segment.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. clear_inode_flag(inode, FI_ATOMIC_FILE);
  209. stat_dec_atomic_write(inode);
  210. }
  211. void drop_inmem_page(struct inode *inode, struct page *page)
  212. {
  213. struct f2fs_inode_info *fi = F2FS_I(inode);
  214. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  215. struct list_head *head = &fi->inmem_pages;
  216. struct inmem_pages *cur = NULL;
  217. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  218. mutex_lock(&fi->inmem_lock);
  219. list_for_each_entry(cur, head, list) {
  220. if (cur->page == page)
  221. break;
  222. }
  223. f2fs_bug_on(sbi, !cur || cur->page != page);
  224. list_del(&cur->list);
  225. mutex_unlock(&fi->inmem_lock);
  226. dec_page_count(sbi, F2FS_INMEM_PAGES);
  227. kmem_cache_free(inmem_entry_slab, cur);
  228. ClearPageUptodate(page);
  229. set_page_private(page, 0);
  230. ClearPagePrivate(page);
  231. f2fs_put_page(page, 0);
  232. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  233. }
  234. static int __commit_inmem_pages(struct inode *inode,
  235. struct list_head *revoke_list)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct f2fs_inode_info *fi = F2FS_I(inode);
  239. struct inmem_pages *cur, *tmp;
  240. struct f2fs_io_info fio = {
  241. .sbi = sbi,
  242. .type = DATA,
  243. .op = REQ_OP_WRITE,
  244. .op_flags = REQ_SYNC | REQ_PRIO,
  245. };
  246. pgoff_t last_idx = ULONG_MAX;
  247. int err = 0;
  248. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  249. struct page *page = cur->page;
  250. lock_page(page);
  251. if (page->mapping == inode->i_mapping) {
  252. trace_f2fs_commit_inmem_page(page, INMEM);
  253. set_page_dirty(page);
  254. f2fs_wait_on_page_writeback(page, DATA, true);
  255. if (clear_page_dirty_for_io(page)) {
  256. inode_dec_dirty_pages(inode);
  257. remove_dirty_inode(inode);
  258. }
  259. fio.page = page;
  260. fio.old_blkaddr = NULL_ADDR;
  261. fio.encrypted_page = NULL;
  262. fio.need_lock = false,
  263. err = do_write_data_page(&fio);
  264. if (err) {
  265. unlock_page(page);
  266. break;
  267. }
  268. /* record old blkaddr for revoking */
  269. cur->old_addr = fio.old_blkaddr;
  270. last_idx = page->index;
  271. }
  272. unlock_page(page);
  273. list_move_tail(&cur->list, revoke_list);
  274. }
  275. if (last_idx != ULONG_MAX)
  276. f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
  277. DATA, WRITE);
  278. if (!err)
  279. __revoke_inmem_pages(inode, revoke_list, false, false);
  280. return err;
  281. }
  282. int commit_inmem_pages(struct inode *inode)
  283. {
  284. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  285. struct f2fs_inode_info *fi = F2FS_I(inode);
  286. struct list_head revoke_list;
  287. int err;
  288. INIT_LIST_HEAD(&revoke_list);
  289. f2fs_balance_fs(sbi, true);
  290. f2fs_lock_op(sbi);
  291. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  292. mutex_lock(&fi->inmem_lock);
  293. err = __commit_inmem_pages(inode, &revoke_list);
  294. if (err) {
  295. int ret;
  296. /*
  297. * try to revoke all committed pages, but still we could fail
  298. * due to no memory or other reason, if that happened, EAGAIN
  299. * will be returned, which means in such case, transaction is
  300. * already not integrity, caller should use journal to do the
  301. * recovery or rewrite & commit last transaction. For other
  302. * error number, revoking was done by filesystem itself.
  303. */
  304. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  305. if (ret)
  306. err = ret;
  307. /* drop all uncommitted pages */
  308. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  309. }
  310. mutex_unlock(&fi->inmem_lock);
  311. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  312. f2fs_unlock_op(sbi);
  313. return err;
  314. }
  315. /*
  316. * This function balances dirty node and dentry pages.
  317. * In addition, it controls garbage collection.
  318. */
  319. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  320. {
  321. #ifdef CONFIG_F2FS_FAULT_INJECTION
  322. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  323. f2fs_show_injection_info(FAULT_CHECKPOINT);
  324. f2fs_stop_checkpoint(sbi, false);
  325. }
  326. #endif
  327. /* balance_fs_bg is able to be pending */
  328. if (need && excess_cached_nats(sbi))
  329. f2fs_balance_fs_bg(sbi);
  330. /*
  331. * We should do GC or end up with checkpoint, if there are so many dirty
  332. * dir/node pages without enough free segments.
  333. */
  334. if (has_not_enough_free_secs(sbi, 0, 0)) {
  335. mutex_lock(&sbi->gc_mutex);
  336. f2fs_gc(sbi, false, false, NULL_SEGNO);
  337. }
  338. }
  339. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  340. {
  341. /* try to shrink extent cache when there is no enough memory */
  342. if (!available_free_memory(sbi, EXTENT_CACHE))
  343. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  344. /* check the # of cached NAT entries */
  345. if (!available_free_memory(sbi, NAT_ENTRIES))
  346. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  347. if (!available_free_memory(sbi, FREE_NIDS))
  348. try_to_free_nids(sbi, MAX_FREE_NIDS);
  349. else
  350. build_free_nids(sbi, false, false);
  351. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  352. return;
  353. /* checkpoint is the only way to shrink partial cached entries */
  354. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  355. !available_free_memory(sbi, INO_ENTRIES) ||
  356. excess_prefree_segs(sbi) ||
  357. excess_dirty_nats(sbi) ||
  358. f2fs_time_over(sbi, CP_TIME)) {
  359. if (test_opt(sbi, DATA_FLUSH)) {
  360. struct blk_plug plug;
  361. blk_start_plug(&plug);
  362. sync_dirty_inodes(sbi, FILE_INODE);
  363. blk_finish_plug(&plug);
  364. }
  365. f2fs_sync_fs(sbi->sb, true);
  366. stat_inc_bg_cp_count(sbi->stat_info);
  367. }
  368. }
  369. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  370. struct block_device *bdev)
  371. {
  372. struct bio *bio = f2fs_bio_alloc(0);
  373. int ret;
  374. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  375. bio->bi_bdev = bdev;
  376. ret = submit_bio_wait(bio);
  377. bio_put(bio);
  378. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  379. test_opt(sbi, FLUSH_MERGE), ret);
  380. return ret;
  381. }
  382. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  383. {
  384. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  385. int i;
  386. if (!sbi->s_ndevs || ret)
  387. return ret;
  388. for (i = 1; i < sbi->s_ndevs; i++) {
  389. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  390. if (ret)
  391. break;
  392. }
  393. return ret;
  394. }
  395. static int issue_flush_thread(void *data)
  396. {
  397. struct f2fs_sb_info *sbi = data;
  398. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  399. wait_queue_head_t *q = &fcc->flush_wait_queue;
  400. repeat:
  401. if (kthread_should_stop())
  402. return 0;
  403. if (!llist_empty(&fcc->issue_list)) {
  404. struct flush_cmd *cmd, *next;
  405. int ret;
  406. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  407. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  408. ret = submit_flush_wait(sbi);
  409. atomic_inc(&fcc->issued_flush);
  410. llist_for_each_entry_safe(cmd, next,
  411. fcc->dispatch_list, llnode) {
  412. cmd->ret = ret;
  413. complete(&cmd->wait);
  414. }
  415. fcc->dispatch_list = NULL;
  416. }
  417. wait_event_interruptible(*q,
  418. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  419. goto repeat;
  420. }
  421. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  422. {
  423. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  424. struct flush_cmd cmd;
  425. int ret;
  426. if (test_opt(sbi, NOBARRIER))
  427. return 0;
  428. if (!test_opt(sbi, FLUSH_MERGE)) {
  429. ret = submit_flush_wait(sbi);
  430. atomic_inc(&fcc->issued_flush);
  431. return ret;
  432. }
  433. if (!atomic_read(&fcc->issing_flush)) {
  434. atomic_inc(&fcc->issing_flush);
  435. ret = submit_flush_wait(sbi);
  436. atomic_dec(&fcc->issing_flush);
