test-core.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * arch/arm/kernel/kprobes-test.c
  3. *
  4. * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. /*
  11. * This file contains test code for ARM kprobes.
  12. *
  13. * The top level function run_all_tests() executes tests for all of the
  14. * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  15. * fall into two categories; run_api_tests() checks basic functionality of the
  16. * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  17. * instruction decoding and simulation.
  18. *
  19. * run_test_cases() first checks the kprobes decoding table for self consistency
  20. * (using table_test()) then executes a series of test cases for each of the CPU
  21. * instruction forms. coverage_start() and coverage_end() are used to verify
  22. * that these test cases cover all of the possible combinations of instructions
  23. * described by the kprobes decoding tables.
  24. *
  25. * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  26. * which use the macros defined in kprobes-test.h. The rest of this
  27. * documentation will describe the operation of the framework used by these
  28. * test cases.
  29. */
  30. /*
  31. * TESTING METHODOLOGY
  32. * -------------------
  33. *
  34. * The methodology used to test an ARM instruction 'test_insn' is to use
  35. * inline assembler like:
  36. *
  37. * test_before: nop
  38. * test_case: test_insn
  39. * test_after: nop
  40. *
  41. * When the test case is run a kprobe is placed of each nop. The
  42. * post-handler of the test_before probe is used to modify the saved CPU
  43. * register context to that which we require for the test case. The
  44. * pre-handler of the of the test_after probe saves a copy of the CPU
  45. * register context. In this way we can execute test_insn with a specific
  46. * register context and see the results afterwards.
  47. *
  48. * To actually test the kprobes instruction emulation we perform the above
  49. * step a second time but with an additional kprobe on the test_case
  50. * instruction itself. If the emulation is accurate then the results seen
  51. * by the test_after probe will be identical to the first run which didn't
  52. * have a probe on test_case.
  53. *
  54. * Each test case is run several times with a variety of variations in the
  55. * flags value of stored in CPSR, and for Thumb code, different ITState.
  56. *
  57. * For instructions which can modify PC, a second test_after probe is used
  58. * like this:
  59. *
  60. * test_before: nop
  61. * test_case: test_insn
  62. * test_after: nop
  63. * b test_done
  64. * test_after2: nop
  65. * test_done:
  66. *
  67. * The test case is constructed such that test_insn branches to
  68. * test_after2, or, if testing a conditional instruction, it may just
  69. * continue to test_after. The probes inserted at both locations let us
  70. * determine which happened. A similar approach is used for testing
  71. * backwards branches...
  72. *
  73. * b test_before
  74. * b test_done @ helps to cope with off by 1 branches
  75. * test_after2: nop
  76. * b test_done
  77. * test_before: nop
  78. * test_case: test_insn
  79. * test_after: nop
  80. * test_done:
  81. *
  82. * The macros used to generate the assembler instructions describe above
  83. * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  84. * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  85. * 99 represent: test_before, test_case, test_after2 and test_done.
  86. *
  87. * FRAMEWORK
  88. * ---------
  89. *
  90. * Each test case is wrapped between the pair of macros TESTCASE_START and
  91. * TESTCASE_END. As well as performing the inline assembler boilerplate,
  92. * these call out to the kprobes_test_case_start() and
  93. * kprobes_test_case_end() functions which drive the execution of the test
  94. * case. The specific arguments to use for each test case are stored as
  95. * inline data constructed using the various TEST_ARG_* macros. Putting
  96. * this all together, a simple test case may look like:
  97. *
  98. * TESTCASE_START("Testing mov r0, r7")
  99. * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
  100. * TEST_ARG_END("")
  101. * TEST_INSTRUCTION("mov r0, r7")
  102. * TESTCASE_END
  103. *
  104. * Note, in practice the single convenience macro TEST_R would be used for this
  105. * instead.
  106. *
  107. * The above would expand to assembler looking something like:
  108. *
  109. * @ TESTCASE_START
  110. * bl __kprobes_test_case_start
  111. * .pushsection .rodata
  112. * "10:
  113. * .ascii "mov r0, r7" @ text title for test case
  114. * .byte 0
  115. * .popsection
  116. * @ start of inline data...
  117. * .word 10b @ pointer to title in .rodata section
  118. *
  119. * @ TEST_ARG_REG
  120. * .byte ARG_TYPE_REG
  121. * .byte 7
  122. * .short 0
  123. * .word 0x1234567
  124. *
  125. * @ TEST_ARG_END
  126. * .byte ARG_TYPE_END
  127. * .byte TEST_ISA @ flags, including ISA being tested
  128. * .short 50f-0f @ offset of 'test_before'
  129. * .short 2f-0f @ offset of 'test_after2' (if relevent)
  130. * .short 99f-0f @ offset of 'test_done'
  131. * @ start of test case code...
  132. * 0:
  133. * .code TEST_ISA @ switch to ISA being tested
  134. *
  135. * @ TEST_INSTRUCTION
  136. * 50: nop @ location for 'test_before' probe
  137. * 1: mov r0, r7 @ the test case instruction 'test_insn'
  138. * nop @ location for 'test_after' probe
  139. *
  140. * // TESTCASE_END
  141. * 2:
  142. * 99: bl __kprobes_test_case_end_##TEST_ISA
  143. * .code NONMAL_ISA
  144. *
  145. * When the above is execute the following happens...
  146. *
  147. * __kprobes_test_case_start() is an assembler wrapper which sets up space
  148. * for a stack buffer and calls the C function kprobes_test_case_start().
  149. * This C function will do some initial processing of the inline data and
  150. * setup some global state. It then inserts the test_before and test_after
  151. * kprobes and returns a value which causes the assembler wrapper to jump
  152. * to the start of the test case code, (local label '0').
  153. *
  154. * When the test case code executes, the test_before probe will be hit and
  155. * test_before_post_handler will call setup_test_context(). This fills the
  156. * stack buffer and CPU registers with a test pattern and then processes
  157. * the test case arguments. In our example there is one TEST_ARG_REG which
  158. * indicates that R7 should be loaded with the value 0x12345678.
  159. *
  160. * When the test_before probe ends, the test case continues and executes
  161. * the "mov r0, r7" instruction. It then hits the test_after probe and the
  162. * pre-handler for this (test_after_pre_handler) will save a copy of the
  163. * CPU register context. This should now have R0 holding the same value as
  164. * R7.
  165. *
  166. * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
  167. * an assembler wrapper which switches back to the ISA used by the test
  168. * code and calls the C function kprobes_test_case_end().
