process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/debug.h>
  24. #include <linux/sched/hotplug.h>
  25. #include <linux/sched/task.h>
  26. #include <linux/sched/task_stack.h>
  27. #include <linux/stddef.h>
  28. #include <linux/thread_info.h>
  29. #include <linux/unistd.h>
  30. #include <linux/efi.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/delay.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/utsname.h>
  35. #include <linux/tracehook.h>
  36. #include <linux/rcupdate.h>
  37. #include <asm/cpu.h>
  38. #include <asm/delay.h>
  39. #include <asm/elf.h>
  40. #include <asm/irq.h>
  41. #include <asm/kexec.h>
  42. #include <asm/pgalloc.h>
  43. #include <asm/processor.h>
  44. #include <asm/sal.h>
  45. #include <asm/switch_to.h>
  46. #include <asm/tlbflush.h>
  47. #include <linux/uaccess.h>
  48. #include <asm/unwind.h>
  49. #include <asm/user.h>
  50. #include "entry.h"
  51. #ifdef CONFIG_PERFMON
  52. # include <asm/perfmon.h>
  53. #endif
  54. #include "sigframe.h"
  55. void (*ia64_mark_idle)(int);
  56. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  57. EXPORT_SYMBOL(boot_option_idle_override);
  58. void (*pm_power_off) (void);
  59. EXPORT_SYMBOL(pm_power_off);
  60. void
  61. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  62. {
  63. unsigned long ip, sp, bsp;
  64. char buf[128]; /* don't make it so big that it overflows the stack! */
  65. printk("\nCall Trace:\n");
  66. do {
  67. unw_get_ip(info, &ip);
  68. if (ip == 0)
  69. break;
  70. unw_get_sp(info, &sp);
  71. unw_get_bsp(info, &bsp);
  72. snprintf(buf, sizeof(buf),
  73. " [<%016lx>] %%s\n"
  74. " sp=%016lx bsp=%016lx\n",
  75. ip, sp, bsp);
  76. print_symbol(buf, ip);
  77. } while (unw_unwind(info) >= 0);
  78. }
  79. void
  80. show_stack (struct task_struct *task, unsigned long *sp)
  81. {
  82. if (!task)
  83. unw_init_running(ia64_do_show_stack, NULL);
  84. else {
  85. struct unw_frame_info info;
  86. unw_init_from_blocked_task(&info, task);
  87. ia64_do_show_stack(&info, NULL);
  88. }
  89. }
  90. void
  91. show_regs (struct pt_regs *regs)
  92. {
  93. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  94. print_modules();
  95. printk("\n");
  96. show_regs_print_info(KERN_DEFAULT);
  97. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  98. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  99. init_utsname()->release);
  100. print_symbol("ip is at %s\n", ip);
  101. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  102. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  103. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  104. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  105. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  106. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  107. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  108. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  109. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  110. regs->f6.u.bits[1], regs->f6.u.bits[0],
  111. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  112. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  113. regs->f8.u.bits[1], regs->f8.u.bits[0],
  114. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  115. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  116. regs->f10.u.bits[1], regs->f10.u.bits[0],
  117. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  118. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  119. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  120. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  121. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  122. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  123. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  124. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  125. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  126. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  127. if (user_mode(regs)) {
  128. /* print the stacked registers */
  129. unsigned long val, *bsp, ndirty;
  130. int i, sof, is_nat = 0;
  131. sof = regs->cr_ifs & 0x7f; /* size of frame */
  132. ndirty = (regs->loadrs >> 19);
  133. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  134. for (i = 0; i < sof; ++i) {
  135. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  136. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  137. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  138. }
  139. } else
  140. show_stack(NULL, NULL);
  141. }
  142. /* local support for deprecated console_print */
  143. void
  144. console_print(const char *s)
  145. {
  146. printk(KERN_EMERG "%s", s);
  147. }
  148. void
  149. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  150. {
  151. if (fsys_mode(current, &scr->pt)) {
  152. /*
  153. * defer signal-handling etc. until we return to
  154. * privilege-level 0.
  155. */
  156. if (!ia64_psr(&scr->pt)->lp)
  157. ia64_psr(&scr->pt)->lp = 1;
  158. return;
  159. }
  160. #ifdef CONFIG_PERFMON
  161. if (current->thread.pfm_needs_checking)
  162. /*
  163. * Note: pfm_handle_work() allow us to call it with interrupts
  164. * disabled, and may enable interrupts within the function.