  437. atomic_inc(&fcc->issued_flush);
  438. return ret;
  439. }
  440. init_completion(&cmd.wait);
  441. atomic_inc(&fcc->issing_flush);
  442. llist_add(&cmd.llnode, &fcc->issue_list);
  443. if (!fcc->dispatch_list)
  444. wake_up(&fcc->flush_wait_queue);
  445. if (fcc->f2fs_issue_flush) {
  446. wait_for_completion(&cmd.wait);
  447. atomic_dec(&fcc->issing_flush);
  448. } else {
  449. llist_del_all(&fcc->issue_list);
  450. atomic_set(&fcc->issing_flush, 0);
  451. }
  452. return cmd.ret;
  453. }
  454. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  455. {
  456. dev_t dev = sbi->sb->s_bdev->bd_dev;
  457. struct flush_cmd_control *fcc;
  458. int err = 0;
  459. if (SM_I(sbi)->fcc_info) {
  460. fcc = SM_I(sbi)->fcc_info;
  461. goto init_thread;
  462. }
  463. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  464. if (!fcc)
  465. return -ENOMEM;
  466. atomic_set(&fcc->issued_flush, 0);
  467. atomic_set(&fcc->issing_flush, 0);
  468. init_waitqueue_head(&fcc->flush_wait_queue);
  469. init_llist_head(&fcc->issue_list);
  470. SM_I(sbi)->fcc_info = fcc;
  471. init_thread:
  472. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  473. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  474. if (IS_ERR(fcc->f2fs_issue_flush)) {
  475. err = PTR_ERR(fcc->f2fs_issue_flush);
  476. kfree(fcc);
  477. SM_I(sbi)->fcc_info = NULL;
  478. return err;
  479. }
  480. return err;
  481. }
  482. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  483. {
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. if (fcc && fcc->f2fs_issue_flush) {
  486. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  487. fcc->f2fs_issue_flush = NULL;
  488. kthread_stop(flush_thread);
  489. }
  490. if (free) {
  491. kfree(fcc);
  492. SM_I(sbi)->fcc_info = NULL;
  493. }
  494. }
  495. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  496. enum dirty_type dirty_type)
  497. {
  498. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  499. /* need not be added */
  500. if (IS_CURSEG(sbi, segno))
  501. return;
  502. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  503. dirty_i->nr_dirty[dirty_type]++;
  504. if (dirty_type == DIRTY) {
  505. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  506. enum dirty_type t = sentry->type;
  507. if (unlikely(t >= DIRTY)) {
  508. f2fs_bug_on(sbi, 1);
  509. return;
  510. }
  511. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  512. dirty_i->nr_dirty[t]++;
  513. }
  514. }
  515. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  516. enum dirty_type dirty_type)
  517. {
  518. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  519. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  520. dirty_i->nr_dirty[dirty_type]--;
  521. if (dirty_type == DIRTY) {
  522. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  523. enum dirty_type t = sentry->type;
  524. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  525. dirty_i->nr_dirty[t]--;
  526. if (get_valid_blocks(sbi, segno, true) == 0)
  527. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  528. dirty_i->victim_secmap);
  529. }
  530. }
  531. /*
  532. * Should not occur error such as -ENOMEM.
  533. * Adding dirty entry into seglist is not critical operation.
  534. * If a given segment is one of current working segments, it won't be added.
  535. */
  536. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  537. {
  538. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  539. unsigned short valid_blocks;
  540. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  541. return;
  542. mutex_lock(&dirty_i->seglist_lock);
  543. valid_blocks = get_valid_blocks(sbi, segno, false);
  544. if (valid_blocks == 0) {
  545. __locate_dirty_segment(sbi, segno, PRE);
  546. __remove_dirty_segment(sbi, segno, DIRTY);
  547. } else if (valid_blocks < sbi->blocks_per_seg) {
  548. __locate_dirty_segment(sbi, segno, DIRTY);
  549. } else {
  550. /* Recovery routine with SSR needs this */
  551. __remove_dirty_segment(sbi, segno, DIRTY);
  552. }
  553. mutex_unlock(&dirty_i->seglist_lock);
  554. }
  555. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  556. struct block_device *bdev, block_t lstart,
  557. block_t start, block_t len)
  558. {
  559. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  560. struct list_head *pend_list;
  561. struct discard_cmd *dc;
  562. f2fs_bug_on(sbi, !len);
  563. pend_list = &dcc->pend_list[plist_idx(len)];
  564. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  565. INIT_LIST_HEAD(&dc->list);
  566. dc->bdev = bdev;
  567. dc->lstart = lstart;
  568. dc->start = start;
  569. dc->len = len;
  570. dc->ref = 0;
  571. dc->state = D_PREP;
  572. dc->error = 0;
  573. init_completion(&dc->wait);
  574. list_add_tail(&dc->list, pend_list);
  575. atomic_inc(&dcc->discard_cmd_cnt);
  576. dcc->undiscard_blks += len;
  577. return dc;
  578. }
  579. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  580. struct block_device *bdev, block_t lstart,
  581. block_t start, block_t len,
  582. struct rb_node *parent, struct rb_node **p)
  583. {
  584. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  585. struct discard_cmd *dc;
  586. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  587. rb_link_node(&dc->rb_node, parent, p);
  588. rb_insert_color(&dc->rb_node, &dcc->root);
  589. return dc;
  590. }
  591. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  592. struct discard_cmd *dc)
  593. {
  594. if (dc->state == D_DONE)
  595. atomic_dec(&dcc->issing_discard);
  596. list_del(&dc->list);
  597. rb_erase(&dc->rb_node, &dcc->root);
  598. dcc->undiscard_blks -= dc->len;
  599. kmem_cache_free(discard_cmd_slab, dc);
  600. atomic_dec(&dcc->discard_cmd_cnt);
  601. }
  602. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  603. struct discard_cmd *dc)
  604. {
  605. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  606. if (dc->error == -EOPNOTSUPP)
  607. dc->error = 0;
  608. if (dc->error)
  609. f2fs_msg(sbi->sb, KERN_INFO,
  610. "Issue discard failed, ret: %d", dc->error);
  611. __detach_discard_cmd(dcc, dc);
  612. }
  613. static void f2fs_submit_discard_endio(struct bio *bio)
  614. {
  615. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  616. dc->error = blk_status_to_errno(bio->bi_status);
  617. dc->state = D_DONE;
  618. complete(&dc->wait);
  619. bio_put(bio);
  620. }
  621. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  622. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  623. struct discard_cmd *dc)
  624. {
  625. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  626. struct bio *bio = NULL;
  627. if (dc->state != D_PREP)
  628. return;
  629. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  630. dc->error = __blkdev_issue_discard(dc->bdev,
  631. SECTOR_FROM_BLOCK(dc->start),
  632. SECTOR_FROM_BLOCK(dc->len),
  633. GFP_NOFS, 0, &bio);
  634. if (!dc->error) {
  635. /* should keep before submission to avoid D_DONE right away */
  636. dc->state = D_SUBMIT;
  637. atomic_inc(&dcc->issued_discard);
  638. atomic_inc(&dcc->issing_discard);
  639. if (bio) {
  640. bio->bi_private = dc;
  641. bio->bi_end_io = f2fs_submit_discard_endio;
  642. bio->bi_opf |= REQ_SYNC;
  643. submit_bio(bio);
  644. list_move_tail(&dc->list, &dcc->wait_list);
  645. }
  646. } else {
  647. __remove_discard_cmd(sbi, dc);
  648. }
  649. }
  650. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  651. struct block_device *bdev, block_t lstart,
  652. block_t start, block_t len,
  653. struct rb_node **insert_p,
  654. struct rb_node *insert_parent)
  655. {
  656. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  657. struct rb_node **p = &dcc->root.rb_node;
  658. struct rb_node *parent = NULL;
  659. struct discard_cmd *dc = NULL;
  660. if (insert_p && insert_parent) {
  661. parent = insert_parent;
  662. p = insert_p;
  663. goto do_insert;
  664. }
  665. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  666. do_insert:
  667. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  668. if (!dc)
  669. return NULL;
