333333444444444455555555556666
  153. * 0123456789012345678901234567890123456789012345678901234567890123
  154. *
  155. * I Segment-Invalid Bit: Segment is not available for address-translation
  156. * TT Type 01
  157. * TF
  158. * TL Table length
  159. *
  160. * The 64 bit regiontable origin of S390 has following format:
  161. * | region table origon | DTTL
  162. * 0000000000111111111122222222223333333333444444444455555555556666
  163. * 0123456789012345678901234567890123456789012345678901234567890123
  164. *
  165. * X Space-Switch event:
  166. * G Segment-Invalid Bit:
  167. * P Private-Space Bit:
  168. * S Storage-Alteration:
  169. * R Real space
  170. * TL Table-Length:
  171. *
  172. * A storage key has the following format:
  173. * | ACC |F|R|C|0|
  174. * 0 3 4 5 6 7
  175. * ACC: access key
  176. * F : fetch protection bit
  177. * R : referenced bit
  178. * C : changed bit
  179. */
  180. /* Hardware bits in the page table entry */
  181. #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
  182. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  183. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  184. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  185. /* Software bits in the page table entry */
  186. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  187. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  188. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  189. #define _PAGE_READ 0x010 /* SW pte read bit */
  190. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  191. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  192. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  193. #define __HAVE_ARCH_PTE_SPECIAL
  194. #ifdef CONFIG_MEM_SOFT_DIRTY
  195. #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
  196. #else
  197. #define _PAGE_SOFT_DIRTY 0x000
  198. #endif
  199. /* Set of bits not changed in pte_modify */
  200. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  201. _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
  202. /*
  203. * handle_pte_fault uses pte_present and pte_none to find out the pte type
  204. * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
  205. * distinguish present from not-present ptes. It is changed only with the page
  206. * table lock held.
  207. *
  208. * The following table gives the different possible bit combinations for
  209. * the pte hardware and software bits in the last 12 bits of a pte
  210. * (. unassigned bit, x don't care, t swap type):
  211. *
  212. * 842100000000
  213. * 000084210000
  214. * 000000008421
  215. * .IR.uswrdy.p
  216. * empty .10.00000000
  217. * swap .11..ttttt.0
  218. * prot-none, clean, old .11.xx0000.1
  219. * prot-none, clean, young .11.xx0001.1
  220. * prot-none, dirty, old .11.xx0010.1
  221. * prot-none, dirty, young .11.xx0011.1
  222. * read-only, clean, old .11.xx0100.1
  223. * read-only, clean, young .01.xx0101.1
  224. * read-only, dirty, old .11.xx0110.1
  225. * read-only, dirty, young .01.xx0111.1
  226. * read-write, clean, old .11.xx1100.1
  227. * read-write, clean, young .01.xx1101.1
  228. * read-write, dirty, old .10.xx1110.1
  229. * read-write, dirty, young .00.xx1111.1
  230. * HW-bits: R read-only, I invalid
  231. * SW-bits: p present, y young, d dirty, r read, w write, s special,
  232. * u unused, l large
  233. *
  234. * pte_none is true for the bit pattern .10.00000000, pte == 0x400
  235. * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
  236. * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
  237. */
  238. /* Bits in the segment/region table address-space-control-element */
  239. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  240. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  241. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  242. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  243. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  244. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  245. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  246. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  247. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  248. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  249. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  250. /* Bits in the region table entry */
  251. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  252. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  253. #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
  254. #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
  255. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  256. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  257. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  258. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  259. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  260. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  261. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  262. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  263. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  264. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  265. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  266. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  267. #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
  268. #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
  269. #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
  270. #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
  271. #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
  272. #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
  273. #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
  274. #ifdef CONFIG_MEM_SOFT_DIRTY
  275. #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
  276. #else
  277. #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
  278. #endif
  279. #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
  280. #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
  281. /* Bits in the segment table entry */