  169. *
  170. * For each run through the test case, test_case_run_count is incremented
  171. * by one. For even runs, kprobes_test_case_end() saves a copy of the
  172. * register and stack buffer contents from the test case just run. It then
  173. * inserts a kprobe on the test case instruction 'test_insn' and returns a
  174. * value to cause the test case code to be re-run.
  175. *
  176. * For odd numbered runs, kprobes_test_case_end() compares the register and
  177. * stack buffer contents to those that were saved on the previous even
  178. * numbered run (the one without the kprobe on test_insn). These should be
  179. * the same if the kprobe instruction simulation routine is correct.
  180. *
  181. * The pair of test case runs is repeated with different combinations of
  182. * flag values in CPSR and, for Thumb, different ITState. This is
  183. * controlled by test_context_cpsr().
  184. *
  185. * BUILDING TEST CASES
  186. * -------------------
  187. *
  188. *
  189. * As an aid to building test cases, the stack buffer is initialised with
  190. * some special values:
  191. *
  192. * [SP+13*4] Contains SP+120. This can be used to test instructions
  193. * which load a value into SP.
  194. *
  195. * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
  196. * this holds the target address of the branch, 'test_after2'.
  197. * This can be used to test instructions which load a PC value
  198. * from memory.
  199. */
  200. #include <linux/kernel.h>
  201. #include <linux/module.h>
  202. #include <linux/slab.h>
  203. #include <linux/sched/clock.h>
  204. #include <linux/kprobes.h>
  205. #include <linux/errno.h>
  206. #include <linux/stddef.h>
  207. #include <linux/bug.h>
  208. #include <asm/opcodes.h>
  209. #include "core.h"
  210. #include "test-core.h"
  211. #include "../decode-arm.h"
  212. #include "../decode-thumb.h"
  213. #define BENCHMARKING 1
  214. /*
  215. * Test basic API
  216. */
  217. static bool test_regs_ok;
  218. static int test_func_instance;
  219. static int pre_handler_called;
  220. static int post_handler_called;
  221. static int jprobe_func_called;
  222. static int kretprobe_handler_called;
  223. static int tests_failed;
  224. #define FUNC_ARG1 0x12345678
  225. #define FUNC_ARG2 0xabcdef
  226. #ifndef CONFIG_THUMB2_KERNEL
  227. #define RET(reg) "mov pc, "#reg
  228. long arm_func(long r0, long r1);
  229. static void __used __naked __arm_kprobes_test_func(void)
  230. {
  231. __asm__ __volatile__ (
  232. ".arm \n\t"
  233. ".type arm_func, %%function \n\t"
  234. "arm_func: \n\t"
  235. "adds r0, r0, r1 \n\t"
  236. "mov pc, lr \n\t"
  237. ".code "NORMAL_ISA /* Back to Thumb if necessary */
  238. : : : "r0", "r1", "cc"
  239. );
  240. }
  241. #else /* CONFIG_THUMB2_KERNEL */
  242. #define RET(reg) "bx "#reg
  243. long thumb16_func(long r0, long r1);
  244. long thumb32even_func(long r0, long r1);
  245. long thumb32odd_func(long r0, long r1);
  246. static void __used __naked __thumb_kprobes_test_funcs(void)
  247. {
  248. __asm__ __volatile__ (
  249. ".type thumb16_func, %%function \n\t"
  250. "thumb16_func: \n\t"
  251. "adds.n r0, r0, r1 \n\t"
  252. "bx lr \n\t"
  253. ".align \n\t"
  254. ".type thumb32even_func, %%function \n\t"
  255. "thumb32even_func: \n\t"
  256. "adds.w r0, r0, r1 \n\t"
  257. "bx lr \n\t"
  258. ".align \n\t"
  259. "nop.n \n\t"
  260. ".type thumb32odd_func, %%function \n\t"
  261. "thumb32odd_func: \n\t"
  262. "adds.w r0, r0, r1 \n\t"
  263. "bx lr \n\t"
  264. : : : "r0", "r1", "cc"
  265. );
  266. }
  267. #endif /* CONFIG_THUMB2_KERNEL */
  268. static int call_test_func(long (*func)(long, long), bool check_test_regs)
  269. {
  270. long ret;
  271. ++test_func_instance;
  272. test_regs_ok = false;
  273. ret = (*func)(FUNC_ARG1, FUNC_ARG2);
  274. if (ret != FUNC_ARG1 + FUNC_ARG2) {
  275. pr_err("FAIL: call_test_func: func returned %lx\n", ret);
  276. return false;
  277. }
  278. if (check_test_regs && !test_regs_ok) {
  279. pr_err("FAIL: test regs not OK\n");
  280. return false;
  281. }
  282. return true;
  283. }
  284. static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
  285. {
  286. pre_handler_called = test_func_instance;
  287. if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
  288. test_regs_ok = true;
  289. return 0;
  290. }
  291. static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
  292. unsigned long flags)
  293. {
  294. post_handler_called = test_func_instance;
  295. if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
  296. test_regs_ok = false;
  297. }
  298. static struct kprobe the_kprobe = {
  299. .addr = 0,
  300. .pre_handler = pre_handler,
  301. .post_handler = post_handler
  302. };
  303. static int test_kprobe(long (*func)(long, long))
  304. {
  305. int ret;
  306. the_kprobe.addr = (kprobe_opcode_t *)func;
  307. ret = register_kprobe(&the_kprobe);
  308. if (ret < 0) {
  309. pr_err("FAIL: register_kprobe failed with %d\n", ret);
  310. return ret;
  311. }
  312. ret = call_test_func(func, true);
  313. unregister_kprobe(&the_kprobe);
  314. the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
  315. if (!ret)
  316. return -EINVAL;
  317. if (pre_handler_called != test_func_instance) {
  318. pr_err("FAIL: kprobe pre_handler not called\n");
  319. return -EINVAL;
  320. }
  321. if (post_handler_called != test_func_instance) {
  322. pr_err("FAIL: kprobe post_handler not called\n");
  323. return -EINVAL;
  324. }
  325. if (!call_test_func(func, false))
  326. return -EINVAL;
  327. if (pre_handler_called == test_func_instance ||
  328. post_handler_called == test_func_instance) {
  329. pr_err("FAIL: probe called after unregistering\n");
  330. return -EINVAL;
  331. }
  332. return 0;