  670. return dc;
  671. }
  672. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  673. struct discard_cmd *dc)
  674. {
  675. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  676. }
  677. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  678. struct discard_cmd *dc, block_t blkaddr)
  679. {
  680. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  681. struct discard_info di = dc->di;
  682. bool modified = false;
  683. if (dc->state == D_DONE || dc->len == 1) {
  684. __remove_discard_cmd(sbi, dc);
  685. return;
  686. }
  687. dcc->undiscard_blks -= di.len;
  688. if (blkaddr > di.lstart) {
  689. dc->len = blkaddr - dc->lstart;
  690. dcc->undiscard_blks += dc->len;
  691. __relocate_discard_cmd(dcc, dc);
  692. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  693. modified = true;
  694. }
  695. if (blkaddr < di.lstart + di.len - 1) {
  696. if (modified) {
  697. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  698. di.start + blkaddr + 1 - di.lstart,
  699. di.lstart + di.len - 1 - blkaddr,
  700. NULL, NULL);
  701. f2fs_bug_on(sbi,
  702. !__check_rb_tree_consistence(sbi, &dcc->root));
  703. } else {
  704. dc->lstart++;
  705. dc->len--;
  706. dc->start++;
  707. dcc->undiscard_blks += dc->len;
  708. __relocate_discard_cmd(dcc, dc);
  709. f2fs_bug_on(sbi,
  710. !__check_rb_tree_consistence(sbi, &dcc->root));
  711. }
  712. }
  713. }
  714. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  715. struct block_device *bdev, block_t lstart,
  716. block_t start, block_t len)
  717. {
  718. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  719. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  720. struct discard_cmd *dc;
  721. struct discard_info di = {0};
  722. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  723. block_t end = lstart + len;
  724. mutex_lock(&dcc->cmd_lock);
  725. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  726. NULL, lstart,
  727. (struct rb_entry **)&prev_dc,
  728. (struct rb_entry **)&next_dc,
  729. &insert_p, &insert_parent, true);
  730. if (dc)
  731. prev_dc = dc;
  732. if (!prev_dc) {
  733. di.lstart = lstart;
  734. di.len = next_dc ? next_dc->lstart - lstart : len;
  735. di.len = min(di.len, len);
  736. di.start = start;
  737. }
  738. while (1) {
  739. struct rb_node *node;
  740. bool merged = false;
  741. struct discard_cmd *tdc = NULL;
  742. if (prev_dc) {
  743. di.lstart = prev_dc->lstart + prev_dc->len;
  744. if (di.lstart < lstart)
  745. di.lstart = lstart;
  746. if (di.lstart >= end)
  747. break;
  748. if (!next_dc || next_dc->lstart > end)
  749. di.len = end - di.lstart;
  750. else
  751. di.len = next_dc->lstart - di.lstart;
  752. di.start = start + di.lstart - lstart;
  753. }
  754. if (!di.len)
  755. goto next;
  756. if (prev_dc && prev_dc->state == D_PREP &&
  757. prev_dc->bdev == bdev &&
  758. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  759. prev_dc->di.len += di.len;
  760. dcc->undiscard_blks += di.len;
  761. __relocate_discard_cmd(dcc, prev_dc);
  762. f2fs_bug_on(sbi,
  763. !__check_rb_tree_consistence(sbi, &dcc->root));
  764. di = prev_dc->di;
  765. tdc = prev_dc;
  766. merged = true;
  767. }
  768. if (next_dc && next_dc->state == D_PREP &&
  769. next_dc->bdev == bdev &&
  770. __is_discard_front_mergeable(&di, &next_dc->di)) {
  771. next_dc->di.lstart = di.lstart;
  772. next_dc->di.len += di.len;
  773. next_dc->di.start = di.start;
  774. dcc->undiscard_blks += di.len;
  775. __relocate_discard_cmd(dcc, next_dc);
  776. if (tdc)
  777. __remove_discard_cmd(sbi, tdc);
  778. f2fs_bug_on(sbi,
  779. !__check_rb_tree_consistence(sbi, &dcc->root));
  780. merged = true;
  781. }
  782. if (!merged) {
  783. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  784. di.len, NULL, NULL);
  785. f2fs_bug_on(sbi,
  786. !__check_rb_tree_consistence(sbi, &dcc->root));
  787. }
  788. next:
  789. prev_dc = next_dc;
  790. if (!prev_dc)
  791. break;
  792. node = rb_next(&prev_dc->rb_node);
  793. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  794. }
  795. mutex_unlock(&dcc->cmd_lock);
  796. }
  797. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  798. struct block_device *bdev, block_t blkstart, block_t blklen)
  799. {
  800. block_t lblkstart = blkstart;
  801. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  802. if (sbi->s_ndevs) {
  803. int devi = f2fs_target_device_index(sbi, blkstart);
  804. blkstart -= FDEV(devi).start_blk;
  805. }
  806. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  807. return 0;
  808. }
  809. static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
  810. {
  811. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  812. struct list_head *pend_list;
  813. struct discard_cmd *dc, *tmp;
  814. struct blk_plug plug;
  815. int i, iter = 0;
  816. mutex_lock(&dcc->cmd_lock);
  817. blk_start_plug(&plug);
  818. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  819. pend_list = &dcc->pend_list[i];
  820. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  821. f2fs_bug_on(sbi, dc->state != D_PREP);
  822. if (!issue_cond || is_idle(sbi))
  823. __submit_discard_cmd(sbi, dc);
  824. if (issue_cond && iter++ > DISCARD_ISSUE_RATE)
  825. goto out;
  826. }
  827. }
  828. out:
  829. blk_finish_plug(&plug);
  830. mutex_unlock(&dcc->cmd_lock);
  831. }
  832. static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
  833. {
  834. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  835. struct list_head *wait_list = &(dcc->wait_list);
  836. struct discard_cmd *dc, *tmp;
  837. mutex_lock(&dcc->cmd_lock);
  838. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  839. if (!wait_cond || dc->state == D_DONE) {
  840. if (dc->ref)
  841. continue;
  842. wait_for_completion_io(&dc->wait);
  843. __remove_discard_cmd(sbi, dc);
  844. }
  845. }
  846. mutex_unlock(&dcc->cmd_lock);
  847. }
  848. /* This should be covered by global mutex, &sit_i->sentry_lock */
  849. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  850. {
  851. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  852. struct discard_cmd *dc;
  853. bool need_wait = false;
  854. mutex_lock(&dcc->cmd_lock);
  855. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  856. if (dc) {
  857. if (dc->state == D_PREP) {
  858. __punch_discard_cmd(sbi, dc, blkaddr);
  859. } else {
  860. dc->ref++;
  861. need_wait = true;
  862. }
  863. }
  864. mutex_unlock(&dcc->cmd_lock);
  865. if (need_wait) {
  866. wait_for_completion_io(&dc->wait);
  867. mutex_lock(&dcc->cmd_lock);
  868. f2fs_bug_on(sbi, dc->state != D_DONE);
  869. dc->ref--;
  870. if (!dc->ref)
  871. __remove_discard_cmd(sbi, dc);
  872. mutex_unlock(&dcc->cmd_lock);
  873. }
  874. }
  875. /* This comes from f2fs_put_super */
  876. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  877. {
  878. __issue_discard_cmd(sbi, false);
  879. __wait_discard_cmd(sbi, false);
  880. }
  881. static int issue_discard_thread(void *data)
  882. {
  883. struct f2fs_sb_info *sbi = data;
  884. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  885. wait_queue_head_t *q = &dcc->discard_wait_queue;
  886. repeat:
  887. if (kthread_should_stop())
  888. return 0;
  889. __issue_discard_cmd(sbi, true);
  890. __wait_discard_cmd(sbi, true);
  891. congestion_wait(BLK_RW_SYNC, HZ/50);
  892. wait_event_interruptible(*q, kthread_should_stop() ||
  893. atomic_read(&dcc->discard_cmd_cnt));
  894. goto repeat;
  895. }
  896. #ifdef CONFIG_BLK_DEV_ZONED
  897. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  898. struct block_device *bdev, block_t blkstart, block_t blklen)
  899. {
  900. sector_t sector, nr_sects;
  901. block_t lblkstart = blkstart;
  902. int devi = 0;
  903. if (sbi->s_ndevs) {
  904. devi = f2fs_target_device_index(sbi, blkstart);
  905. blkstart -= FDEV(devi).start_blk;
  906. }
  907. /*
  908. * We need to know the type of the zone: for conventional zones,
  909. * use regular discard if the drive supports it. For sequential
  910. * zones, reset the zone write pointer.
