smp-cps.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. /*
  2. * Copyright (C) 2013 Imagination Technologies
  3. * Author: Paul Burton <paul.burton@imgtec.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/cpu.h>
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/irqchip/mips-gic.h>
  14. #include <linux/sched/task_stack.h>
  15. #include <linux/sched/hotplug.h>
  16. #include <linux/slab.h>
  17. #include <linux/smp.h>
  18. #include <linux/types.h>
  19. #include <asm/bcache.h>
  20. #include <asm/mips-cm.h>
  21. #include <asm/mips-cpc.h>
  22. #include <asm/mips_mt.h>
  23. #include <asm/mipsregs.h>
  24. #include <asm/pm-cps.h>
  25. #include <asm/r4kcache.h>
  26. #include <asm/smp-cps.h>
  27. #include <asm/time.h>
  28. #include <asm/uasm.h>
  29. static bool threads_disabled;
  30. static DECLARE_BITMAP(core_power, NR_CPUS);
  31. struct core_boot_config *mips_cps_core_bootcfg;
  32. static int __init setup_nothreads(char *s)
  33. {
  34. threads_disabled = true;
  35. return 0;
  36. }
  37. early_param("nothreads", setup_nothreads);
  38. static unsigned core_vpe_count(unsigned core)
  39. {
  40. unsigned cfg;
  41. if (threads_disabled)
  42. return 1;
  43. if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
  44. && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
  45. return 1;
  46. mips_cm_lock_other(core, 0);
  47. cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
  48. mips_cm_unlock_other();
  49. return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
  50. }
  51. static void __init cps_smp_setup(void)
  52. {
  53. unsigned int ncores, nvpes, core_vpes;
  54. unsigned long core_entry;
  55. int c, v;
  56. /* Detect & record VPE topology */
  57. ncores = mips_cm_numcores();
  58. pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
  59. for (c = nvpes = 0; c < ncores; c++) {
  60. core_vpes = core_vpe_count(c);
  61. pr_cont("%c%u", c ? ',' : '{', core_vpes);
  62. /* Use the number of VPEs in core 0 for smp_num_siblings */
  63. if (!c)
  64. smp_num_siblings = core_vpes;
  65. for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
  66. cpu_data[nvpes + v].core = c;
  67. #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
  68. cpu_data[nvpes + v].vpe_id = v;
  69. #endif
  70. }
  71. nvpes += core_vpes;
  72. }
  73. pr_cont("} total %u\n", nvpes);
  74. /* Indicate present CPUs (CPU being synonymous with VPE) */
  75. for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
  76. set_cpu_possible(v, true);
  77. set_cpu_present(v, true);
  78. __cpu_number_map[v] = v;
  79. __cpu_logical_map[v] = v;
  80. }
  81. /* Set a coherent default CCA (CWB) */
  82. change_c0_config(CONF_CM_CMASK, 0x5);
  83. /* Core 0 is powered up (we're running on it) */
  84. bitmap_set(core_power, 0, 1);
  85. /* Initialise core 0 */
  86. mips_cps_core_init();
  87. /* Make core 0 coherent with everything */
  88. write_gcr_cl_coherence(0xff);
  89. if (mips_cm_revision() >= CM_REV_CM3) {
  90. core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
  91. write_gcr_bev_base(core_entry);
  92. }
  93. #ifdef CONFIG_MIPS_MT_FPAFF
  94. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  95. if (cpu_has_fpu)
  96. cpumask_set_cpu(0, &mt_fpu_cpumask);
  97. #endif /* CONFIG_MIPS_MT_FPAFF */
  98. }
  99. static void __init cps_prepare_cpus(unsigned int max_cpus)
  100. {
  101. unsigned ncores, core_vpes, c, cca;
  102. bool cca_unsuitable;
  103. u32 *entry_code;
  104. mips_mt_set_cpuoptions();