  333. }
  334. static void __kprobes jprobe_func(long r0, long r1)
  335. {
  336. jprobe_func_called = test_func_instance;
  337. if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
  338. test_regs_ok = true;
  339. jprobe_return();
  340. }
  341. static struct jprobe the_jprobe = {
  342. .entry = jprobe_func,
  343. };
  344. static int test_jprobe(long (*func)(long, long))
  345. {
  346. int ret;
  347. the_jprobe.kp.addr = (kprobe_opcode_t *)func;
  348. ret = register_jprobe(&the_jprobe);
  349. if (ret < 0) {
  350. pr_err("FAIL: register_jprobe failed with %d\n", ret);
  351. return ret;
  352. }
  353. ret = call_test_func(func, true);
  354. unregister_jprobe(&the_jprobe);
  355. the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
  356. if (!ret)
  357. return -EINVAL;
  358. if (jprobe_func_called != test_func_instance) {
  359. pr_err("FAIL: jprobe handler function not called\n");
  360. return -EINVAL;
  361. }
  362. if (!call_test_func(func, false))
  363. return -EINVAL;
  364. if (jprobe_func_called == test_func_instance) {
  365. pr_err("FAIL: probe called after unregistering\n");
  366. return -EINVAL;
  367. }
  368. return 0;
  369. }
  370. static int __kprobes
  371. kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
  372. {
  373. kretprobe_handler_called = test_func_instance;
  374. if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
  375. test_regs_ok = true;
  376. return 0;
  377. }
  378. static struct kretprobe the_kretprobe = {
  379. .handler = kretprobe_handler,
  380. };
  381. static int test_kretprobe(long (*func)(long, long))
  382. {
  383. int ret;
  384. the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
  385. ret = register_kretprobe(&the_kretprobe);
  386. if (ret < 0) {
  387. pr_err("FAIL: register_kretprobe failed with %d\n", ret);
  388. return ret;
  389. }
  390. ret = call_test_func(func, true);
  391. unregister_kretprobe(&the_kretprobe);
  392. the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
  393. if (!ret)
  394. return -EINVAL;
  395. if (kretprobe_handler_called != test_func_instance) {
  396. pr_err("FAIL: kretprobe handler not called\n");
  397. return -EINVAL;
  398. }
  399. if (!call_test_func(func, false))
  400. return -EINVAL;
  401. if (jprobe_func_called == test_func_instance) {
  402. pr_err("FAIL: kretprobe called after unregistering\n");
  403. return -EINVAL;
  404. }
  405. return 0;
  406. }
  407. static int run_api_tests(long (*func)(long, long))
  408. {
  409. int ret;
  410. pr_info(" kprobe\n");
  411. ret = test_kprobe(func);
  412. if (ret < 0)
  413. return ret;
  414. pr_info(" jprobe\n");
  415. ret = test_jprobe(func);
  416. #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
  417. if (ret == -EINVAL) {
  418. pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
  419. tests_failed = ret;
  420. ret = 0;
  421. }
  422. #endif
  423. if (ret < 0)
  424. return ret;
  425. pr_info(" kretprobe\n");
  426. ret = test_kretprobe(func);
  427. if (ret < 0)
  428. return ret;
  429. return 0;
  430. }
  431. /*
  432. * Benchmarking
  433. */
  434. #if BENCHMARKING
  435. static void __naked benchmark_nop(void)
  436. {
  437. __asm__ __volatile__ (
  438. "nop \n\t"
  439. RET(lr)" \n\t"
  440. );
  441. }
  442. #ifdef CONFIG_THUMB2_KERNEL
  443. #define wide ".w"
  444. #else
  445. #define wide
  446. #endif
  447. static void __naked benchmark_pushpop1(void)
  448. {
  449. __asm__ __volatile__ (
  450. "stmdb"wide" sp!, {r3-r11,lr} \n\t"
  451. "ldmia"wide" sp!, {r3-r11,pc}"
  452. );
  453. }
  454. static void __naked benchmark_pushpop2(void)
  455. {
  456. __asm__ __volatile__ (
  457. "stmdb"wide" sp!, {r0-r8,lr} \n\t"
  458. "ldmia"wide" sp!, {r0-r8,pc}"
  459. );
  460. }
  461. static void __naked benchmark_pushpop3(void)
  462. {
  463. __asm__ __volatile__ (
  464. "stmdb"wide" sp!, {r4,lr} \n\t"
  465. "ldmia"wide" sp!, {r4,pc}"
  466. );
  467. }
  468. static void __naked benchmark_pushpop4(void)
  469. {
  470. __asm__ __volatile__ (
  471. "stmdb"wide" sp!, {r0,lr} \n\t"
  472. "ldmia"wide" sp!, {r0,pc}"
  473. );
  474. }
  475. #ifdef CONFIG_THUMB2_KERNEL
  476. static void __naked benchmark_pushpop_thumb(void)
  477. {
  478. __asm__ __volatile__ (
  479. "push.n {r0-r7,lr} \n\t"
  480. "pop.n {r0-r7,pc}"
  481. );
  482. }
  483. #endif
  484. static int __kprobes
  485. benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
  486. {
  487. return 0;
  488. }
  489. static int benchmark(void(*fn)(void))
  490. {
  491. unsigned n, i, t, t0;
  492. for (n = 1000; ; n *= 2) {
  493. t0 = sched_clock();
  494. for (i = n; i > 0; --i)
  495. fn();
  496. t = sched_clock() - t0;
  497. if (t >= 250000000)
  498. break; /* Stop once we took more than 0.25 seconds */
  499. }
  500. return t / n; /* Time for one iteration in nanoseconds */
  501. };
  502. static int kprobe_benchmark(void(*fn)(void), unsigned offset)
  503. {
  504. struct kprobe k = {
  505. .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
  506. .pre_handler = benchmark_pre_handler,
  507. };
  508. int ret = register_kprobe(&k);
  509. if (ret < 0) {
  510. pr_err("FAIL: register_kprobe failed with %d\n", ret);
  511. return ret;
  512. }
  513. ret = benchmark(fn);
  514. unregister_kprobe(&k);
  515. return ret;
  516. };
  517. struct benchmarks {
  518. void (*fn)(void);
  519. unsigned offset;
  520. const char *title;
  521. };
  522. static int run_benchmarks(void)
  523. {
  524. int ret;
  525. struct benchmarks list[] = {
  526. {&benchmark_nop, 0, "nop"},
  527. /*
  528. * benchmark_pushpop{1,3} will have the optimised
  529. * instruction emulation, whilst benchmark_pushpop{2,4} will
  530. * be the equivalent unoptimised instructions.
