coproc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/bsearch.h>
  20. #include <linux/mm.h>
  21. #include <linux/kvm_host.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/kvm_arm.h>
  24. #include <asm/kvm_host.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <asm/kvm_coproc.h>
  27. #include <asm/kvm_mmu.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cputype.h>
  30. #include <trace/events/kvm.h>
  31. #include <asm/vfp.h>
  32. #include "../vfp/vfpinstr.h"
  33. #define CREATE_TRACE_POINTS
  34. #include "trace.h"
  35. #include "coproc.h"
  36. /******************************************************************************
  37. * Co-processor emulation
  38. *****************************************************************************/
  39. static bool write_to_read_only(struct kvm_vcpu *vcpu,
  40. const struct coproc_params *params)
  41. {
  42. WARN_ONCE(1, "CP15 write to read-only register\n");
  43. print_cp_instr(params);
  44. kvm_inject_undefined(vcpu);
  45. return false;
  46. }
  47. static bool read_from_write_only(struct kvm_vcpu *vcpu,
  48. const struct coproc_params *params)
  49. {
  50. WARN_ONCE(1, "CP15 read to write-only register\n");
  51. print_cp_instr(params);
  52. kvm_inject_undefined(vcpu);
  53. return false;
  54. }
  55. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  56. static u32 cache_levels;
  57. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  58. #define CSSELR_MAX 12
  59. /*
  60. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  61. * of cp15 registers can be viewed either as couple of two u32 registers
  62. * or one u64 register. Current u64 register encoding is that least
  63. * significant u32 word is followed by most significant u32 word.
  64. */
  65. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  66. const struct coproc_reg *r,
  67. u64 val)
  68. {
  69. vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  70. vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  71. }
  72. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  73. const struct coproc_reg *r)
  74. {
  75. u64 val;
  76. val = vcpu_cp15(vcpu, r->reg + 1);
  77. val = val << 32;
  78. val = val | vcpu_cp15(vcpu, r->reg);
  79. return val;
  80. }
  81. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  82. {
  83. kvm_inject_undefined(vcpu);
  84. return 1;
  85. }
  86. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  87. {
  88. /*
  89. * We can get here, if the host has been built without VFPv3 support,
  90. * but the guest attempted a floating point operation.
  91. */
  92. kvm_inject_undefined(vcpu);
  93. return 1;
  94. }
  95. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  96. {
  97. kvm_inject_undefined(vcpu);
  98. return 1;
  99. }
  100. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  101. {
  102. /*
  103. * Compute guest MPIDR. We build a virtual cluster out of the
  104. * vcpu_id, but we read the 'U' bit from the underlying
  105. * hardware directly.
  106. */
  107. vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  108. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  109. (vcpu->vcpu_id & 3));
  110. }
  111. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  112. static bool access_actlr(struct kvm_vcpu *vcpu,
  113. const struct coproc_params *p,
  114. const struct coproc_reg *r)
  115. {
  116. if (p->is_write)
  117. return ignore_write(vcpu, p);
  118. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
  119. return true;
  120. }
  121. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  122. static bool access_cbar(struct kvm_vcpu *vcpu,
  123. const struct coproc_params *p,
  124. const struct coproc_reg *r)
  125. {
  126. if (p->is_write)
  127. return write_to_read_only(vcpu, p);
  128. return read_zero(vcpu, p);
  129. }
  130. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  131. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  132. const struct coproc_params *p,
  133. const struct coproc_reg *r)
  134. {
  135. if (p->is_write)
  136. return ignore_write(vcpu, p);
  137. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
  138. return true;
  139. }
  140. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  141. {
  142. u32 l2ctlr, ncores;
  143. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  144. l2ctlr &= ~(3 << 24);
  145. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  146. /* How many cores in the current cluster and the next ones */
  147. ncores -= (vcpu->vcpu_id & ~3);
  148. /* Cap it to the maximum number of cores in a single cluster */
  149. ncores = min(ncores, 3U);
  150. l2ctlr |= (ncores & 3) << 24;
  151. vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
  152. }
  153. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  154. {
  155. u32 actlr;
  156. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  157. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  158. /* Make the SMP bit consistent with the guest configuration */
  159. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  160. actlr |= 1U << 6;
  161. else
  162. actlr &= ~(1U << 6);
  163. vcpu_cp15(vcpu, c1_ACTLR) = actlr;
  164. }
  165. /*
  166. * TRM entries: A7:4.3.50, A15:4.3.49
  167. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  168. */
  169. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  170. const struct coproc_params *p,
  171. const struct coproc_reg *r)
  172. {
  173. if (p->is_write)
  174. return ignore_write(vcpu, p);
  175. *vcpu_reg(vcpu, p->Rt1) = 0;
  176. return true;
  177. }
  178. /*
  179. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  180. */
  181. static bool access_dcsw(struct kvm_vcpu *vcpu,
  182. const struct coproc_params *p,
  183. const struct coproc_reg *r)
  184. {
  185. if (!p->is_write)
  186. return read_from_write_only(vcpu, p);
  187. kvm_set_way_flush(vcpu);
  188. return true;
  189. }
  190. /*
  191. * Generic accessor for VM registers. Only called as long as HCR_TVM
  192. * is set. If the guest enables the MMU, we stop trapping the VM
  193. * sys_regs and leave it in complete control of the caches.