  105. /* Detect whether the CCA is unsuited to multi-core SMP */
  106. cca = read_c0_config() & CONF_CM_CMASK;
  107. switch (cca) {
  108. case 0x4: /* CWBE */
  109. case 0x5: /* CWB */
  110. /* The CCA is coherent, multi-core is fine */
  111. cca_unsuitable = false;
  112. break;
  113. default:
  114. /* CCA is not coherent, multi-core is not usable */
  115. cca_unsuitable = true;
  116. }
  117. /* Warn the user if the CCA prevents multi-core */
  118. ncores = mips_cm_numcores();
  119. if (cca_unsuitable && ncores > 1) {
  120. pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
  121. cca);
  122. for_each_present_cpu(c) {
  123. if (cpu_data[c].core)
  124. set_cpu_present(c, false);
  125. }
  126. }
  127. /*
  128. * Patch the start of mips_cps_core_entry to provide:
  129. *
  130. * s0 = kseg0 CCA
  131. */
  132. entry_code = (u32 *)&mips_cps_core_entry;
  133. uasm_i_addiu(&entry_code, 16, 0, cca);
  134. blast_dcache_range((unsigned long)&mips_cps_core_entry,
  135. (unsigned long)entry_code);
  136. bc_wback_inv((unsigned long)&mips_cps_core_entry,
  137. (void *)entry_code - (void *)&mips_cps_core_entry);
  138. __sync();
  139. /* Allocate core boot configuration structs */
  140. mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
  141. GFP_KERNEL);
  142. if (!mips_cps_core_bootcfg) {
  143. pr_err("Failed to allocate boot config for %u cores\n", ncores);
  144. goto err_out;
  145. }
  146. /* Allocate VPE boot configuration structs */
  147. for (c = 0; c < ncores; c++) {
  148. core_vpes = core_vpe_count(c);
  149. mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
  150. sizeof(*mips_cps_core_bootcfg[c].vpe_config),
  151. GFP_KERNEL);
  152. if (!mips_cps_core_bootcfg[c].vpe_config) {
  153. pr_err("Failed to allocate %u VPE boot configs\n",
  154. core_vpes);
  155. goto err_out;
  156. }
  157. }
  158. /* Mark this CPU as booted */
  159. atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
  160. 1 << cpu_vpe_id(&current_cpu_data));
  161. return;
  162. err_out:
  163. /* Clean up allocations */
  164. if (mips_cps_core_bootcfg) {
  165. for (c = 0; c < ncores; c++)
  166. kfree(mips_cps_core_bootcfg[c].vpe_config);
  167. kfree(mips_cps_core_bootcfg);
  168. mips_cps_core_bootcfg = NULL;
  169. }
  170. /* Effectively disable SMP by declaring CPUs not present */
  171. for_each_possible_cpu(c) {
  172. if (c == 0)
  173. continue;
  174. set_cpu_present(c, false);
  175. }
  176. }
  177. static void boot_core(unsigned int core, unsigned int vpe_id)
  178. {
  179. u32 access, stat, seq_state;
  180. unsigned timeout;
  181. /* Select the appropriate core */
  182. mips_cm_lock_other(core, 0);
  183. /* Set its reset vector */
  184. write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
  185. /* Ensure its coherency is disabled */
  186. write_gcr_co_coherence(0);
  187. /* Start it with the legacy memory map and exception base */
  188. write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
  189. /* Ensure the core can access the GCRs */
  190. access = read_gcr_access();
  191. access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
  192. write_gcr_access(access);
  193. if (mips_cpc_present()) {
  194. /* Reset the core */
  195. mips_cpc_lock_other(core);
  196. if (mips_cm_revision() >= CM_REV_CM3) {
  197. /* Run only the requested VP following the reset */
  198. write_cpc_co_vp_stop(0xf);
  199. write_cpc_co_vp_run(1 << vpe_id);
  200. /*
  201. * Ensure that the VP_RUN register is written before the
  202. * core leaves reset.