  531. */
  532. {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
  533. {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
  534. {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
  535. {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
  536. {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
  537. {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
  538. {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
  539. {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
  540. #ifdef CONFIG_THUMB2_KERNEL
  541. {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
  542. {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
  543. #endif
  544. {0}
  545. };
  546. struct benchmarks *b;
  547. for (b = list; b->fn; ++b) {
  548. ret = kprobe_benchmark(b->fn, b->offset);
  549. if (ret < 0)
  550. return ret;
  551. pr_info(" %dns for kprobe %s\n", ret, b->title);
  552. }
  553. pr_info("\n");
  554. return 0;
  555. }
  556. #endif /* BENCHMARKING */
  557. /*
  558. * Decoding table self-consistency tests
  559. */
  560. static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
  561. [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
  562. [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
  563. [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
  564. [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
  565. [DECODE_TYPE_OR] = sizeof(struct decode_or),
  566. [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
  567. };
  568. static int table_iter(const union decode_item *table,
  569. int (*fn)(const struct decode_header *, void *),
  570. void *args)
  571. {
  572. const struct decode_header *h = (struct decode_header *)table;
  573. int result;
  574. for (;;) {
  575. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  576. if (type == DECODE_TYPE_END)
  577. return 0;
  578. result = fn(h, args);
  579. if (result)
  580. return result;
  581. h = (struct decode_header *)
  582. ((uintptr_t)h + decode_struct_sizes[type]);
  583. }
  584. }
  585. static int table_test_fail(const struct decode_header *h, const char* message)
  586. {
  587. pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
  588. message, h->mask.bits, h->value.bits);
  589. return -EINVAL;
  590. }
  591. struct table_test_args {
  592. const union decode_item *root_table;
  593. u32 parent_mask;
  594. u32 parent_value;
  595. };
  596. static int table_test_fn(const struct decode_header *h, void *args)
  597. {
  598. struct table_test_args *a = (struct table_test_args *)args;
  599. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  600. if (h->value.bits & ~h->mask.bits)
  601. return table_test_fail(h, "Match value has bits not in mask");
  602. if ((h->mask.bits & a->parent_mask) != a->parent_mask)
  603. return table_test_fail(h, "Mask has bits not in parent mask");
  604. if ((h->value.bits ^ a->parent_value) & a->parent_mask)
  605. return table_test_fail(h, "Value is inconsistent with parent");
  606. if (type == DECODE_TYPE_TABLE) {
  607. struct decode_table *d = (struct decode_table *)h;
  608. struct table_test_args args2 = *a;
  609. args2.parent_mask = h->mask.bits;
  610. args2.parent_value = h->value.bits;
  611. return table_iter(d->table.table, table_test_fn, &args2);
  612. }
  613. return 0;
  614. }
  615. static int table_test(const union decode_item *table)
  616. {
  617. struct table_test_args args = {
  618. .root_table = table,
  619. .parent_mask = 0,
  620. .parent_value = 0
  621. };
  622. return table_iter(args.root_table, table_test_fn, &args);
  623. }
  624. /*
  625. * Decoding table test coverage analysis
  626. *
  627. * coverage_start() builds a coverage_table which contains a list of
  628. * coverage_entry's to match each entry in the specified kprobes instruction
  629. * decoding table.
  630. *
  631. * When test cases are run, coverage_add() is called to process each case.
  632. * This looks up the corresponding entry in the coverage_table and sets it as
  633. * being matched, as well as clearing the regs flag appropriate for the test.
  634. *
  635. * After all test cases have been run, coverage_end() is called to check that
  636. * all entries in coverage_table have been matched and that all regs flags are
  637. * cleared. I.e. that all possible combinations of instructions described by
  638. * the kprobes decoding tables have had a test case executed for them.
  639. */
  640. bool coverage_fail;
  641. #define MAX_COVERAGE_ENTRIES 256
  642. struct coverage_entry {
  643. const struct decode_header *header;
  644. unsigned regs;
  645. unsigned nesting;
  646. char matched;
  647. };
  648. struct coverage_table {
  649. struct coverage_entry *base;
  650. unsigned num_entries;
  651. unsigned nesting;
  652. };
  653. struct coverage_table coverage;
  654. #define COVERAGE_ANY_REG (1<<0)
  655. #define COVERAGE_SP (1<<1)
  656. #define COVERAGE_PC (1<<2)
  657. #define COVERAGE_PCWB (1<<3)
  658. static const char coverage_register_lookup[16] = {
  659. [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
  660. [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
  661. [REG_TYPE_SP] = COVERAGE_SP,
  662. [REG_TYPE_PC] = COVERAGE_PC,
  663. [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
  664. [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
  665. [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
  666. [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
  667. [REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
  668. [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
  669. };
  670. unsigned coverage_start_registers(const struct decode_header *h)
  671. {
  672. unsigned regs = 0;
  673. int i;
  674. for (i = 0; i < 20; i += 4) {
  675. int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
  676. regs |= coverage_register_lookup[r] << i;
  677. }
  678. return regs;
  679. }
  680. static int coverage_start_fn(const struct decode_header *h, void *args)
  681. {
  682. struct coverage_table *coverage = (struct coverage_table *)args;
  683. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  684. struct coverage_entry *entry = coverage->base + coverage->num_entries;
  685. if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
  686. pr_err("FAIL: Out of space for test coverage data");
  687. return -ENOMEM;
  688. }
  689. ++coverage->num_entries;
  690. entry->header = h;
  691. entry->regs = coverage_start_registers(h);
  692. entry->nesting = coverage->nesting;
  693. entry->matched = false;
  694. if (type == DECODE_TYPE_TABLE) {
  695. struct decode_table *d = (struct decode_table *)h;
  696. int ret;
  697. ++coverage->nesting;
  698. ret = table_iter(d->table.table, coverage_start_fn, coverage);
  699. --coverage->nesting;
  700. return ret;
  701. }
  702. return 0;
  703. }
  704. static int coverage_start(const union decode_item *table)
  705. {
  706. coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
  707. sizeof(struct coverage_entry), GFP_KERNEL);
