smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/export.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched/mm.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/irqdomain.h>
  37. #include <linux/of.h>
  38. #include <linux/of_irq.h>
  39. #include <linux/atomic.h>
  40. #include <asm/cpu.h>
  41. #include <asm/processor.h>
  42. #include <asm/idle.h>
  43. #include <asm/r4k-timer.h>
  44. #include <asm/mips-cpc.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/time.h>
  47. #include <asm/setup.h>
  48. #include <asm/maar.h>
  49. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  50. EXPORT_SYMBOL(__cpu_number_map);
  51. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  52. EXPORT_SYMBOL(__cpu_logical_map);
  53. /* Number of TCs (or siblings in Intel speak) per CPU core */
  54. int smp_num_siblings = 1;
  55. EXPORT_SYMBOL(smp_num_siblings);
  56. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  57. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  58. EXPORT_SYMBOL(cpu_sibling_map);
  59. /* representing the core map of multi-core chips of each logical CPU */
  60. cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  61. EXPORT_SYMBOL(cpu_core_map);
  62. static DECLARE_COMPLETION(cpu_running);
  63. /*
  64. * A logcal cpu mask containing only one VPE per core to
  65. * reduce the number of IPIs on large MT systems.
  66. */
  67. cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
  68. EXPORT_SYMBOL(cpu_foreign_map);
  69. /* representing cpus for which sibling maps can be computed */
  70. static cpumask_t cpu_sibling_setup_map;
  71. /* representing cpus for which core maps can be computed */
  72. static cpumask_t cpu_core_setup_map;
  73. cpumask_t cpu_coherent_mask;
  74. #ifdef CONFIG_GENERIC_IRQ_IPI
  75. static struct irq_desc *call_desc;
  76. static struct irq_desc *sched_desc;
  77. #endif
  78. static inline void set_cpu_sibling_map(int cpu)
  79. {
  80. int i;
  81. cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  82. if (smp_num_siblings > 1) {
  83. for_each_cpu(i, &cpu_sibling_setup_map) {
  84. if (cpu_data[cpu].package == cpu_data[i].package &&
  85. cpu_data[cpu].core == cpu_data[i].core) {
  86. cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  87. cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  88. }
  89. }
  90. } else
  91. cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  92. }
  93. static inline void set_cpu_core_map(int cpu)
  94. {
  95. int i;
  96. cpumask_set_cpu(cpu, &cpu_core_setup_map);
  97. for_each_cpu(i, &cpu_core_setup_map) {
  98. if (cpu_data[cpu].package == cpu_data[i].package) {
  99. cpumask_set_cpu(i, &cpu_core_map[cpu]);
  100. cpumask_set_cpu(cpu, &cpu_core_map[i]);
  101. }
  102. }
  103. }
  104. /*
  105. * Calculate a new cpu_foreign_map mask whenever a
  106. * new cpu appears or disappears.
  107. */
  108. void calculate_cpu_foreign_map(void)
  109. {
  110. int i, k, core_present;
  111. cpumask_t temp_foreign_map;
  112. /* Re-calculate the mask */
  113. cpumask_clear(&temp_foreign_map);
  114. for_each_online_cpu(i) {
  115. core_present = 0;
  116. for_each_cpu(k, &temp_foreign_map)
  117. if (cpu_data[i].package == cpu_data[k].package &&
  118. cpu_data[i].core == cpu_data[k].core)
  119. core_present = 1;
  120. if (!core_present)
  121. cpumask_set_cpu(i, &temp_foreign_map);
  122. }
  123. for_each_online_cpu(i)
  124. cpumask_andnot(&cpu_foreign_map[i],
  125. &temp_foreign_map, &cpu_sibling_map[i]);
  126. }
  127. struct plat_smp_ops *mp_ops;
  128. EXPORT_SYMBOL(mp_ops);
  129. void register_smp_ops(struct plat_smp_ops *ops)
  130. {
  131. if (mp_ops)
  132. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  133. mp_ops = ops;
  134. }
  135. #ifdef CONFIG_GENERIC_IRQ_IPI
  136. void mips_smp_send_ipi_single(int cpu, unsigned int action)
  137. {
  138. mips_smp_send_ipi_mask(cpumask_of(cpu), action);
  139. }
  140. void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
  141. {
  142. unsigned long flags;
  143. unsigned int core;
  144. int cpu;
  145. local_irq_save(flags);
  146. switch (action) {
  147. case SMP_CALL_FUNCTION:
  148. __ipi_send_mask(call_desc, mask);
  149. break;
  150. case SMP_RESCHEDULE_YOURSELF:
  151. __ipi_send_mask(sched_desc, mask);
  152. break;
  153. default:
  154. BUG();
  155. }
  156. if (mips_cpc_present()) {