  282. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  283. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
  284. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  285. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  286. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  287. #define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
  288. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  289. #define _SEGMENT_ENTRY (0)
  290. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  291. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  292. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  293. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  294. #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
  295. #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
  296. #ifdef CONFIG_MEM_SOFT_DIRTY
  297. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
  298. #else
  299. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
  300. #endif
  301. /*
  302. * Segment table and region3 table entry encoding
  303. * (R = read-only, I = invalid, y = young bit):
  304. * dy..R...I...wr
  305. * prot-none, clean, old 00..1...1...00
  306. * prot-none, clean, young 01..1...1...00
  307. * prot-none, dirty, old 10..1...1...00
  308. * prot-none, dirty, young 11..1...1...00
  309. * read-only, clean, old 00..1...1...01
  310. * read-only, clean, young 01..1...0...01
  311. * read-only, dirty, old 10..1...1...01
  312. * read-only, dirty, young 11..1...0...01
  313. * read-write, clean, old 00..1...1...11
  314. * read-write, clean, young 01..1...0...11
  315. * read-write, dirty, old 10..0...1...11
  316. * read-write, dirty, young 11..0...0...11
  317. * The segment table origin is used to distinguish empty (origin==0) from
  318. * read-write, old segment table entries (origin!=0)
  319. * HW-bits: R read-only, I invalid
  320. * SW-bits: y young, d dirty, r read, w write
  321. */
  322. /* Page status table bits for virtualization */
  323. #define PGSTE_ACC_BITS 0xf000000000000000UL
  324. #define PGSTE_FP_BIT 0x0800000000000000UL
  325. #define PGSTE_PCL_BIT 0x0080000000000000UL
  326. #define PGSTE_HR_BIT 0x0040000000000000UL
  327. #define PGSTE_HC_BIT 0x0020000000000000UL
  328. #define PGSTE_GR_BIT 0x0004000000000000UL
  329. #define PGSTE_GC_BIT 0x0002000000000000UL
  330. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  331. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  332. #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
  333. /* Guest Page State used for virtualization */
  334. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  335. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  336. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  337. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  338. #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
  339. #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
  340. /*
  341. * A user page table pointer has the space-switch-event bit, the
  342. * private-space-control bit and the storage-alteration-event-control
  343. * bit set. A kernel page table pointer doesn't need them.
  344. */
  345. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  346. _ASCE_ALT_EVENT)
  347. /*
  348. * Page protection definitions.
  349. */
  350. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
  351. #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  352. _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
  353. #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  354. _PAGE_INVALID | _PAGE_PROTECT)
  355. #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  356. _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
  357. #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  358. _PAGE_INVALID | _PAGE_PROTECT)
  359. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  360. _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
  361. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  362. _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
  363. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  364. _PAGE_PROTECT | _PAGE_NOEXEC)
  365. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  366. _PAGE_YOUNG | _PAGE_DIRTY)
  367. /*
  368. * On s390 the page table entry has an invalid bit and a read-only bit.
  369. * Read permission implies execute permission and write permission
  370. * implies read permission.
  371. */
  372. /*xwr*/
  373. #define __P000 PAGE_NONE
  374. #define __P001 PAGE_RO
  375. #define __P010 PAGE_RO
  376. #define __P011 PAGE_RO
  377. #define __P100 PAGE_RX
  378. #define __P101 PAGE_RX
  379. #define __P110 PAGE_RX
  380. #define __P111 PAGE_RX
  381. #define __S000 PAGE_NONE
  382. #define __S001 PAGE_RO
  383. #define __S010 PAGE_RW
  384. #define __S011 PAGE_RW
  385. #define __S100 PAGE_RX
  386. #define __S101 PAGE_RX
  387. #define __S110 PAGE_RWX
  388. #define __S111 PAGE_RWX
  389. /*
  390. * Segment entry (large page) protection definitions.
  391. */
  392. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  393. _SEGMENT_ENTRY_PROTECT)
  394. #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
  395. _SEGMENT_ENTRY_READ | \
  396. _SEGMENT_ENTRY_NOEXEC)
  397. #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
  398. _SEGMENT_ENTRY_READ)
  399. #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
  400. _SEGMENT_ENTRY_WRITE | \
  401. _SEGMENT_ENTRY_NOEXEC)
  402. #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
  403. _SEGMENT_ENTRY_WRITE)
  404. #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
  405. _SEGMENT_ENTRY_LARGE | \
  406. _SEGMENT_ENTRY_READ | \
  407. _SEGMENT_ENTRY_WRITE | \
  408. _SEGMENT_ENTRY_YOUNG | \
  409. _SEGMENT_ENTRY_DIRTY | \
  410. _SEGMENT_ENTRY_NOEXEC)
  411. #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
  412. _SEGMENT_ENTRY_LARGE | \
  413. _SEGMENT_ENTRY_READ | \
  414. _SEGMENT_ENTRY_YOUNG | \
  415. _SEGMENT_ENTRY_PROTECT | \
  416. _SEGMENT_ENTRY_NOEXEC)
  417. /*
  418. * Region3 entry (large page) protection definitions.