  203. */
  204. wmb();
  205. }
  206. write_cpc_co_cmd(CPC_Cx_CMD_RESET);
  207. timeout = 100;
  208. while (true) {
  209. stat = read_cpc_co_stat_conf();
  210. seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
  211. /* U6 == coherent execution, ie. the core is up */
  212. if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
  213. break;
  214. /* Delay a little while before we start warning */
  215. if (timeout) {
  216. timeout--;
  217. mdelay(10);
  218. continue;
  219. }
  220. pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
  221. core, stat);
  222. mdelay(1000);
  223. }
  224. mips_cpc_unlock_other();
  225. } else {
  226. /* Take the core out of reset */
  227. write_gcr_co_reset_release(0);
  228. }
  229. mips_cm_unlock_other();
  230. /* The core is now powered up */
  231. bitmap_set(core_power, core, 1);
  232. }
  233. static void remote_vpe_boot(void *dummy)
  234. {
  235. unsigned core = current_cpu_data.core;
  236. struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
  237. mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
  238. }
  239. static void cps_boot_secondary(int cpu, struct task_struct *idle)
  240. {
  241. unsigned core = cpu_data[cpu].core;
  242. unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  243. struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
  244. struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
  245. unsigned long core_entry;
  246. unsigned int remote;
  247. int err;
  248. vpe_cfg->pc = (unsigned long)&smp_bootstrap;
  249. vpe_cfg->sp = __KSTK_TOS(idle);
  250. vpe_cfg->gp = (unsigned long)task_thread_info(idle);
  251. atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
  252. preempt_disable();
  253. if (!test_bit(core, core_power)) {
  254. /* Boot a VPE on a powered down core */
  255. boot_core(core, vpe_id);
  256. goto out;
  257. }
  258. if (cpu_has_vp) {
  259. mips_cm_lock_other(core, vpe_id);
  260. core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
  261. write_gcr_co_reset_base(core_entry);
  262. mips_cm_unlock_other();
  263. }
  264. if (core != current_cpu_data.core) {
  265. /* Boot a VPE on another powered up core */
  266. for (remote = 0; remote < NR_CPUS; remote++) {
  267. if (cpu_data[remote].core != core)
  268. continue;
  269. if (cpu_online(remote))
  270. break;
  271. }
  272. if (remote >= NR_CPUS) {
  273. pr_crit("No online CPU in core %u to start CPU%d\n",
  274. core, cpu);
  275. goto out;
  276. }
  277. err = smp_call_function_single(remote, remote_vpe_boot,
  278. NULL, 1);
  279. if (err)
  280. panic("Failed to call remote CPU\n");
  281. goto out;
  282. }
  283. BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
  284. /* Boot a VPE on this core */
  285. mips_cps_boot_vpes(core_cfg, vpe_id);
  286. out:
  287. preempt_enable();
  288. }
  289. static void cps_init_secondary(void)
  290. {
  291. /* Disable MT - we only want to run 1 TC per VPE */
  292. if (cpu_has_mipsmt)
  293. dmt();
  294. if (mips_cm_revision() >= CM_REV_CM3) {
  295. unsigned ident = gic_read_local_vp_id();
  296. /*
  297. * Ensure that our calculation of the VP ID matches up with
  298. * what the GIC reports, otherwise we'll have configured
  299. * interrupts incorrectly.
  300. */
  301. BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
  302. }
  303. if (cpu_has_veic)
  304. clear_c0_status(ST0_IM);
  305. else
  306. change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
  307. STATUSF_IP4 | STATUSF_IP5 |
  308. STATUSF_IP6 | STATUSF_IP7);
  309. }
  310. static void cps_smp_finish(void)
  311. {
  312. write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
  313. #ifdef CONFIG_MIPS_MT_FPAFF
  314. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  315. if (cpu_has_fpu)
  316. cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
  317. #endif /* CONFIG_MIPS_MT_FPAFF */
  318. local_irq_enable();
  319. }
  320. #ifdef CONFIG_HOTPLUG_CPU
  321. static int cps_cpu_disable(void)
  322. {
  323. unsigned cpu = smp_processor_id();
  324. struct core_boot_config *core_cfg;
  325. if (!cpu)
  326. return -EBUSY;
  327. if (!cps_pm_support_state(CPS_PM_POWER_GATED))
  328. return -EINVAL;
  329. core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
  330. atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
  331. smp_mb__after_atomic();
  332. set_cpu_online(cpu, false);
  333. calculate_cpu_foreign_map();
  334. return 0;
  335. }
  336. static unsigned cpu_death_sibling;
  337. static enum {
  338. CPU_DEATH_HALT,
  339. CPU_DEATH_POWER,
  340. } cpu_death;
  341. void play_dead(void)
  342. {
  343. unsigned int cpu, core, vpe_id;
  344. local_irq_disable();
  345. idle_task_exit();
  346. cpu = smp_processor_id();
  347. core = cpu_data[cpu].core;
  348. cpu_death = CPU_DEATH_POWER;
  349. pr_debug("CPU%d going offline\n", cpu);
  350. if (cpu_has_mipsmt || cpu_has_vp) {
  351. /* Look for another online VPE within the core */
  352. for_each_online_cpu(cpu_death_sibling) {
  353. if (cpu_data[cpu_death_sibling].core != core)
  354. continue;
  355. /*
  356. * There is an online VPE within the core. Just halt
  357. * this TC and leave the core alone.