  708. coverage.num_entries = 0;
  709. coverage.nesting = 0;
  710. return table_iter(table, coverage_start_fn, &coverage);
  711. }
  712. static void
  713. coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
  714. {
  715. int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
  716. int i;
  717. for (i = 0; i < 20; i += 4) {
  718. enum decode_reg_type reg_type = (regs >> i) & 0xf;
  719. int reg = (insn >> i) & 0xf;
  720. int flag;
  721. if (!reg_type)
  722. continue;
  723. if (reg == 13)
  724. flag = COVERAGE_SP;
  725. else if (reg == 15)
  726. flag = COVERAGE_PC;
  727. else
  728. flag = COVERAGE_ANY_REG;
  729. entry->regs &= ~(flag << i);
  730. switch (reg_type) {
  731. case REG_TYPE_NONE:
  732. case REG_TYPE_ANY:
  733. case REG_TYPE_SAMEAS16:
  734. break;
  735. case REG_TYPE_SP:
  736. if (reg != 13)
  737. return;
  738. break;
  739. case REG_TYPE_PC:
  740. if (reg != 15)
  741. return;
  742. break;
  743. case REG_TYPE_NOSP:
  744. if (reg == 13)
  745. return;
  746. break;
  747. case REG_TYPE_NOSPPC:
  748. case REG_TYPE_NOSPPCX:
  749. if (reg == 13 || reg == 15)
  750. return;
  751. break;
  752. case REG_TYPE_NOPCWB:
  753. if (!is_writeback(insn))
  754. break;
  755. if (reg == 15) {
  756. entry->regs &= ~(COVERAGE_PCWB << i);
  757. return;
  758. }
  759. break;
  760. case REG_TYPE_NOPC:
  761. case REG_TYPE_NOPCX:
  762. if (reg == 15)
  763. return;
  764. break;
  765. }
  766. }
  767. }
  768. static void coverage_add(kprobe_opcode_t insn)
  769. {
  770. struct coverage_entry *entry = coverage.base;
  771. struct coverage_entry *end = coverage.base + coverage.num_entries;
  772. bool matched = false;
  773. unsigned nesting = 0;
  774. for (; entry < end; ++entry) {
  775. const struct decode_header *h = entry->header;
  776. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  777. if (entry->nesting > nesting)
  778. continue; /* Skip sub-table we didn't match */
  779. if (entry->nesting < nesting)
  780. break; /* End of sub-table we were scanning */
  781. if (!matched) {
  782. if ((insn & h->mask.bits) != h->value.bits)
  783. continue;
  784. entry->matched = true;
  785. }
  786. switch (type) {
  787. case DECODE_TYPE_TABLE:
  788. ++nesting;
  789. break;
  790. case DECODE_TYPE_CUSTOM:
  791. case DECODE_TYPE_SIMULATE:
  792. case DECODE_TYPE_EMULATE:
  793. coverage_add_registers(entry, insn);
  794. return;
  795. case DECODE_TYPE_OR:
  796. matched = true;
  797. break;
  798. case DECODE_TYPE_REJECT:
  799. default:
  800. return;
  801. }
  802. }
  803. }
  804. static void coverage_end(void)
  805. {
  806. struct coverage_entry *entry = coverage.base;
  807. struct coverage_entry *end = coverage.base + coverage.num_entries;
  808. for (; entry < end; ++entry) {
  809. u32 mask = entry->header->mask.bits;
  810. u32 value = entry->header->value.bits;
  811. if (entry->regs) {
  812. pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
  813. mask, value, entry->regs);
  814. coverage_fail = true;
  815. }
  816. if (!entry->matched) {
  817. pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
  818. mask, value);
  819. coverage_fail = true;
  820. }
  821. }
  822. kfree(coverage.base);
  823. }
  824. /*
  825. * Framework for instruction set test cases
  826. */
  827. void __naked __kprobes_test_case_start(void)
  828. {
  829. __asm__ __volatile__ (
  830. "mov r2, sp \n\t"
  831. "bic r3, r2, #7 \n\t"
  832. "mov sp, r3 \n\t"
  833. "stmdb sp!, {r2-r11} \n\t"
  834. "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  835. "bic r0, lr, #1 @ r0 = inline data \n\t"
  836. "mov r1, sp \n\t"
  837. "bl kprobes_test_case_start \n\t"
  838. RET(r0)" \n\t"
  839. );
  840. }
  841. #ifndef CONFIG_THUMB2_KERNEL
  842. void __naked __kprobes_test_case_end_32(void)
  843. {
  844. __asm__ __volatile__ (
  845. "mov r4, lr \n\t"
  846. "bl kprobes_test_case_end \n\t"
  847. "cmp r0, #0 \n\t"
  848. "movne pc, r0 \n\t"
  849. "mov r0, r4 \n\t"
  850. "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  851. "ldmia sp!, {r2-r11} \n\t"
  852. "mov sp, r2 \n\t"
  853. "mov pc, r0 \n\t"
  854. );
  855. }
  856. #else /* CONFIG_THUMB2_KERNEL */
  857. void __naked __kprobes_test_case_end_16(void)
  858. {
  859. __asm__ __volatile__ (
  860. "mov r4, lr \n\t"
  861. "bl kprobes_test_case_end \n\t"
  862. "cmp r0, #0 \n\t"
  863. "bxne r0 \n\t"
  864. "mov r0, r4 \n\t"
  865. "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  866. "ldmia sp!, {r2-r11} \n\t"
  867. "mov sp, r2 \n\t"
  868. "bx r0 \n\t"
  869. );
  870. }
  871. void __naked __kprobes_test_case_end_32(void)
  872. {
  873. __asm__ __volatile__ (
  874. ".arm \n\t"
  875. "orr lr, lr, #1 @ will return to Thumb code \n\t"
  876. "ldr pc, 1f \n\t"
  877. "1: \n\t"
  878. ".word __kprobes_test_case_end_16 \n\t"
  879. );
  880. }
  881. #endif
  882. int kprobe_test_flags;
  883. int kprobe_test_cc_position;
  884. static int test_try_count;
  885. static int test_pass_count;
  886. static int test_fail_count;
  887. static struct pt_regs initial_regs;
  888. static struct pt_regs expected_regs;
  889. static struct pt_regs result_regs;
  890. static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
  891. static const char *current_title;
  892. static struct test_arg *current_args;
  893. static u32 *current_stack;
  894. static uintptr_t current_branch_target;
  895. static uintptr_t current_code_start;
  896. static kprobe_opcode_t current_instruction;
  897. #define TEST_CASE_PASSED -1
  898. #define TEST_CASE_FAILED -2
  899. static int test_case_run_count;
  900. static bool test_case_is_thumb;
  901. static int test_instance;
  902. static unsigned long test_check_cc(int cc, unsigned long cpsr)
  903. {
  904. int ret = arm_check_condition(cc << 28, cpsr);
  905. return (ret != ARM_OPCODE_CONDTEST_FAIL);
  906. }
  907. static int is_last_scenario;
  908. static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
  909. static int memory_needs_checking;
  910. static unsigned long test_context_cpsr(int scenario)
  911. {
  912. unsigned long cpsr;
  913. probe_should_run = 1;
  914. /* Default case is that we cycle through 16 combinations of flags */
  915. cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
  916. cpsr |= (scenario & 0xf) << 16; /* GE flags */
  917. cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
  918. if (!test_case_is_thumb) {
  919. /* Testing ARM code */
  920. int cc = current_instruction >> 28;
  921. probe_should_run = test_check_cc(cc, cpsr) != 0;
  922. if (scenario == 15)
  923. is_last_scenario = true;
  924. } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
  925. /* Testing Thumb code without setting ITSTATE */
  926. if (kprobe_test_cc_position) {
  927. int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
  928. probe_should_run = test_check_cc(cc, cpsr) != 0;
  929. }
  930. if (scenario == 15)
  931. is_last_scenario = true;
  932. } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