  911. */
  912. switch (get_blkz_type(sbi, bdev, blkstart)) {
  913. case BLK_ZONE_TYPE_CONVENTIONAL:
  914. if (!blk_queue_discard(bdev_get_queue(bdev)))
  915. return 0;
  916. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  917. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  918. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  919. sector = SECTOR_FROM_BLOCK(blkstart);
  920. nr_sects = SECTOR_FROM_BLOCK(blklen);
  921. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  922. nr_sects != bdev_zone_sectors(bdev)) {
  923. f2fs_msg(sbi->sb, KERN_INFO,
  924. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  925. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  926. blkstart, blklen);
  927. return -EIO;
  928. }
  929. trace_f2fs_issue_reset_zone(bdev, blkstart);
  930. return blkdev_reset_zones(bdev, sector,
  931. nr_sects, GFP_NOFS);
  932. default:
  933. /* Unknown zone type: broken device ? */
  934. return -EIO;
  935. }
  936. }
  937. #endif
  938. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  939. struct block_device *bdev, block_t blkstart, block_t blklen)
  940. {
  941. #ifdef CONFIG_BLK_DEV_ZONED
  942. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  943. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  944. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  945. #endif
  946. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  947. }
  948. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  949. block_t blkstart, block_t blklen)
  950. {
  951. sector_t start = blkstart, len = 0;
  952. struct block_device *bdev;
  953. struct seg_entry *se;
  954. unsigned int offset;
  955. block_t i;
  956. int err = 0;
  957. bdev = f2fs_target_device(sbi, blkstart, NULL);
  958. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  959. if (i != start) {
  960. struct block_device *bdev2 =
  961. f2fs_target_device(sbi, i, NULL);
  962. if (bdev2 != bdev) {
  963. err = __issue_discard_async(sbi, bdev,
  964. start, len);
  965. if (err)
  966. return err;
  967. bdev = bdev2;
  968. start = i;
  969. len = 0;
  970. }
  971. }
  972. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  973. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  974. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  975. sbi->discard_blks--;
  976. }
  977. if (len)
  978. err = __issue_discard_async(sbi, bdev, start, len);
  979. return err;
  980. }
  981. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  982. bool check_only)
  983. {
  984. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  985. int max_blocks = sbi->blocks_per_seg;
  986. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  987. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  988. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  989. unsigned long *discard_map = (unsigned long *)se->discard_map;
  990. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  991. unsigned int start = 0, end = -1;
  992. bool force = (cpc->reason & CP_DISCARD);
  993. struct discard_entry *de = NULL;
  994. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  995. int i;
  996. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  997. return false;
  998. if (!force) {
  999. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1000. SM_I(sbi)->dcc_info->nr_discards >=
  1001. SM_I(sbi)->dcc_info->max_discards)
  1002. return false;
  1003. }
  1004. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1005. for (i = 0; i < entries; i++)
  1006. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1007. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1008. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1009. SM_I(sbi)->dcc_info->max_discards) {
  1010. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1011. if (start >= max_blocks)
  1012. break;
  1013. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1014. if (force && start && end != max_blocks
  1015. && (end - start) < cpc->trim_minlen)
  1016. continue;
  1017. if (check_only)
  1018. return true;
  1019. if (!de) {
  1020. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1021. GFP_F2FS_ZERO);
  1022. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1023. list_add_tail(&de->list, head);
  1024. }
  1025. for (i = start; i < end; i++)
  1026. __set_bit_le(i, (void *)de->discard_map);
  1027. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1028. }
  1029. return false;
  1030. }
  1031. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1032. {
  1033. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1034. struct discard_entry *entry, *this;
  1035. /* drop caches */
  1036. list_for_each_entry_safe(entry, this, head, list) {
  1037. list_del(&entry->list);
  1038. kmem_cache_free(discard_entry_slab, entry);
  1039. }
  1040. }
  1041. /*
  1042. * Should call clear_prefree_segments after checkpoint is done.
  1043. */
  1044. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1045. {
  1046. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1047. unsigned int segno;
  1048. mutex_lock(&dirty_i->seglist_lock);
  1049. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1050. __set_test_and_free(sbi, segno);
  1051. mutex_unlock(&dirty_i->seglist_lock);
  1052. }
  1053. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1054. {
  1055. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1056. struct discard_entry *entry, *this;
  1057. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1058. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1059. unsigned int start = 0, end = -1;
  1060. unsigned int secno, start_segno;
  1061. bool force = (cpc->reason & CP_DISCARD);
  1062. mutex_lock(&dirty_i->seglist_lock);
  1063. while (1) {
  1064. int i;
  1065. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1066. if (start >= MAIN_SEGS(sbi))
  1067. break;
  1068. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1069. start + 1);
  1070. for (i = start; i < end; i++)
  1071. clear_bit(i, prefree_map);
  1072. dirty_i->nr_dirty[PRE] -= end - start;
  1073. if (!test_opt(sbi, DISCARD))
  1074. continue;
  1075. if (force && start >= cpc->trim_start &&
  1076. (end - 1) <= cpc->trim_end)
  1077. continue;
  1078. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1079. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1080. (end - start) << sbi->log_blocks_per_seg);
  1081. continue;
  1082. }
  1083. next:
  1084. secno = GET_SEC_FROM_SEG(sbi, start);
  1085. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1086. if (!IS_CURSEC(sbi, secno) &&
  1087. !get_valid_blocks(sbi, start, true))
  1088. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1089. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1090. start = start_segno + sbi->segs_per_sec;
  1091. if (start < end)
  1092. goto next;
  1093. else
  1094. end = start - 1;
  1095. }
  1096. mutex_unlock(&dirty_i->seglist_lock);
  1097. /* send small discards */
  1098. list_for_each_entry_safe(entry, this, head, list) {
  1099. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1100. bool is_valid = test_bit_le(0, entry->discard_map);
  1101. find_next:
  1102. if (is_valid) {
  1103. next_pos = find_next_zero_bit_le(entry->discard_map,
  1104. sbi->blocks_per_seg, cur_pos);
  1105. len = next_pos - cur_pos;
  1106. if (force && len < cpc->trim_minlen)
  1107. goto skip;
  1108. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1109. len);
  1110. cpc->trimmed += len;
  1111. total_len += len;
  1112. } else {
  1113. next_pos = find_next_bit_le(entry->discard_map,
  1114. sbi->blocks_per_seg, cur_pos);
  1115. }
  1116. skip:
  1117. cur_pos = next_pos;
  1118. is_valid = !is_valid;
  1119. if (cur_pos < sbi->blocks_per_seg)
  1120. goto find_next;
  1121. list_del(&entry->list);
  1122. SM_I(sbi)->dcc_info->nr_discards -= total_len;
  1123. kmem_cache_free(discard_entry_slab, entry);
  1124. }
  1125. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  1126. }
  1127. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1128. {
  1129. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1130. struct discard_cmd_control *dcc;
  1131. int err = 0, i;
  1132. if (SM_I(sbi)->dcc_info) {
  1133. dcc = SM_I(sbi)->dcc_info;
  1134. goto init_thread;
  1135. }
  1136. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1137. if (!dcc)
  1138. return -ENOMEM;
  1139. INIT_LIST_HEAD(&dcc->entry_list);
  1140. for (i = 0; i < MAX_PLIST_NUM; i++)
  1141. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1142. INIT_LIST_HEAD(&dcc->wait_list);
  1143. mutex_init(&dcc->cmd_lock);
  1144. atomic_set(&dcc->issued_discard, 0);
  1145. atomic_set(&dcc->issing_discard, 0);
  1146. atomic_set(&dcc->discard_cmd_cnt, 0);
  1147. dcc->nr_discards = 0;
  1148. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1149. dcc->undiscard_blks = 0;
  1150. dcc->root = RB_ROOT;
  1151. init_waitqueue_head(&dcc->discard_wait_queue);
  1152. SM_I(sbi)->dcc_info = dcc;
  1153. init_thread:
  1154. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1155. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1156. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1157. err = PTR_ERR(dcc->f2fs_issue_discard);
  1158. kfree(dcc);
  1159. SM_I(sbi)->dcc_info = NULL;
  1160. return err;
  1161. }
  1162. return err;
  1163. }
  1164. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1165. {
  1166. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1167. if (!dcc)
  1168. return;
  1169. if (dcc->f2fs_issue_discard) {
  1170. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1171. dcc->f2fs_issue_discard = NULL;
  1172. kthread_stop(discard_thread);
  1173. }
  1174. kfree(dcc);
  1175. SM_I(sbi)->dcc_info = NULL;
  1176. }
  1177. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1178. {
  1179. struct sit_info *sit_i = SIT_I(sbi);
  1180. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1181. sit_i->dirty_sentries++;
  1182. return false;
  1183. }
  1184. return true;
  1185. }
  1186. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1187. unsigned int segno, int modified)
  1188. {
  1189. struct seg_entry *se = get_seg_entry(sbi, segno);
  1190. se->type = type;
  1191. if (modified)
  1192. __mark_sit_entry_dirty(sbi, segno);
  1193. }
  1194. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1195. {
  1196. struct seg_entry *se;
  1197. unsigned int segno, offset;
  1198. long int new_vblocks;
  1199. segno = GET_SEGNO(sbi, blkaddr);
  1200. se = get_seg_entry(sbi, segno);
  1201. new_vblocks = se->valid_blocks + del;