  358. */
  359. cpu_death = CPU_DEATH_HALT;
  360. break;
  361. }
  362. }
  363. /* This CPU has chosen its way out */
  364. (void)cpu_report_death();
  365. if (cpu_death == CPU_DEATH_HALT) {
  366. vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  367. pr_debug("Halting core %d VP%d\n", core, vpe_id);
  368. if (cpu_has_mipsmt) {
  369. /* Halt this TC */
  370. write_c0_tchalt(TCHALT_H);
  371. instruction_hazard();
  372. } else if (cpu_has_vp) {
  373. write_cpc_cl_vp_stop(1 << vpe_id);
  374. /* Ensure that the VP_STOP register is written */
  375. wmb();
  376. }
  377. } else {
  378. pr_debug("Gating power to core %d\n", core);
  379. /* Power down the core */
  380. cps_pm_enter_state(CPS_PM_POWER_GATED);
  381. }
  382. /* This should never be reached */
  383. panic("Failed to offline CPU %u", cpu);
  384. }
  385. static void wait_for_sibling_halt(void *ptr_cpu)
  386. {
  387. unsigned cpu = (unsigned long)ptr_cpu;
  388. unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  389. unsigned halted;
  390. unsigned long flags;
  391. do {
  392. local_irq_save(flags);
  393. settc(vpe_id);
  394. halted = read_tc_c0_tchalt();
  395. local_irq_restore(flags);
  396. } while (!(halted & TCHALT_H));
  397. }
  398. static void cps_cpu_die(unsigned int cpu)
  399. {
  400. unsigned core = cpu_data[cpu].core;
  401. unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  402. unsigned stat;
  403. int err;
  404. /* Wait for the cpu to choose its way out */
  405. if (!cpu_wait_death(cpu, 5)) {
  406. pr_err("CPU%u: didn't offline\n", cpu);
  407. return;
  408. }
  409. /*
  410. * Now wait for the CPU to actually offline. Without doing this that
  411. * offlining may race with one or more of:
  412. *
  413. * - Onlining the CPU again.
  414. * - Powering down the core if another VPE within it is offlined.
  415. * - A sibling VPE entering a non-coherent state.
  416. *
  417. * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
  418. * with which we could race, so do nothing.
  419. */
  420. if (cpu_death == CPU_DEATH_POWER) {
  421. /*
  422. * Wait for the core to enter a powered down or clock gated
  423. * state, the latter happening when a JTAG probe is connected
  424. * in which case the CPC will refuse to power down the core.
  425. */
  426. do {
  427. mips_cm_lock_other(core, 0);
  428. mips_cpc_lock_other(core);
  429. stat = read_cpc_co_stat_conf();
  430. stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
  431. mips_cpc_unlock_other();
  432. mips_cm_unlock_other();
  433. } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
  434. stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
  435. stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
  436. /* Indicate the core is powered off */
  437. bitmap_clear(core_power, core, 1);
  438. } else if (cpu_has_mipsmt) {
  439. /*
  440. * Have a CPU with access to the offlined CPUs registers wait
  441. * for its TC to halt.
  442. */
  443. err = smp_call_function_single(cpu_death_sibling,
  444. wait_for_sibling_halt,
  445. (void *)(unsigned long)cpu, 1);
  446. if (err)
  447. panic("Failed to call remote sibling CPU\n");
  448. } else if (cpu_has_vp) {
  449. do {
  450. mips_cm_lock_other(core, vpe_id);
  451. stat = read_cpc_co_vp_running();
  452. mips_cm_unlock_other();
  453. } while (stat & (1 << vpe_id));
  454. }
  455. }
  456. #endif /* CONFIG_HOTPLUG_CPU */
  457. static struct plat_smp_ops cps_smp_ops = {
  458. .smp_setup = cps_smp_setup,
  459. .prepare_cpus = cps_prepare_cpus,
  460. .boot_secondary = cps_boot_secondary,
  461. .init_secondary = cps_init_secondary,
  462. .smp_finish = cps_smp_finish,
  463. .send_ipi_single = mips_smp_send_ipi_single,
  464. .send_ipi_mask = mips_smp_send_ipi_mask,
  465. #ifdef CONFIG_HOTPLUG_CPU
  466. .cpu_disable = cps_cpu_disable,
  467. .cpu_die = cps_cpu_die,
  468. #endif
  469. };
  470. bool mips_cps_smp_in_use(void)
  471. {
  472. extern struct plat_smp_ops *mp_ops;
  473. return mp_ops == &cps_smp_ops;
  474. }
  475. int register_cps_smp_ops(void)
  476. {
  477. if (!mips_cm_present()) {
  478. pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
  479. return -ENODEV;
  480. }
  481. /* check we have a GIC - we need one for IPIs */
  482. if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
  483. pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
  484. return -ENODEV;
  485. }
  486. register_smp_ops(&cps_smp_ops);
  487. return 0;
  488. }