  933. /* Testing Thumb code with all combinations of ITSTATE */
  934. unsigned x = (scenario >> 4);
  935. unsigned cond_base = x % 7; /* ITSTATE<7:5> */
  936. unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
  937. if (mask > 0x1f) {
  938. /* Finish by testing state from instruction 'itt al' */
  939. cond_base = 7;
  940. mask = 0x4;
  941. if ((scenario & 0xf) == 0xf)
  942. is_last_scenario = true;
  943. }
  944. cpsr |= cond_base << 13; /* ITSTATE<7:5> */
  945. cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
  946. cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
  947. cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
  948. cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
  949. cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
  950. probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
  951. } else {
  952. /* Testing Thumb code with several combinations of ITSTATE */
  953. switch (scenario) {
  954. case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
  955. cpsr = 0x00000800;
  956. probe_should_run = 0;
  957. break;
  958. case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
  959. cpsr = 0xf0007800;
  960. probe_should_run = 0;
  961. break;
  962. case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
  963. cpsr = 0x00009800;
  964. break;
  965. case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
  966. cpsr = 0xf0002800;
  967. is_last_scenario = true;
  968. break;
  969. }
  970. }
  971. return cpsr;
  972. }
  973. static void setup_test_context(struct pt_regs *regs)
  974. {
  975. int scenario = test_case_run_count>>1;
  976. unsigned long val;
  977. struct test_arg *args;
  978. int i;
  979. is_last_scenario = false;
  980. memory_needs_checking = false;
  981. /* Initialise test memory on stack */
  982. val = (scenario & 1) ? VALM : ~VALM;
  983. for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
  984. current_stack[i] = val + (i << 8);
  985. /* Put target of branch on stack for tests which load PC from memory */
  986. if (current_branch_target)
  987. current_stack[15] = current_branch_target;
  988. /* Put a value for SP on stack for tests which load SP from memory */
  989. current_stack[13] = (u32)current_stack + 120;
  990. /* Initialise register values to their default state */
  991. val = (scenario & 2) ? VALR : ~VALR;
  992. for (i = 0; i < 13; ++i)
  993. regs->uregs[i] = val ^ (i << 8);
  994. regs->ARM_lr = val ^ (14 << 8);
  995. regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
  996. regs->ARM_cpsr |= test_context_cpsr(scenario);
  997. /* Perform testcase specific register setup */
  998. args = current_args;
  999. for (; args[0].type != ARG_TYPE_END; ++args)
  1000. switch (args[0].type) {
  1001. case ARG_TYPE_REG: {
  1002. struct test_arg_regptr *arg =
  1003. (struct test_arg_regptr *)args;
  1004. regs->uregs[arg->reg] = arg->val;
  1005. break;
  1006. }
  1007. case ARG_TYPE_PTR: {
  1008. struct test_arg_regptr *arg =
  1009. (struct test_arg_regptr *)args;
  1010. regs->uregs[arg->reg] =
  1011. (unsigned long)current_stack + arg->val;
  1012. memory_needs_checking = true;
  1013. /*
  1014. * Test memory at an address below SP is in danger of
  1015. * being altered by an interrupt occurring and pushing
  1016. * data onto the stack. Disable interrupts to stop this.
  1017. */
  1018. if (arg->reg == 13)
  1019. regs->ARM_cpsr |= PSR_I_BIT;
  1020. break;
  1021. }
  1022. case ARG_TYPE_MEM: {
  1023. struct test_arg_mem *arg = (struct test_arg_mem *)args;
  1024. current_stack[arg->index] = arg->val;
  1025. break;
  1026. }
  1027. default:
  1028. break;
  1029. }
  1030. }
  1031. struct test_probe {
  1032. struct kprobe kprobe;
  1033. bool registered;
  1034. int hit;
  1035. };
  1036. static void unregister_test_probe(struct test_probe *probe)
  1037. {
  1038. if (probe->registered) {
  1039. unregister_kprobe(&probe->kprobe);
  1040. probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
  1041. }
  1042. probe->registered = false;
  1043. }
  1044. static int register_test_probe(struct test_probe *probe)
  1045. {
  1046. int ret;
  1047. if (probe->registered)
  1048. BUG();
  1049. ret = register_kprobe(&probe->kprobe);
  1050. if (ret >= 0) {
  1051. probe->registered = true;
  1052. probe->hit = -1;
  1053. }
  1054. return ret;
  1055. }
  1056. static int __kprobes
  1057. test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1058. {
  1059. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1060. return 0;
  1061. }
  1062. static void __kprobes
  1063. test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
  1064. unsigned long flags)
  1065. {
  1066. setup_test_context(regs);
  1067. initial_regs = *regs;
  1068. initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
  1069. }
  1070. static int __kprobes
  1071. test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1072. {
  1073. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1074. return 0;
  1075. }
  1076. static int __kprobes
  1077. test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1078. {
  1079. struct test_arg *args;
  1080. if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
  1081. return 0; /* Already run for this test instance */
  1082. result_regs = *regs;
  1083. /* Mask out results which are indeterminate */
  1084. result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
  1085. for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
  1086. if (args[0].type == ARG_TYPE_REG_MASKED) {
  1087. struct test_arg_regptr *arg =
  1088. (struct test_arg_regptr *)args;
  1089. result_regs.uregs[arg->reg] &= arg->val;
  1090. }
  1091. /* Undo any changes done to SP by the test case */
  1092. regs->ARM_sp = (unsigned long)current_stack;
  1093. /* Enable interrupts in case setup_test_context disabled them */
  1094. regs->ARM_cpsr &= ~PSR_I_BIT;
  1095. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1096. return 0;
  1097. }
  1098. static struct test_probe test_before_probe = {
  1099. .kprobe.pre_handler = test_before_pre_handler,
  1100. .kprobe.post_handler = test_before_post_handler,
  1101. };
  1102. static struct test_probe test_case_probe = {
  1103. .kprobe.pre_handler = test_case_pre_handler,
  1104. };
  1105. static struct test_probe test_after_probe = {
  1106. .kprobe.pre_handler = test_after_pre_handler,
  1107. };
  1108. static struct test_probe test_after2_probe = {
  1109. .kprobe.pre_handler = test_after_pre_handler,
  1110. };
  1111. static void test_case_cleanup(void)
  1112. {
  1113. unregister_test_probe(&test_before_probe);
  1114. unregister_test_probe(&test_case_probe);
  1115. unregister_test_probe(&test_after_probe);
  1116. unregister_test_probe(&test_after2_probe);
  1117. }
  1118. static void print_registers(struct pt_regs *regs)
  1119. {
  1120. pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
  1121. regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
  1122. pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