  419. */
  420. #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
  421. _REGION3_ENTRY_LARGE | \
  422. _REGION3_ENTRY_READ | \
  423. _REGION3_ENTRY_WRITE | \
  424. _REGION3_ENTRY_YOUNG | \
  425. _REGION3_ENTRY_DIRTY | \
  426. _REGION_ENTRY_NOEXEC)
  427. #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
  428. _REGION3_ENTRY_LARGE | \
  429. _REGION3_ENTRY_READ | \
  430. _REGION3_ENTRY_YOUNG | \
  431. _REGION_ENTRY_PROTECT | \
  432. _REGION_ENTRY_NOEXEC)
  433. static inline int mm_has_pgste(struct mm_struct *mm)
  434. {
  435. #ifdef CONFIG_PGSTE
  436. if (unlikely(mm->context.has_pgste))
  437. return 1;
  438. #endif
  439. return 0;
  440. }
  441. static inline int mm_alloc_pgste(struct mm_struct *mm)
  442. {
  443. #ifdef CONFIG_PGSTE
  444. if (unlikely(mm->context.alloc_pgste))
  445. return 1;
  446. #endif
  447. return 0;
  448. }
  449. /*
  450. * In the case that a guest uses storage keys
  451. * faults should no longer be backed by zero pages
  452. */
  453. #define mm_forbids_zeropage mm_use_skey
  454. static inline int mm_use_skey(struct mm_struct *mm)
  455. {
  456. #ifdef CONFIG_PGSTE
  457. if (mm->context.use_skey)
  458. return 1;
  459. #endif
  460. return 0;
  461. }
  462. static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
  463. {
  464. register unsigned long reg2 asm("2") = old;
  465. register unsigned long reg3 asm("3") = new;
  466. unsigned long address = (unsigned long)ptr | 1;
  467. asm volatile(
  468. " csp %0,%3"
  469. : "+d" (reg2), "+m" (*ptr)
  470. : "d" (reg3), "d" (address)
  471. : "cc");
  472. }
  473. static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
  474. {
  475. register unsigned long reg2 asm("2") = old;
  476. register unsigned long reg3 asm("3") = new;
  477. unsigned long address = (unsigned long)ptr | 1;
  478. asm volatile(
  479. " .insn rre,0xb98a0000,%0,%3"
  480. : "+d" (reg2), "+m" (*ptr)
  481. : "d" (reg3), "d" (address)
  482. : "cc");
  483. }
  484. #define CRDTE_DTT_PAGE 0x00UL
  485. #define CRDTE_DTT_SEGMENT 0x10UL
  486. #define CRDTE_DTT_REGION3 0x14UL
  487. #define CRDTE_DTT_REGION2 0x18UL
  488. #define CRDTE_DTT_REGION1 0x1cUL
  489. static inline void crdte(unsigned long old, unsigned long new,
  490. unsigned long table, unsigned long dtt,
  491. unsigned long address, unsigned long asce)
  492. {
  493. register unsigned long reg2 asm("2") = old;
  494. register unsigned long reg3 asm("3") = new;
  495. register unsigned long reg4 asm("4") = table | dtt;
  496. register unsigned long reg5 asm("5") = address;
  497. asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
  498. : "+d" (reg2)
  499. : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
  500. : "memory", "cc");
  501. }
  502. /*
  503. * pgd/pmd/pte query functions
  504. */
  505. static inline int pgd_present(pgd_t pgd)
  506. {
  507. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  508. return 1;
  509. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  510. }
  511. static inline int pgd_none(pgd_t pgd)
  512. {
  513. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  514. return 0;
  515. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  516. }
  517. static inline int pgd_bad(pgd_t pgd)
  518. {
  519. /*
  520. * With dynamic page table levels the pgd can be a region table
  521. * entry or a segment table entry. Check for the bit that are
  522. * invalid for either table entry.