  1202. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1203. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1204. (new_vblocks > sbi->blocks_per_seg)));
  1205. se->valid_blocks = new_vblocks;
  1206. se->mtime = get_mtime(sbi);
  1207. SIT_I(sbi)->max_mtime = se->mtime;
  1208. /* Update valid block bitmap */
  1209. if (del > 0) {
  1210. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  1211. #ifdef CONFIG_F2FS_CHECK_FS
  1212. if (f2fs_test_and_set_bit(offset,
  1213. se->cur_valid_map_mir))
  1214. f2fs_bug_on(sbi, 1);
  1215. else
  1216. WARN_ON(1);
  1217. #else
  1218. f2fs_bug_on(sbi, 1);
  1219. #endif
  1220. }
  1221. if (f2fs_discard_en(sbi) &&
  1222. !f2fs_test_and_set_bit(offset, se->discard_map))
  1223. sbi->discard_blks--;
  1224. /* don't overwrite by SSR to keep node chain */
  1225. if (se->type == CURSEG_WARM_NODE) {
  1226. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1227. se->ckpt_valid_blocks++;
  1228. }
  1229. } else {
  1230. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  1231. #ifdef CONFIG_F2FS_CHECK_FS
  1232. if (!f2fs_test_and_clear_bit(offset,
  1233. se->cur_valid_map_mir))
  1234. f2fs_bug_on(sbi, 1);
  1235. else
  1236. WARN_ON(1);
  1237. #else
  1238. f2fs_bug_on(sbi, 1);
  1239. #endif
  1240. }
  1241. if (f2fs_discard_en(sbi) &&
  1242. f2fs_test_and_clear_bit(offset, se->discard_map))
  1243. sbi->discard_blks++;
  1244. }
  1245. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1246. se->ckpt_valid_blocks += del;
  1247. __mark_sit_entry_dirty(sbi, segno);
  1248. /* update total number of valid blocks to be written in ckpt area */
  1249. SIT_I(sbi)->written_valid_blocks += del;
  1250. if (sbi->segs_per_sec > 1)
  1251. get_sec_entry(sbi, segno)->valid_blocks += del;
  1252. }
  1253. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1254. {
  1255. update_sit_entry(sbi, new, 1);
  1256. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1257. update_sit_entry(sbi, old, -1);
  1258. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1259. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1260. }
  1261. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1262. {
  1263. unsigned int segno = GET_SEGNO(sbi, addr);
  1264. struct sit_info *sit_i = SIT_I(sbi);
  1265. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1266. if (addr == NEW_ADDR)
  1267. return;
  1268. /* add it into sit main buffer */
  1269. mutex_lock(&sit_i->sentry_lock);
  1270. update_sit_entry(sbi, addr, -1);
  1271. /* add it into dirty seglist */
  1272. locate_dirty_segment(sbi, segno);
  1273. mutex_unlock(&sit_i->sentry_lock);
  1274. }
  1275. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1276. {
  1277. struct sit_info *sit_i = SIT_I(sbi);
  1278. unsigned int segno, offset;
  1279. struct seg_entry *se;
  1280. bool is_cp = false;
  1281. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1282. return true;
  1283. mutex_lock(&sit_i->sentry_lock);
  1284. segno = GET_SEGNO(sbi, blkaddr);
  1285. se = get_seg_entry(sbi, segno);
  1286. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1287. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1288. is_cp = true;
  1289. mutex_unlock(&sit_i->sentry_lock);
  1290. return is_cp;
  1291. }
  1292. /*
  1293. * This function should be resided under the curseg_mutex lock
  1294. */
  1295. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1296. struct f2fs_summary *sum)
  1297. {
  1298. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1299. void *addr = curseg->sum_blk;
  1300. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1301. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1302. }
  1303. /*
  1304. * Calculate the number of current summary pages for writing
  1305. */
  1306. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1307. {
  1308. int valid_sum_count = 0;
  1309. int i, sum_in_page;
  1310. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1311. if (sbi->ckpt->alloc_type[i] == SSR)
  1312. valid_sum_count += sbi->blocks_per_seg;
  1313. else {
  1314. if (for_ra)
  1315. valid_sum_count += le16_to_cpu(
  1316. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1317. else
  1318. valid_sum_count += curseg_blkoff(sbi, i);
  1319. }
  1320. }
  1321. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1322. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1323. if (valid_sum_count <= sum_in_page)
  1324. return 1;
  1325. else if ((valid_sum_count - sum_in_page) <=
  1326. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1327. return 2;
  1328. return 3;
  1329. }
  1330. /*
  1331. * Caller should put this summary page
  1332. */
  1333. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1334. {
  1335. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1336. }
  1337. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1338. {
  1339. struct page *page = grab_meta_page(sbi, blk_addr);
  1340. void *dst = page_address(page);
  1341. if (src)
  1342. memcpy(dst, src, PAGE_SIZE);
  1343. else
  1344. memset(dst, 0, PAGE_SIZE);
  1345. set_page_dirty(page);
  1346. f2fs_put_page(page, 1);
  1347. }
  1348. static void write_sum_page(struct f2fs_sb_info *sbi,
  1349. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1350. {
  1351. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1352. }
  1353. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1354. int type, block_t blk_addr)
  1355. {
  1356. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1357. struct page *page = grab_meta_page(sbi, blk_addr);
  1358. struct f2fs_summary_block *src = curseg->sum_blk;
  1359. struct f2fs_summary_block *dst;
  1360. dst = (struct f2fs_summary_block *)page_address(page);
  1361. mutex_lock(&curseg->curseg_mutex);
  1362. down_read(&curseg->journal_rwsem);
  1363. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1364. up_read(&curseg->journal_rwsem);
  1365. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1366. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1367. mutex_unlock(&curseg->curseg_mutex);
  1368. set_page_dirty(page);
  1369. f2fs_put_page(page, 1);
  1370. }
  1371. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1372. {
  1373. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1374. unsigned int segno = curseg->segno + 1;
  1375. struct free_segmap_info *free_i = FREE_I(sbi);
  1376. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1377. return !test_bit(segno, free_i->free_segmap);
  1378. return 0;
  1379. }
  1380. /*
  1381. * Find a new segment from the free segments bitmap to right order
  1382. * This function should be returned with success, otherwise BUG
  1383. */
  1384. static void get_new_segment(struct f2fs_sb_info *sbi,
  1385. unsigned int *newseg, bool new_sec, int dir)
  1386. {
  1387. struct free_segmap_info *free_i = FREE_I(sbi);
  1388. unsigned int segno, secno, zoneno;
  1389. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1390. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1391. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1392. unsigned int left_start = hint;
  1393. bool init = true;
  1394. int go_left = 0;
  1395. int i;
  1396. spin_lock(&free_i->segmap_lock);
  1397. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1398. segno = find_next_zero_bit(free_i->free_segmap,
  1399. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1400. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1401. goto got_it;
  1402. }
  1403. find_other_zone:
  1404. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1405. if (secno >= MAIN_SECS(sbi)) {
  1406. if (dir == ALLOC_RIGHT) {
  1407. secno = find_next_zero_bit(free_i->free_secmap,
  1408. MAIN_SECS(sbi), 0);
  1409. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1410. } else {
  1411. go_left = 1;
  1412. left_start = hint - 1;
  1413. }
  1414. }
  1415. if (go_left == 0)
  1416. goto skip_left;
  1417. while (test_bit(left_start, free_i->free_secmap)) {
  1418. if (left_start > 0) {
  1419. left_start--;
  1420. continue;
  1421. }
  1422. left_start = find_next_zero_bit(free_i->free_secmap,
  1423. MAIN_SECS(sbi), 0);
  1424. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1425. break;
  1426. }
  1427. secno = left_start;
  1428. skip_left:
  1429. hint = secno;
  1430. segno = GET_SEG_FROM_SEC(sbi, secno);
  1431. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1432. /* give up on finding another zone */
  1433. if (!init)
  1434. goto got_it;
  1435. if (sbi->secs_per_zone == 1)
  1436. goto got_it;
  1437. if (zoneno == old_zoneno)
  1438. goto got_it;
  1439. if (dir == ALLOC_LEFT) {
  1440. if (!go_left && zoneno + 1 >= total_zones)
  1441. goto got_it;
  1442. if (go_left && zoneno == 0)
  1443. goto got_it;
  1444. }
  1445. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1446. if (CURSEG_I(sbi, i)->zone == zoneno)
  1447. break;
  1448. if (i < NR_CURSEG_TYPE) {
  1449. /* zone is in user, try another */
  1450. if (go_left)
  1451. hint = zoneno * sbi->secs_per_zone - 1;
  1452. else if (zoneno + 1 >= total_zones)
  1453. hint = 0;
  1454. else
  1455. hint = (zoneno + 1) * sbi->secs_per_zone;
  1456. init = false;
  1457. goto find_other_zone;
  1458. }
  1459. got_it:
  1460. /* set it as dirty segment in free segmap */
  1461. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1462. __set_inuse(sbi, segno);
  1463. *newseg = segno;
  1464. spin_unlock(&free_i->segmap_lock);
  1465. }
  1466. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1467. {
  1468. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1469. struct summary_footer *sum_footer;
  1470. curseg->segno = curseg->next_segno;
  1471. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1472. curseg->next_blkoff = 0;
  1473. curseg->next_segno = NULL_SEGNO;
  1474. sum_footer = &(curseg->sum_blk->footer);
  1475. memset(sum_footer, 0, sizeof(struct summary_footer));
  1476. if (IS_DATASEG(type))
  1477. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1478. if (IS_NODESEG(type))
  1479. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1480. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1481. }
  1482. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1483. {
  1484. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1485. if (sbi->segs_per_sec != 1)
  1486. return CURSEG_I(sbi, type)->segno;
  1487. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1488. return 0;
  1489. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1490. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1491. return CURSEG_I(sbi, type)->segno;
  1492. }
  1493. /*
  1494. * Allocate a current working segment.
  1495. * This function always allocates a free segment in LFS manner.
  1496. */
  1497. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1498. {
  1499. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1500. unsigned int segno = curseg->segno;
  1501. int dir = ALLOC_LEFT;
  1502. write_sum_page(sbi, curseg->sum_blk,
  1503. GET_SUM_BLOCK(sbi, segno));
  1504. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1505. dir = ALLOC_RIGHT;
  1506. if (test_opt(sbi, NOHEAP))
  1507. dir = ALLOC_RIGHT;
  1508. segno = __get_next_segno(sbi, type);
  1509. get_new_segment(sbi, &segno, new_sec, dir);
  1510. curseg->next_segno = segno;
  1511. reset_curseg(sbi, type, 1);
  1512. curseg->alloc_type = LFS;
  1513. }
  1514. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1515. struct curseg_info *seg, block_t start)
  1516. {
  1517. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1518. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1519. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1520. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1521. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1522. int i, pos;
  1523. for (i = 0; i < entries; i++)
  1524. target_map[i] = ckpt_map[i] | cur_map[i];
  1525. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1526. seg->next_blkoff = pos;
  1527. }
  1528. /*
  1529. * If a segment is written by LFS manner, next block offset is just obtained
  1530. * by increasing the current block offset. However, if a segment is written by
  1531. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1532. */
  1533. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1534. struct curseg_info *seg)
  1535. {
  1536. if (seg->alloc_type == SSR)
  1537. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1538. else
  1539. seg->next_blkoff++;
  1540. }
  1541. /*
  1542. * This function always allocates a used segment(from dirty seglist) by SSR
  1543. * manner, so it should recover the existing segment information of valid blocks
  1544. */
  1545. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1546. {
  1547. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1548. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1549. unsigned int new_segno = curseg->next_segno;
  1550. struct f2fs_summary_block *sum_node;
  1551. struct page *sum_page;
  1552. write_sum_page(sbi, curseg->sum_blk,
  1553. GET_SUM_BLOCK(sbi, curseg->segno));
  1554. __set_test_and_inuse(sbi, new_segno);
  1555. mutex_lock(&dirty_i->seglist_lock);
  1556. __remove_dirty_segment(sbi, new_segno, PRE);
  1557. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1558. mutex_unlock(&dirty_i->seglist_lock);
  1559. reset_curseg(sbi, type, 1);
  1560. curseg->alloc_type = SSR;
  1561. __next_free_blkoff(sbi, curseg, 0);
  1562. if (reuse) {
  1563. sum_page = get_sum_page(sbi, new_segno);
  1564. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1565. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1566. f2fs_put_page(sum_page, 1);
  1567. }
  1568. }
  1569. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1570. {
  1571. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1572. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1573. unsigned segno = NULL_SEGNO;
  1574. int i, cnt;
  1575. bool reversed = false;
  1576. /* need_SSR() already forces to do this */
  1577. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1578. curseg->next_segno = segno;
  1579. return 1;
  1580. }
  1581. /* For node segments, let's do SSR more intensively */
  1582. if (IS_NODESEG(type)) {
  1583. if (type >= CURSEG_WARM_NODE) {
  1584. reversed = true;
  1585. i = CURSEG_COLD_NODE;
  1586. } else {
  1587. i = CURSEG_HOT_NODE;
  1588. }
  1589. cnt = NR_CURSEG_NODE_TYPE;
  1590. } else {
  1591. if (type >= CURSEG_WARM_DATA) {
  1592. reversed = true;
  1593. i = CURSEG_COLD_DATA;
  1594. } else {
  1595. i = CURSEG_HOT_DATA;
  1596. }
  1597. cnt = NR_CURSEG_DATA_TYPE;
  1598. }
  1599. for (; cnt-- > 0; reversed ? i-- : i++) {
  1600. if (i == type)
  1601. continue;
  1602. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1603. curseg->next_segno = segno;
  1604. return 1;
  1605. }
  1606. }
  1607. return 0;
  1608. }
  1609. /*
  1610. * flush out current segment and replace it with new segment
  1611. * This function should be returned with success, otherwise BUG
  1612. */
  1613. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1614. int type, bool force)
  1615. {
  1616. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1617. if (force)
  1618. new_curseg(sbi, type, true);
  1619. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1620. type == CURSEG_WARM_NODE)
  1621. new_curseg(sbi, type, false);
  1622. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1623. new_curseg(sbi, type, false);
  1624. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1625. change_curseg(sbi, type, true);
  1626. else
  1627. new_curseg(sbi, type, false);
  1628. stat_inc_seg_type(sbi, curseg);
  1629. }
  1630. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1631. {
  1632. struct curseg_info *curseg;
  1633. unsigned int old_segno;
  1634. int i;
  1635. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1636. curseg = CURSEG_I(sbi, i);
  1637. old_segno = curseg->segno;
  1638. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1639. locate_dirty_segment(sbi, old_segno);
  1640. }
  1641. }
  1642. static const struct segment_allocation default_salloc_ops = {
  1643. .allocate_segment = allocate_segment_by_default,
  1644. };
  1645. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1646. {
  1647. __u64 trim_start = cpc->trim_start;
  1648. bool has_candidate = false;
  1649. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1650. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1651. if (add_discard_addrs(sbi, cpc, true)) {
  1652. has_candidate = true;
  1653. break;
  1654. }
  1655. }
  1656. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1657. cpc->trim_start = trim_start;
  1658. return has_candidate;
  1659. }
  1660. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1661. {
  1662. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1663. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1664. unsigned int start_segno, end_segno;
  1665. struct cp_control cpc;
  1666. int err = 0;
  1667. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1668. return -EINVAL;
  1669. cpc.trimmed = 0;
  1670. if (end <= MAIN_BLKADDR(sbi))
  1671. goto out;
  1672. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1673. f2fs_msg(sbi->sb, KERN_WARNING,
  1674. "Found FS corruption, run fsck to fix.");
  1675. goto out;
  1676. }
  1677. /* start/end segment number in main_area */
  1678. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1679. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1680. GET_SEGNO(sbi, end);
  1681. cpc.reason = CP_DISCARD;
  1682. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1683. /* do checkpoint to issue discard commands safely */
  1684. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1685. cpc.trim_start = start_segno;
  1686. if (sbi->discard_blks == 0)
  1687. break;
  1688. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1689. cpc.trim_end = end_segno;
  1690. else
  1691. cpc.trim_end = min_t(unsigned int,
  1692. rounddown(start_segno +
  1693. BATCHED_TRIM_SEGMENTS(sbi),
  1694. sbi->segs_per_sec) - 1, end_segno);
  1695. mutex_lock(&sbi->gc_mutex);
  1696. err = write_checkpoint(sbi, &cpc);
  1697. mutex_unlock(&sbi->gc_mutex);
  1698. if (err)
  1699. break;
  1700. schedule();
  1701. }
  1702. out:
  1703. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1704. return err;
  1705. }
  1706. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1707. {
  1708. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1709. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1710. return true;
  1711. return false;
  1712. }
  1713. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1714. {
  1715. if (p_type == DATA)
  1716. return CURSEG_HOT_DATA;
  1717. else
  1718. return CURSEG_HOT_NODE;
  1719. }
  1720. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1721. {
  1722. if (p_type == DATA) {
  1723. struct inode *inode = page->mapping->host;
  1724. if (S_ISDIR(inode->i_mode))
  1725. return CURSEG_HOT_DATA;
  1726. else
  1727. return CURSEG_COLD_DATA;
  1728. } else {
  1729. if (IS_DNODE(page) && is_cold_node(page))
  1730. return CURSEG_WARM_NODE;
  1731. else
  1732. return CURSEG_COLD_NODE;
  1733. }
  1734. }
  1735. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1736. {
  1737. if (p_type == DATA) {
  1738. struct inode *inode = page->mapping->host;
  1739. if (is_cold_data(page) || file_is_cold(inode))
  1740. return CURSEG_COLD_DATA;
  1741. if (is_inode_flag_set(inode, FI_HOT_DATA))
  1742. return CURSEG_HOT_DATA;
  1743. return CURSEG_WARM_DATA;
  1744. } else {
  1745. if (IS_DNODE(page))
  1746. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1747. CURSEG_HOT_NODE;
  1748. return CURSEG_COLD_NODE;
  1749. }
  1750. }
  1751. static int __get_segment_type(struct page *page, enum page_type p_type)
  1752. {
  1753. switch (F2FS_P_SB(page)->active_logs) {
  1754. case 2:
  1755. return __get_segment_type_2(page, p_type);
  1756. case 4:
  1757. return __get_segment_type_4(page, p_type);
  1758. }
  1759. /* NR_CURSEG_TYPE(6) logs by default */
  1760. f2fs_bug_on(F2FS_P_SB(page),
  1761. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1762. return __get_segment_type_6(page, p_type);
  1763. }
  1764. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1765. block_t old_blkaddr, block_t *new_blkaddr,
  1766. struct f2fs_summary *sum, int type)
  1767. {
  1768. struct sit_info *sit_i = SIT_I(sbi);
  1769. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1770. mutex_lock(&curseg->curseg_mutex);
  1771. mutex_lock(&sit_i->sentry_lock);
  1772. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1773. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1774. /*
  1775. * __add_sum_entry should be resided under the curseg_mutex
  1776. * because, this function updates a summary entry in the
  1777. * current summary block.
  1778. */
  1779. __add_sum_entry(sbi, type, sum);
  1780. __refresh_next_blkoff(sbi, curseg);
  1781. stat_inc_block_count(sbi, curseg);
  1782. if (!__has_curseg_space(sbi, type))
  1783. sit_i->s_ops->allocate_segment(sbi, type, false);
  1784. /*
  1785. * SIT information should be updated after segment allocation,
  1786. * since we need to keep dirty segments precisely under SSR.
  1787. */
  1788. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1789. mutex_unlock(&sit_i->sentry_lock);
  1790. if (page && IS_NODESEG(type))
  1791. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1792. mutex_unlock(&curseg->curseg_mutex);
  1793. }
  1794. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1795. {
  1796. int type = __get_segment_type(fio->page, fio->type);
  1797. int err;
  1798. if (fio->type == NODE || fio->type == DATA)
  1799. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1800. reallocate:
  1801. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1802. &fio->new_blkaddr, sum, type);
  1803. /* writeout dirty page into bdev */
  1804. err = f2fs_submit_page_mbio(fio);
  1805. if (err == -EAGAIN) {
  1806. fio->old_blkaddr = fio->new_blkaddr;
  1807. goto reallocate;
  1808. }
  1809. if (fio->type == NODE || fio->type == DATA)
  1810. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1811. }
  1812. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1813. {
  1814. struct f2fs_io_info fio = {
  1815. .sbi = sbi,
  1816. .type = META,
  1817. .op = REQ_OP_WRITE,
  1818. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1819. .old_blkaddr = page->index,
  1820. .new_blkaddr = page->index,
  1821. .page = page,
  1822. .encrypted_page = NULL,
  1823. };
  1824. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1825. fio.op_flags &= ~REQ_META;
  1826. set_page_writeback(page);
  1827. f2fs_submit_page_mbio(&fio);
  1828. }
  1829. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1830. {
  1831. struct f2fs_summary sum;
  1832. set_summary(&sum, nid, 0, 0);
  1833. do_write_page(&sum, fio);
  1834. }
  1835. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1836. {
  1837. struct f2fs_sb_info *sbi = fio->sbi;
  1838. struct f2fs_summary sum;
  1839. struct node_info ni;
  1840. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1841. get_node_info(sbi, dn->nid, &ni);
  1842. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1843. do_write_page(&sum, fio);
  1844. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1845. }
  1846. int rewrite_data_page(struct f2fs_io_info *fio)
  1847. {
  1848. fio->new_blkaddr = fio->old_blkaddr;
  1849. stat_inc_inplace_blocks(fio->sbi);
  1850. return f2fs_submit_page_bio(fio);
  1851. }
  1852. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1853. block_t old_blkaddr, block_t new_blkaddr,
  1854. bool recover_curseg, bool recover_newaddr)
  1855. {
  1856. struct sit_info *sit_i = SIT_I(sbi);
  1857. struct curseg_info *curseg;
  1858. unsigned int segno, old_cursegno;
  1859. struct seg_entry *se;
  1860. int type;
  1861. unsigned short old_blkoff;
  1862. segno = GET_SEGNO(sbi, new_blkaddr);
  1863. se = get_seg_entry(sbi, segno);
  1864. type = se->type;
  1865. if (!recover_curseg) {
  1866. /* for recovery flow */
  1867. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1868. if (old_blkaddr == NULL_ADDR)
  1869. type = CURSEG_COLD_DATA;
  1870. else
  1871. type = CURSEG_WARM_DATA;
  1872. }
  1873. } else {
  1874. if (!IS_CURSEG(sbi, segno))
  1875. type = CURSEG_WARM_DATA;
  1876. }
  1877. curseg = CURSEG_I(sbi, type);
  1878. mutex_lock(&curseg->curseg_mutex);
  1879. mutex_lock(&sit_i->sentry_lock);
  1880. old_cursegno = curseg->segno;
  1881. old_blkoff = curseg->next_blkoff;
  1882. /* change the current segment */
  1883. if (segno != curseg->segno) {
  1884. curseg->next_segno = segno;
  1885. change_curseg(sbi, type, true);
  1886. }
  1887. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1888. __add_sum_entry(sbi, type, sum);
  1889. if (!recover_curseg || recover_newaddr)
  1890. update_sit_entry(sbi, new_blkaddr, 1);
  1891. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1892. update_sit_entry(sbi, old_blkaddr, -1);
  1893. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1894. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1895. locate_dirty_segment(sbi, old_cursegno);
  1896. if (recover_curseg) {
  1897. if (old_cursegno != curseg->segno) {
  1898. curseg->next_segno = old_cursegno;
  1899. change_curseg(sbi, type, true);
  1900. }
  1901. curseg->next_blkoff = old_blkoff;
  1902. }
  1903. mutex_unlock(&sit_i->sentry_lock);
  1904. mutex_unlock(&curseg->curseg_mutex);
  1905. }
  1906. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1907. block_t old_addr, block_t new_addr,
  1908. unsigned char version, bool recover_curseg,
  1909. bool recover_newaddr)
  1910. {
  1911. struct f2fs_summary sum;
  1912. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1913. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1914. recover_curseg, recover_newaddr);
  1915. f2fs_update_data_blkaddr(dn, new_addr);
  1916. }
  1917. void f2fs_wait_on_page_writeback(struct page *page,
  1918. enum page_type type, bool ordered)
  1919. {
  1920. if (PageWriteback(page)) {
  1921. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1922. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  1923. 0, page->index, type, WRITE);
  1924. if (ordered)
  1925. wait_on_page_writeback(page);
  1926. else
  1927. wait_for_stable_page(page);
  1928. }
  1929. }
  1930. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1931. block_t blkaddr)
  1932. {
  1933. struct page *cpage;
  1934. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1935. return;
  1936. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1937. if (cpage) {
  1938. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1939. f2fs_put_page(cpage, 1);
  1940. }
  1941. }
  1942. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1943. {
  1944. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1945. struct curseg_info *seg_i;
  1946. unsigned char *kaddr;
  1947. struct page *page;
  1948. block_t start;
  1949. int i, j, offset;
  1950. start = start_sum_block(sbi);
  1951. page = get_meta_page(sbi, start++);
  1952. kaddr = (unsigned char *)page_address(page);
  1953. /* Step 1: restore nat cache */
  1954. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1955. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1956. /* Step 2: restore sit cache */
  1957. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1958. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1959. offset = 2 * SUM_JOURNAL_SIZE;
  1960. /* Step 3: restore summary entries */
  1961. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1962. unsigned short blk_off;
  1963. unsigned int segno;
  1964. seg_i = CURSEG_I(sbi, i);
  1965. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1966. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1967. seg_i->next_segno = segno;
  1968. reset_curseg(sbi, i, 0);
  1969. seg_i->alloc_type = ckpt->alloc_type[i];
  1970. seg_i->next_blkoff = blk_off;
  1971. if (seg_i->alloc_type == SSR)
  1972. blk_off = sbi->blocks_per_seg;
  1973. for (j = 0; j < blk_off; j++) {
  1974. struct f2fs_summary *s;
  1975. s = (struct f2fs_summary *)(kaddr + offset);
  1976. seg_i->sum_blk->entries[j] = *s;
  1977. offset += SUMMARY_SIZE;
  1978. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1979. SUM_FOOTER_SIZE)
  1980. continue;
  1981. f2fs_put_page(page, 1);
  1982. page = NULL;
  1983. page = get_meta_page(sbi, start++);
  1984. kaddr = (unsigned char *)page_address(page);
  1985. offset = 0;
  1986. }
  1987. }
  1988. f2fs_put_page(page, 1);
  1989. return 0;
  1990. }
  1991. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1992. {
  1993. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1994. struct f2fs_summary_block *sum;