  1123. regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
  1124. pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
  1125. regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
  1126. pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
  1127. regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
  1128. pr_err("cpsr %08lx\n", regs->ARM_cpsr);
  1129. }
  1130. static void print_memory(u32 *mem, size_t size)
  1131. {
  1132. int i;
  1133. for (i = 0; i < size / sizeof(u32); i += 4)
  1134. pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
  1135. mem[i+2], mem[i+3]);
  1136. }
  1137. static size_t expected_memory_size(u32 *sp)
  1138. {
  1139. size_t size = sizeof(expected_memory);
  1140. int offset = (uintptr_t)sp - (uintptr_t)current_stack;
  1141. if (offset > 0)
  1142. size -= offset;
  1143. return size;
  1144. }
  1145. static void test_case_failed(const char *message)
  1146. {
  1147. test_case_cleanup();
  1148. pr_err("FAIL: %s\n", message);
  1149. pr_err("FAIL: Test %s\n", current_title);
  1150. pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
  1151. }
  1152. static unsigned long next_instruction(unsigned long pc)
  1153. {
  1154. #ifdef CONFIG_THUMB2_KERNEL
  1155. if ((pc & 1) &&
  1156. !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
  1157. return pc + 2;
  1158. else
  1159. #endif
  1160. return pc + 4;
  1161. }
  1162. static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
  1163. {
  1164. struct test_arg *args;
  1165. struct test_arg_end *end_arg;
  1166. unsigned long test_code;
  1167. current_title = *title++;
  1168. args = (struct test_arg *)title;
  1169. current_args = args;
  1170. current_stack = stack;
  1171. ++test_try_count;
  1172. while (args->type != ARG_TYPE_END)
  1173. ++args;
  1174. end_arg = (struct test_arg_end *)args;
  1175. test_code = (unsigned long)(args + 1); /* Code starts after args */
  1176. test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
  1177. if (test_case_is_thumb)
  1178. test_code |= 1;
  1179. current_code_start = test_code;
  1180. current_branch_target = 0;
  1181. if (end_arg->branch_offset != end_arg->end_offset)
  1182. current_branch_target = test_code + end_arg->branch_offset;
  1183. test_code += end_arg->code_offset;
  1184. test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1185. test_code = next_instruction(test_code);
  1186. test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1187. if (test_case_is_thumb) {
  1188. u16 *p = (u16 *)(test_code & ~1);
  1189. current_instruction = __mem_to_opcode_thumb16(p[0]);
  1190. if (is_wide_instruction(current_instruction)) {
  1191. u16 instr2 = __mem_to_opcode_thumb16(p[1]);
  1192. current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
  1193. }
  1194. } else {
  1195. current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
  1196. }
  1197. if (current_title[0] == '.')
  1198. verbose("%s\n", current_title);
  1199. else
  1200. verbose("%s\t@ %0*x\n", current_title,
  1201. test_case_is_thumb ? 4 : 8,
  1202. current_instruction);
  1203. test_code = next_instruction(test_code);
  1204. test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1205. if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
  1206. if (!test_case_is_thumb ||
  1207. is_wide_instruction(current_instruction)) {
  1208. test_case_failed("expected 16-bit instruction");
  1209. goto fail;
  1210. }
  1211. } else {
  1212. if (test_case_is_thumb &&
  1213. !is_wide_instruction(current_instruction)) {
  1214. test_case_failed("expected 32-bit instruction");
  1215. goto fail;
  1216. }
  1217. }
  1218. coverage_add(current_instruction);
  1219. if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
  1220. if (register_test_probe(&test_case_probe) < 0)
  1221. goto pass;
  1222. test_case_failed("registered probe for unsupported instruction");
  1223. goto fail;
  1224. }
  1225. if (end_arg->flags & ARG_FLAG_SUPPORTED) {
  1226. if (register_test_probe(&test_case_probe) >= 0)
  1227. goto pass;
  1228. test_case_failed("couldn't register probe for supported instruction");
  1229. goto fail;
  1230. }
  1231. if (register_test_probe(&test_before_probe) < 0) {
  1232. test_case_failed("register test_before_probe failed");
  1233. goto fail;
  1234. }
  1235. if (register_test_probe(&test_after_probe) < 0) {
  1236. test_case_failed("register test_after_probe failed");
  1237. goto fail;
  1238. }
  1239. if (current_branch_target) {
  1240. test_after2_probe.kprobe.addr =
  1241. (kprobe_opcode_t *)current_branch_target;
  1242. if (register_test_probe(&test_after2_probe) < 0) {
  1243. test_case_failed("register test_after2_probe failed");
  1244. goto fail;
  1245. }
  1246. }
  1247. /* Start first run of test case */
  1248. test_case_run_count = 0;
  1249. ++test_instance;
  1250. return current_code_start;
  1251. pass:
  1252. test_case_run_count = TEST_CASE_PASSED;
  1253. return (uintptr_t)test_after_probe.kprobe.addr;
  1254. fail:
  1255. test_case_run_count = TEST_CASE_FAILED;
  1256. return (uintptr_t)test_after_probe.kprobe.addr;
  1257. }
  1258. static bool check_test_results(void)
  1259. {
  1260. size_t mem_size = 0;
  1261. u32 *mem = 0;
  1262. if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
  1263. test_case_failed("registers differ");
  1264. goto fail;
  1265. }
  1266. if (memory_needs_checking) {
  1267. mem = (u32 *)result_regs.ARM_sp;
  1268. mem_size = expected_memory_size(mem);
  1269. if (memcmp(expected_memory, mem, mem_size)) {
  1270. test_case_failed("test memory differs");
  1271. goto fail;
  1272. }
  1273. }
  1274. return true;
  1275. fail:
  1276. pr_err("initial_regs:\n");
  1277. print_registers(&initial_regs);
  1278. pr_err("expected_regs:\n");
  1279. print_registers(&expected_regs);
  1280. pr_err("result_regs:\n");
  1281. print_registers(&result_regs);
  1282. if (mem) {
  1283. pr_err("current_stack=%p\n", current_stack);
  1284. pr_err("expected_memory:\n");
  1285. print_memory(expected_memory, mem_size);
  1286. pr_err("result_memory:\n");
  1287. print_memory(mem, mem_size);
  1288. }
  1289. return false;
  1290. }
  1291. static uintptr_t __used kprobes_test_case_end(void)
  1292. {
  1293. if (test_case_run_count < 0) {
  1294. if (test_case_run_count == TEST_CASE_PASSED)
  1295. /* kprobes_test_case_start did all the needed testing */
  1296. goto pass;
  1297. else
  1298. /* kprobes_test_case_start failed */
  1299. goto fail;
  1300. }
  1301. if (test_before_probe.hit != test_instance) {
  1302. test_case_failed("test_before_handler not run");
  1303. goto fail;
  1304. }
  1305. if (test_after_probe.hit != test_instance &&
  1306. test_after2_probe.hit != test_instance) {
  1307. test_case_failed("test_after_handler not run");
  1308. goto fail;
  1309. }
  1310. /*
  1311. * Even numbered test runs ran without a probe on the test case so
  1312. * we can gather reference results. The subsequent odd numbered run
  1313. * will have the probe inserted.