  523. */
  524. unsigned long mask =
  525. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  526. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  527. return (pgd_val(pgd) & mask) != 0;
  528. }
  529. static inline int pud_present(pud_t pud)
  530. {
  531. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  532. return 1;
  533. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  534. }
  535. static inline int pud_none(pud_t pud)
  536. {
  537. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  538. return 0;
  539. return pud_val(pud) == _REGION3_ENTRY_EMPTY;
  540. }
  541. static inline int pud_large(pud_t pud)
  542. {
  543. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  544. return 0;
  545. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  546. }
  547. static inline unsigned long pud_pfn(pud_t pud)
  548. {
  549. unsigned long origin_mask;
  550. origin_mask = _REGION3_ENTRY_ORIGIN;
  551. if (pud_large(pud))
  552. origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
  553. return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
  554. }
  555. static inline int pmd_large(pmd_t pmd)
  556. {
  557. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  558. }
  559. static inline int pmd_bad(pmd_t pmd)
  560. {
  561. if (pmd_large(pmd))
  562. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  563. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  564. }
  565. static inline int pud_bad(pud_t pud)
  566. {
  567. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  568. return pmd_bad(__pmd(pud_val(pud)));
  569. if (pud_large(pud))
  570. return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
  571. return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
  572. }
  573. static inline int pmd_present(pmd_t pmd)
  574. {
  575. return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
  576. }
  577. static inline int pmd_none(pmd_t pmd)
  578. {
  579. return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
  580. }
  581. static inline unsigned long pmd_pfn(pmd_t pmd)
  582. {
  583. unsigned long origin_mask;
  584. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  585. if (pmd_large(pmd))
  586. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  587. return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
  588. }
  589. #define __HAVE_ARCH_PMD_WRITE
  590. static inline int pmd_write(pmd_t pmd)
  591. {
  592. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  593. }
  594. static inline int pmd_dirty(pmd_t pmd)
  595. {
  596. int dirty = 1;
  597. if (pmd_large(pmd))
  598. dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  599. return dirty;
  600. }
  601. static inline int pmd_young(pmd_t pmd)
  602. {
  603. int young = 1;
  604. if (pmd_large(pmd))
  605. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  606. return young;
  607. }
  608. static inline int pte_present(pte_t pte)
  609. {
  610. /* Bit pattern: (pte & 0x001) == 0x001 */
  611. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  612. }
  613. static inline int pte_none(pte_t pte)
  614. {
  615. /* Bit pattern: pte == 0x400 */
  616. return pte_val(pte) == _PAGE_INVALID;
  617. }
  618. static inline int pte_swap(pte_t pte)
  619. {
  620. /* Bit pattern: (pte & 0x201) == 0x200 */
  621. return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
  622. == _PAGE_PROTECT;
  623. }
  624. static inline int pte_special(pte_t pte)
  625. {
  626. return (pte_val(pte) & _PAGE_SPECIAL);
  627. }
  628. #define __HAVE_ARCH_PTE_SAME
  629. static inline int pte_same(pte_t a, pte_t b)
  630. {
  631. return pte_val(a) == pte_val(b);
  632. }
  633. #ifdef CONFIG_NUMA_BALANCING
  634. static inline int pte_protnone(pte_t pte)
  635. {
  636. return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
  637. }
  638. static inline int pmd_protnone(pmd_t pmd)
  639. {
  640. /* pmd_large(pmd) implies pmd_present(pmd) */
  641. return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
  642. }
  643. #endif
  644. static inline int pte_soft_dirty(pte_t pte)
  645. {
  646. return pte_val(pte) & _PAGE_SOFT_DIRTY;
  647. }
  648. #define pte_swp_soft_dirty pte_soft_dirty
  649. static inline pte_t pte_mksoft_dirty(pte_t pte)
  650. {
  651. pte_val(pte) |= _PAGE_SOFT_DIRTY;
  652. return pte;
  653. }
  654. #define pte_swp_mksoft_dirty pte_mksoft_dirty
  655. static inline pte_t pte_clear_soft_dirty(pte_t pte)
  656. {
  657. pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
  658. return pte;
  659. }
  660. #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
  661. static inline int pmd_soft_dirty(pmd_t pmd)
  662. {
  663. return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
  664. }
  665. static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
  666. {
  667. pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
  668. return pmd;
  669. }
  670. static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
  671. {
  672. pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
  673. return pmd;
  674. }
  675. /*
  676. * query functions pte_write/pte_dirty/pte_young only work if
  677. * pte_present() is true. Undefined behaviour if not..
  678. */
  679. static inline int pte_write(pte_t pte)
  680. {
  681. return (pte_val(pte) & _PAGE_WRITE) != 0;
  682. }
  683. static inline int pte_dirty(pte_t pte)
  684. {
  685. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  686. }
  687. static inline int pte_young(pte_t pte)
  688. {
  689. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  690. }
  691. #define __HAVE_ARCH_PTE_UNUSED
  692. static inline int pte_unused(pte_t pte)
  693. {
  694. return pte_val(pte) & _PAGE_UNUSED;
  695. }
  696. /*
  697. * pgd/pmd/pte modification functions
  698. */
  699. static inline void pgd_clear(pgd_t *pgd)
  700. {
  701. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  702. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  703. }
  704. static inline void pud_clear(pud_t *pud)
  705. {
  706. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  707. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  708. }
  709. static inline void pmd_clear(pmd_t *pmdp)
  710. {
  711. pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
  712. }
  713. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  714. {
  715. pte_val(*ptep) = _PAGE_INVALID;
  716. }
  717. /*
  718. * The following pte modification functions only work if
  719. * pte_present() is true. Undefined behaviour if not..