  165. */
  166. pfm_handle_work();
  167. #endif
  168. /* deal with pending signal delivery */
  169. if (test_thread_flag(TIF_SIGPENDING)) {
  170. local_irq_enable(); /* force interrupt enable */
  171. ia64_do_signal(scr, in_syscall);
  172. }
  173. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
  174. local_irq_enable(); /* force interrupt enable */
  175. tracehook_notify_resume(&scr->pt);
  176. }
  177. /* copy user rbs to kernel rbs */
  178. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  179. local_irq_enable(); /* force interrupt enable */
  180. ia64_sync_krbs();
  181. }
  182. local_irq_disable(); /* force interrupt disable */
  183. }
  184. static int __init nohalt_setup(char * str)
  185. {
  186. cpu_idle_poll_ctrl(true);
  187. return 1;
  188. }
  189. __setup("nohalt", nohalt_setup);
  190. #ifdef CONFIG_HOTPLUG_CPU
  191. /* We don't actually take CPU down, just spin without interrupts. */
  192. static inline void play_dead(void)
  193. {
  194. unsigned int this_cpu = smp_processor_id();
  195. /* Ack it */
  196. __this_cpu_write(cpu_state, CPU_DEAD);
  197. max_xtp();
  198. local_irq_disable();
  199. idle_task_exit();
  200. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  201. /*
  202. * The above is a point of no-return, the processor is
  203. * expected to be in SAL loop now.
  204. */
  205. BUG();
  206. }
  207. #else
  208. static inline void play_dead(void)
  209. {
  210. BUG();
  211. }
  212. #endif /* CONFIG_HOTPLUG_CPU */
  213. void arch_cpu_idle_dead(void)
  214. {
  215. play_dead();
  216. }
  217. void arch_cpu_idle(void)
  218. {
  219. void (*mark_idle)(int) = ia64_mark_idle;
  220. #ifdef CONFIG_SMP
  221. min_xtp();
  222. #endif
  223. rmb();
  224. if (mark_idle)
  225. (*mark_idle)(1);
  226. safe_halt();
  227. if (mark_idle)
  228. (*mark_idle)(0);
  229. #ifdef CONFIG_SMP
  230. normal_xtp();
  231. #endif
  232. }
  233. void
  234. ia64_save_extra (struct task_struct *task)
  235. {
  236. #ifdef CONFIG_PERFMON
  237. unsigned long info;
  238. #endif
  239. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  240. ia64_save_debug_regs(&task->thread.dbr[0]);
  241. #ifdef CONFIG_PERFMON
  242. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  243. pfm_save_regs(task);
  244. info = __this_cpu_read(pfm_syst_info);
  245. if (info & PFM_CPUINFO_SYST_WIDE)
  246. pfm_syst_wide_update_task(task, info, 0);
  247. #endif
  248. }
  249. void
  250. ia64_load_extra (struct task_struct *task)
  251. {
  252. #ifdef CONFIG_PERFMON
  253. unsigned long info;
  254. #endif
  255. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  256. ia64_load_debug_regs(&task->thread.dbr[0]);
  257. #ifdef CONFIG_PERFMON
  258. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  259. pfm_load_regs(task);
  260. info = __this_cpu_read(pfm_syst_info);
  261. if (info & PFM_CPUINFO_SYST_WIDE)
  262. pfm_syst_wide_update_task(task, info, 1);
  263. #endif
  264. }
  265. /*
  266. * Copy the state of an ia-64 thread.
  267. *
  268. * We get here through the following call chain:
  269. *
  270. * from user-level: from kernel:
  271. *
  272. * <clone syscall> <some kernel call frames>
  273. * sys_clone :
  274. * do_fork do_fork
  275. * copy_thread copy_thread
  276. *
  277. * This means that the stack layout is as follows:
  278. *
  279. * +---------------------+ (highest addr)
  280. * | struct pt_regs |
  281. * +---------------------+
  282. * | struct switch_stack |
  283. * +---------------------+
  284. * | |
  285. * | memory stack |
  286. * | | <-- sp (lowest addr)
  287. * +---------------------+
  288. *
  289. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  290. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  291. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  292. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  293. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  294. * so there is nothing to worry about.
  295. */
  296. int
  297. copy_thread(unsigned long clone_flags,
  298. unsigned long user_stack_base, unsigned long user_stack_size,
  299. struct task_struct *p)
  300. {
  301. extern char ia64_ret_from_clone;
  302. struct switch_stack *child_stack, *stack;
  303. unsigned long rbs, child_rbs, rbs_size;
  304. struct pt_regs *child_ptregs;
  305. struct pt_regs *regs = current_pt_regs();
  306. int retval = 0;
  307. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  308. child_stack = (struct switch_stack *) child_ptregs - 1;
  309. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  310. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  311. /* copy parts of thread_struct: */
  312. p->thread.ksp = (unsigned long) child_stack - 16;
  313. /*
  314. * NOTE: The calling convention considers all floating point
  315. * registers in the high partition (fph) to be scratch. Since
  316. * the only way to get to this point is through a system call,
  317. * we know that the values in fph are all dead. Hence, there
  318. * is no need to inherit the fph state from the parent to the
  319. * child and all we have to do is to make sure that
  320. * IA64_THREAD_FPH_VALID is cleared in the child.
