smp-bmips.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/sched/hotplug.h>
  13. #include <linux/sched/task_stack.h>
  14. #include <linux/mm.h>
  15. #include <linux/delay.h>
  16. #include <linux/smp.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/cpu.h>
  20. #include <linux/cpumask.h>
  21. #include <linux/reboot.h>
  22. #include <linux/io.h>
  23. #include <linux/compiler.h>
  24. #include <linux/linkage.h>
  25. #include <linux/bug.h>
  26. #include <linux/kernel.h>
  27. #include <asm/time.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/processor.h>
  30. #include <asm/bootinfo.h>
  31. #include <asm/pmon.h>
  32. #include <asm/cacheflush.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/mipsregs.h>
  35. #include <asm/bmips.h>
  36. #include <asm/traps.h>
  37. #include <asm/barrier.h>
  38. #include <asm/cpu-features.h>
  39. static int __maybe_unused max_cpus = 1;
  40. /* these may be configured by the platform code */
  41. int bmips_smp_enabled = 1;
  42. int bmips_cpu_offset;
  43. cpumask_t bmips_booted_mask;
  44. unsigned long bmips_tp1_irqs = IE_IRQ1;
  45. #define RESET_FROM_KSEG0 0x80080800
  46. #define RESET_FROM_KSEG1 0xa0080800
  47. static void bmips_set_reset_vec(int cpu, u32 val);
  48. #ifdef CONFIG_SMP
  49. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  50. unsigned long bmips_smp_boot_sp;
  51. unsigned long bmips_smp_boot_gp;
  52. static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  53. static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  54. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  55. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  56. /* SW interrupts 0,1 are used for interprocessor signaling */
  57. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  58. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  59. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  60. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  61. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  62. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  63. static void __init bmips_smp_setup(void)
  64. {
  65. int i, cpu = 1, boot_cpu = 0;
  66. int cpu_hw_intr;
  67. switch (current_cpu_type()) {
  68. case CPU_BMIPS4350:
  69. case CPU_BMIPS4380:
  70. /* arbitration priority */
  71. clear_c0_brcm_cmt_ctrl(0x30);
  72. /* NBK and weak order flags */
  73. set_c0_brcm_config_0(0x30000);
  74. /* Find out if we are running on TP0 or TP1 */
  75. boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  76. /*
  77. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  78. * thread
  79. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  80. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  81. */
  82. if (boot_cpu == 0)
  83. cpu_hw_intr = 0x02;
  84. else
  85. cpu_hw_intr = 0x1d;
  86. change_c0_brcm_cmt_intr(0xf8018000,
  87. (cpu_hw_intr << 27) | (0x03 << 15));
  88. /* single core, 2 threads (2 pipelines) */
  89. max_cpus = 2;
  90. break;
  91. case CPU_BMIPS5000:
  92. /* enable raceless SW interrupts */
  93. set_c0_brcm_config(0x03 << 22);
  94. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  95. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  96. /* N cores, 2 threads per core */
  97. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  98. /* clear any pending SW interrupts */
  99. for (i = 0; i < max_cpus; i++) {
  100. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  101. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  102. }
  103. break;
  104. default:
  105. max_cpus = 1;
  106. }
  107. if (!bmips_smp_enabled)
  108. max_cpus = 1;
  109. /* this can be overridden by the BSP */
  110. if (!board_ebase_setup)
  111. board_ebase_setup = &bmips_ebase_setup;
  112. __cpu_number_map[boot_cpu] = 0;
  113. __cpu_logical_map[0] = boot_cpu;
  114. for (i = 0; i < max_cpus; i++) {
  115. if (i != boot_cpu) {
  116. __cpu_number_map[i] = cpu;
  117. __cpu_logical_map[cpu] = i;
  118. cpu++;
  119. }
  120. set_cpu_possible(i, 1);
  121. set_cpu_present(i, 1);
  122. }
  123. }
  124. /*
  125. * IPI IRQ setup - runs on CPU0
  126. */
  127. static void bmips_prepare_cpus(unsigned int max_cpus)
  128. {
  129. irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
  130. switch (current_cpu_type()) {
  131. case CPU_BMIPS4350:
  132. case CPU_BMIPS4380:
  133. bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
  134. break;
  135. case CPU_BMIPS5000:
  136. bmips_ipi_interrupt = bmips5000_ipi_interrupt;
  137. break;
  138. default:
  139. return;
  140. }
  141. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  142. "smp_ipi0", NULL))
  143. panic("Can't request IPI0 interrupt");
  144. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  145. "smp_ipi1", NULL))
  146. panic("Can't request IPI1 interrupt");
  147. }
  148. /*
  149. * Tell the hardware to boot CPUx - runs on CPU0
  150. */
  151. static void bmips_boot_secondary(int cpu, struct task_struct *idle)
  152. {
  153. bmips_smp_boot_sp = __KSTK_TOS(idle);
  154. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  155. mb();
  156. /*
  157. * Initial boot sequence for secondary CPU:
  158. * bmips_reset_nmi_vec @ a000_0000 ->
  159. * bmips_smp_entry ->
  160. * plat_wired_tlb_setup (cached function call; optional) ->
  161. * start_secondary (cached jump)
  162. *
  163. * Warm restart sequence:
  164. * play_dead WAIT loop ->
  165. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  166. * eret to play_dead ->
  167. * bmips_secondary_reentry ->
  168. * start_secondary
  169. */
  170. pr_info("SMP: Booting CPU%d...\n", cpu);
  171. if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
  172. /* kseg1 might not exist if this CPU enabled XKS01 */
  173. bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
  174. switch (current_cpu_type()) {
  175. case CPU_BMIPS4350:
  176. case CPU_BMIPS4380:
  177. bmips43xx_send_ipi_single(cpu, 0);
  178. break;
  179. case CPU_BMIPS5000:
  180. bmips5000_send_ipi_single(cpu, 0);
  181. break;
  182. }
  183. } else {
  184. bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
  185. switch (current_cpu_type()) {
  186. case CPU_BMIPS4350:
  187. case CPU_BMIPS4380:
  188. /* Reset slave TP1 if booting from TP0 */
  189. if (cpu_logical_map(cpu) == 1)
  190. set_c0_brcm_cmt_ctrl(0x01);
  191. break;
  192. case CPU_BMIPS5000:
  193. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  194. break;
  195. }
  196. cpumask_set_cpu(cpu, &bmips_booted_mask);
  197. }
  198. }
  199. /*
  200. * Early setup - runs on secondary CPU after cache probe
  201. */
  202. static void bmips_init_secondary(void)
  203. {
  204. switch (current_cpu_type()) {
  205. case CPU_BMIPS4350:
  206. case CPU_BMIPS4380:
  207. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  208. break;
  209. case CPU_BMIPS5000:
  210. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  211. current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
  212. break;
  213. }
  214. }
  215. /*
  216. * Late setup - runs on secondary CPU before entering the idle loop
  217. */
  218. static void bmips_smp_finish(void)
  219. {
  220. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  221. /* make sure there won't be a timer interrupt for a little while */
  222. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  223. irq_enable_hazard();
  224. set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
  225. irq_enable_hazard();
  226. }
  227. /*
  228. * BMIPS5000 raceless IPIs
  229. *
  230. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  231. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  232. * IPI1 is used for SMP_CALL_FUNCTION
  233. */
  234. static void bmips5000_send_ipi_single(int cpu, unsigned int action)
  235. {
  236. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  237. }
  238. static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
  239. {
  240. int action = irq - IPI0_IRQ;
  241. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  242. if (action == 0)
  243. scheduler_ipi();
  244. else
  245. generic_smp_call_function_interrupt();
  246. return IRQ_HANDLED;
  247. }
  248. static void bmips5000_send_ipi_mask(const struct cpumask *mask,
  249. unsigned int action)
  250. {
  251. unsigned int i;
  252. for_each_cpu(i, mask)
  253. bmips5000_send_ipi_single(i, action);
  254. }
  255. /*
  256. * BMIPS43xx racey IPIs
  257. *
  258. * We use one inbound SW IRQ for each CPU.
  259. *
  260. * A spinlock must be held in order to keep CPUx from accidentally clearing
  261. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  262. * same spinlock is used to protect the action masks.
  263. */
  264. static DEFINE_SPINLOCK(ipi_lock);
  265. static DEFINE_PER_CPU(int, ipi_action_mask);
  266. static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
  267. {
  268. unsigned long flags;
  269. spin_lock_irqsave(&ipi_lock, flags);
  270. set_c0_cause(cpu ? C_SW1 : C_SW0);
  271. per_cpu(ipi_action_mask, cpu) |= action;
  272. irq_enable_hazard();
  273. spin_unlock_irqrestore(&ipi_lock, flags);
  274. }
  275. static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
  276. {
  277. unsigned long flags;
  278. int action, cpu = irq - IPI0_IRQ;
  279. spin_lock_irqsave(&ipi_lock, flags);
  280. action = __this_cpu_read(ipi_action_mask);
  281. per_cpu(ipi_action_mask, cpu) = 0;
  282. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  283. spin_unlock_irqrestore(&ipi_lock, flags);
  284. if (action & SMP_RESCHEDULE_YOURSELF)
  285. scheduler_ipi();
  286. if (action & SMP_CALL_FUNCTION)
  287. generic_smp_call_function_interrupt();
  288. return IRQ_HANDLED;
  289. }
  290. static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
  291. unsigned int action)
  292. {
  293. unsigned int i;
  294. for_each_cpu(i, mask)
  295. bmips43xx_send_ipi_single(i, action);
  296. }
  297. #ifdef CONFIG_HOTPLUG_CPU
  298. static int bmips_cpu_disable(void)
  299. {
  300. unsigned int cpu = smp_processor_id();
  301. if (cpu == 0)
  302. return -EBUSY;
  303. pr_info("SMP: CPU%d is offline\n", cpu);
  304. set_cpu_online(cpu, false);
  305. calculate_cpu_foreign_map();
  306. irq_cpu_offline();
  307. clear_c0_status(IE_IRQ5);
  308. local_flush_tlb_all();
  309. local_flush_icache_range(0, ~0);
  310. return 0;
  311. }
  312. static void bmips_cpu_die(unsigned int cpu)
  313. {
  314. }
  315. void __ref play_dead(void)
  316. {
  317. idle_task_exit();
  318. /* flush data cache */
  319. _dma_cache_wback_inv(0, ~0);
  320. /*
  321. * Wakeup is on SW0 or SW1; disable everything else
  322. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  323. * IRQ handlers; this clears ST0_IE and returns immediately.
  324. */
  325. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  326. change_c0_status(
  327. IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  328. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  329. irq_disable_hazard();
  330. /*
  331. * wait for SW interrupt from bmips_boot_secondary(), then jump
  332. * back to start_secondary()
  333. */
  334. __asm__ __volatile__(
  335. " wait\n"
  336. " j bmips_secondary_reentry\n"
  337. : : : "memory");
  338. }
  339. #endif /* CONFIG_HOTPLUG_CPU */
  340. struct plat_smp_ops bmips43xx_smp_ops = {
  341. .smp_setup = bmips_smp_setup,
  342. .prepare_cpus = bmips_prepare_cpus,
  343. .boot_secondary = bmips_boot_secondary,
  344. .smp_finish = bmips_smp_finish,
  345. .init_secondary = bmips_init_secondary,
  346. .send_ipi_single = bmips43xx_send_ipi_single,
  347. .send_ipi_mask = bmips43xx_send_ipi_mask,
  348. #ifdef CONFIG_HOTPLUG_CPU
  349. .cpu_disable = bmips_cpu_disable,
  350. .cpu_die = bmips_cpu_die,
  351. #endif
  352. };
  353. struct plat_smp_ops bmips5000_smp_ops = {
  354. .smp_setup = bmips_smp_setup,
  355. .prepare_cpus = bmips_prepare_cpus,
  356. .boot_secondary = bmips_boot_secondary,
  357. .smp_finish = bmips_smp_finish,
  358. .init_secondary = bmips_init_secondary,
  359. .send_ipi_single = bmips5000_send_ipi_single,
  360. .send_ipi_mask = bmips5000_send_ipi_mask,
  361. #ifdef CONFIG_HOTPLUG_CPU
  362. .cpu_disable = bmips_cpu_disable,
  363. .cpu_die = bmips_cpu_die,
  364. #endif
  365. };
  366. #endif /* CONFIG_SMP */
  367. /***********************************************************************
  368. * BMIPS vector relocation
  369. * This is primarily used for SMP boot, but it is applicable to some
  370. * UP BMIPS systems as well.
  371. ***********************************************************************/
  372. static void bmips_wr_vec(unsigned long dst, char *start, char *end)
  373. {
  374. memcpy((void *)dst, start, end - start);
  375. dma_cache_wback(dst, end - start);
  376. local_flush_icache_range(dst, dst + (end - start));
  377. instruction_hazard();
  378. }
  379. static inline void bmips_nmi_handler_setup(void)
  380. {
  381. bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
  382. &bmips_reset_nmi_vec_end);
  383. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
  384. &bmips_smp_int_vec_end);
  385. }
  386. struct reset_vec_info {
  387. int cpu;
  388. u32 val;
  389. };
  390. static void bmips_set_reset_vec_remote(void *vinfo)
  391. {
  392. struct reset_vec_info *info = vinfo;
  393. int shift = info->cpu & 0x01 ? 16 : 0;
  394. u32 mask = ~(0xffff << shift), val = info->val >> 16;
  395. preempt_disable();
  396. if (smp_processor_id() > 0) {
  397. smp_call_function_single(0, &bmips_set_reset_vec_remote,
  398. info, 1);
  399. } else {
  400. if (info->cpu & 0x02) {
  401. /* BMIPS5200 "should" use mask/shift, but it's buggy */
  402. bmips_write_zscm_reg(0xa0, (val << 16) | val);
  403. bmips_read_zscm_reg(0xa0);
  404. } else {
  405. write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
  406. (val << shift));
  407. }
  408. }
  409. preempt_enable();
  410. }
  411. static void bmips_set_reset_vec(int cpu, u32 val)
  412. {
  413. struct reset_vec_info info;
  414. if (current_cpu_type() == CPU_BMIPS5000) {
  415. /* this needs to run from CPU0 (which is always online) */
  416. info.cpu = cpu;
  417. info.val = val;
  418. bmips_set_reset_vec_remote(&info);
  419. } else {
  420. void __iomem *cbr = BMIPS_GET_CBR();
  421. if (cpu == 0)
  422. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  423. else {
  424. if (current_cpu_type() != CPU_BMIPS4380)
  425. return;
  426. __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  427. }
  428. }
  429. __sync();
  430. back_to_back_c0_hazard();
  431. }
  432. void bmips_ebase_setup(void)
  433. {
  434. unsigned long new_ebase = ebase;
  435. BUG_ON(ebase != CKSEG0);
  436. switch (current_cpu_type()) {
  437. case CPU_BMIPS4350:
  438. /*
  439. * BMIPS4350 cannot relocate the normal vectors, but it
  440. * can relocate the BEV=1 vectors. So CPU1 starts up at
  441. * the relocated BEV=1, IV=0 general exception vector @
  442. * 0xa000_0380.
  443. *
  444. * set_uncached_handler() is used here because:
  445. * - CPU1 will run this from uncached space
  446. * - None of the cacheflush functions are set up yet
  447. */
  448. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  449. &bmips_smp_int_vec, 0x80);
  450. __sync();
  451. return;
  452. case CPU_BMIPS3300:
  453. case CPU_BMIPS4380:
  454. /*
  455. * 0x8000_0000: reset/NMI (initially in kseg1)
  456. * 0x8000_0400: normal vectors
  457. */
  458. new_ebase = 0x80000400;
  459. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  460. break;
  461. case CPU_BMIPS5000:
  462. /*
  463. * 0x8000_0000: reset/NMI (initially in kseg1)
  464. * 0x8000_1000: normal vectors
  465. */
  466. new_ebase = 0x80001000;
  467. bmips_set_reset_vec(0, RESET_FROM_KSEG0);
  468. write_c0_ebase(new_ebase);
  469. break;
  470. default:
  471. return;
  472. }
  473. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  474. ebase = new_ebase;
  475. }
  476. asmlinkage void __weak plat_wired_tlb_setup(void)
  477. {
  478. /*
  479. * Called when starting/restarting a secondary CPU.
  480. * Kernel stacks and other important data might only be accessible
  481. * once the wired entries are present.
  482. */
  483. }
  484. void __init bmips_cpu_setup(void)
  485. {
  486. void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
  487. u32 __maybe_unused cfg;
  488. switch (current_cpu_type()) {
  489. case CPU_BMIPS3300:
  490. /* Set BIU to async mode */
  491. set_c0_brcm_bus_pll(BIT(22));
  492. __sync();
  493. /* put the BIU back in sync mode */
  494. clear_c0_brcm_bus_pll(BIT(22));
  495. /* clear BHTD to enable branch history table */
  496. clear_c0_brcm_reset(BIT(16));
  497. /* Flush and enable RAC */
  498. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  499. __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
  500. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  501. cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
  502. __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
  503. __raw_readl(cbr + BMIPS_RAC_CONFIG);
  504. cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  505. __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
  506. __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
  507. break;
  508. case CPU_BMIPS4380:
  509. /* CBG workaround for early BMIPS4380 CPUs */
  510. switch (read_c0_prid()) {
  511. case 0x2a040:
  512. case 0x2a042:
  513. case 0x2a044:
  514. case 0x2a060:
  515. cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
  516. __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
  517. __raw_readl(cbr + BMIPS_L2_CONFIG);
  518. }
  519. /* clear BHTD to enable branch history table */
  520. clear_c0_brcm_config_0(BIT(21));
  521. /* XI/ROTR enable */
  522. set_c0_brcm_config_0(BIT(23));
  523. set_c0_brcm_cmt_ctrl(BIT(15));
  524. break;
  525. case CPU_BMIPS5000:
  526. /* enable RDHWR, BRDHWR */
  527. set_c0_brcm_config(BIT(17) | BIT(21));
  528. /* Disable JTB */
  529. __asm__ __volatile__(
  530. " .set noreorder\n"
  531. " li $8, 0x5a455048\n"
  532. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  533. " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
  534. " li $9, 0x00008000\n"
  535. " or $8, $8, $9\n"
  536. " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
  537. " sync\n"
  538. " li $8, 0x0\n"
  539. " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
  540. " .set reorder\n"
  541. : : : "$8", "$9");
  542. /* XI enable */
  543. set_c0_brcm_config(BIT(27));
  544. /* enable MIPS32R2 ROR instruction for XI TLB handlers */
  545. __asm__ __volatile__(
  546. " li $8, 0x5a455048\n"
  547. " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
  548. " nop; nop; nop\n"
  549. " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
  550. " lui $9, 0x0100\n"
  551. " or $8, $9\n"
  552. " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
  553. : : : "$8", "$9");
  554. break;
  555. }
  556. }