  157. for_each_cpu(cpu, mask) {
  158. core = cpu_data[cpu].core;
  159. if (core == current_cpu_data.core)
  160. continue;
  161. while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
  162. mips_cm_lock_other(core, 0);
  163. mips_cpc_lock_other(core);
  164. write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
  165. mips_cpc_unlock_other();
  166. mips_cm_unlock_other();
  167. }
  168. }
  169. }
  170. local_irq_restore(flags);
  171. }
  172. static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
  173. {
  174. scheduler_ipi();
  175. return IRQ_HANDLED;
  176. }
  177. static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
  178. {
  179. generic_smp_call_function_interrupt();
  180. return IRQ_HANDLED;
  181. }
  182. static struct irqaction irq_resched = {
  183. .handler = ipi_resched_interrupt,
  184. .flags = IRQF_PERCPU,
  185. .name = "IPI resched"
  186. };
  187. static struct irqaction irq_call = {
  188. .handler = ipi_call_interrupt,
  189. .flags = IRQF_PERCPU,
  190. .name = "IPI call"
  191. };
  192. static void smp_ipi_init_one(unsigned int virq,
  193. struct irqaction *action)
  194. {
  195. int ret;
  196. irq_set_handler(virq, handle_percpu_irq);
  197. ret = setup_irq(virq, action);
  198. BUG_ON(ret);
  199. }
  200. static unsigned int call_virq, sched_virq;
  201. int mips_smp_ipi_allocate(const struct cpumask *mask)
  202. {
  203. int virq;
  204. struct irq_domain *ipidomain;
  205. struct device_node *node;
  206. node = of_irq_find_parent(of_root);
  207. ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
  208. /*
  209. * Some platforms have half DT setup. So if we found irq node but
  210. * didn't find an ipidomain, try to search for one that is not in the
  211. * DT.
  212. */
  213. if (node && !ipidomain)
  214. ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
  215. /*
  216. * There are systems which use IPI IRQ domains, but only have one
  217. * registered when some runtime condition is met. For example a Malta
  218. * kernel may include support for GIC & CPU interrupt controller IPI
  219. * IRQ domains, but if run on a system with no GIC & no MT ASE then
  220. * neither will be supported or registered.
  221. *
  222. * We only have a problem if we're actually using multiple CPUs so fail
  223. * loudly if that is the case. Otherwise simply return, skipping IPI
  224. * setup, if we're running with only a single CPU.
  225. */
  226. if (!ipidomain) {
  227. BUG_ON(num_present_cpus() > 1);
  228. return 0;
  229. }
  230. virq = irq_reserve_ipi(ipidomain, mask);
  231. BUG_ON(!virq);
  232. if (!call_virq)
  233. call_virq = virq;
  234. virq = irq_reserve_ipi(ipidomain, mask);
  235. BUG_ON(!virq);
  236. if (!sched_virq)
  237. sched_virq = virq;
  238. if (irq_domain_is_ipi_per_cpu(ipidomain)) {
  239. int cpu;
  240. for_each_cpu(cpu, mask) {
  241. smp_ipi_init_one(call_virq + cpu, &irq_call);
  242. smp_ipi_init_one(sched_virq + cpu, &irq_resched);
  243. }
  244. } else {
  245. smp_ipi_init_one(call_virq, &irq_call);
  246. smp_ipi_init_one(sched_virq, &irq_resched);
  247. }
  248. return 0;
  249. }
  250. int mips_smp_ipi_free(const struct cpumask *mask)
  251. {
  252. struct irq_domain *ipidomain;
  253. struct device_node *node;
  254. node = of_irq_find_parent(of_root);
  255. ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
  256. /*
  257. * Some platforms have half DT setup. So if we found irq node but
  258. * didn't find an ipidomain, try to search for one that is not in the
  259. * DT.
  260. */
  261. if (node && !ipidomain)
  262. ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
  263. BUG_ON(!ipidomain);
  264. if (irq_domain_is_ipi_per_cpu(ipidomain)) {
  265. int cpu;
  266. for_each_cpu(cpu, mask) {
  267. remove_irq(call_virq + cpu, &irq_call);
  268. remove_irq(sched_virq + cpu, &irq_resched);
  269. }
  270. }
  271. irq_destroy_ipi(call_virq, mask);
  272. irq_destroy_ipi(sched_virq, mask);
  273. return 0;
  274. }
  275. static int __init mips_smp_ipi_init(void)
  276. {
  277. mips_smp_ipi_allocate(cpu_possible_mask);
  278. call_desc = irq_to_desc(call_virq);
  279. sched_desc = irq_to_desc(sched_virq);
  280. return 0;
  281. }
  282. early_initcall(mips_smp_ipi_init);
  283. #endif
  284. /*
  285. * First C code run on the secondary CPUs after being started up by
  286. * the master.