  1314. */
  1315. if ((test_case_run_count & 1) == 0) {
  1316. /* Save results from run without probe */
  1317. u32 *mem = (u32 *)result_regs.ARM_sp;
  1318. expected_regs = result_regs;
  1319. memcpy(expected_memory, mem, expected_memory_size(mem));
  1320. /* Insert probe onto test case instruction */
  1321. if (register_test_probe(&test_case_probe) < 0) {
  1322. test_case_failed("register test_case_probe failed");
  1323. goto fail;
  1324. }
  1325. } else {
  1326. /* Check probe ran as expected */
  1327. if (probe_should_run == 1) {
  1328. if (test_case_probe.hit != test_instance) {
  1329. test_case_failed("test_case_handler not run");
  1330. goto fail;
  1331. }
  1332. } else if (probe_should_run == 0) {
  1333. if (test_case_probe.hit == test_instance) {
  1334. test_case_failed("test_case_handler ran");
  1335. goto fail;
  1336. }
  1337. }
  1338. /* Remove probe for any subsequent reference run */
  1339. unregister_test_probe(&test_case_probe);
  1340. if (!check_test_results())
  1341. goto fail;
  1342. if (is_last_scenario)
  1343. goto pass;
  1344. }
  1345. /* Do next test run */
  1346. ++test_case_run_count;
  1347. ++test_instance;
  1348. return current_code_start;
  1349. fail:
  1350. ++test_fail_count;
  1351. goto end;
  1352. pass:
  1353. ++test_pass_count;
  1354. end:
  1355. test_case_cleanup();
  1356. return 0;
  1357. }
  1358. /*
  1359. * Top level test functions
  1360. */
  1361. static int run_test_cases(void (*tests)(void), const union decode_item *table)
  1362. {
  1363. int ret;
  1364. pr_info(" Check decoding tables\n");
  1365. ret = table_test(table);
  1366. if (ret)
  1367. return ret;
  1368. pr_info(" Run test cases\n");
  1369. ret = coverage_start(table);
  1370. if (ret)
  1371. return ret;
  1372. tests();
  1373. coverage_end();
  1374. return 0;
  1375. }
  1376. static int __init run_all_tests(void)
  1377. {
  1378. int ret = 0;
  1379. pr_info("Beginning kprobe tests...\n");
  1380. #ifndef CONFIG_THUMB2_KERNEL
  1381. pr_info("Probe ARM code\n");
  1382. ret = run_api_tests(arm_func);
  1383. if (ret)
  1384. goto out;
  1385. pr_info("ARM instruction simulation\n");
  1386. ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
  1387. if (ret)
  1388. goto out;
  1389. #else /* CONFIG_THUMB2_KERNEL */
  1390. pr_info("Probe 16-bit Thumb code\n");
  1391. ret = run_api_tests(thumb16_func);
  1392. if (ret)
  1393. goto out;
  1394. pr_info("Probe 32-bit Thumb code, even halfword\n");
  1395. ret = run_api_tests(thumb32even_func);
  1396. if (ret)
  1397. goto out;
  1398. pr_info("Probe 32-bit Thumb code, odd halfword\n");
  1399. ret = run_api_tests(thumb32odd_func);
  1400. if (ret)
  1401. goto out;
  1402. pr_info("16-bit Thumb instruction simulation\n");
  1403. ret = run_test_cases(kprobe_thumb16_test_cases,
  1404. probes_decode_thumb16_table);
  1405. if (ret)
  1406. goto out;
  1407. pr_info("32-bit Thumb instruction simulation\n");
  1408. ret = run_test_cases(kprobe_thumb32_test_cases,
  1409. probes_decode_thumb32_table);
  1410. if (ret)
  1411. goto out;
  1412. #endif
  1413. pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
  1414. test_try_count, test_pass_count, test_fail_count);
  1415. if (test_fail_count) {
  1416. ret = -EINVAL;
  1417. goto out;
  1418. }
  1419. #if BENCHMARKING
  1420. pr_info("Benchmarks\n");
  1421. ret = run_benchmarks();
  1422. if (ret)
  1423. goto out;
  1424. #endif
  1425. #if __LINUX_ARM_ARCH__ >= 7
  1426. /* We are able to run all test cases so coverage should be complete */
  1427. if (coverage_fail) {
  1428. pr_err("FAIL: Test coverage checks failed\n");
  1429. ret = -EINVAL;
  1430. goto out;
  1431. }
  1432. #endif
  1433. out:
  1434. if (ret == 0)
  1435. ret = tests_failed;
  1436. if (ret == 0)
  1437. pr_info("Finished kprobe tests OK\n");
  1438. else
  1439. pr_err("kprobe tests failed\n");
  1440. return ret;
  1441. }
  1442. /*
  1443. * Module setup
  1444. */
  1445. #ifdef MODULE
  1446. static void __exit kprobe_test_exit(void)
  1447. {
  1448. }
  1449. module_init(run_all_tests)
  1450. module_exit(kprobe_test_exit)
  1451. MODULE_LICENSE("GPL");
  1452. #else /* !MODULE */
  1453. late_initcall(run_all_tests);
  1454. #endif