  194. *
  195. * Used by the cpu-specific code.
  196. */
  197. bool access_vm_reg(struct kvm_vcpu *vcpu,
  198. const struct coproc_params *p,
  199. const struct coproc_reg *r)
  200. {
  201. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  202. BUG_ON(!p->is_write);
  203. vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
  204. if (p->is_64bit)
  205. vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
  206. kvm_toggle_cache(vcpu, was_enabled);
  207. return true;
  208. }
  209. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  210. const struct coproc_params *p,
  211. const struct coproc_reg *r)
  212. {
  213. u64 reg;
  214. if (!p->is_write)
  215. return read_from_write_only(vcpu, p);
  216. reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  217. reg |= *vcpu_reg(vcpu, p->Rt1) ;
  218. vgic_v3_dispatch_sgi(vcpu, reg);
  219. return true;
  220. }
  221. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  222. const struct coproc_params *p,
  223. const struct coproc_reg *r)
  224. {
  225. if (p->is_write)
  226. return ignore_write(vcpu, p);
  227. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  228. return true;
  229. }
  230. /*
  231. * We could trap ID_DFR0 and tell the guest we don't support performance
  232. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  233. * NAKed, so it will read the PMCR anyway.
  234. *
  235. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  236. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  237. * all PM registers, which doesn't crash the guest kernel at least.
  238. */
  239. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  240. const struct coproc_params *p,
  241. const struct coproc_reg *r)
  242. {
  243. if (p->is_write)
  244. return ignore_write(vcpu, p);
  245. else
  246. return read_zero(vcpu, p);
  247. }
  248. #define access_pmcr trap_raz_wi
  249. #define access_pmcntenset trap_raz_wi
  250. #define access_pmcntenclr trap_raz_wi
  251. #define access_pmovsr trap_raz_wi
  252. #define access_pmselr trap_raz_wi
  253. #define access_pmceid0 trap_raz_wi
  254. #define access_pmceid1 trap_raz_wi
  255. #define access_pmccntr trap_raz_wi
  256. #define access_pmxevtyper trap_raz_wi
  257. #define access_pmxevcntr trap_raz_wi
  258. #define access_pmuserenr trap_raz_wi
  259. #define access_pmintenset trap_raz_wi
  260. #define access_pmintenclr trap_raz_wi
  261. /* Architected CP15 registers.
  262. * CRn denotes the primary register number, but is copied to the CRm in the
  263. * user space API for 64-bit register access in line with the terminology used
  264. * in the ARM ARM.
  265. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  266. * registers preceding 32-bit ones.
  267. */
  268. static const struct coproc_reg cp15_regs[] = {
  269. /* MPIDR: we use VMPIDR for guest access. */
  270. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  271. NULL, reset_mpidr, c0_MPIDR },
  272. /* CSSELR: swapped by interrupt.S. */
  273. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  274. NULL, reset_unknown, c0_CSSELR },
  275. /* ACTLR: trapped by HCR.TAC bit. */
  276. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  277. access_actlr, reset_actlr, c1_ACTLR },
  278. /* CPACR: swapped by interrupt.S. */
  279. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  280. NULL, reset_val, c1_CPACR, 0x00000000 },
  281. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  282. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  283. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  284. access_vm_reg, reset_unknown, c2_TTBR0 },
  285. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  286. access_vm_reg, reset_unknown, c2_TTBR1 },
  287. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  288. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  289. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  290. /* DACR: swapped by interrupt.S. */
  291. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  292. access_vm_reg, reset_unknown, c3_DACR },
  293. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  294. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  295. access_vm_reg, reset_unknown, c5_DFSR },
  296. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  297. access_vm_reg, reset_unknown, c5_IFSR },
  298. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  299. access_vm_reg, reset_unknown, c5_ADFSR },
  300. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  301. access_vm_reg, reset_unknown, c5_AIFSR },
  302. /* DFAR/IFAR: swapped by interrupt.S. */
  303. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  304. access_vm_reg, reset_unknown, c6_DFAR },
  305. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  306. access_vm_reg, reset_unknown, c6_IFAR },
  307. /* PAR swapped by interrupt.S */
  308. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  309. /*
  310. * DC{C,I,CI}SW operations:
  311. */
  312. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  313. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  314. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  315. /*
  316. * L2CTLR access (guest wants to know #CPUs).
  317. */
  318. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  319. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  320. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  321. /*
  322. * Dummy performance monitor implementation.
  323. */
  324. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  325. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  326. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  327. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  328. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  329. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  330. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  331. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  332. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  333. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  334. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  335. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  336. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  337. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  338. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  339. access_vm_reg, reset_unknown, c10_PRRR},
  340. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  341. access_vm_reg, reset_unknown, c10_NMRR},
  342. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  343. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  344. access_vm_reg, reset_unknown, c10_AMAIR0},
  345. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  346. access_vm_reg, reset_unknown, c10_AMAIR1},
  347. /* ICC_SGI1R */
  348. { CRm64(12), Op1( 0), is64, access_gic_sgi},
  349. /* VBAR: swapped by interrupt.S. */
  350. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  351. NULL, reset_val, c12_VBAR, 0x00000000 },
  352. /* ICC_SRE */
  353. { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
  354. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  355. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  356. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  357. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  358. NULL, reset_unknown, c13_TID_URW },
  359. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  360. NULL, reset_unknown, c13_TID_URO },
  361. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  362. NULL, reset_unknown, c13_TID_PRIV },
  363. /* CNTKCTL: swapped by interrupt.S. */
  364. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  365. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  366. /* The Configuration Base Address Register. */
  367. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  368. };
  369. static int check_reg_table(const struct coproc_reg *table, unsigned int n)
  370. {
  371. unsigned int i;
  372. for (i = 1; i < n; i++) {
  373. if (cmp_reg(&table[i-1], &table[i]) >= 0) {
  374. kvm_err("reg table %p out of order (%d)\n", table, i - 1);
  375. return 1;
  376. }
  377. }
  378. return 0;
  379. }
  380. /* Target specific emulation tables */
  381. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  382. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  383. {
  384. BUG_ON(check_reg_table(table->table, table->num));
  385. target_tables[table->target] = table;
  386. }
  387. /* Get specific register table for this target. */
  388. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  389. {
  390. struct kvm_coproc_target_table *table;
  391. table = target_tables[target];
  392. *num = table->num;
  393. return table->table;
  394. }
  395. #define reg_to_match_value(x) \
  396. ({ \
  397. unsigned long val; \
  398. val = (x)->CRn << 11; \
  399. val |= (x)->CRm << 7; \
  400. val |= (x)->Op1 << 4; \
  401. val |= (x)->Op2 << 1; \
  402. val |= !(x)->is_64bit; \
  403. val; \
  404. })
  405. static int match_reg(const void *key, const void *elt)
  406. {
  407. const unsigned long pval = (unsigned long)key;
  408. const struct coproc_reg *r = elt;
  409. return pval - reg_to_match_value(r);
  410. }
  411. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  412. const struct coproc_reg table[],
  413. unsigned int num)
  414. {
  415. unsigned long pval = reg_to_match_value(params);
  416. return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
  417. }
  418. static int emulate_cp15(struct kvm_vcpu *vcpu,
  419. const struct coproc_params *params)
  420. {
  421. size_t num;
  422. const struct coproc_reg *table, *r;
  423. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  424. params->CRm, params->Op2, params->is_write);
  425. table = get_target_table(vcpu->arch.target, &num);
  426. /* Search target-specific then generic table. */
  427. r = find_reg(params, table, num);
  428. if (!r)
  429. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  430. if (likely(r)) {
  431. /* If we don't have an accessor, we should never get here! */
  432. BUG_ON(!r->access);
  433. if (likely(r->access(vcpu, params, r))) {
  434. /* Skip instruction, since it was emulated */
  435. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  436. }
  437. } else {
  438. /* If access function fails, it should complain. */
  439. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  440. *vcpu_pc(vcpu));
  441. print_cp_instr(params);
  442. kvm_inject_undefined(vcpu);
  443. }
  444. return 1;
  445. }
  446. static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
  447. {
  448. struct coproc_params params;
  449. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  450. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  451. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  452. params.is_64bit = true;
  453. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  454. params.Op2 = 0;
  455. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  456. params.CRm = 0;
  457. return params;
  458. }
  459. /**
  460. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  461. * @vcpu: The VCPU pointer
  462. * @run: The kvm_run struct
  463. */
  464. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  465. {
  466. struct coproc_params params = decode_64bit_hsr(vcpu);
  467. return emulate_cp15(vcpu, &params);
  468. }
  469. /**
  470. * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
  471. * @vcpu: The VCPU pointer
  472. * @run: The kvm_run struct
  473. */
  474. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  475. {
  476. struct coproc_params params = decode_64bit_hsr(vcpu);
  477. /* raz_wi cp14 */
  478. trap_raz_wi(vcpu, &params, NULL);
  479. /* handled */
  480. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  481. return 1;
  482. }
  483. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  484. const struct coproc_reg *table, size_t num)
  485. {
  486. unsigned long i;
  487. for (i = 0; i < num; i++)
  488. if (table[i].reset)
  489. table[i].reset(vcpu, &table[i]);
  490. }
  491. static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
  492. {
  493. struct coproc_params params;
  494. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  495. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  496. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  497. params.is_64bit = false;
  498. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  499. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  500. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  501. params.Rt2 = 0;
  502. return params;
  503. }
  504. /**
  505. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  506. * @vcpu: The VCPU pointer
  507. * @run: The kvm_run struct
  508. */
  509. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  510. {
  511. struct coproc_params params = decode_32bit_hsr(vcpu);
  512. return emulate_cp15(vcpu, &params);
  513. }
  514. /**
  515. * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
  516. * @vcpu: The VCPU pointer
  517. * @run: The kvm_run struct
  518. */
  519. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  520. {
  521. struct coproc_params params = decode_32bit_hsr(vcpu);
  522. /* raz_wi cp14 */
  523. trap_raz_wi(vcpu, &params, NULL);
  524. /* handled */
  525. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  526. return 1;
  527. }
  528. /******************************************************************************
  529. * Userspace API
  530. *****************************************************************************/
  531. static bool index_to_params(u64 id, struct coproc_params *params)
  532. {
  533. switch (id & KVM_REG_SIZE_MASK) {
  534. case KVM_REG_SIZE_U32:
  535. /* Any unused index bits means it's not valid. */
  536. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  537. | KVM_REG_ARM_COPROC_MASK
  538. | KVM_REG_ARM_32_CRN_MASK
  539. | KVM_REG_ARM_CRM_MASK
  540. | KVM_REG_ARM_OPC1_MASK
  541. | KVM_REG_ARM_32_OPC2_MASK))
  542. return false;
  543. params->is_64bit = false;
  544. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  545. >> KVM_REG_ARM_32_CRN_SHIFT);
  546. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  547. >> KVM_REG_ARM_CRM_SHIFT);
  548. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  549. >> KVM_REG_ARM_OPC1_SHIFT);
  550. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  551. >> KVM_REG_ARM_32_OPC2_SHIFT);
  552. return true;
  553. case KVM_REG_SIZE_U64:
  554. /* Any unused index bits means it's not valid. */
  555. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  556. | KVM_REG_ARM_COPROC_MASK
  557. | KVM_REG_ARM_CRM_MASK
  558. | KVM_REG_ARM_OPC1_MASK))
  559. return false;
  560. params->is_64bit = true;
  561. /* CRm to CRn: see cp15_to_index for details */
  562. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  563. >> KVM_REG_ARM_CRM_SHIFT);
  564. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  565. >> KVM_REG_ARM_OPC1_SHIFT);
  566. params->Op2 = 0;
  567. params->CRm = 0;
  568. return true;
  569. default:
  570. return false;
  571. }
  572. }
  573. /* Decode an index value, and find the cp15 coproc_reg entry. */
  574. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  575. u64 id)
  576. {
  577. size_t num;
  578. const struct coproc_reg *table, *r;
  579. struct coproc_params params;
  580. /* We only do cp15 for now. */
  581. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  582. return NULL;
  583. if (!index_to_params(id, &params))
  584. return NULL;
  585. table = get_target_table(vcpu->arch.target, &num);
  586. r = find_reg(&params, table, num);
  587. if (!r)
  588. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  589. /* Not saved in the cp15 array? */
  590. if (r && !r->reg)
  591. r = NULL;
  592. return r;
  593. }
  594. /*
  595. * These are the invariant cp15 registers: we let the guest see the host
  596. * versions of these, so they're part of the guest state.
  597. *
  598. * A future CPU may provide a mechanism to present different values to
  599. * the guest, or a future kvm may trap them.
  600. */
  601. /* Unfortunately, there's no register-argument for mrc, so generate. */
  602. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  603. static void get_##name(struct kvm_vcpu *v, \
  604. const struct coproc_reg *r) \
  605. { \
  606. u32 val; \
  607. \
  608. asm volatile("mrc p15, " __stringify(op1) \
  609. ", %0, c" __stringify(crn) \
  610. ", c" __stringify(crm) \
  611. ", " __stringify(op2) "\n" : "=r" (val)); \
  612. ((struct coproc_reg *)r)->val = val; \
  613. }
  614. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  615. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  616. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  617. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  618. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  619. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  620. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  621. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  622. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  623. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  624. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  625. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  626. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  627. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  628. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  629. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  630. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  631. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  632. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  633. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  634. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  635. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  636. static struct coproc_reg invariant_cp15[] = {
  637. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  638. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  639. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  640. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  641. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  642. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  643. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  644. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  645. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  646. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  647. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  648. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  649. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  650. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  651. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  652. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  653. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  654. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  655. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  656. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  657. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  658. };
  659. /*
  660. * Reads a register value from a userspace address to a kernel
  661. * variable. Make sure that register size matches sizeof(*__val).
  662. */
  663. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  664. {
  665. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  666. return -EFAULT;
  667. return 0;
  668. }
  669. /*
  670. * Writes a register value to a userspace address from a kernel variable.
  671. * Make sure that register size matches sizeof(*__val).
  672. */
  673. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  674. {
  675. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  676. return -EFAULT;
  677. return 0;
  678. }
  679. static int get_invariant_cp15(u64 id, void __user *uaddr)
  680. {
  681. struct coproc_params params;
  682. const struct coproc_reg *r;
  683. int ret;
  684. if (!index_to_params(id, &params))
  685. return -ENOENT;
  686. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  687. if (!r)
  688. return -ENOENT;
  689. ret = -ENOENT;
  690. if (KVM_REG_SIZE(id) == 4) {
  691. u32 val = r->val;
  692. ret = reg_to_user(uaddr, &val, id);
  693. } else if (KVM_REG_SIZE(id) == 8) {
  694. ret = reg_to_user(uaddr, &r->val, id);
  695. }
  696. return ret;
  697. }
  698. static int set_invariant_cp15(u64 id, void __user *uaddr)
  699. {
  700. struct coproc_params params;
  701. const struct coproc_reg *r;
  702. int err;
  703. u64 val;
  704. if (!index_to_params(id, &params))
  705. return -ENOENT;
  706. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  707. if (!r)
  708. return -ENOENT;
  709. err = -ENOENT;
  710. if (KVM_REG_SIZE(id) == 4) {
  711. u32 val32;
  712. err = reg_from_user(&val32, uaddr, id);
  713. if (!err)
  714. val = val32;
  715. } else if (KVM_REG_SIZE(id) == 8) {
  716. err = reg_from_user(&val, uaddr, id);
  717. }
  718. if (err)
  719. return err;
  720. /* This is what we mean by invariant: you can't change it. */
  721. if (r->val != val)
  722. return -EINVAL;
  723. return 0;
  724. }
  725. static bool is_valid_cache(u32 val)
  726. {
  727. u32 level, ctype;
  728. if (val >= CSSELR_MAX)
  729. return false;
  730. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  731. level = (val >> 1);
  732. ctype = (cache_levels >> (level * 3)) & 7;
  733. switch (ctype) {
  734. case 0: /* No cache */
  735. return false;
  736. case 1: /* Instruction cache only */
  737. return (val & 1);
  738. case 2: /* Data cache only */
  739. case 4: /* Unified cache */
  740. return !(val & 1);
  741. case 3: /* Separate instruction and data caches */
  742. return true;
  743. default: /* Reserved: we can't know instruction or data. */
  744. return false;
  745. }
  746. }
  747. /* Which cache CCSIDR represents depends on CSSELR value. */
  748. static u32 get_ccsidr(u32 csselr)
  749. {
  750. u32 ccsidr;
  751. /* Make sure noone else changes CSSELR during this! */
  752. local_irq_disable();
  753. /* Put value into CSSELR */
  754. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  755. isb();
  756. /* Read result out of CCSIDR */
  757. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  758. local_irq_enable();
  759. return ccsidr;
  760. }
  761. static int demux_c15_get(u64 id, void __user *uaddr)
  762. {
  763. u32 val;
  764. u32 __user *uval = uaddr;
  765. /* Fail if we have unknown bits set. */
  766. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  767. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  768. return -ENOENT;
  769. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  770. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  771. if (KVM_REG_SIZE(id) != 4)
  772. return -ENOENT;
  773. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  774. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  775. if (!is_valid_cache(val))
  776. return -ENOENT;
  777. return put_user(get_ccsidr(val), uval);
  778. default:
  779. return -ENOENT;
  780. }
  781. }
  782. static int demux_c15_set(u64 id, void __user *uaddr)
  783. {
  784. u32 val, newval;
  785. u32 __user *uval = uaddr;
  786. /* Fail if we have unknown bits set. */
  787. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  788. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  789. return -ENOENT;
  790. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  791. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  792. if (KVM_REG_SIZE(id) != 4)
  793. return -ENOENT;
  794. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  795. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  796. if (!is_valid_cache(val))
  797. return -ENOENT;
  798. if (get_user(newval, uval))
  799. return -EFAULT;
  800. /* This is also invariant: you can't change it. */
  801. if (newval != get_ccsidr(val))
  802. return -EINVAL;
  803. return 0;
  804. default:
  805. return -ENOENT;
  806. }
  807. }
  808. #ifdef CONFIG_VFPv3
  809. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  810. KVM_REG_ARM_VFP_FPSCR,
  811. KVM_REG_ARM_VFP_FPINST,
  812. KVM_REG_ARM_VFP_FPINST2,
  813. KVM_REG_ARM_VFP_MVFR0,
  814. KVM_REG_ARM_VFP_MVFR1,
  815. KVM_REG_ARM_VFP_FPSID };
  816. static unsigned int num_fp_regs(void)
  817. {
  818. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  819. return 32;
  820. else
  821. return 16;
  822. }
  823. static unsigned int num_vfp_regs(void)
  824. {
  825. /* Normal FP regs + control regs. */
  826. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  827. }
  828. static int copy_vfp_regids(u64 __user *uindices)
  829. {
  830. unsigned int i;
  831. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  832. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  833. for (i = 0; i < num_fp_regs(); i++) {
  834. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  835. uindices))
  836. return -EFAULT;
  837. uindices++;
  838. }
  839. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  840. if (put_user(u32reg | vfp_sysregs[i], uindices))
  841. return -EFAULT;
  842. uindices++;
  843. }
  844. return num_vfp_regs();
  845. }
  846. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  847. {
  848. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  849. u32 val;
  850. /* Fail if we have unknown bits set. */
  851. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  852. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  853. return -ENOENT;
  854. if (vfpid < num_fp_regs()) {
  855. if (KVM_REG_SIZE(id) != 8)
  856. return -ENOENT;
  857. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
  858. id);
  859. }
  860. /* FP control registers are all 32 bit. */
  861. if (KVM_REG_SIZE(id) != 4)
  862. return -ENOENT;
  863. switch (vfpid) {
  864. case KVM_REG_ARM_VFP_FPEXC:
  865. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
  866. case KVM_REG_ARM_VFP_FPSCR:
  867. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
  868. case KVM_REG_ARM_VFP_FPINST:
  869. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
  870. case KVM_REG_ARM_VFP_FPINST2:
  871. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
  872. case KVM_REG_ARM_VFP_MVFR0:
  873. val = fmrx(MVFR0);
  874. return reg_to_user(uaddr, &val, id);
  875. case KVM_REG_ARM_VFP_MVFR1:
  876. val = fmrx(MVFR1);
  877. return reg_to_user(uaddr, &val, id);
  878. case KVM_REG_ARM_VFP_FPSID:
  879. val = fmrx(FPSID);
  880. return reg_to_user(uaddr, &val, id);
  881. default:
  882. return -ENOENT;
  883. }
  884. }
  885. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  886. {
  887. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  888. u32 val;
  889. /* Fail if we have unknown bits set. */
  890. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  891. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  892. return -ENOENT;
  893. if (vfpid < num_fp_regs()) {
  894. if (KVM_REG_SIZE(id) != 8)
  895. return -ENOENT;
  896. return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
  897. uaddr, id);
  898. }
  899. /* FP control registers are all 32 bit. */
  900. if (KVM_REG_SIZE(id) != 4)
  901. return -ENOENT;
  902. switch (vfpid) {
  903. case KVM_REG_ARM_VFP_FPEXC:
  904. return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
  905. case KVM_REG_ARM_VFP_FPSCR:
  906. return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
  907. case KVM_REG_ARM_VFP_FPINST:
  908. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
  909. case KVM_REG_ARM_VFP_FPINST2:
  910. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
  911. /* These are invariant. */
  912. case KVM_REG_ARM_VFP_MVFR0:
  913. if (reg_from_user(&val, uaddr, id))
  914. return -EFAULT;
  915. if (val != fmrx(MVFR0))
  916. return -EINVAL;
  917. return 0;
  918. case KVM_REG_ARM_VFP_MVFR1:
  919. if (reg_from_user(&val, uaddr, id))
  920. return -EFAULT;
  921. if (val != fmrx(MVFR1))
  922. return -EINVAL;
  923. return 0;
  924. case KVM_REG_ARM_VFP_FPSID:
  925. if (reg_from_user(&val, uaddr, id))
  926. return -EFAULT;
  927. if (val != fmrx(FPSID))
  928. return -EINVAL;
  929. return 0;
  930. default:
  931. return -ENOENT;
  932. }
  933. }
  934. #else /* !CONFIG_VFPv3 */
  935. static unsigned int num_vfp_regs(void)
  936. {
  937. return 0;
  938. }
  939. static int copy_vfp_regids(u64 __user *uindices)
  940. {
  941. return 0;
  942. }
  943. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  944. {
  945. return -ENOENT;
  946. }
  947. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  948. {
  949. return -ENOENT;
  950. }
  951. #endif /* !CONFIG_VFPv3 */
  952. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  953. {
  954. const struct coproc_reg *r;
  955. void __user *uaddr = (void __user *)(long)reg->addr;
  956. int ret;
  957. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  958. return demux_c15_get(reg->id, uaddr);
  959. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  960. return vfp_get_reg(vcpu, reg->id, uaddr);
  961. r = index_to_coproc_reg(vcpu, reg->id);
  962. if (!r)
  963. return get_invariant_cp15(reg->id, uaddr);
  964. ret = -ENOENT;
  965. if (KVM_REG_SIZE(reg->id) == 8) {
  966. u64 val;
  967. val = vcpu_cp15_reg64_get(vcpu, r);
  968. ret = reg_to_user(uaddr, &val, reg->id);
  969. } else if (KVM_REG_SIZE(reg->id) == 4) {
  970. ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
  971. }
  972. return ret;
  973. }
  974. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  975. {
  976. const struct coproc_reg *r;
  977. void __user *uaddr = (void __user *)(long)reg->addr;
  978. int ret;
  979. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  980. return demux_c15_set(reg->id, uaddr);
  981. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  982. return vfp_set_reg(vcpu, reg->id, uaddr);
  983. r = index_to_coproc_reg(vcpu, reg->id);
  984. if (!r)
  985. return set_invariant_cp15(reg->id, uaddr);
  986. ret = -ENOENT;
  987. if (KVM_REG_SIZE(reg->id) == 8) {
  988. u64 val;
  989. ret = reg_from_user(&val, uaddr, reg->id);
  990. if (!ret)
  991. vcpu_cp15_reg64_set(vcpu, r, val);
  992. } else if (KVM_REG_SIZE(reg->id) == 4) {
  993. ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
  994. }
  995. return ret;
  996. }
  997. static unsigned int num_demux_regs(void)
  998. {
  999. unsigned int i, count = 0;
  1000. for (i = 0; i < CSSELR_MAX; i++)
  1001. if (is_valid_cache(i))
  1002. count++;
  1003. return count;
  1004. }
  1005. static int write_demux_regids(u64 __user *uindices)
  1006. {
  1007. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1008. unsigned int i;
  1009. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1010. for (i = 0; i < CSSELR_MAX; i++) {
  1011. if (!is_valid_cache(i))
  1012. continue;
  1013. if (put_user(val | i, uindices))
  1014. return -EFAULT;
  1015. uindices++;
  1016. }
  1017. return 0;
  1018. }
  1019. static u64 cp15_to_index(const struct coproc_reg *reg)
  1020. {
  1021. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  1022. if (reg->is_64bit) {
  1023. val |= KVM_REG_SIZE_U64;
  1024. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1025. /*
  1026. * CRn always denotes the primary coproc. reg. nr. for the
  1027. * in-kernel representation, but the user space API uses the
  1028. * CRm for the encoding, because it is modelled after the
  1029. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  1030. * B3-1445
  1031. */
  1032. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  1033. } else {
  1034. val |= KVM_REG_SIZE_U32;
  1035. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1036. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  1037. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  1038. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  1039. }
  1040. return val;
  1041. }
  1042. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  1043. {
  1044. if (!*uind)
  1045. return true;
  1046. if (put_user(cp15_to_index(reg), *uind))
  1047. return false;
  1048. (*uind)++;
  1049. return true;
  1050. }
  1051. /* Assumed ordered tables, see kvm_coproc_table_init. */
  1052. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1053. {
  1054. const struct coproc_reg *i1, *i2, *end1, *end2;
  1055. unsigned int total = 0;
  1056. size_t num;
  1057. /* We check for duplicates here, to allow arch-specific overrides. */
  1058. i1 = get_target_table(vcpu->arch.target, &num);
  1059. end1 = i1 + num;
  1060. i2 = cp15_regs;
  1061. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1062. BUG_ON(i1 == end1 || i2 == end2);
  1063. /* Walk carefully, as both tables may refer to the same register. */
  1064. while (i1 || i2) {
  1065. int cmp = cmp_reg(i1, i2);
  1066. /* target-specific overrides generic entry. */
  1067. if (cmp <= 0) {
  1068. /* Ignore registers we trap but don't save. */
  1069. if (i1->reg) {
  1070. if (!copy_reg_to_user(i1, &uind))
  1071. return -EFAULT;
  1072. total++;
  1073. }
  1074. } else {
  1075. /* Ignore registers we trap but don't save. */
  1076. if (i2->reg) {
  1077. if (!copy_reg_to_user(i2, &uind))
  1078. return -EFAULT;
  1079. total++;
  1080. }
  1081. }
  1082. if (cmp <= 0 && ++i1 == end1)
  1083. i1 = NULL;
  1084. if (cmp >= 0 && ++i2 == end2)
  1085. i2 = NULL;
  1086. }
  1087. return total;
  1088. }
  1089. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1090. {
  1091. return ARRAY_SIZE(invariant_cp15)
  1092. + num_demux_regs()
  1093. + num_vfp_regs()
  1094. + walk_cp15(vcpu, (u64 __user *)NULL);
  1095. }
  1096. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1097. {
  1098. unsigned int i;
  1099. int err;
  1100. /* Then give them all the invariant registers' indices. */
  1101. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1102. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1103. return -EFAULT;
  1104. uindices++;
  1105. }
  1106. err = walk_cp15(vcpu, uindices);
  1107. if (err < 0)
  1108. return err;
  1109. uindices += err;
  1110. err = copy_vfp_regids(uindices);
  1111. if (err < 0)
  1112. return err;
  1113. uindices += err;
  1114. return write_demux_regids(uindices);
  1115. }
  1116. void kvm_coproc_table_init(void)
  1117. {
  1118. unsigned int i;
  1119. /* Make sure tables are unique and in order. */
  1120. BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1121. BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
  1122. /* We abuse the reset function to overwrite the table itself. */
  1123. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1124. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1125. /*
  1126. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1127. *
  1128. * If software reads the Cache Type fields from Ctype1
  1129. * upwards, once it has seen a value of 0b000, no caches
  1130. * exist at further-out levels of the hierarchy. So, for
  1131. * example, if Ctype3 is the first Cache Type field with a
  1132. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1133. * ignored.
  1134. */
  1135. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1136. for (i = 0; i < 7; i++)
  1137. if (((cache_levels >> (i*3)) & 7) == 0)
  1138. break;
  1139. /* Clear all higher bits. */
  1140. cache_levels &= (1 << (i*3))-1;
  1141. }
  1142. /**
  1143. * kvm_reset_coprocs - sets cp15 registers to reset value
  1144. * @vcpu: The VCPU pointer
  1145. *
  1146. * This function finds the right table above and sets the registers on the
  1147. * virtual CPU struct to their architecturally defined reset values.
  1148. */
  1149. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1150. {
  1151. size_t num;
  1152. const struct coproc_reg *table;
  1153. /* Catch someone adding a register without putting in reset entry. */
  1154. memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
  1155. /* Generic chip reset first (so target could override). */
  1156. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1157. table = get_target_table(vcpu->arch.target, &num);
  1158. reset_coproc_regs(vcpu, table, num);
  1159. for (num = 1; num < NR_CP15_REGS; num++)
  1160. if (vcpu_cp15(vcpu, num) == 0x42424242)
  1161. panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
  1162. }