traps.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/extable.h>
  25. #include <linux/mm.h>
  26. #include <linux/sched/mm.h>
  27. #include <linux/sched/debug.h>
  28. #include <linux/smp.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/kgdb.h>
  35. #include <linux/kdebug.h>
  36. #include <linux/kprobes.h>
  37. #include <linux/notifier.h>
  38. #include <linux/kdb.h>
  39. #include <linux/irq.h>
  40. #include <linux/perf_event.h>
  41. #include <asm/addrspace.h>
  42. #include <asm/bootinfo.h>
  43. #include <asm/branch.h>
  44. #include <asm/break.h>
  45. #include <asm/cop2.h>
  46. #include <asm/cpu.h>
  47. #include <asm/cpu-type.h>
  48. #include <asm/dsp.h>
  49. #include <asm/fpu.h>
  50. #include <asm/fpu_emulator.h>
  51. #include <asm/idle.h>
  52. #include <asm/mips-cm.h>
  53. #include <asm/mips-r2-to-r6-emul.h>
  54. #include <asm/mips-cm.h>
  55. #include <asm/mipsregs.h>
  56. #include <asm/mipsmtregs.h>
  57. #include <asm/module.h>
  58. #include <asm/msa.h>
  59. #include <asm/pgtable.h>
  60. #include <asm/ptrace.h>
  61. #include <asm/sections.h>
  62. #include <asm/siginfo.h>
  63. #include <asm/tlbdebug.h>
  64. #include <asm/traps.h>
  65. #include <linux/uaccess.h>
  66. #include <asm/watch.h>
  67. #include <asm/mmu_context.h>
  68. #include <asm/types.h>
  69. #include <asm/stacktrace.h>
  70. #include <asm/uasm.h>
  71. extern void check_wait(void);
  72. extern asmlinkage void rollback_handle_int(void);
  73. extern asmlinkage void handle_int(void);
  74. extern u32 handle_tlbl[];
  75. extern u32 handle_tlbs[];
  76. extern u32 handle_tlbm[];
  77. extern asmlinkage void handle_adel(void);
  78. extern asmlinkage void handle_ades(void);
  79. extern asmlinkage void handle_ibe(void);
  80. extern asmlinkage void handle_dbe(void);
  81. extern asmlinkage void handle_sys(void);
  82. extern asmlinkage void handle_bp(void);
  83. extern asmlinkage void handle_ri(void);
  84. extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  85. extern asmlinkage void handle_ri_rdhwr(void);
  86. extern asmlinkage void handle_cpu(void);
  87. extern asmlinkage void handle_ov(void);
  88. extern asmlinkage void handle_tr(void);
  89. extern asmlinkage void handle_msa_fpe(void);
  90. extern asmlinkage void handle_fpe(void);
  91. extern asmlinkage void handle_ftlb(void);
  92. extern asmlinkage void handle_msa(void);
  93. extern asmlinkage void handle_mdmx(void);
  94. extern asmlinkage void handle_watch(void);
  95. extern asmlinkage void handle_mt(void);
  96. extern asmlinkage void handle_dsp(void);
  97. extern asmlinkage void handle_mcheck(void);
  98. extern asmlinkage void handle_reserved(void);
  99. extern void tlb_do_page_fault_0(void);
  100. void (*board_be_init)(void);
  101. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  102. void (*board_nmi_handler_setup)(void);
  103. void (*board_ejtag_handler_setup)(void);
  104. void (*board_bind_eic_interrupt)(int irq, int regset);
  105. void (*board_ebase_setup)(void);
  106. void(*board_cache_error_setup)(void);
  107. static void show_raw_backtrace(unsigned long reg29)
  108. {
  109. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  110. unsigned long addr;
  111. printk("Call Trace:");
  112. #ifdef CONFIG_KALLSYMS
  113. printk("\n");
  114. #endif
  115. while (!kstack_end(sp)) {
  116. unsigned long __user *p =
  117. (unsigned long __user *)(unsigned long)sp++;
  118. if (__get_user(addr, p)) {
  119. printk(" (Bad stack address)");
  120. break;
  121. }
  122. if (__kernel_text_address(addr))
  123. print_ip_sym(addr);
  124. }
  125. printk("\n");
  126. }
  127. #ifdef CONFIG_KALLSYMS
  128. int raw_show_trace;
  129. static int __init set_raw_show_trace(char *str)
  130. {
  131. raw_show_trace = 1;
  132. return 1;
  133. }
  134. __setup("raw_show_trace", set_raw_show_trace);
  135. #endif
  136. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  137. {
  138. unsigned long sp = regs->regs[29];
  139. unsigned long ra = regs->regs[31];
  140. unsigned long pc = regs->cp0_epc;
  141. if (!task)
  142. task = current;
  143. if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
  144. show_raw_backtrace(sp);
  145. return;
  146. }
  147. printk("Call Trace:\n");
  148. do {
  149. print_ip_sym(pc);
  150. pc = unwind_stack(task, &sp, pc, &ra);
  151. } while (pc);
  152. pr_cont("\n");
  153. }
  154. /*
  155. * This routine abuses get_user()/put_user() to reference pointers
  156. * with at least a bit of error checking ...
  157. */
  158. static void show_stacktrace(struct task_struct *task,
  159. const struct pt_regs *regs)
  160. {
  161. const int field = 2 * sizeof(unsigned long);
  162. long stackdata;
  163. int i;
  164. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  165. printk("Stack :");
  166. i = 0;
  167. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  168. if (i && ((i % (64 / field)) == 0)) {
  169. pr_cont("\n");
  170. printk(" ");
  171. }
  172. if (i > 39) {
  173. pr_cont(" ...");
  174. break;
  175. }
  176. if (__get_user(stackdata, sp++)) {
  177. pr_cont(" (Bad stack address)");
  178. break;
  179. }
  180. pr_cont(" %0*lx", field, stackdata);
  181. i++;
  182. }
  183. pr_cont("\n");
  184. show_backtrace(task, regs);
  185. }
  186. void show_stack(struct task_struct *task, unsigned long *sp)
  187. {
  188. struct pt_regs regs;
  189. mm_segment_t old_fs = get_fs();
  190. if (sp) {
  191. regs.regs[29] = (unsigned long)sp;
  192. regs.regs[31] = 0;
  193. regs.cp0_epc = 0;
  194. } else {
  195. if (task && task != current) {
  196. regs.regs[29] = task->thread.reg29;
  197. regs.regs[31] = 0;
  198. regs.cp0_epc = task->thread.reg31;
  199. #ifdef CONFIG_KGDB_KDB
  200. } else if (atomic_read(&kgdb_active) != -1 &&
  201. kdb_current_regs) {
  202. memcpy(&regs, kdb_current_regs, sizeof(regs));
  203. #endif /* CONFIG_KGDB_KDB */
  204. } else {
  205. prepare_frametrace(&regs);
  206. }
  207. }
  208. /*
  209. * show_stack() deals exclusively with kernel mode, so be sure to access
  210. * the stack in the kernel (not user) address space.
  211. */
  212. set_fs(KERNEL_DS);
  213. show_stacktrace(task, &regs);
  214. set_fs(old_fs);
  215. }
  216. static void show_code(unsigned int __user *pc)
  217. {
  218. long i;
  219. unsigned short __user *pc16 = NULL;
  220. printk("Code:");
  221. if ((unsigned long)pc & 1)
  222. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  223. for(i = -3 ; i < 6 ; i++) {
  224. unsigned int insn;
  225. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  226. pr_cont(" (Bad address in epc)\n");
  227. break;
  228. }
  229. pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  230. }
  231. pr_cont("\n");
  232. }
  233. static void __show_regs(const struct pt_regs *regs)
  234. {
  235. const int field = 2 * sizeof(unsigned long);
  236. unsigned int cause = regs->cp0_cause;
  237. unsigned int exccode;
  238. int i;
  239. show_regs_print_info(KERN_DEFAULT);
  240. /*
  241. * Saved main processor registers
  242. */
  243. for (i = 0; i < 32; ) {
  244. if ((i % 4) == 0)
  245. printk("$%2d :", i);
  246. if (i == 0)
  247. pr_cont(" %0*lx", field, 0UL);
  248. else if (i == 26 || i == 27)
  249. pr_cont(" %*s", field, "");
  250. else
  251. pr_cont(" %0*lx", field, regs->regs[i]);
  252. i++;
  253. if ((i % 4) == 0)
  254. pr_cont("\n");
  255. }
  256. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  257. printk("Acx : %0*lx\n", field, regs->acx);
  258. #endif
  259. printk("Hi : %0*lx\n", field, regs->hi);
  260. printk("Lo : %0*lx\n", field, regs->lo);
  261. /*
  262. * Saved cp0 registers
  263. */
  264. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  265. (void *) regs->cp0_epc);
  266. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  267. (void *) regs->regs[31]);
  268. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  269. if (cpu_has_3kex) {
  270. if (regs->cp0_status & ST0_KUO)
  271. pr_cont("KUo ");
  272. if (regs->cp0_status & ST0_IEO)
  273. pr_cont("IEo ");
  274. if (regs->cp0_status & ST0_KUP)
  275. pr_cont("KUp ");
  276. if (regs->cp0_status & ST0_IEP)
  277. pr_cont("IEp ");
  278. if (regs->cp0_status & ST0_KUC)
  279. pr_cont("KUc ");
  280. if (regs->cp0_status & ST0_IEC)
  281. pr_cont("IEc ");
  282. } else if (cpu_has_4kex) {
  283. if (regs->cp0_status & ST0_KX)
  284. pr_cont("KX ");
  285. if (regs->cp0_status & ST0_SX)
  286. pr_cont("SX ");
  287. if (regs->cp0_status & ST0_UX)
  288. pr_cont("UX ");
  289. switch (regs->cp0_status & ST0_KSU) {
  290. case KSU_USER:
  291. pr_cont("USER ");
  292. break;
  293. case KSU_SUPERVISOR:
  294. pr_cont("SUPERVISOR ");
  295. break;
  296. case KSU_KERNEL:
  297. pr_cont("KERNEL ");
  298. break;
  299. default:
  300. pr_cont("BAD_MODE ");
  301. break;
  302. }
  303. if (regs->cp0_status & ST0_ERL)
  304. pr_cont("ERL ");
  305. if (regs->cp0_status & ST0_EXL)
  306. pr_cont("EXL ");
  307. if (regs->cp0_status & ST0_IE)
  308. pr_cont("IE ");
  309. }
  310. pr_cont("\n");
  311. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  312. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  313. if (1 <= exccode && exccode <= 5)
  314. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  315. printk("PrId : %08x (%s)\n", read_c0_prid(),
  316. cpu_name_string());
  317. }
  318. /*
  319. * FIXME: really the generic show_regs should take a const pointer argument.