  720. */
  721. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  722. {
  723. pte_val(pte) &= _PAGE_CHG_MASK;
  724. pte_val(pte) |= pgprot_val(newprot);
  725. /*
  726. * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
  727. * has the invalid bit set, clear it again for readable, young pages
  728. */
  729. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  730. pte_val(pte) &= ~_PAGE_INVALID;
  731. /*
  732. * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
  733. * protection bit set, clear it again for writable, dirty pages
  734. */
  735. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  736. pte_val(pte) &= ~_PAGE_PROTECT;
  737. return pte;
  738. }
  739. static inline pte_t pte_wrprotect(pte_t pte)
  740. {
  741. pte_val(pte) &= ~_PAGE_WRITE;
  742. pte_val(pte) |= _PAGE_PROTECT;
  743. return pte;
  744. }
  745. static inline pte_t pte_mkwrite(pte_t pte)
  746. {
  747. pte_val(pte) |= _PAGE_WRITE;
  748. if (pte_val(pte) & _PAGE_DIRTY)
  749. pte_val(pte) &= ~_PAGE_PROTECT;
  750. return pte;
  751. }
  752. static inline pte_t pte_mkclean(pte_t pte)
  753. {
  754. pte_val(pte) &= ~_PAGE_DIRTY;
  755. pte_val(pte) |= _PAGE_PROTECT;
  756. return pte;
  757. }
  758. static inline pte_t pte_mkdirty(pte_t pte)
  759. {
  760. pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
  761. if (pte_val(pte) & _PAGE_WRITE)
  762. pte_val(pte) &= ~_PAGE_PROTECT;
  763. return pte;
  764. }
  765. static inline pte_t pte_mkold(pte_t pte)
  766. {
  767. pte_val(pte) &= ~_PAGE_YOUNG;
  768. pte_val(pte) |= _PAGE_INVALID;
  769. return pte;
  770. }
  771. static inline pte_t pte_mkyoung(pte_t pte)
  772. {
  773. pte_val(pte) |= _PAGE_YOUNG;
  774. if (pte_val(pte) & _PAGE_READ)
  775. pte_val(pte) &= ~_PAGE_INVALID;
  776. return pte;
  777. }
  778. static inline pte_t pte_mkspecial(pte_t pte)
  779. {
  780. pte_val(pte) |= _PAGE_SPECIAL;
  781. return pte;
  782. }
  783. #ifdef CONFIG_HUGETLB_PAGE
  784. static inline pte_t pte_mkhuge(pte_t pte)
  785. {
  786. pte_val(pte) |= _PAGE_LARGE;
  787. return pte;
  788. }
  789. #endif
  790. #define IPTE_GLOBAL 0
  791. #define IPTE_LOCAL 1
  792. static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
  793. {
  794. unsigned long pto = (unsigned long) ptep;
  795. /* Invalidation + TLB flush for the pte */
  796. asm volatile(
  797. " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
  798. : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
  799. [m4] "i" (local));
  800. }
  801. static inline void __ptep_ipte_range(unsigned long address, int nr,
  802. pte_t *ptep, int local)
  803. {
  804. unsigned long pto = (unsigned long) ptep;
  805. /* Invalidate a range of ptes + TLB flush of the ptes */
  806. do {
  807. asm volatile(
  808. " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
  809. : [r2] "+a" (address), [r3] "+a" (nr)
  810. : [r1] "a" (pto), [m4] "i" (local) : "memory");
  811. } while (nr != 255);
  812. }
  813. /*
  814. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  815. * both clear the TLB for the unmapped pte. The reason is that
  816. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  817. * to modify an active pte. The sequence is
  818. * 1) ptep_get_and_clear
  819. * 2) set_pte_at
  820. * 3) flush_tlb_range
  821. * On s390 the tlb needs to get flushed with the modification of the pte
  822. * if the pte is active. The only way how this can be implemented is to
  823. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  824. * is a nop.
  825. */
  826. pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
  827. pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
  828. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  829. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  830. unsigned long addr, pte_t *ptep)
  831. {
  832. pte_t pte = *ptep;
  833. pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
  834. return pte_young(pte);
  835. }
  836. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  837. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  838. unsigned long address, pte_t *ptep)
  839. {
  840. return ptep_test_and_clear_young(vma, address, ptep);
  841. }
  842. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  843. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  844. unsigned long addr, pte_t *ptep)
  845. {
  846. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  847. }
  848. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  849. pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
  850. void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
  851. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  852. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  853. unsigned long addr, pte_t *ptep)
  854. {
  855. return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
  856. }
  857. /*
  858. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  859. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  860. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  861. * cannot be accessed while the batched unmap is running. In this case
  862. * full==1 and a simple pte_clear is enough. See tlb.h.
  863. */
  864. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  865. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  866. unsigned long addr,
  867. pte_t *ptep, int full)
  868. {
  869. if (full) {
  870. pte_t pte = *ptep;
  871. *ptep = __pte(_PAGE_INVALID);
  872. return pte;
  873. }
  874. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  875. }
  876. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  877. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  878. unsigned long addr, pte_t *ptep)
  879. {
  880. pte_t pte = *ptep;
  881. if (pte_write(pte))
  882. ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
  883. }
  884. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  885. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  886. unsigned long addr, pte_t *ptep,
  887. pte_t entry, int dirty)
  888. {
  889. if (pte_same(*ptep, entry))
  890. return 0;
  891. ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
  892. return 1;
  893. }
  894. /*
  895. * Additional functions to handle KVM guest page tables
  896. */
  897. void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
  898. pte_t *ptep, pte_t entry);
  899. void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  900. void ptep_notify(struct mm_struct *mm, unsigned long addr,
  901. pte_t *ptep, unsigned long bits);
  902. int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
  903. pte_t *ptep, int prot, unsigned long bit);
  904. void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
  905. pte_t *ptep , int reset);
  906. void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  907. int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
  908. pte_t *sptep, pte_t *tptep, pte_t pte);
  909. void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
  910. bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
  911. int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  912. unsigned char key, bool nq);
  913. int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  914. unsigned char key, unsigned char *oldkey,
  915. bool nq, bool mr, bool mc);
  916. int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
  917. int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  918. unsigned char *key);
  919. int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
  920. unsigned long bits, unsigned long value);
  921. int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
  922. int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
  923. unsigned long *oldpte, unsigned long *oldpgste);
  924. /*
  925. * Certain architectures need to do special things when PTEs
  926. * within a page table are directly modified. Thus, the following
  927. * hook is made available.
  928. */
  929. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  930. pte_t *ptep, pte_t entry)
  931. {
  932. if (!MACHINE_HAS_NX)
  933. pte_val(entry) &= ~_PAGE_NOEXEC;
  934. if (pte_present(entry))
  935. pte_val(entry) &= ~_PAGE_UNUSED;
  936. if (mm_has_pgste(mm))
  937. ptep_set_pte_at(mm, addr, ptep, entry);
  938. else
  939. *ptep = entry;
  940. }
  941. /*
  942. * Conversion functions: convert a page and protection to a page entry,
  943. * and a page entry and page directory to the page they refer to.
  944. */
  945. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  946. {
  947. pte_t __pte;
  948. pte_val(__pte) = physpage + pgprot_val(pgprot);
  949. return pte_mkyoung(__pte);
  950. }
  951. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  952. {
  953. unsigned long physpage = page_to_phys(page);
  954. pte_t __pte = mk_pte_phys(physpage, pgprot);
  955. if (pte_write(__pte) && PageDirty(page))
  956. __pte = pte_mkdirty(__pte);
  957. return __pte;
  958. }
  959. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  960. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  961. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  962. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  963. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  964. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  965. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  966. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  967. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  968. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  969. {
  970. pud_t *pud = (pud_t *) pgd;
  971. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  972. pud = (pud_t *) pgd_deref(*pgd);
  973. return pud + pud_index(address);
  974. }
  975. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  976. {
  977. pmd_t *pmd = (pmd_t *) pud;
  978. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  979. pmd = (pmd_t *) pud_deref(*pud);
  980. return pmd + pmd_index(address);
  981. }
  982. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  983. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  984. #define pte_page(x) pfn_to_page(pte_pfn(x))
  985. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  986. #define pud_page(pud) pfn_to_page(pud_pfn(pud))
  987. /* Find an entry in the lowest level page table.. */
  988. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  989. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  990. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  991. #define pte_unmap(pte) do { } while (0)
  992. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  993. {
  994. pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
  995. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  996. return pmd;
  997. }
  998. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  999. {
  1000. pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
  1001. if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1002. return pmd;
  1003. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1004. return pmd;
  1005. }
  1006. static inline pmd_t pmd_mkclean(pmd_t pmd)
  1007. {
  1008. if (pmd_large(pmd)) {
  1009. pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
  1010. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1011. }
  1012. return pmd;
  1013. }
  1014. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1015. {
  1016. if (pmd_large(pmd)) {
  1017. pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
  1018. _SEGMENT_ENTRY_SOFT_DIRTY;
  1019. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  1020. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1021. }
  1022. return pmd;
  1023. }
  1024. static inline pud_t pud_wrprotect(pud_t pud)
  1025. {
  1026. pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
  1027. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  1028. return pud;
  1029. }
  1030. static inline pud_t pud_mkwrite(pud_t pud)
  1031. {
  1032. pud_val(pud) |= _REGION3_ENTRY_WRITE;
  1033. if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
  1034. return pud;
  1035. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1036. return pud;
  1037. }
  1038. static inline pud_t pud_mkclean(pud_t pud)
  1039. {
  1040. if (pud_large(pud)) {
  1041. pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
  1042. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  1043. }
  1044. return pud;
  1045. }
  1046. static inline pud_t pud_mkdirty(pud_t pud)
  1047. {
  1048. if (pud_large(pud)) {
  1049. pud_val(pud) |= _REGION3_ENTRY_DIRTY |
  1050. _REGION3_ENTRY_SOFT_DIRTY;
  1051. if (pud_val(pud) & _REGION3_ENTRY_WRITE)
  1052. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1053. }
  1054. return pud;
  1055. }
  1056. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1057. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1058. {
  1059. /*
  1060. * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
  1061. * (see __Pxxx / __Sxxx). Convert to segment table entry format.
  1062. */
  1063. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1064. return pgprot_val(SEGMENT_NONE);
  1065. if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
  1066. return pgprot_val(SEGMENT_RO);
  1067. if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
  1068. return pgprot_val(SEGMENT_RX);
  1069. if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
  1070. return pgprot_val(SEGMENT_RW);
  1071. return pgprot_val(SEGMENT_RWX);
  1072. }
  1073. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1074. {
  1075. if (pmd_large(pmd)) {
  1076. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1077. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1078. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1079. }
  1080. return pmd;
  1081. }
  1082. static inline pmd_t pmd_mkold(pmd_t pmd)
  1083. {
  1084. if (pmd_large(pmd)) {
  1085. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1086. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1087. }
  1088. return pmd;
  1089. }
  1090. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1091. {
  1092. if (pmd_large(pmd)) {
  1093. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
  1094. _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
  1095. _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
  1096. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1097. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1098. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1099. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1100. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1101. return pmd;
  1102. }
  1103. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
  1104. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1105. return pmd;
  1106. }
  1107. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1108. {
  1109. pmd_t __pmd;
  1110. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1111. return __pmd;
  1112. }
  1113. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1114. static inline void __pmdp_csp(pmd_t *pmdp)
  1115. {
  1116. csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
  1117. pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1118. }
  1119. #define IDTE_GLOBAL 0
  1120. #define IDTE_LOCAL 1
  1121. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
  1122. {
  1123. unsigned long sto;
  1124. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1125. asm volatile(
  1126. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1127. : "+m" (*pmdp)
  1128. : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
  1129. [m4] "i" (local)
  1130. : "cc" );
  1131. }
  1132. static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
  1133. {