  287. */
  288. asmlinkage void start_secondary(void)
  289. {
  290. unsigned int cpu;
  291. cpu_probe();
  292. per_cpu_trap_init(false);
  293. mips_clockevent_init();
  294. mp_ops->init_secondary();
  295. cpu_report();
  296. maar_init();
  297. /*
  298. * XXX parity protection should be folded in here when it's converted
  299. * to an option instead of something based on .cputype
  300. */
  301. calibrate_delay();
  302. preempt_disable();
  303. cpu = smp_processor_id();
  304. cpu_data[cpu].udelay_val = loops_per_jiffy;
  305. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  306. notify_cpu_starting(cpu);
  307. complete(&cpu_running);
  308. synchronise_count_slave(cpu);
  309. set_cpu_online(cpu, true);
  310. set_cpu_sibling_map(cpu);
  311. set_cpu_core_map(cpu);
  312. calculate_cpu_foreign_map();
  313. /*
  314. * irq will be enabled in ->smp_finish(), enabling it too early
  315. * is dangerous.
  316. */
  317. WARN_ON_ONCE(!irqs_disabled());
  318. mp_ops->smp_finish();
  319. cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
  320. }
  321. static void stop_this_cpu(void *dummy)
  322. {
  323. /*
  324. * Remove this CPU:
  325. */
  326. set_cpu_online(smp_processor_id(), false);
  327. calculate_cpu_foreign_map();
  328. local_irq_disable();
  329. while (1);
  330. }
  331. void smp_send_stop(void)
  332. {
  333. smp_call_function(stop_this_cpu, NULL, 0);
  334. }
  335. void __init smp_cpus_done(unsigned int max_cpus)
  336. {
  337. }
  338. /* called from main before smp_init() */
  339. void __init smp_prepare_cpus(unsigned int max_cpus)
  340. {
  341. init_new_context(current, &init_mm);
  342. current_thread_info()->cpu = 0;
  343. mp_ops->prepare_cpus(max_cpus);
  344. set_cpu_sibling_map(0);
  345. set_cpu_core_map(0);
  346. calculate_cpu_foreign_map();
  347. #ifndef CONFIG_HOTPLUG_CPU
  348. init_cpu_present(cpu_possible_mask);
  349. #endif
  350. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  351. }
  352. /* preload SMP state for boot cpu */
  353. void smp_prepare_boot_cpu(void)
  354. {
  355. set_cpu_possible(0, true);
  356. set_cpu_online(0, true);
  357. }
  358. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  359. {
  360. mp_ops->boot_secondary(cpu, tidle);
  361. /*
  362. * We must check for timeout here, as the CPU will not be marked
  363. * online until the counters are synchronised.
  364. */
  365. if (!wait_for_completion_timeout(&cpu_running,
  366. msecs_to_jiffies(1000))) {
  367. pr_crit("CPU%u: failed to start\n", cpu);
  368. return -EIO;
  369. }
  370. synchronise_count_master(cpu);
  371. return 0;
  372. }
  373. /* Not really SMP stuff ... */
  374. int setup_profiling_timer(unsigned int multiplier)
  375. {
  376. return 0;
  377. }
  378. static void flush_tlb_all_ipi(void *info)
  379. {
  380. local_flush_tlb_all();
  381. }
  382. void flush_tlb_all(void)
  383. {
  384. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  385. }
  386. static void flush_tlb_mm_ipi(void *mm)
  387. {
  388. local_flush_tlb_mm((struct mm_struct *)mm);
  389. }
  390. /*
  391. * Special Variant of smp_call_function for use by TLB functions:
  392. *
  393. * o No return value
  394. * o collapses to normal function call on UP kernels
  395. * o collapses to normal function call on systems with a single shared
  396. * primary cache.
  397. */
  398. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  399. {
  400. smp_call_function(func, info, 1);
  401. }
  402. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  403. {
  404. preempt_disable();
  405. smp_on_other_tlbs(func, info);
  406. func(info);
  407. preempt_enable();
  408. }
  409. /*
  410. * The following tlb flush calls are invoked when old translations are
  411. * being torn down, or pte attributes are changing. For single threaded
  412. * address spaces, a new context is obtained on the current cpu, and tlb
  413. * context on other cpus are invalidated to force a new context allocation
  414. * at switch_mm time, should the mm ever be used on other cpus. For
  415. * multithreaded address spaces, intercpu interrupts have to be sent.