  320. */
  321. void show_regs(struct pt_regs *regs)
  322. {
  323. __show_regs((struct pt_regs *)regs);
  324. }
  325. void show_registers(struct pt_regs *regs)
  326. {
  327. const int field = 2 * sizeof(unsigned long);
  328. mm_segment_t old_fs = get_fs();
  329. __show_regs(regs);
  330. print_modules();
  331. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  332. current->comm, current->pid, current_thread_info(), current,
  333. field, current_thread_info()->tp_value);
  334. if (cpu_has_userlocal) {
  335. unsigned long tls;
  336. tls = read_c0_userlocal();
  337. if (tls != current_thread_info()->tp_value)
  338. printk("*HwTLS: %0*lx\n", field, tls);
  339. }
  340. if (!user_mode(regs))
  341. /* Necessary for getting the correct stack content */
  342. set_fs(KERNEL_DS);
  343. show_stacktrace(current, regs);
  344. show_code((unsigned int __user *) regs->cp0_epc);
  345. printk("\n");
  346. set_fs(old_fs);
  347. }
  348. static DEFINE_RAW_SPINLOCK(die_lock);
  349. void __noreturn die(const char *str, struct pt_regs *regs)
  350. {
  351. static int die_counter;
  352. int sig = SIGSEGV;
  353. oops_enter();
  354. if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
  355. SIGSEGV) == NOTIFY_STOP)
  356. sig = 0;
  357. console_verbose();
  358. raw_spin_lock_irq(&die_lock);
  359. bust_spinlocks(1);
  360. printk("%s[#%d]:\n", str, ++die_counter);
  361. show_registers(regs);
  362. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  363. raw_spin_unlock_irq(&die_lock);
  364. oops_exit();
  365. if (in_interrupt())
  366. panic("Fatal exception in interrupt");
  367. if (panic_on_oops)
  368. panic("Fatal exception");
  369. if (regs && kexec_should_crash(current))
  370. crash_kexec(regs);
  371. do_exit(sig);
  372. }
  373. extern struct exception_table_entry __start___dbe_table[];
  374. extern struct exception_table_entry __stop___dbe_table[];
  375. __asm__(
  376. " .section __dbe_table, \"a\"\n"
  377. " .previous \n");
  378. /* Given an address, look for it in the exception tables. */
  379. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  380. {
  381. const struct exception_table_entry *e;
  382. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  383. if (!e)
  384. e = search_module_dbetables(addr);
  385. return e;
  386. }
  387. asmlinkage void do_be(struct pt_regs *regs)
  388. {
  389. const int field = 2 * sizeof(unsigned long);
  390. const struct exception_table_entry *fixup = NULL;
  391. int data = regs->cp0_cause & 4;
  392. int action = MIPS_BE_FATAL;
  393. enum ctx_state prev_state;
  394. prev_state = exception_enter();
  395. /* XXX For now. Fixme, this searches the wrong table ... */
  396. if (data && !user_mode(regs))
  397. fixup = search_dbe_tables(exception_epc(regs));
  398. if (fixup)
  399. action = MIPS_BE_FIXUP;
  400. if (board_be_handler)
  401. action = board_be_handler(regs, fixup != NULL);
  402. else
  403. mips_cm_error_report();
  404. switch (action) {
  405. case MIPS_BE_DISCARD:
  406. goto out;
  407. case MIPS_BE_FIXUP:
  408. if (fixup) {
  409. regs->cp0_epc = fixup->nextinsn;
  410. goto out;
  411. }
  412. break;
  413. default:
  414. break;
  415. }
  416. /*
  417. * Assume it would be too dangerous to continue ...
  418. */
  419. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  420. data ? "Data" : "Instruction",
  421. field, regs->cp0_epc, field, regs->regs[31]);
  422. if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
  423. SIGBUS) == NOTIFY_STOP)
  424. goto out;
  425. die_if_kernel("Oops", regs);
  426. force_sig(SIGBUS, current);
  427. out:
  428. exception_exit(prev_state);
  429. }
  430. /*
  431. * ll/sc, rdhwr, sync emulation
  432. */
  433. #define OPCODE 0xfc000000
  434. #define BASE 0x03e00000
  435. #define RT 0x001f0000
  436. #define OFFSET 0x0000ffff
  437. #define LL 0xc0000000
  438. #define SC 0xe0000000
  439. #define SPEC0 0x00000000
  440. #define SPEC3 0x7c000000
  441. #define RD 0x0000f800
  442. #define FUNC 0x0000003f
  443. #define SYNC 0x0000000f
  444. #define RDHWR 0x0000003b
  445. /* microMIPS definitions */
  446. #define MM_POOL32A_FUNC 0xfc00ffff
  447. #define MM_RDHWR 0x00006b3c
  448. #define MM_RS 0x001f0000
  449. #define MM_RT 0x03e00000
  450. /*
  451. * The ll_bit is cleared by r*_switch.S
  452. */
  453. unsigned int ll_bit;
  454. struct task_struct *ll_task;
  455. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  456. {
  457. unsigned long value, __user *vaddr;
  458. long offset;
  459. /*
  460. * analyse the ll instruction that just caused a ri exception
  461. * and put the referenced address to addr.
  462. */
  463. /* sign extend offset */
  464. offset = opcode & OFFSET;
  465. offset <<= 16;
  466. offset >>= 16;
  467. vaddr = (unsigned long __user *)
  468. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  469. if ((unsigned long)vaddr & 3)
  470. return SIGBUS;
  471. if (get_user(value, vaddr))
  472. return SIGSEGV;
  473. preempt_disable();
  474. if (ll_task == NULL || ll_task == current) {
  475. ll_bit = 1;
  476. } else {
  477. ll_bit = 0;
  478. }
  479. ll_task = current;
  480. preempt_enable();
  481. regs->regs[(opcode & RT) >> 16] = value;
  482. return 0;
  483. }
  484. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  485. {
  486. unsigned long __user *vaddr;
  487. unsigned long reg;
  488. long offset;
  489. /*
  490. * analyse the sc instruction that just caused a ri exception
  491. * and put the referenced address to addr.
  492. */
  493. /* sign extend offset */
  494. offset = opcode & OFFSET;
  495. offset <<= 16;
  496. offset >>= 16;
  497. vaddr = (unsigned long __user *)
  498. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  499. reg = (opcode & RT) >> 16;
  500. if ((unsigned long)vaddr & 3)
  501. return SIGBUS;
  502. preempt_disable();
  503. if (ll_bit == 0 || ll_task != current) {
  504. regs->regs[reg] = 0;
  505. preempt_enable();
  506. return 0;
  507. }
  508. preempt_enable();
  509. if (put_user(regs->regs[reg], vaddr))
  510. return SIGSEGV;
  511. regs->regs[reg] = 1;
  512. return 0;
  513. }
  514. /*
  515. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  516. * opcodes are supposed to result in coprocessor unusable exceptions if
  517. * executed on ll/sc-less processors. That's the theory. In practice a
  518. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  519. * instead, so we're doing the emulation thing in both exception handlers.
  520. */
  521. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  522. {
  523. if ((opcode & OPCODE) == LL) {
  524. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  525. 1, regs, 0);
  526. return simulate_ll(regs, opcode);
  527. }
  528. if ((opcode & OPCODE) == SC) {
  529. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  530. 1, regs, 0);
  531. return simulate_sc(regs, opcode);
  532. }
  533. return -1; /* Must be something else ... */
  534. }
  535. /*
  536. * Simulate trapping 'rdhwr' instructions to provide user accessible
  537. * registers not implemented in hardware.