  1134. unsigned long r3o;
  1135. r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
  1136. r3o |= _ASCE_TYPE_REGION3;
  1137. asm volatile(
  1138. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1139. : "+m" (*pudp)
  1140. : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
  1141. [m4] "i" (local)
  1142. : "cc");
  1143. }
  1144. pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1145. pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1146. pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
  1147. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1148. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1149. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1150. pgtable_t pgtable);
  1151. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1152. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1153. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  1154. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  1155. unsigned long addr, pmd_t *pmdp,
  1156. pmd_t entry, int dirty)
  1157. {
  1158. VM_BUG_ON(addr & ~HPAGE_MASK);
  1159. entry = pmd_mkyoung(entry);
  1160. if (dirty)
  1161. entry = pmd_mkdirty(entry);
  1162. if (pmd_val(*pmdp) == pmd_val(entry))
  1163. return 0;
  1164. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
  1165. return 1;
  1166. }
  1167. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1168. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1169. unsigned long addr, pmd_t *pmdp)
  1170. {
  1171. pmd_t pmd = *pmdp;
  1172. pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
  1173. return pmd_young(pmd);
  1174. }
  1175. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  1176. static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
  1177. unsigned long addr, pmd_t *pmdp)
  1178. {
  1179. VM_BUG_ON(addr & ~HPAGE_MASK);
  1180. return pmdp_test_and_clear_young(vma, addr, pmdp);
  1181. }
  1182. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1183. pmd_t *pmdp, pmd_t entry)
  1184. {
  1185. if (!MACHINE_HAS_NX)
  1186. pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
  1187. *pmdp = entry;
  1188. }
  1189. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1190. {
  1191. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1192. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1193. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1194. return pmd;
  1195. }
  1196. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  1197. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  1198. unsigned long addr, pmd_t *pmdp)
  1199. {
  1200. return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1201. }
  1202. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
  1203. static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
  1204. unsigned long addr,
  1205. pmd_t *pmdp, int full)
  1206. {
  1207. if (full) {
  1208. pmd_t pmd = *pmdp;
  1209. *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
  1210. return pmd;
  1211. }
  1212. return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1213. }
  1214. #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
  1215. static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
  1216. unsigned long addr, pmd_t *pmdp)
  1217. {
  1218. return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  1219. }
  1220. #define __HAVE_ARCH_PMDP_INVALIDATE
  1221. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1222. unsigned long addr, pmd_t *pmdp)
  1223. {
  1224. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
  1225. }
  1226. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1227. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1228. unsigned long addr, pmd_t *pmdp)
  1229. {
  1230. pmd_t pmd = *pmdp;
  1231. if (pmd_write(pmd))
  1232. pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
  1233. }
  1234. static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
  1235. unsigned long address,
  1236. pmd_t *pmdp)
  1237. {
  1238. return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
  1239. }
  1240. #define pmdp_collapse_flush pmdp_collapse_flush
  1241. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1242. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1243. static inline int pmd_trans_huge(pmd_t pmd)
  1244. {
  1245. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1246. }
  1247. #define has_transparent_hugepage has_transparent_hugepage
  1248. static inline int has_transparent_hugepage(void)
  1249. {
  1250. return MACHINE_HAS_EDAT1 ? 1 : 0;
  1251. }
  1252. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1253. /*
  1254. * 64 bit swap entry format:
  1255. * A page-table entry has some bits we have to treat in a special way.
  1256. * Bits 52 and bit 55 have to be zero, otherwise a specification
  1257. * exception will occur instead of a page translation exception. The
  1258. * specification exception has the bad habit not to store necessary
  1259. * information in the lowcore.
  1260. * Bits 54 and 63 are used to indicate the page type.
  1261. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
  1262. * This leaves the bits 0-51 and bits 56-62 to store type and offset.
  1263. * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
  1264. * for the offset.
  1265. * | offset |01100|type |00|
  1266. * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
  1267. * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
  1268. */
  1269. #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
  1270. #define __SWP_OFFSET_SHIFT 12
  1271. #define __SWP_TYPE_MASK ((1UL << 5) - 1)
  1272. #define __SWP_TYPE_SHIFT 2
  1273. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1274. {
  1275. pte_t pte;
  1276. pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
  1277. pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
  1278. pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
  1279. return pte;
  1280. }
  1281. static inline unsigned long __swp_type(swp_entry_t entry)
  1282. {
  1283. return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
  1284. }
  1285. static inline unsigned long __swp_offset(swp_entry_t entry)
  1286. {
  1287. return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
  1288. }
  1289. static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
  1290. {
  1291. return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
  1292. }
  1293. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1294. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1295. #endif /* !__ASSEMBLY__ */
  1296. #define kern_addr_valid(addr) (1)
  1297. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1298. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1299. extern int s390_enable_sie(void);
  1300. extern int s390_enable_skey(void);
  1301. extern void s390_reset_cmma(struct mm_struct *mm);
  1302. /* s390 has a private copy of get unmapped area to deal with cache synonyms */
  1303. #define HAVE_ARCH_UNMAPPED_AREA
  1304. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1305. /*
  1306. * No page table caches to initialise
  1307. */
  1308. static inline void pgtable_cache_init(void) { }
  1309. static inline void check_pgt_cache(void) { }
  1310. #include <asm-generic/pgtable.h>
  1311. #endif /* _S390_PAGE_H */