  321. *
  322. * XXX We could push this optimization a bit further by
  323. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  324. * However, it's not clear this is worth doing. Also, it
  325. * would be a slight deviation from the normal Linux system
  326. * call behavior where scratch registers are preserved across
  327. * system calls (unless used by the system call itself).
  328. */
  329. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  330. | IA64_THREAD_PM_VALID)
  331. # define THREAD_FLAGS_TO_SET 0
  332. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  333. | THREAD_FLAGS_TO_SET);
  334. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  335. if (unlikely(p->flags & PF_KTHREAD)) {
  336. if (unlikely(!user_stack_base)) {
  337. /* fork_idle() called us */
  338. return 0;
  339. }
  340. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  341. child_stack->r4 = user_stack_base; /* payload */
  342. child_stack->r5 = user_stack_size; /* argument */
  343. /*
  344. * Preserve PSR bits, except for bits 32-34 and 37-45,
  345. * which we can't read.
  346. */
  347. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  348. /* mark as valid, empty frame */
  349. child_ptregs->cr_ifs = 1UL << 63;
  350. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  351. = ia64_getreg(_IA64_REG_AR_FPSR);
  352. child_stack->pr = (1 << PRED_KERNEL_STACK);
  353. child_stack->ar_bspstore = child_rbs;
  354. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  355. /* stop some PSR bits from being inherited.
  356. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  357. * therefore we must specify them explicitly here and not include them in
  358. * IA64_PSR_BITS_TO_CLEAR.
  359. */
  360. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  361. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  362. return 0;
  363. }
  364. stack = ((struct switch_stack *) regs) - 1;
  365. /* copy parent's switch_stack & pt_regs to child: */
  366. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  367. /* copy the parent's register backing store to the child: */
  368. rbs_size = stack->ar_bspstore - rbs;
  369. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  370. if (clone_flags & CLONE_SETTLS)
  371. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  372. if (user_stack_base) {
  373. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  374. child_ptregs->ar_bspstore = user_stack_base;
  375. child_ptregs->ar_rnat = 0;
  376. child_ptregs->loadrs = 0;
  377. }
  378. child_stack->ar_bspstore = child_rbs + rbs_size;
  379. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  380. /* stop some PSR bits from being inherited.
  381. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  382. * therefore we must specify them explicitly here and not include them in
  383. * IA64_PSR_BITS_TO_CLEAR.
  384. */
  385. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  386. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  387. #ifdef CONFIG_PERFMON
  388. if (current->thread.pfm_context)
  389. pfm_inherit(p, child_ptregs);
  390. #endif
  391. return retval;
  392. }
  393. static void
  394. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  395. {
  396. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  397. unsigned long uninitialized_var(ip); /* GCC be quiet */
  398. elf_greg_t *dst = arg;
  399. struct pt_regs *pt;
  400. char nat;
  401. int i;
  402. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  403. if (unw_unwind_to_user(info) < 0)
  404. return;
  405. unw_get_sp(info, &sp);
  406. pt = (struct pt_regs *) (sp + 16);
  407. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  408. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  409. return;
  410. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  411. &ar_rnat);
  412. /*
  413. * coredump format:
  414. * r0-r31
  415. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  416. * predicate registers (p0-p63)
  417. * b0-b7
  418. * ip cfm user-mask
  419. * ar.rsc ar.bsp ar.bspstore ar.rnat
  420. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  421. */
  422. /* r0 is zero */
  423. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  424. unw_get_gr(info, i, &dst[i], &nat);
  425. if (nat)
  426. nat_bits |= mask;
  427. mask <<= 1;
  428. }
  429. dst[32] = nat_bits;
  430. unw_get_pr(info, &dst[33]);
  431. for (i = 0; i < 8; ++i)
  432. unw_get_br(info, i, &dst[34 + i]);
  433. unw_get_rp(info, &ip);
  434. dst[42] = ip + ia64_psr(pt)->ri;
  435. dst[43] = cfm;
  436. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  437. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  438. /*
  439. * For bsp and bspstore, unw_get_ar() would return the kernel
  440. * addresses, but we need the user-level addresses instead:
  441. */
  442. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  443. dst[47] = pt->ar_bspstore;
  444. dst[48] = ar_rnat;
  445. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  446. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  447. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  448. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  449. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  450. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  451. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  452. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  453. }
  454. void
  455. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  456. {
  457. elf_fpreg_t *dst = arg;
  458. int i;
  459. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  460. if (unw_unwind_to_user(info) < 0)
  461. return;
  462. /* f0 is 0.0, f1 is 1.0 */
  463. for (i = 2; i < 32; ++i)
  464. unw_get_fr(info, i, dst + i);
  465. ia64_flush_fph(task);
  466. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  467. memcpy(dst + 32, task->thread.fph, 96*16);
  468. }
  469. void
  470. do_copy_regs (struct unw_frame_info *info, void *arg)
  471. {
  472. do_copy_task_regs(current, info, arg);
  473. }
  474. void
  475. do_dump_fpu (struct unw_frame_info *info, void *arg)
  476. {
  477. do_dump_task_fpu(current, info, arg);
  478. }
  479. void
  480. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  481. {
  482. unw_init_running(do_copy_regs, dst);
  483. }
  484. int
  485. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  486. {
  487. unw_init_running(do_dump_fpu, dst);
  488. return 1; /* f0-f31 are always valid so we always return 1 */
  489. }
  490. /*
  491. * Flush thread state. This is called when a thread does an execve().
  492. */
  493. void
  494. flush_thread (void)
  495. {
  496. /* drop floating-point and debug-register state if it exists: */
  497. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  498. ia64_drop_fpu(current);
  499. }
  500. /*
  501. * Clean up state associated with a thread. This is called when
  502. * the thread calls exit().
  503. */
  504. void
  505. exit_thread (struct task_struct *tsk)
  506. {
  507. ia64_drop_fpu(tsk);
  508. #ifdef CONFIG_PERFMON
  509. /* if needed, stop monitoring and flush state to perfmon context */
  510. if (tsk->thread.pfm_context)
  511. pfm_exit_thread(tsk);
  512. /* free debug register resources */
  513. if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
  514. pfm_release_debug_registers(tsk);
  515. #endif
  516. }
  517. unsigned long
  518. get_wchan (struct task_struct *p)
  519. {
  520. struct unw_frame_info info;
  521. unsigned long ip;
  522. int count = 0;
  523. if (!p || p == current || p->state == TASK_RUNNING)
  524. return 0;
  525. /*
  526. * Note: p may not be a blocked task (it could be current or
  527. * another process running on some other CPU. Rather than
  528. * trying to determine if p is really blocked, we just assume
  529. * it's blocked and rely on the unwind routines to fail
  530. * gracefully if the process wasn't really blocked after all.
  531. * --davidm 99/12/15
  532. */
  533. unw_init_from_blocked_task(&info, p);
  534. do {
  535. if (p->state == TASK_RUNNING)
  536. return 0;
  537. if (unw_unwind(&info) < 0)
  538. return 0;
  539. unw_get_ip(&info, &ip);
  540. if (!in_sched_functions(ip))
  541. return ip;
  542. } while (count++ < 16);
  543. return 0;
  544. }
  545. void
  546. cpu_halt (void)
  547. {
  548. pal_power_mgmt_info_u_t power_info[8];
  549. unsigned long min_power;
  550. int i, min_power_state;
  551. if (ia64_pal_halt_info(power_info) != 0)
  552. return;
  553. min_power_state = 0;
  554. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  555. for (i = 1; i < 8; ++i)
  556. if (power_info[i].pal_power_mgmt_info_s.im
  557. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  558. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  559. min_power_state = i;
  560. }
  561. while (1)
  562. ia64_pal_halt(min_power_state);
  563. }
  564. void machine_shutdown(void)
  565. {
  566. #ifdef CONFIG_HOTPLUG_CPU
  567. int cpu;
  568. for_each_online_cpu(cpu) {
  569. if (cpu != smp_processor_id())
  570. cpu_down(cpu);
  571. }
  572. #endif
  573. #ifdef CONFIG_KEXEC
  574. kexec_disable_iosapic();
  575. #endif
  576. }
  577. void
  578. machine_restart (char *restart_cmd)
  579. {
  580. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  581. efi_reboot(REBOOT_WARM, NULL);
  582. }
  583. void
  584. machine_halt (void)
  585. {
  586. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  587. cpu_halt();
  588. }
  589. void
  590. machine_power_off (void)
  591. {
  592. if (pm_power_off)
  593. pm_power_off();
  594. machine_halt();
  595. }