  538. */
  539. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  540. {
  541. struct thread_info *ti = task_thread_info(current);
  542. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  543. 1, regs, 0);
  544. switch (rd) {
  545. case MIPS_HWR_CPUNUM: /* CPU number */
  546. regs->regs[rt] = smp_processor_id();
  547. return 0;
  548. case MIPS_HWR_SYNCISTEP: /* SYNCI length */
  549. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  550. current_cpu_data.icache.linesz);
  551. return 0;
  552. case MIPS_HWR_CC: /* Read count register */
  553. regs->regs[rt] = read_c0_count();
  554. return 0;
  555. case MIPS_HWR_CCRES: /* Count register resolution */
  556. switch (current_cpu_type()) {
  557. case CPU_20KC:
  558. case CPU_25KF:
  559. regs->regs[rt] = 1;
  560. break;
  561. default:
  562. regs->regs[rt] = 2;
  563. }
  564. return 0;
  565. case MIPS_HWR_ULR: /* Read UserLocal register */
  566. regs->regs[rt] = ti->tp_value;
  567. return 0;
  568. default:
  569. return -1;
  570. }
  571. }
  572. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  573. {
  574. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  575. int rd = (opcode & RD) >> 11;
  576. int rt = (opcode & RT) >> 16;
  577. simulate_rdhwr(regs, rd, rt);
  578. return 0;
  579. }
  580. /* Not ours. */
  581. return -1;
  582. }
  583. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
  584. {
  585. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  586. int rd = (opcode & MM_RS) >> 16;
  587. int rt = (opcode & MM_RT) >> 21;
  588. simulate_rdhwr(regs, rd, rt);
  589. return 0;
  590. }
  591. /* Not ours. */
  592. return -1;
  593. }
  594. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  595. {
  596. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  597. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  598. 1, regs, 0);
  599. return 0;
  600. }
  601. return -1; /* Must be something else ... */
  602. }
  603. asmlinkage void do_ov(struct pt_regs *regs)
  604. {
  605. enum ctx_state prev_state;
  606. siginfo_t info = {
  607. .si_signo = SIGFPE,
  608. .si_code = FPE_INTOVF,
  609. .si_addr = (void __user *)regs->cp0_epc,
  610. };
  611. prev_state = exception_enter();
  612. die_if_kernel("Integer overflow", regs);
  613. force_sig_info(SIGFPE, &info, current);
  614. exception_exit(prev_state);
  615. }
  616. /*
  617. * Send SIGFPE according to FCSR Cause bits, which must have already
  618. * been masked against Enable bits. This is impotant as Inexact can
  619. * happen together with Overflow or Underflow, and `ptrace' can set
  620. * any bits.
  621. */
  622. void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
  623. struct task_struct *tsk)
  624. {
  625. struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
  626. if (fcr31 & FPU_CSR_INV_X)
  627. si.si_code = FPE_FLTINV;
  628. else if (fcr31 & FPU_CSR_DIV_X)
  629. si.si_code = FPE_FLTDIV;
  630. else if (fcr31 & FPU_CSR_OVF_X)
  631. si.si_code = FPE_FLTOVF;
  632. else if (fcr31 & FPU_CSR_UDF_X)
  633. si.si_code = FPE_FLTUND;
  634. else if (fcr31 & FPU_CSR_INE_X)
  635. si.si_code = FPE_FLTRES;
  636. else
  637. si.si_code = __SI_FAULT;
  638. force_sig_info(SIGFPE, &si, tsk);
  639. }
  640. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  641. {
  642. struct siginfo si = { 0 };
  643. struct vm_area_struct *vma;
  644. switch (sig) {
  645. case 0:
  646. return 0;
  647. case SIGFPE:
  648. force_fcr31_sig(fcr31, fault_addr, current);
  649. return 1;
  650. case SIGBUS:
  651. si.si_addr = fault_addr;
  652. si.si_signo = sig;
  653. si.si_code = BUS_ADRERR;
  654. force_sig_info(sig, &si, current);
  655. return 1;
  656. case SIGSEGV:
  657. si.si_addr = fault_addr;
  658. si.si_signo = sig;
  659. down_read(&current->mm->mmap_sem);
  660. vma = find_vma(current->mm, (unsigned long)fault_addr);
  661. if (vma && (vma->vm_start <= (unsigned long)fault_addr))
  662. si.si_code = SEGV_ACCERR;
  663. else
  664. si.si_code = SEGV_MAPERR;
  665. up_read(&current->mm->mmap_sem);
  666. force_sig_info(sig, &si, current);
  667. return 1;
  668. default:
  669. force_sig(sig, current);
  670. return 1;
  671. }
  672. }
  673. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  674. unsigned long old_epc, unsigned long old_ra)
  675. {
  676. union mips_instruction inst = { .word = opcode };
  677. void __user *fault_addr;
  678. unsigned long fcr31;
  679. int sig;
  680. /* If it's obviously not an FP instruction, skip it */
  681. switch (inst.i_format.opcode) {
  682. case cop1_op:
  683. case cop1x_op:
  684. case lwc1_op:
  685. case ldc1_op:
  686. case swc1_op:
  687. case sdc1_op:
  688. break;
  689. default:
  690. return -1;
  691. }
  692. /*
  693. * do_ri skipped over the instruction via compute_return_epc, undo
  694. * that for the FPU emulator.
  695. */
  696. regs->cp0_epc = old_epc;
  697. regs->regs[31] = old_ra;
  698. /* Save the FP context to struct thread_struct */
  699. lose_fpu(1);
  700. /* Run the emulator */
  701. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  702. &fault_addr);
  703. /*
  704. * We can't allow the emulated instruction to leave any
  705. * enabled Cause bits set in $fcr31.
  706. */
  707. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  708. current->thread.fpu.fcr31 &= ~fcr31;
  709. /* Restore the hardware register state */
  710. own_fpu(1);
  711. /* Send a signal if required. */
  712. process_fpemu_return(sig, fault_addr, fcr31);
  713. return 0;
  714. }
  715. /*
  716. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  717. */
  718. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  719. {
  720. enum ctx_state prev_state;
  721. void __user *fault_addr;
  722. int sig;
  723. prev_state = exception_enter();
  724. if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
  725. SIGFPE) == NOTIFY_STOP)
  726. goto out;
  727. /* Clear FCSR.Cause before enabling interrupts */
  728. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
  729. local_irq_enable();
  730. die_if_kernel("FP exception in kernel code", regs);
  731. if (fcr31 & FPU_CSR_UNI_X) {
  732. /*
  733. * Unimplemented operation exception. If we've got the full
  734. * software emulator on-board, let's use it...
  735. *
  736. * Force FPU to dump state into task/thread context. We're
  737. * moving a lot of data here for what is probably a single
  738. * instruction, but the alternative is to pre-decode the FP
  739. * register operands before invoking the emulator, which seems
  740. * a bit extreme for what should be an infrequent event.
  741. */
  742. /* Ensure 'resume' not overwrite saved fp context again. */
  743. lose_fpu(1);
  744. /* Run the emulator */
  745. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  746. &fault_addr);
  747. /*
  748. * We can't allow the emulated instruction to leave any
  749. * enabled Cause bits set in $fcr31.
  750. */
  751. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  752. current->thread.fpu.fcr31 &= ~fcr31;
  753. /* Restore the hardware register state */
  754. own_fpu(1); /* Using the FPU again. */
  755. } else {
  756. sig = SIGFPE;
  757. fault_addr = (void __user *) regs->cp0_epc;
  758. }
  759. /* Send a signal if required. */
  760. process_fpemu_return(sig, fault_addr, fcr31);
  761. out:
  762. exception_exit(prev_state);
  763. }
  764. void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
  765. const char *str)
  766. {
  767. siginfo_t info = { 0 };
  768. char b[40];
  769. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  770. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  771. SIGTRAP) == NOTIFY_STOP)
  772. return;
  773. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  774. if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  775. SIGTRAP) == NOTIFY_STOP)
  776. return;
  777. /*
  778. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  779. * insns, even for trap and break codes that indicate arithmetic
  780. * failures. Weird ...
  781. * But should we continue the brokenness??? --macro
  782. */
  783. switch (code) {
  784. case BRK_OVERFLOW:
  785. case BRK_DIVZERO:
  786. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  787. die_if_kernel(b, regs);
  788. if (code == BRK_DIVZERO)
  789. info.si_code = FPE_INTDIV;
  790. else
  791. info.si_code = FPE_INTOVF;
  792. info.si_signo = SIGFPE;
  793. info.si_addr = (void __user *) regs->cp0_epc;
  794. force_sig_info(SIGFPE, &info, current);
  795. break;
  796. case BRK_BUG:
  797. die_if_kernel("Kernel bug detected", regs);
  798. force_sig(SIGTRAP, current);
  799. break;
  800. case BRK_MEMU:
  801. /*
  802. * This breakpoint code is used by the FPU emulator to retake
  803. * control of the CPU after executing the instruction from the
  804. * delay slot of an emulated branch.
  805. *
  806. * Terminate if exception was recognized as a delay slot return
  807. * otherwise handle as normal.
  808. */
  809. if (do_dsemulret(regs))
  810. return;
  811. die_if_kernel("Math emu break/trap", regs);
  812. force_sig(SIGTRAP, current);
  813. break;
  814. default:
  815. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  816. die_if_kernel(b, regs);
  817. if (si_code) {
  818. info.si_signo = SIGTRAP;
  819. info.si_code = si_code;
  820. force_sig_info(SIGTRAP, &info, current);
  821. } else {
  822. force_sig(SIGTRAP, current);
  823. }
  824. }
  825. }
  826. asmlinkage void do_bp(struct pt_regs *regs)
  827. {
  828. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  829. unsigned int opcode, bcode;
  830. enum ctx_state prev_state;
  831. mm_segment_t seg;
  832. seg = get_fs();
  833. if (!user_mode(regs))
  834. set_fs(KERNEL_DS);
  835. prev_state = exception_enter();
  836. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  837. if (get_isa16_mode(regs->cp0_epc)) {
  838. u16 instr[2];
  839. if (__get_user(instr[0], (u16 __user *)epc))
  840. goto out_sigsegv;
  841. if (!cpu_has_mmips) {
  842. /* MIPS16e mode */
  843. bcode = (instr[0] >> 5) & 0x3f;
  844. } else if (mm_insn_16bit(instr[0])) {
  845. /* 16-bit microMIPS BREAK */
  846. bcode = instr[0] & 0xf;
  847. } else {
  848. /* 32-bit microMIPS BREAK */
  849. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  850. goto out_sigsegv;
  851. opcode = (instr[0] << 16) | instr[1];
  852. bcode = (opcode >> 6) & ((1 << 20) - 1);
  853. }
  854. } else {
  855. if (__get_user(opcode, (unsigned int __user *)epc))
  856. goto out_sigsegv;
  857. bcode = (opcode >> 6) & ((1 << 20) - 1);
  858. }
  859. /*
  860. * There is the ancient bug in the MIPS assemblers that the break
  861. * code starts left to bit 16 instead to bit 6 in the opcode.
  862. * Gas is bug-compatible, but not always, grrr...
  863. * We handle both cases with a simple heuristics. --macro
  864. */
  865. if (bcode >= (1 << 10))
  866. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  867. /*
  868. * notify the kprobe handlers, if instruction is likely to
  869. * pertain to them.
  870. */
  871. switch (bcode) {
  872. case BRK_UPROBE:
  873. if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
  874. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  875. goto out;
  876. else
  877. break;
  878. case BRK_UPROBE_XOL:
  879. if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
  880. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  881. goto out;
  882. else
  883. break;
  884. case BRK_KPROBE_BP:
  885. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  886. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  887. goto out;
  888. else
  889. break;
  890. case BRK_KPROBE_SSTEPBP:
  891. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  892. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  893. goto out;
  894. else
  895. break;
  896. default:
  897. break;
  898. }
  899. do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
  900. out:
  901. set_fs(seg);
  902. exception_exit(prev_state);
  903. return;
  904. out_sigsegv:
  905. force_sig(SIGSEGV, current);
  906. goto out;
  907. }
  908. asmlinkage void do_tr(struct pt_regs *regs)
  909. {
  910. u32 opcode, tcode = 0;
  911. enum ctx_state prev_state;
  912. u16 instr[2];
  913. mm_segment_t seg;
  914. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  915. seg = get_fs();
  916. if (!user_mode(regs))
  917. set_fs(get_ds());
  918. prev_state = exception_enter();
  919. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  920. if (get_isa16_mode(regs->cp0_epc)) {
  921. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  922. __get_user(instr[1], (u16 __user *)(epc + 2)))
  923. goto out_sigsegv;
  924. opcode = (instr[0] << 16) | instr[1];
  925. /* Immediate versions don't provide a code. */
  926. if (!(opcode & OPCODE))
  927. tcode = (opcode >> 12) & ((1 << 4) - 1);
  928. } else {
  929. if (__get_user(opcode, (u32 __user *)epc))
  930. goto out_sigsegv;
  931. /* Immediate versions don't provide a code. */
  932. if (!(opcode & OPCODE))
  933. tcode = (opcode >> 6) & ((1 << 10) - 1);
  934. }
  935. do_trap_or_bp(regs, tcode, 0, "Trap");
  936. out:
  937. set_fs(seg);
  938. exception_exit(prev_state);
  939. return;
  940. out_sigsegv:
  941. force_sig(SIGSEGV, current);
  942. goto out;
  943. }
  944. asmlinkage void do_ri(struct pt_regs *regs)
  945. {
  946. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  947. unsigned long old_epc = regs->cp0_epc;
  948. unsigned long old31 = regs->regs[31];
  949. enum ctx_state prev_state;
  950. unsigned int opcode = 0;
  951. int status = -1;
  952. /*
  953. * Avoid any kernel code. Just emulate the R2 instruction
  954. * as quickly as possible.
  955. */
  956. if (mipsr2_emulation && cpu_has_mips_r6 &&
  957. likely(user_mode(regs)) &&
  958. likely(get_user(opcode, epc) >= 0)) {
  959. unsigned long fcr31 = 0;
  960. status = mipsr2_decoder(regs, opcode, &fcr31);
  961. switch (status) {
  962. case 0:
  963. case SIGEMT:
  964. return;
  965. case SIGILL:
  966. goto no_r2_instr;
  967. default:
  968. process_fpemu_return(status,
  969. &current->thread.cp0_baduaddr,
  970. fcr31);
  971. return;
  972. }
  973. }
  974. no_r2_instr:
  975. prev_state = exception_enter();
  976. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  977. if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
  978. SIGILL) == NOTIFY_STOP)
  979. goto out;
  980. die_if_kernel("Reserved instruction in kernel code", regs);
  981. if (unlikely(compute_return_epc(regs) < 0))
  982. goto out;
  983. if (!get_isa16_mode(regs->cp0_epc)) {
  984. if (unlikely(get_user(opcode, epc) < 0))
  985. status = SIGSEGV;
  986. if (!cpu_has_llsc && status < 0)
  987. status = simulate_llsc(regs, opcode);
  988. if (status < 0)
  989. status = simulate_rdhwr_normal(regs, opcode);
  990. if (status < 0)
  991. status = simulate_sync(regs, opcode);
  992. if (status < 0)
  993. status = simulate_fp(regs, opcode, old_epc, old31);
  994. } else if (cpu_has_mmips) {
  995. unsigned short mmop[2] = { 0 };
  996. if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
  997. status = SIGSEGV;
  998. if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
  999. status = SIGSEGV;
  1000. opcode = mmop[0];
  1001. opcode = (opcode << 16) | mmop[1];
  1002. if (status < 0)
  1003. status = simulate_rdhwr_mm(regs, opcode);
  1004. }
  1005. if (status < 0)
  1006. status = SIGILL;
  1007. if (unlikely(status > 0)) {
  1008. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1009. regs->regs[31] = old31;
  1010. force_sig(status, current);
  1011. }
  1012. out:
  1013. exception_exit(prev_state);
  1014. }
  1015. /*
  1016. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  1017. * emulated more than some threshold number of instructions, force migration to
  1018. * a "CPU" that has FP support.
  1019. */
  1020. static void mt_ase_fp_affinity(void)
  1021. {
  1022. #ifdef CONFIG_MIPS_MT_FPAFF
  1023. if (mt_fpemul_threshold > 0 &&
  1024. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  1025. /*
  1026. * If there's no FPU present, or if the application has already
  1027. * restricted the allowed set to exclude any CPUs with FPUs,
  1028. * we'll skip the procedure.
  1029. */
  1030. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  1031. cpumask_t tmask;
  1032. current->thread.user_cpus_allowed
  1033. = current->cpus_allowed;
  1034. cpumask_and(&tmask, &current->cpus_allowed,
  1035. &mt_fpu_cpumask);
  1036. set_cpus_allowed_ptr(current, &tmask);
  1037. set_thread_flag(TIF_FPUBOUND);
  1038. }
  1039. }
  1040. #endif /* CONFIG_MIPS_MT_FPAFF */
  1041. }
  1042. /*
  1043. * No lock; only written during early bootup by CPU 0.
  1044. */
  1045. static RAW_NOTIFIER_HEAD(cu2_chain);
  1046. int __ref register_cu2_notifier(struct notifier_block *nb)
  1047. {
  1048. return raw_notifier_chain_register(&cu2_chain, nb);
  1049. }
  1050. int cu2_notifier_call_chain(unsigned long val, void *v)
  1051. {
  1052. return raw_notifier_call_chain(&cu2_chain, val, v);
  1053. }
  1054. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1055. void *data)
  1056. {
  1057. struct pt_regs *regs = data;
  1058. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1059. "instruction", regs);
  1060. force_sig(SIGILL, current);
  1061. return NOTIFY_OK;
  1062. }
  1063. static int wait_on_fp_mode_switch(atomic_t *p)
  1064. {
  1065. /*
  1066. * The FP mode for this task is currently being switched. That may
  1067. * involve modifications to the format of this tasks FP context which
  1068. * make it unsafe to proceed with execution for the moment. Instead,
  1069. * schedule some other task.
  1070. */
  1071. schedule();
  1072. return 0;
  1073. }
  1074. static int enable_restore_fp_context(int msa)
  1075. {
  1076. int err, was_fpu_owner, prior_msa;
  1077. /*
  1078. * If an FP mode switch is currently underway, wait for it to
  1079. * complete before proceeding.
  1080. */
  1081. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1082. wait_on_fp_mode_switch, TASK_KILLABLE);
  1083. if (!used_math()) {
  1084. /* First time FP context user. */
  1085. preempt_disable();
  1086. err = init_fpu();
  1087. if (msa && !err) {
  1088. enable_msa();
  1089. init_msa_upper();
  1090. set_thread_flag(TIF_USEDMSA);
  1091. set_thread_flag(TIF_MSA_CTX_LIVE);
  1092. }
  1093. preempt_enable();
  1094. if (!err)
  1095. set_used_math();
  1096. return err;
  1097. }
  1098. /*
  1099. * This task has formerly used the FP context.
  1100. *
  1101. * If this thread has no live MSA vector context then we can simply
  1102. * restore the scalar FP context. If it has live MSA vector context
  1103. * (that is, it has or may have used MSA since last performing a
  1104. * function call) then we'll need to restore the vector context. This
  1105. * applies even if we're currently only executing a scalar FP
  1106. * instruction. This is because if we were to later execute an MSA
  1107. * instruction then we'd either have to:
  1108. *
  1109. * - Restore the vector context & clobber any registers modified by
  1110. * scalar FP instructions between now & then.
  1111. *
  1112. * or
  1113. *
  1114. * - Not restore the vector context & lose the most significant bits
  1115. * of all vector registers.
  1116. *
  1117. * Neither of those options is acceptable. We cannot restore the least
  1118. * significant bits of the registers now & only restore the most
  1119. * significant bits later because the most significant bits of any
  1120. * vector registers whose aliased FP register is modified now will have
  1121. * been zeroed. We'd have no way to know that when restoring the vector
  1122. * context & thus may load an outdated value for the most significant
  1123. * bits of a vector register.
  1124. */
  1125. if (!msa && !thread_msa_context_live())
  1126. return own_fpu(1);
  1127. /*
  1128. * This task is using or has previously used MSA. Thus we require
  1129. * that Status.FR == 1.
  1130. */
  1131. preempt_disable();
  1132. was_fpu_owner = is_fpu_owner();
  1133. err = own_fpu_inatomic(0);
  1134. if (err)
  1135. goto out;
  1136. enable_msa();
  1137. write_msa_csr(current->thread.fpu.msacsr);
  1138. set_thread_flag(TIF_USEDMSA);
  1139. /*
  1140. * If this is the first time that the task is using MSA and it has
  1141. * previously used scalar FP in this time slice then we already nave
  1142. * FP context which we shouldn't clobber. We do however need to clear
  1143. * the upper 64b of each vector register so that this task has no
  1144. * opportunity to see data left behind by another.
  1145. */
  1146. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1147. if (!prior_msa && was_fpu_owner) {
  1148. init_msa_upper();
  1149. goto out;
  1150. }
  1151. if (!prior_msa) {
  1152. /*
  1153. * Restore the least significant 64b of each vector register
  1154. * from the existing scalar FP context.
  1155. */
  1156. _restore_fp(current);
  1157. /*
  1158. * The task has not formerly used MSA, so clear the upper 64b
  1159. * of each vector register such that it cannot see data left
  1160. * behind by another task.
  1161. */
  1162. init_msa_upper();
  1163. } else {
  1164. /* We need to restore the vector context. */
  1165. restore_msa(current);
  1166. /* Restore the scalar FP control & status register */
  1167. if (!was_fpu_owner)
  1168. write_32bit_cp1_register(CP1_STATUS,
  1169. current->thread.fpu.fcr31);
  1170. }
  1171. out:
  1172. preempt_enable();
  1173. return 0;
  1174. }
  1175. asmlinkage void do_cpu(struct pt_regs *regs)
  1176. {
  1177. enum ctx_state prev_state;
  1178. unsigned int __user *epc;
  1179. unsigned long old_epc, old31;
  1180. void __user *fault_addr;
  1181. unsigned int opcode;
  1182. unsigned long fcr31;
  1183. unsigned int cpid;
  1184. int status, err;
  1185. int sig;
  1186. prev_state = exception_enter();
  1187. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1188. if (cpid != 2)
  1189. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1190. switch (cpid) {
  1191. case 0:
  1192. epc = (unsigned int __user *)exception_epc(regs);
  1193. old_epc = regs->cp0_epc;
  1194. old31 = regs->regs[31];
  1195. opcode = 0;
  1196. status = -1;
  1197. if (unlikely(compute_return_epc(regs) < 0))
  1198. break;
  1199. if (!get_isa16_mode(regs->cp0_epc)) {
  1200. if (unlikely(get_user(opcode, epc) < 0))
  1201. status = SIGSEGV;
  1202. if (!cpu_has_llsc && status < 0)
  1203. status = simulate_llsc(regs, opcode);
  1204. }
  1205. if (status < 0)
  1206. status = SIGILL;
  1207. if (unlikely(status > 0)) {
  1208. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1209. regs->regs[31] = old31;
  1210. force_sig(status, current);
  1211. }
  1212. break;
  1213. case 3:
  1214. /*
  1215. * The COP3 opcode space and consequently the CP0.Status.CU3
  1216. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1217. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1218. * up the space has been reused for COP1X instructions, that
  1219. * are enabled by the CP0.Status.CU1 bit and consequently
  1220. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1221. * exceptions. Some FPU-less processors that implement one
  1222. * of these ISAs however use this code erroneously for COP1X
  1223. * instructions. Therefore we redirect this trap to the FP
  1224. * emulator too.
  1225. */
  1226. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1227. force_sig(SIGILL, current);
  1228. break;
  1229. }
  1230. /* Fall through. */
  1231. case 1:
  1232. err = enable_restore_fp_context(0);
  1233. if (raw_cpu_has_fpu && !err)
  1234. break;
  1235. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1236. &fault_addr);
  1237. /*
  1238. * We can't allow the emulated instruction to leave
  1239. * any enabled Cause bits set in $fcr31.
  1240. */
  1241. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  1242. current->thread.fpu.fcr31 &= ~fcr31;
  1243. /* Send a signal if required. */
  1244. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1245. mt_ase_fp_affinity();
  1246. break;
  1247. case 2:
  1248. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1249. break;
  1250. }
  1251. exception_exit(prev_state);
  1252. }
  1253. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1254. {
  1255. enum ctx_state prev_state;
  1256. prev_state = exception_enter();
  1257. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  1258. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1259. current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
  1260. goto out;
  1261. /* Clear MSACSR.Cause before enabling interrupts */
  1262. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1263. local_irq_enable();
  1264. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1265. force_sig(SIGFPE, current);
  1266. out:
  1267. exception_exit(prev_state);
  1268. }
  1269. asmlinkage void do_msa(struct pt_regs *regs)
  1270. {
  1271. enum ctx_state prev_state;
  1272. int err;
  1273. prev_state = exception_enter();
  1274. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1275. force_sig(SIGILL, current);
  1276. goto out;
  1277. }
  1278. die_if_kernel("do_msa invoked from kernel context!", regs);
  1279. err = enable_restore_fp_context(1);
  1280. if (err)
  1281. force_sig(SIGILL, current);
  1282. out:
  1283. exception_exit(prev_state);
  1284. }
  1285. asmlinkage void do_mdmx(struct pt_regs *regs)
  1286. {
  1287. enum ctx_state prev_state;
  1288. prev_state = exception_enter();
  1289. force_sig(SIGILL, current);
  1290. exception_exit(prev_state);
  1291. }
  1292. /*
  1293. * Called with interrupts disabled.
  1294. */
  1295. asmlinkage void do_watch(struct pt_regs *regs)
  1296. {
  1297. siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
  1298. enum ctx_state prev_state;
  1299. prev_state = exception_enter();
  1300. /*
  1301. * Clear WP (bit 22) bit of cause register so we don't loop
  1302. * forever.
  1303. */
  1304. clear_c0_cause(CAUSEF_WP);
  1305. /*
  1306. * If the current thread has the watch registers loaded, save
  1307. * their values and send SIGTRAP. Otherwise another thread
  1308. * left the registers set, clear them and continue.
  1309. */
  1310. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1311. mips_read_watch_registers();
  1312. local_irq_enable();
  1313. force_sig_info(SIGTRAP, &info, current);
  1314. } else {
  1315. mips_clear_watch_registers();
  1316. local_irq_enable();
  1317. }
  1318. exception_exit(prev_state);
  1319. }
  1320. asmlinkage void do_mcheck(struct pt_regs *regs)
  1321. {
  1322. int multi_match = regs->cp0_status & ST0_TS;
  1323. enum ctx_state prev_state;
  1324. mm_segment_t old_fs = get_fs();
  1325. prev_state = exception_enter();
  1326. show_regs(regs);
  1327. if (multi_match) {
  1328. dump_tlb_regs();
  1329. pr_info("\n");
  1330. dump_tlb_all();
  1331. }
  1332. if (!user_mode(regs))
  1333. set_fs(KERNEL_DS);
  1334. show_code((unsigned int __user *) regs->cp0_epc);
  1335. set_fs(old_fs);
  1336. /*
  1337. * Some chips may have other causes of machine check (e.g. SB1
  1338. * graduation timer)
  1339. */
  1340. panic("Caught Machine Check exception - %scaused by multiple "
  1341. "matching entries in the TLB.",
  1342. (multi_match) ? "" : "not ");
  1343. }
  1344. asmlinkage void do_mt(struct pt_regs *regs)
  1345. {
  1346. int subcode;
  1347. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1348. >> VPECONTROL_EXCPT_SHIFT;
  1349. switch (subcode) {
  1350. case 0:
  1351. printk(KERN_DEBUG "Thread Underflow\n");
  1352. break;
  1353. case 1:
  1354. printk(KERN_DEBUG "Thread Overflow\n");
  1355. break;
  1356. case 2:
  1357. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1358. break;
  1359. case 3:
  1360. printk(KERN_DEBUG "Gating Storage Exception\n");
  1361. break;
  1362. case 4:
  1363. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1364. break;
  1365. case 5:
  1366. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1367. break;
  1368. default:
  1369. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1370. subcode);
  1371. break;
  1372. }
  1373. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1374. force_sig(SIGILL, current);
  1375. }
  1376. asmlinkage void do_dsp(struct pt_regs *regs)
  1377. {
  1378. if (cpu_has_dsp)
  1379. panic("Unexpected DSP exception");
  1380. force_sig(SIGILL, current);
  1381. }
  1382. asmlinkage void do_reserved(struct pt_regs *regs)
  1383. {
  1384. /*
  1385. * Game over - no way to handle this if it ever occurs. Most probably
  1386. * caused by a new unknown cpu type or after another deadly
  1387. * hard/software error.
  1388. */
  1389. show_regs(regs);
  1390. panic("Caught reserved exception %ld - should not happen.",
  1391. (regs->cp0_cause & 0x7f) >> 2);
  1392. }
  1393. static int __initdata l1parity = 1;
  1394. static int __init nol1parity(char *s)
  1395. {
  1396. l1parity = 0;
  1397. return 1;
  1398. }
  1399. __setup("nol1par", nol1parity);
  1400. static int __initdata l2parity = 1;
  1401. static int __init nol2parity(char *s)
  1402. {
  1403. l2parity = 0;
  1404. return 1;
  1405. }
  1406. __setup("nol2par", nol2parity);
  1407. /*
  1408. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1409. * it different ways.