  416. * Another case where intercpu interrupts are required is when the target
  417. * mm might be active on another cpu (eg debuggers doing the flushes on
  418. * behalf of debugees, kswapd stealing pages from another process etc).
  419. * Kanoj 07/00.
  420. */
  421. void flush_tlb_mm(struct mm_struct *mm)
  422. {
  423. preempt_disable();
  424. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  425. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  426. } else {
  427. unsigned int cpu;
  428. for_each_online_cpu(cpu) {
  429. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  430. cpu_context(cpu, mm) = 0;
  431. }
  432. }
  433. local_flush_tlb_mm(mm);
  434. preempt_enable();
  435. }
  436. struct flush_tlb_data {
  437. struct vm_area_struct *vma;
  438. unsigned long addr1;
  439. unsigned long addr2;
  440. };
  441. static void flush_tlb_range_ipi(void *info)
  442. {
  443. struct flush_tlb_data *fd = info;
  444. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  445. }
  446. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  447. {
  448. struct mm_struct *mm = vma->vm_mm;
  449. preempt_disable();
  450. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  451. struct flush_tlb_data fd = {
  452. .vma = vma,
  453. .addr1 = start,
  454. .addr2 = end,
  455. };
  456. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  457. } else {
  458. unsigned int cpu;
  459. int exec = vma->vm_flags & VM_EXEC;
  460. for_each_online_cpu(cpu) {
  461. /*
  462. * flush_cache_range() will only fully flush icache if
  463. * the VMA is executable, otherwise we must invalidate
  464. * ASID without it appearing to has_valid_asid() as if
  465. * mm has been completely unused by that CPU.
  466. */
  467. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  468. cpu_context(cpu, mm) = !exec;
  469. }
  470. }
  471. local_flush_tlb_range(vma, start, end);
  472. preempt_enable();
  473. }
  474. static void flush_tlb_kernel_range_ipi(void *info)
  475. {
  476. struct flush_tlb_data *fd = info;
  477. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  478. }
  479. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  480. {
  481. struct flush_tlb_data fd = {
  482. .addr1 = start,
  483. .addr2 = end,
  484. };
  485. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  486. }
  487. static void flush_tlb_page_ipi(void *info)
  488. {
  489. struct flush_tlb_data *fd = info;
  490. local_flush_tlb_page(fd->vma, fd->addr1);
  491. }
  492. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  493. {
  494. preempt_disable();
  495. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  496. struct flush_tlb_data fd = {
  497. .vma = vma,
  498. .addr1 = page,
  499. };
  500. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  501. } else {
  502. unsigned int cpu;
  503. for_each_online_cpu(cpu) {
  504. /*
  505. * flush_cache_page() only does partial flushes, so
  506. * invalidate ASID without it appearing to
  507. * has_valid_asid() as if mm has been completely unused
  508. * by that CPU.
  509. */
  510. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  511. cpu_context(cpu, vma->vm_mm) = 1;
  512. }
  513. }
  514. local_flush_tlb_page(vma, page);
  515. preempt_enable();
  516. }
  517. static void flush_tlb_one_ipi(void *info)
  518. {
  519. unsigned long vaddr = (unsigned long) info;
  520. local_flush_tlb_one(vaddr);
  521. }
  522. void flush_tlb_one(unsigned long vaddr)
  523. {
  524. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  525. }
  526. EXPORT_SYMBOL(flush_tlb_page);
  527. EXPORT_SYMBOL(flush_tlb_one);
  528. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  529. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  530. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  531. void tick_broadcast(const struct cpumask *mask)
  532. {
  533. atomic_t *count;
  534. struct call_single_data *csd;
  535. int cpu;
  536. for_each_cpu(cpu, mask) {
  537. count = &per_cpu(tick_broadcast_count, cpu);
  538. csd = &per_cpu(tick_broadcast_csd, cpu);
  539. if (atomic_inc_return(count) == 1)
  540. smp_call_function_single_async(cpu, csd);
  541. }
  542. }
  543. static void tick_broadcast_callee(void *info)
  544. {
  545. int cpu = smp_processor_id();
  546. tick_receive_broadcast();
  547. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  548. }
  549. static int __init tick_broadcast_init(void)
  550. {
  551. struct call_single_data *csd;
  552. int cpu;
  553. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  554. csd = &per_cpu(tick_broadcast_csd, cpu);
  555. csd->func = tick_broadcast_callee;
  556. }
  557. return 0;
  558. }
  559. early_initcall(tick_broadcast_init);
  560. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */