process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/sched/debug.h>
  15. #include <linux/sched/task.h>
  16. #include <linux/sched/task_stack.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/stddef.h>
  20. #include <linux/unistd.h>
  21. #include <linux/user.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/init.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/leds.h>
  33. #include <asm/processor.h>
  34. #include <asm/thread_notify.h>
  35. #include <asm/stacktrace.h>
  36. #include <asm/system_misc.h>
  37. #include <asm/mach/time.h>
  38. #include <asm/tls.h>
  39. #include <asm/vdso.h>
  40. #ifdef CONFIG_CC_STACKPROTECTOR
  41. #include <linux/stackprotector.h>
  42. unsigned long __stack_chk_guard __read_mostly;
  43. EXPORT_SYMBOL(__stack_chk_guard);
  44. #endif
  45. static const char *processor_modes[] __maybe_unused = {
  46. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  47. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  48. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
  49. "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  50. };
  51. static const char *isa_modes[] __maybe_unused = {
  52. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  53. };
  54. /*
  55. * This is our default idle handler.
  56. */
  57. void (*arm_pm_idle)(void);
  58. /*
  59. * Called from the core idle loop.
  60. */
  61. void arch_cpu_idle(void)
  62. {
  63. if (arm_pm_idle)
  64. arm_pm_idle();
  65. else
  66. cpu_do_idle();
  67. local_irq_enable();
  68. }
  69. void arch_cpu_idle_prepare(void)
  70. {
  71. local_fiq_enable();
  72. }
  73. void arch_cpu_idle_enter(void)
  74. {
  75. ledtrig_cpu(CPU_LED_IDLE_START);
  76. #ifdef CONFIG_PL310_ERRATA_769419
  77. wmb();
  78. #endif
  79. }
  80. void arch_cpu_idle_exit(void)
  81. {
  82. ledtrig_cpu(CPU_LED_IDLE_END);
  83. }
  84. void __show_regs(struct pt_regs *regs)
  85. {
  86. unsigned long flags;
  87. char buf[64];
  88. #ifndef CONFIG_CPU_V7M
  89. unsigned int domain, fs;
  90. #ifdef CONFIG_CPU_SW_DOMAIN_PAN
  91. /*
  92. * Get the domain register for the parent context. In user
  93. * mode, we don't save the DACR, so lets use what it should
  94. * be. For other modes, we place it after the pt_regs struct.
  95. */
  96. if (user_mode(regs)) {
  97. domain = DACR_UACCESS_ENABLE;
  98. fs = get_fs();
  99. } else {
  100. domain = to_svc_pt_regs(regs)->dacr;
  101. fs = to_svc_pt_regs(regs)->addr_limit;
  102. }
  103. #else
  104. domain = get_domain();
  105. fs = get_fs();
  106. #endif
  107. #endif
  108. show_regs_print_info(KERN_DEFAULT);
  109. print_symbol("PC is at %s\n", instruction_pointer(regs));
  110. print_symbol("LR is at %s\n", regs->ARM_lr);
  111. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  112. "sp : %08lx ip : %08lx fp : %08lx\n",
  113. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  114. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  115. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  116. regs->ARM_r10, regs->ARM_r9,
  117. regs->ARM_r8);
  118. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  119. regs->ARM_r7, regs->ARM_r6,
  120. regs->ARM_r5, regs->ARM_r4);
  121. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  122. regs->ARM_r3, regs->ARM_r2,
  123. regs->ARM_r1, regs->ARM_r0);
  124. flags = regs->ARM_cpsr;
  125. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  126. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  127. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  128. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  129. buf[4] = '\0';
  130. #ifndef CONFIG_CPU_V7M
  131. {
  132. const char *segment;
  133. if ((domain & domain_mask(DOMAIN_USER)) ==
  134. domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
  135. segment = "none";
  136. else if (fs == get_ds())
  137. segment = "kernel";
  138. else
  139. segment = "user";
  140. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  141. buf, interrupts_enabled(regs) ? "n" : "ff",
  142. fast_interrupts_enabled(regs) ? "n" : "ff",
  143. processor_modes[processor_mode(regs)],
  144. isa_modes[isa_mode(regs)], segment);
  145. }
  146. #else
  147. printk("xPSR: %08lx\n", regs->ARM_cpsr);
  148. #endif
  149. #ifdef CONFIG_CPU_CP15
  150. {
  151. unsigned int ctrl;
  152. buf[0] = '\0';
  153. #ifdef CONFIG_CPU_CP15_MMU
  154. {
  155. unsigned int transbase;
  156. asm("mrc p15, 0, %0, c2, c0\n\t"
  157. : "=r" (transbase));
  158. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  159. transbase, domain);
  160. }
  161. #endif
  162. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  163. printk("Control: %08x%s\n", ctrl, buf);
  164. }
  165. #endif
  166. }
  167. void show_regs(struct pt_regs * regs)
  168. {
  169. __show_regs(regs);
  170. dump_stack();
  171. }
  172. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  173. EXPORT_SYMBOL_GPL(thread_notify_head);
  174. /*
  175. * Free current thread data structures etc..
  176. */
  177. void exit_thread(struct task_struct *tsk)
  178. {
  179. thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
  180. }
  181. void flush_thread(void)
  182. {
  183. struct thread_info *thread = current_thread_info();
  184. struct task_struct *tsk = current;
  185. flush_ptrace_hw_breakpoint(tsk);
  186. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  187. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  188. memset(&thread->fpstate, 0, sizeof(union fp_state));
  189. flush_tls();
  190. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  191. }
  192. void release_thread(struct task_struct *dead_task)
  193. {
  194. }
  195. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  196. int
  197. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  198. unsigned long stk_sz, struct task_struct *p)
  199. {
  200. struct thread_info *thread = task_thread_info(p);
  201. struct pt_regs *childregs = task_pt_regs(p);
  202. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  203. #ifdef CONFIG_CPU_USE_DOMAINS
  204. /*
  205. * Copy the initial value of the domain access control register
  206. * from the current thread: thread->addr_limit will have been
  207. * copied from the current thread via setup_thread_stack() in
  208. * kernel/fork.c
  209. */
  210. thread->cpu_domain = get_domain();
  211. #endif
  212. if (likely(!(p->flags & PF_KTHREAD))) {
  213. *childregs = *current_pt_regs();
  214. childregs->ARM_r0 = 0;
  215. if (stack_start)
  216. childregs->ARM_sp = stack_start;
  217. } else {
  218. memset(childregs, 0, sizeof(struct pt_regs));
  219. thread->cpu_context.r4 = stk_sz;
  220. thread->cpu_context.r5 = stack_start;
  221. childregs->ARM_cpsr = SVC_MODE;
  222. }
  223. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  224. thread->cpu_context.sp = (unsigned long)childregs;
  225. clear_ptrace_hw_breakpoint(p);
  226. if (clone_flags & CLONE_SETTLS)
  227. thread->tp_value[0] = childregs->ARM_r3;
  228. thread->tp_value[1] = get_tpuser();
  229. thread_notify(THREAD_NOTIFY_COPY, thread);
  230. return 0;
  231. }
  232. /*
  233. * Fill in the task's elfregs structure for a core dump.
  234. */
  235. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  236. {
  237. elf_core_copy_regs(elfregs, task_pt_regs(t));
  238. return 1;
  239. }
  240. /*
  241. * fill in the fpe structure for a core dump...
  242. */
  243. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  244. {
  245. struct thread_info *thread = current_thread_info();
  246. int used_math = thread->used_cp[1] | thread->used_cp[2];
  247. if (used_math)
  248. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  249. return used_math != 0;
  250. }
  251. EXPORT_SYMBOL(dump_fpu);
  252. unsigned long get_wchan(struct task_struct *p)
  253. {
  254. struct stackframe frame;
  255. unsigned long stack_page;
  256. int count = 0;
  257. if (!p || p == current || p->state == TASK_RUNNING)
  258. return 0;
  259. frame.fp = thread_saved_fp(p);
  260. frame.sp = thread_saved_sp(p);
  261. frame.lr = 0; /* recovered from the stack */
  262. frame.pc = thread_saved_pc(p);
  263. stack_page = (unsigned long)task_stack_page(p);
  264. do {
  265. if (frame.sp < stack_page ||
  266. frame.sp >= stack_page + THREAD_SIZE ||
  267. unwind_frame(&frame) < 0)
  268. return 0;
  269. if (!in_sched_functions(frame.pc))
  270. return frame.pc;
  271. } while (count ++ < 16);
  272. return 0;
  273. }
  274. unsigned long arch_randomize_brk(struct mm_struct *mm)
  275. {
  276. return randomize_page(mm->brk, 0x02000000);
  277. }
  278. #ifdef CONFIG_MMU
  279. #ifdef CONFIG_KUSER_HELPERS
  280. /*
  281. * The vectors page is always readable from user space for the
  282. * atomic helpers. Insert it into the gate_vma so that it is visible
  283. * through ptrace and /proc/<pid>/mem.
  284. */
  285. static struct vm_area_struct gate_vma = {
  286. .vm_start = 0xffff0000,
  287. .vm_end = 0xffff0000 + PAGE_SIZE,
  288. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  289. };
  290. static int __init gate_vma_init(void)
  291. {
  292. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  293. return 0;
  294. }
  295. arch_initcall(gate_vma_init);
  296. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  297. {
  298. return &gate_vma;
  299. }
  300. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  301. {
  302. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  303. }
  304. int in_gate_area_no_mm(unsigned long addr)
  305. {
  306. return in_gate_area(NULL, addr);
  307. }
  308. #define is_gate_vma(vma) ((vma) == &gate_vma)
  309. #else
  310. #define is_gate_vma(vma) 0
  311. #endif
  312. const char *arch_vma_name(struct vm_area_struct *vma)
  313. {
  314. return is_gate_vma(vma) ? "[vectors]" : NULL;
  315. }
  316. /* If possible, provide a placement hint at a random offset from the
  317. * stack for the sigpage and vdso pages.
  318. */
  319. static unsigned long sigpage_addr(const struct mm_struct *mm,
  320. unsigned int npages)
  321. {
  322. unsigned long offset;
  323. unsigned long first;
  324. unsigned long last;
  325. unsigned long addr;
  326. unsigned int slots;
  327. first = PAGE_ALIGN(mm->start_stack);
  328. last = TASK_SIZE - (npages << PAGE_SHIFT);
  329. /* No room after stack? */
  330. if (first > last)
  331. return 0;
  332. /* Just enough room? */
  333. if (first == last)
  334. return first;
  335. slots = ((last - first) >> PAGE_SHIFT) + 1;
  336. offset = get_random_int() % slots;
  337. addr = first + (offset << PAGE_SHIFT);
  338. return addr;
  339. }
  340. static struct page *signal_page;
  341. extern struct page *get_signal_page(void);
  342. static const struct vm_special_mapping sigpage_mapping = {
  343. .name = "[sigpage]",
  344. .pages = &signal_page,
  345. };
  346. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  347. {
  348. struct mm_struct *mm = current->mm;
  349. struct vm_area_struct *vma;
  350. unsigned long npages;
  351. unsigned long addr;
  352. unsigned long hint;
  353. int ret = 0;
  354. if (!signal_page)
  355. signal_page = get_signal_page();
  356. if (!signal_page)
  357. return -ENOMEM;
  358. npages = 1; /* for sigpage */
  359. npages += vdso_total_pages;
  360. if (down_write_killable(&mm->mmap_sem))
  361. return -EINTR;
  362. hint = sigpage_addr(mm, npages);
  363. addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
  364. if (IS_ERR_VALUE(addr)) {
  365. ret = addr;
  366. goto up_fail;
  367. }
  368. vma = _install_special_mapping(mm, addr, PAGE_SIZE,
  369. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  370. &sigpage_mapping);
  371. if (IS_ERR(vma)) {
  372. ret = PTR_ERR(vma);
  373. goto up_fail;
  374. }
  375. mm->context.sigpage = addr;
  376. /* Unlike the sigpage, failure to install the vdso is unlikely
  377. * to be fatal to the process, so no error check needed
  378. * here.
  379. */
  380. arm_install_vdso(mm, addr + PAGE_SIZE);
  381. up_fail:
  382. up_write(&mm->mmap_sem);
  383. return ret;
  384. }
  385. #endif