  1410. */
  1411. static inline void parity_protection_init(void)
  1412. {
  1413. #define ERRCTL_PE 0x80000000
  1414. #define ERRCTL_L2P 0x00800000
  1415. if (mips_cm_revision() >= CM_REV_CM3) {
  1416. ulong gcr_ectl, cp0_ectl;
  1417. /*
  1418. * With CM3 systems we need to ensure that the L1 & L2
  1419. * parity enables are set to the same value, since this
  1420. * is presumed by the hardware engineers.
  1421. *
  1422. * If the user disabled either of L1 or L2 ECC checking,
  1423. * disable both.
  1424. */
  1425. l1parity &= l2parity;
  1426. l2parity &= l1parity;
  1427. /* Probe L1 ECC support */
  1428. cp0_ectl = read_c0_ecc();
  1429. write_c0_ecc(cp0_ectl | ERRCTL_PE);
  1430. back_to_back_c0_hazard();
  1431. cp0_ectl = read_c0_ecc();
  1432. /* Probe L2 ECC support */
  1433. gcr_ectl = read_gcr_err_control();
  1434. if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
  1435. !(cp0_ectl & ERRCTL_PE)) {
  1436. /*
  1437. * One of L1 or L2 ECC checking isn't supported,
  1438. * so we cannot enable either.
  1439. */
  1440. l1parity = l2parity = 0;
  1441. }
  1442. /* Configure L1 ECC checking */
  1443. if (l1parity)
  1444. cp0_ectl |= ERRCTL_PE;
  1445. else
  1446. cp0_ectl &= ~ERRCTL_PE;
  1447. write_c0_ecc(cp0_ectl);
  1448. back_to_back_c0_hazard();
  1449. WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
  1450. /* Configure L2 ECC checking */
  1451. if (l2parity)
  1452. gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
  1453. else
  1454. gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
  1455. write_gcr_err_control(gcr_ectl);
  1456. gcr_ectl = read_gcr_err_control();
  1457. gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
  1458. WARN_ON(!!gcr_ectl != l2parity);
  1459. pr_info("Cache parity protection %sabled\n",
  1460. l1parity ? "en" : "dis");
  1461. return;
  1462. }
  1463. switch (current_cpu_type()) {
  1464. case CPU_24K:
  1465. case CPU_34K:
  1466. case CPU_74K:
  1467. case CPU_1004K:
  1468. case CPU_1074K:
  1469. case CPU_INTERAPTIV:
  1470. case CPU_PROAPTIV:
  1471. case CPU_P5600:
  1472. case CPU_QEMU_GENERIC:
  1473. case CPU_P6600:
  1474. {
  1475. unsigned long errctl;
  1476. unsigned int l1parity_present, l2parity_present;
  1477. errctl = read_c0_ecc();
  1478. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1479. /* probe L1 parity support */
  1480. write_c0_ecc(errctl | ERRCTL_PE);
  1481. back_to_back_c0_hazard();
  1482. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1483. /* probe L2 parity support */
  1484. write_c0_ecc(errctl|ERRCTL_L2P);
  1485. back_to_back_c0_hazard();
  1486. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1487. if (l1parity_present && l2parity_present) {
  1488. if (l1parity)
  1489. errctl |= ERRCTL_PE;
  1490. if (l1parity ^ l2parity)
  1491. errctl |= ERRCTL_L2P;
  1492. } else if (l1parity_present) {
  1493. if (l1parity)
  1494. errctl |= ERRCTL_PE;
  1495. } else if (l2parity_present) {
  1496. if (l2parity)
  1497. errctl |= ERRCTL_L2P;
  1498. } else {
  1499. /* No parity available */
  1500. }
  1501. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1502. write_c0_ecc(errctl);
  1503. back_to_back_c0_hazard();
  1504. errctl = read_c0_ecc();
  1505. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1506. if (l1parity_present)
  1507. printk(KERN_INFO "Cache parity protection %sabled\n",
  1508. (errctl & ERRCTL_PE) ? "en" : "dis");
  1509. if (l2parity_present) {
  1510. if (l1parity_present && l1parity)
  1511. errctl ^= ERRCTL_L2P;
  1512. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1513. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1514. }
  1515. }
  1516. break;
  1517. case CPU_5KC:
  1518. case CPU_5KE:
  1519. case CPU_LOONGSON1:
  1520. write_c0_ecc(0x80000000);
  1521. back_to_back_c0_hazard();
  1522. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1523. printk(KERN_INFO "Cache parity protection %sabled\n",
  1524. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1525. break;
  1526. case CPU_20KC:
  1527. case CPU_25KF:
  1528. /* Clear the DE bit (bit 16) in the c0_status register. */
  1529. printk(KERN_INFO "Enable cache parity protection for "
  1530. "MIPS 20KC/25KF CPUs.\n");
  1531. clear_c0_status(ST0_DE);
  1532. break;
  1533. default:
  1534. break;
  1535. }
  1536. }
  1537. asmlinkage void cache_parity_error(void)
  1538. {
  1539. const int field = 2 * sizeof(unsigned long);
  1540. unsigned int reg_val;
  1541. /* For the moment, report the problem and hang. */
  1542. printk("Cache error exception:\n");
  1543. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1544. reg_val = read_c0_cacheerr();
  1545. printk("c0_cacheerr == %08x\n", reg_val);
  1546. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1547. reg_val & (1<<30) ? "secondary" : "primary",
  1548. reg_val & (1<<31) ? "data" : "insn");
  1549. if ((cpu_has_mips_r2_r6) &&
  1550. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1551. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1552. reg_val & (1<<29) ? "ED " : "",
  1553. reg_val & (1<<28) ? "ET " : "",
  1554. reg_val & (1<<27) ? "ES " : "",
  1555. reg_val & (1<<26) ? "EE " : "",
  1556. reg_val & (1<<25) ? "EB " : "",
  1557. reg_val & (1<<24) ? "EI " : "",
  1558. reg_val & (1<<23) ? "E1 " : "",
  1559. reg_val & (1<<22) ? "E0 " : "");
  1560. } else {
  1561. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1562. reg_val & (1<<29) ? "ED " : "",
  1563. reg_val & (1<<28) ? "ET " : "",
  1564. reg_val & (1<<26) ? "EE " : "",
  1565. reg_val & (1<<25) ? "EB " : "",
  1566. reg_val & (1<<24) ? "EI " : "",
  1567. reg_val & (1<<23) ? "E1 " : "",
  1568. reg_val & (1<<22) ? "E0 " : "");
  1569. }
  1570. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1571. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1572. if (reg_val & (1<<22))
  1573. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1574. if (reg_val & (1<<23))
  1575. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1576. #endif
  1577. panic("Can't handle the cache error!");
  1578. }
  1579. asmlinkage void do_ftlb(void)
  1580. {
  1581. const int field = 2 * sizeof(unsigned long);
  1582. unsigned int reg_val;
  1583. /* For the moment, report the problem and hang. */
  1584. if ((cpu_has_mips_r2_r6) &&
  1585. (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
  1586. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
  1587. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1588. read_c0_ecc());
  1589. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1590. reg_val = read_c0_cacheerr();
  1591. pr_err("c0_cacheerr == %08x\n", reg_val);
  1592. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1593. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1594. } else {
  1595. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1596. reg_val & (1<<30) ? "secondary" : "primary",
  1597. reg_val & (1<<31) ? "data" : "insn");
  1598. }
  1599. } else {
  1600. pr_err("FTLB error exception\n");
  1601. }
  1602. /* Just print the cacheerr bits for now */
  1603. cache_parity_error();
  1604. }
  1605. /*
  1606. * SDBBP EJTAG debug exception handler.
  1607. * We skip the instruction and return to the next instruction.
  1608. */
  1609. void ejtag_exception_handler(struct pt_regs *regs)
  1610. {
  1611. const int field = 2 * sizeof(unsigned long);
  1612. unsigned long depc, old_epc, old_ra;
  1613. unsigned int debug;
  1614. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1615. depc = read_c0_depc();
  1616. debug = read_c0_debug();
  1617. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1618. if (debug & 0x80000000) {
  1619. /*
  1620. * In branch delay slot.
  1621. * We cheat a little bit here and use EPC to calculate the
  1622. * debug return address (DEPC). EPC is restored after the
  1623. * calculation.
  1624. */
  1625. old_epc = regs->cp0_epc;
  1626. old_ra = regs->regs[31];
  1627. regs->cp0_epc = depc;
  1628. compute_return_epc(regs);
  1629. depc = regs->cp0_epc;
  1630. regs->cp0_epc = old_epc;
  1631. regs->regs[31] = old_ra;
  1632. } else
  1633. depc += 4;
  1634. write_c0_depc(depc);
  1635. #if 0
  1636. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1637. write_c0_debug(debug | 0x100);
  1638. #endif
  1639. }
  1640. /*
  1641. * NMI exception handler.
  1642. * No lock; only written during early bootup by CPU 0.
  1643. */
  1644. static RAW_NOTIFIER_HEAD(nmi_chain);
  1645. int register_nmi_notifier(struct notifier_block *nb)
  1646. {
  1647. return raw_notifier_chain_register(&nmi_chain, nb);
  1648. }
  1649. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1650. {
  1651. char str[100];
  1652. nmi_enter();
  1653. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1654. bust_spinlocks(1);
  1655. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1656. smp_processor_id(), regs->cp0_epc);
  1657. regs->cp0_epc = read_c0_errorepc();
  1658. die(str, regs);
  1659. nmi_exit();
  1660. }
  1661. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1662. unsigned long ebase;
  1663. EXPORT_SYMBOL_GPL(ebase);
  1664. unsigned long exception_handlers[32];
  1665. unsigned long vi_handlers[64];
  1666. void __init *set_except_vector(int n, void *addr)
  1667. {
  1668. unsigned long handler = (unsigned long) addr;
  1669. unsigned long old_handler;
  1670. #ifdef CONFIG_CPU_MICROMIPS
  1671. /*
  1672. * Only the TLB handlers are cache aligned with an even
  1673. * address. All other handlers are on an odd address and
  1674. * require no modification. Otherwise, MIPS32 mode will
  1675. * be entered when handling any TLB exceptions. That
  1676. * would be bad...since we must stay in microMIPS mode.
  1677. */
  1678. if (!(handler & 0x1))
  1679. handler |= 1;
  1680. #endif
  1681. old_handler = xchg(&exception_handlers[n], handler);
  1682. if (n == 0 && cpu_has_divec) {
  1683. #ifdef CONFIG_CPU_MICROMIPS
  1684. unsigned long jump_mask = ~((1 << 27) - 1);
  1685. #else
  1686. unsigned long jump_mask = ~((1 << 28) - 1);
  1687. #endif
  1688. u32 *buf = (u32 *)(ebase + 0x200);
  1689. unsigned int k0 = 26;
  1690. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1691. uasm_i_j(&buf, handler & ~jump_mask);
  1692. uasm_i_nop(&buf);
  1693. } else {
  1694. UASM_i_LA(&buf, k0, handler);
  1695. uasm_i_jr(&buf, k0);
  1696. uasm_i_nop(&buf);
  1697. }
  1698. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1699. }
  1700. return (void *)old_handler;
  1701. }
  1702. static void do_default_vi(void)
  1703. {
  1704. show_regs(get_irq_regs());
  1705. panic("Caught unexpected vectored interrupt.");
  1706. }
  1707. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1708. {
  1709. unsigned long handler;
  1710. unsigned long old_handler = vi_handlers[n];
  1711. int srssets = current_cpu_data.srsets;
  1712. u16 *h;
  1713. unsigned char *b;
  1714. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1715. if (addr == NULL) {
  1716. handler = (unsigned long) do_default_vi;
  1717. srs = 0;
  1718. } else
  1719. handler = (unsigned long) addr;
  1720. vi_handlers[n] = handler;
  1721. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1722. if (srs >= srssets)
  1723. panic("Shadow register set %d not supported", srs);
  1724. if (cpu_has_veic) {
  1725. if (board_bind_eic_interrupt)
  1726. board_bind_eic_interrupt(n, srs);
  1727. } else if (cpu_has_vint) {
  1728. /* SRSMap is only defined if shadow sets are implemented */
  1729. if (srssets > 1)
  1730. change_c0_srsmap(0xf << n*4, srs << n*4);
  1731. }
  1732. if (srs == 0) {
  1733. /*
  1734. * If no shadow set is selected then use the default handler
  1735. * that does normal register saving and standard interrupt exit
  1736. */
  1737. extern char except_vec_vi, except_vec_vi_lui;
  1738. extern char except_vec_vi_ori, except_vec_vi_end;
  1739. extern char rollback_except_vec_vi;
  1740. char *vec_start = using_rollback_handler() ?
  1741. &rollback_except_vec_vi : &except_vec_vi;
  1742. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1743. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1744. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1745. #else
  1746. const int lui_offset = &except_vec_vi_lui - vec_start;
  1747. const int ori_offset = &except_vec_vi_ori - vec_start;
  1748. #endif
  1749. const int handler_len = &except_vec_vi_end - vec_start;
  1750. if (handler_len > VECTORSPACING) {
  1751. /*
  1752. * Sigh... panicing won't help as the console
  1753. * is probably not configured :(
  1754. */
  1755. panic("VECTORSPACING too small");
  1756. }
  1757. set_handler(((unsigned long)b - ebase), vec_start,
  1758. #ifdef CONFIG_CPU_MICROMIPS
  1759. (handler_len - 1));
  1760. #else
  1761. handler_len);
  1762. #endif
  1763. h = (u16 *)(b + lui_offset);
  1764. *h = (handler >> 16) & 0xffff;
  1765. h = (u16 *)(b + ori_offset);
  1766. *h = (handler & 0xffff);
  1767. local_flush_icache_range((unsigned long)b,
  1768. (unsigned long)(b+handler_len));
  1769. }
  1770. else {
  1771. /*
  1772. * In other cases jump directly to the interrupt handler. It
  1773. * is the handler's responsibility to save registers if required
  1774. * (eg hi/lo) and return from the exception using "eret".
  1775. */
  1776. u32 insn;
  1777. h = (u16 *)b;
  1778. /* j handler */
  1779. #ifdef CONFIG_CPU_MICROMIPS
  1780. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1781. #else
  1782. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1783. #endif
  1784. h[0] = (insn >> 16) & 0xffff;
  1785. h[1] = insn & 0xffff;
  1786. h[2] = 0;
  1787. h[3] = 0;
  1788. local_flush_icache_range((unsigned long)b,
  1789. (unsigned long)(b+8));
  1790. }
  1791. return (void *)old_handler;
  1792. }
  1793. void *set_vi_handler(int n, vi_handler_t addr)
  1794. {
  1795. return set_vi_srs_handler(n, addr, 0);
  1796. }
  1797. extern void tlb_init(void);
  1798. /*
  1799. * Timer interrupt
  1800. */
  1801. int cp0_compare_irq;
  1802. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1803. int cp0_compare_irq_shift;
  1804. /*
  1805. * Performance counter IRQ or -1 if shared with timer
  1806. */
  1807. int cp0_perfcount_irq;
  1808. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1809. /*
  1810. * Fast debug channel IRQ or -1 if not present
  1811. */
  1812. int cp0_fdc_irq;
  1813. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1814. static int noulri;
  1815. static int __init ulri_disable(char *s)
  1816. {
  1817. pr_info("Disabling ulri\n");
  1818. noulri = 1;
  1819. return 1;
  1820. }
  1821. __setup("noulri", ulri_disable);
  1822. /* configure STATUS register */
  1823. static void configure_status(void)
  1824. {
  1825. /*
  1826. * Disable coprocessors and select 32-bit or 64-bit addressing
  1827. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1828. * flag that some firmware may have left set and the TS bit (for
  1829. * IP27). Set XX for ISA IV code to work.
  1830. */
  1831. unsigned int status_set = ST0_CU0;
  1832. #ifdef CONFIG_64BIT
  1833. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1834. #endif
  1835. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1836. status_set |= ST0_XX;
  1837. if (cpu_has_dsp)
  1838. status_set |= ST0_MX;
  1839. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1840. status_set);
  1841. }
  1842. unsigned int hwrena;
  1843. EXPORT_SYMBOL_GPL(hwrena);
  1844. /* configure HWRENA register */
  1845. static void configure_hwrena(void)
  1846. {
  1847. hwrena = cpu_hwrena_impl_bits;
  1848. if (cpu_has_mips_r2_r6)
  1849. hwrena |= MIPS_HWRENA_CPUNUM |
  1850. MIPS_HWRENA_SYNCISTEP |
  1851. MIPS_HWRENA_CC |
  1852. MIPS_HWRENA_CCRES;
  1853. if (!noulri && cpu_has_userlocal)
  1854. hwrena |= MIPS_HWRENA_ULR;
  1855. if (hwrena)
  1856. write_c0_hwrena(hwrena);
  1857. }
  1858. static void configure_exception_vector(void)
  1859. {
  1860. if (cpu_has_veic || cpu_has_vint) {
  1861. unsigned long sr = set_c0_status(ST0_BEV);
  1862. /* If available, use WG to set top bits of EBASE */
  1863. if (cpu_has_ebase_wg) {
  1864. #ifdef CONFIG_64BIT
  1865. write_c0_ebase_64(ebase | MIPS_EBASE_WG);
  1866. #else
  1867. write_c0_ebase(ebase | MIPS_EBASE_WG);
  1868. #endif
  1869. }
  1870. write_c0_ebase(ebase);
  1871. write_c0_status(sr);
  1872. /* Setting vector spacing enables EI/VI mode */
  1873. change_c0_intctl(0x3e0, VECTORSPACING);
  1874. }
  1875. if (cpu_has_divec) {
  1876. if (cpu_has_mipsmt) {
  1877. unsigned int vpflags = dvpe();
  1878. set_c0_cause(CAUSEF_IV);
  1879. evpe(vpflags);
  1880. } else
  1881. set_c0_cause(CAUSEF_IV);
  1882. }
  1883. }
  1884. void per_cpu_trap_init(bool is_boot_cpu)
  1885. {
  1886. unsigned int cpu = smp_processor_id();
  1887. configure_status();
  1888. configure_hwrena();
  1889. configure_exception_vector();
  1890. /*
  1891. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1892. *
  1893. * o read IntCtl.IPTI to determine the timer interrupt
  1894. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1895. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1896. */
  1897. if (cpu_has_mips_r2_r6) {
  1898. /*
  1899. * We shouldn't trust a secondary core has a sane EBASE register
  1900. * so use the one calculated by the boot CPU.
  1901. */
  1902. if (!is_boot_cpu) {
  1903. /* If available, use WG to set top bits of EBASE */
  1904. if (cpu_has_ebase_wg) {
  1905. #ifdef CONFIG_64BIT
  1906. write_c0_ebase_64(ebase | MIPS_EBASE_WG);
  1907. #else
  1908. write_c0_ebase(ebase | MIPS_EBASE_WG);
  1909. #endif
  1910. }
  1911. write_c0_ebase(ebase);
  1912. }
  1913. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1914. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1915. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1916. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1917. if (!cp0_fdc_irq)
  1918. cp0_fdc_irq = -1;
  1919. } else {
  1920. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1921. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1922. cp0_perfcount_irq = -1;
  1923. cp0_fdc_irq = -1;
  1924. }
  1925. if (!cpu_data[cpu].asid_cache)
  1926. cpu_data[cpu].asid_cache = asid_first_version(cpu);
  1927. mmgrab(&init_mm);
  1928. current->active_mm = &init_mm;
  1929. BUG_ON(current->mm);
  1930. enter_lazy_tlb(&init_mm, current);
  1931. /* Boot CPU's cache setup in setup_arch(). */
  1932. if (!is_boot_cpu)
  1933. cpu_cache_init();
  1934. tlb_init();
  1935. TLBMISS_HANDLER_SETUP();
  1936. }
  1937. /* Install CPU exception handler */
  1938. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1939. {
  1940. #ifdef CONFIG_CPU_MICROMIPS
  1941. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1942. #else
  1943. memcpy((void *)(ebase + offset), addr, size);
  1944. #endif
  1945. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1946. }
  1947. static const char panic_null_cerr[] =
  1948. "Trying to set NULL cache error exception handler\n";
  1949. /*
  1950. * Install uncached CPU exception handler.
  1951. * This is suitable only for the cache error exception which is the only
  1952. * exception handler that is being run uncached.
  1953. */
  1954. void set_uncached_handler(unsigned long offset, void *addr,
  1955. unsigned long size)
  1956. {
  1957. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1958. if (!addr)
  1959. panic(panic_null_cerr);
  1960. memcpy((void *)(uncached_ebase + offset), addr, size);
  1961. }
  1962. static int __initdata rdhwr_noopt;
  1963. static int __init set_rdhwr_noopt(char *str)
  1964. {
  1965. rdhwr_noopt = 1;
  1966. return 1;
  1967. }
  1968. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1969. void __init trap_init(void)
  1970. {
  1971. extern char except_vec3_generic;
  1972. extern char except_vec4;
  1973. extern char except_vec3_r4000;
  1974. unsigned long i;
  1975. check_wait();
  1976. if (cpu_has_veic || cpu_has_vint) {
  1977. unsigned long size = 0x200 + VECTORSPACING*64;
  1978. phys_addr_t ebase_pa;
  1979. ebase = (unsigned long)
  1980. __alloc_bootmem(size, 1 << fls(size), 0);
  1981. /*
  1982. * Try to ensure ebase resides in KSeg0 if possible.
  1983. *
  1984. * It shouldn't generally be in XKPhys on MIPS64 to avoid
  1985. * hitting a poorly defined exception base for Cache Errors.
  1986. * The allocation is likely to be in the low 512MB of physical,
  1987. * in which case we should be able to convert to KSeg0.
  1988. *
  1989. * EVA is special though as it allows segments to be rearranged
  1990. * and to become uncached during cache error handling.
  1991. */
  1992. ebase_pa = __pa(ebase);
  1993. if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
  1994. ebase = CKSEG0ADDR(ebase_pa);
  1995. } else {
  1996. ebase = CAC_BASE;
  1997. if (cpu_has_mips_r2_r6) {
  1998. if (cpu_has_ebase_wg) {
  1999. #ifdef CONFIG_64BIT
  2000. ebase = (read_c0_ebase_64() & ~0xfff);
  2001. #else
  2002. ebase = (read_c0_ebase() & ~0xfff);
  2003. #endif
  2004. } else {
  2005. ebase += (read_c0_ebase() & 0x3ffff000);
  2006. }
  2007. }
  2008. }
  2009. if (cpu_has_mmips) {
  2010. unsigned int config3 = read_c0_config3();
  2011. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  2012. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  2013. else
  2014. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  2015. }
  2016. if (board_ebase_setup)
  2017. board_ebase_setup();
  2018. per_cpu_trap_init(true);
  2019. /*
  2020. * Copy the generic exception handlers to their final destination.
  2021. * This will be overridden later as suitable for a particular
  2022. * configuration.
  2023. */
  2024. set_handler(0x180, &except_vec3_generic, 0x80);
  2025. /*
  2026. * Setup default vectors
  2027. */
  2028. for (i = 0; i <= 31; i++)
  2029. set_except_vector(i, handle_reserved);
  2030. /*
  2031. * Copy the EJTAG debug exception vector handler code to it's final
  2032. * destination.
  2033. */
  2034. if (cpu_has_ejtag && board_ejtag_handler_setup)
  2035. board_ejtag_handler_setup();
  2036. /*
  2037. * Only some CPUs have the watch exceptions.
  2038. */
  2039. if (cpu_has_watch)
  2040. set_except_vector(EXCCODE_WATCH, handle_watch);
  2041. /*
  2042. * Initialise interrupt handlers
  2043. */
  2044. if (cpu_has_veic || cpu_has_vint) {
  2045. int nvec = cpu_has_veic ? 64 : 8;
  2046. for (i = 0; i < nvec; i++)
  2047. set_vi_handler(i, NULL);
  2048. }
  2049. else if (cpu_has_divec)
  2050. set_handler(0x200, &except_vec4, 0x8);
  2051. /*
  2052. * Some CPUs can enable/disable for cache parity detection, but does
  2053. * it different ways.
  2054. */
  2055. parity_protection_init();
  2056. /*
  2057. * The Data Bus Errors / Instruction Bus Errors are signaled
  2058. * by external hardware. Therefore these two exceptions
  2059. * may have board specific handlers.
  2060. */
  2061. if (board_be_init)
  2062. board_be_init();
  2063. set_except_vector(EXCCODE_INT, using_rollback_handler() ?
  2064. rollback_handle_int : handle_int);
  2065. set_except_vector(EXCCODE_MOD, handle_tlbm);
  2066. set_except_vector(EXCCODE_TLBL, handle_tlbl);
  2067. set_except_vector(EXCCODE_TLBS, handle_tlbs);
  2068. set_except_vector(EXCCODE_ADEL, handle_adel);
  2069. set_except_vector(EXCCODE_ADES, handle_ades);
  2070. set_except_vector(EXCCODE_IBE, handle_ibe);
  2071. set_except_vector(EXCCODE_DBE, handle_dbe);
  2072. set_except_vector(EXCCODE_SYS, handle_sys);
  2073. set_except_vector(EXCCODE_BP, handle_bp);
  2074. if (rdhwr_noopt)
  2075. set_except_vector(EXCCODE_RI, handle_ri);
  2076. else {
  2077. if (cpu_has_vtag_icache)
  2078. set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
  2079. else if (current_cpu_type() == CPU_LOONGSON3)
  2080. set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
  2081. else
  2082. set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
  2083. }
  2084. set_except_vector(EXCCODE_CPU, handle_cpu);
  2085. set_except_vector(EXCCODE_OV, handle_ov);
  2086. set_except_vector(EXCCODE_TR, handle_tr);
  2087. set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
  2088. if (current_cpu_type() == CPU_R6000 ||
  2089. current_cpu_type() == CPU_R6000A) {
  2090. /*
  2091. * The R6000 is the only R-series CPU that features a machine
  2092. * check exception (similar to the R4000 cache error) and
  2093. * unaligned ldc1/sdc1 exception. The handlers have not been
  2094. * written yet. Well, anyway there is no R6000 machine on the
  2095. * current list of targets for Linux/MIPS.
  2096. * (Duh, crap, there is someone with a triple R6k machine)
  2097. */
  2098. //set_except_vector(14, handle_mc);
  2099. //set_except_vector(15, handle_ndc);
  2100. }
  2101. if (board_nmi_handler_setup)
  2102. board_nmi_handler_setup();
  2103. if (cpu_has_fpu && !cpu_has_nofpuex)
  2104. set_except_vector(EXCCODE_FPE, handle_fpe);
  2105. set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
  2106. if (cpu_has_rixiex) {
  2107. set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
  2108. set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
  2109. }
  2110. set_except_vector(EXCCODE_MSADIS, handle_msa);
  2111. set_except_vector(EXCCODE_MDMX, handle_mdmx);
  2112. if (cpu_has_mcheck)
  2113. set_except_vector(EXCCODE_MCHECK, handle_mcheck);
  2114. if (cpu_has_mipsmt)
  2115. set_except_vector(EXCCODE_THREAD, handle_mt);
  2116. set_except_vector(EXCCODE_DSPDIS, handle_dsp);
  2117. if (board_cache_error_setup)
  2118. board_cache_error_setup();
  2119. if (cpu_has_vce)
  2120. /* Special exception: R4[04]00 uses also the divec space. */
  2121. set_handler(0x180, &except_vec3_r4000, 0x100);
  2122. else if (cpu_has_4kex)
  2123. set_handler(0x180, &except_vec3_generic, 0x80);
  2124. else
  2125. set_handler(0x080, &except_vec3_generic, 0x80);
  2126. local_flush_icache_range(ebase, ebase + 0x400);
  2127. sort_extable(__start___dbe_table, __stop___dbe_table);
  2128. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2129. }
  2130. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2131. void *v)
  2132. {
  2133. switch (cmd) {
  2134. case CPU_PM_ENTER_FAILED:
  2135. case CPU_PM_EXIT:
  2136. configure_status();
  2137. configure_hwrena();
  2138. configure_exception_vector();
  2139. /* Restore register with CPU number for TLB handlers */
  2140. TLBMISS_HANDLER_RESTORE();
  2141. break;
  2142. }
  2143. return NOTIFY_OK;
  2144. }
  2145. static struct notifier_block trap_pm_notifier_block = {
  2146. .notifier_call = trap_pm_notifier,
  2147. };
  2148. static int __init trap_pm_init(void)
  2149. {
  2150. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2151. }
  2152. arch_initcall(trap_pm_init);