  1995. struct curseg_info *curseg;
  1996. struct page *new;
  1997. unsigned short blk_off;
  1998. unsigned int segno = 0;
  1999. block_t blk_addr = 0;
  2000. /* get segment number and block addr */
  2001. if (IS_DATASEG(type)) {
  2002. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2003. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2004. CURSEG_HOT_DATA]);
  2005. if (__exist_node_summaries(sbi))
  2006. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2007. else
  2008. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2009. } else {
  2010. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2011. CURSEG_HOT_NODE]);
  2012. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2013. CURSEG_HOT_NODE]);
  2014. if (__exist_node_summaries(sbi))
  2015. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2016. type - CURSEG_HOT_NODE);
  2017. else
  2018. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2019. }
  2020. new = get_meta_page(sbi, blk_addr);
  2021. sum = (struct f2fs_summary_block *)page_address(new);
  2022. if (IS_NODESEG(type)) {
  2023. if (__exist_node_summaries(sbi)) {
  2024. struct f2fs_summary *ns = &sum->entries[0];
  2025. int i;
  2026. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2027. ns->version = 0;
  2028. ns->ofs_in_node = 0;
  2029. }
  2030. } else {
  2031. int err;
  2032. err = restore_node_summary(sbi, segno, sum);
  2033. if (err) {
  2034. f2fs_put_page(new, 1);
  2035. return err;
  2036. }
  2037. }
  2038. }
  2039. /* set uncompleted segment to curseg */
  2040. curseg = CURSEG_I(sbi, type);
  2041. mutex_lock(&curseg->curseg_mutex);
  2042. /* update journal info */
  2043. down_write(&curseg->journal_rwsem);
  2044. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2045. up_write(&curseg->journal_rwsem);
  2046. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2047. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2048. curseg->next_segno = segno;
  2049. reset_curseg(sbi, type, 0);
  2050. curseg->alloc_type = ckpt->alloc_type[type];
  2051. curseg->next_blkoff = blk_off;
  2052. mutex_unlock(&curseg->curseg_mutex);
  2053. f2fs_put_page(new, 1);
  2054. return 0;
  2055. }
  2056. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2057. {
  2058. int type = CURSEG_HOT_DATA;
  2059. int err;
  2060. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2061. int npages = npages_for_summary_flush(sbi, true);
  2062. if (npages >= 2)
  2063. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2064. META_CP, true);
  2065. /* restore for compacted data summary */
  2066. if (read_compacted_summaries(sbi))
  2067. return -EINVAL;
  2068. type = CURSEG_HOT_NODE;
  2069. }
  2070. if (__exist_node_summaries(sbi))
  2071. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2072. NR_CURSEG_TYPE - type, META_CP, true);
  2073. for (; type <= CURSEG_COLD_NODE; type++) {
  2074. err = read_normal_summaries(sbi, type);
  2075. if (err)
  2076. return err;
  2077. }
  2078. return 0;
  2079. }
  2080. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2081. {
  2082. struct page *page;
  2083. unsigned char *kaddr;
  2084. struct f2fs_summary *summary;
  2085. struct curseg_info *seg_i;
  2086. int written_size = 0;
  2087. int i, j;
  2088. page = grab_meta_page(sbi, blkaddr++);
  2089. kaddr = (unsigned char *)page_address(page);
  2090. /* Step 1: write nat cache */
  2091. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2092. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2093. written_size += SUM_JOURNAL_SIZE;
  2094. /* Step 2: write sit cache */
  2095. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2096. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2097. written_size += SUM_JOURNAL_SIZE;
  2098. /* Step 3: write summary entries */
  2099. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2100. unsigned short blkoff;
  2101. seg_i = CURSEG_I(sbi, i);
  2102. if (sbi->ckpt->alloc_type[i] == SSR)
  2103. blkoff = sbi->blocks_per_seg;
  2104. else
  2105. blkoff = curseg_blkoff(sbi, i);
  2106. for (j = 0; j < blkoff; j++) {
  2107. if (!page) {
  2108. page = grab_meta_page(sbi, blkaddr++);
  2109. kaddr = (unsigned char *)page_address(page);
  2110. written_size = 0;
  2111. }
  2112. summary = (struct f2fs_summary *)(kaddr + written_size);
  2113. *summary = seg_i->sum_blk->entries[j];
  2114. written_size += SUMMARY_SIZE;
  2115. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2116. SUM_FOOTER_SIZE)
  2117. continue;
  2118. set_page_dirty(page);
  2119. f2fs_put_page(page, 1);
  2120. page = NULL;
  2121. }
  2122. }
  2123. if (page) {
  2124. set_page_dirty(page);
  2125. f2fs_put_page(page, 1);
  2126. }
  2127. }
  2128. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2129. block_t blkaddr, int type)
  2130. {
  2131. int i, end;
  2132. if (IS_DATASEG(type))
  2133. end = type + NR_CURSEG_DATA_TYPE;
  2134. else
  2135. end = type + NR_CURSEG_NODE_TYPE;
  2136. for (i = type; i < end; i++)
  2137. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2138. }
  2139. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2140. {
  2141. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2142. write_compacted_summaries(sbi, start_blk);
  2143. else
  2144. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2145. }
  2146. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2147. {
  2148. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2149. }
  2150. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2151. unsigned int val, int alloc)
  2152. {
  2153. int i;
  2154. if (type == NAT_JOURNAL) {
  2155. for (i = 0; i < nats_in_cursum(journal); i++) {
  2156. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2157. return i;
  2158. }
  2159. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2160. return update_nats_in_cursum(journal, 1);
  2161. } else if (type == SIT_JOURNAL) {
  2162. for (i = 0; i < sits_in_cursum(journal); i++)
  2163. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2164. return i;
  2165. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2166. return update_sits_in_cursum(journal, 1);
  2167. }
  2168. return -1;
  2169. }
  2170. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2171. unsigned int segno)
  2172. {
  2173. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2174. }
  2175. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2176. unsigned int start)
  2177. {
  2178. struct sit_info *sit_i = SIT_I(sbi);
  2179. struct page *src_page, *dst_page;
  2180. pgoff_t src_off, dst_off;
  2181. void *src_addr, *dst_addr;
  2182. src_off = current_sit_addr(sbi, start);
  2183. dst_off = next_sit_addr(sbi, src_off);
  2184. /* get current sit block page without lock */
  2185. src_page = get_meta_page(sbi, src_off);
  2186. dst_page = grab_meta_page(sbi, dst_off);
  2187. f2fs_bug_on(sbi, PageDirty(src_page));
  2188. src_addr = page_address(src_page);
  2189. dst_addr = page_address(dst_page);
  2190. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2191. set_page_dirty(dst_page);
  2192. f2fs_put_page(src_page, 1);
  2193. set_to_next_sit(sit_i, start);
  2194. return dst_page;
  2195. }
  2196. static struct sit_entry_set *grab_sit_entry_set(void)
  2197. {
  2198. struct sit_entry_set *ses =
  2199. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2200. ses->entry_cnt = 0;
  2201. INIT_LIST_HEAD(&ses->set_list);
  2202. return ses;
  2203. }
  2204. static void release_sit_entry_set(struct sit_entry_set *ses)
  2205. {
  2206. list_del(&ses->set_list);
  2207. kmem_cache_free(sit_entry_set_slab, ses);
  2208. }
  2209. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2210. struct list_head *head)
  2211. {
  2212. struct sit_entry_set *next = ses;
  2213. if (list_is_last(&ses->set_list, head))
  2214. return;
  2215. list_for_each_entry_continue(next, head, set_list)
  2216. if (ses->entry_cnt <= next->entry_cnt)
  2217. break;
  2218. list_move_tail(&ses->set_list, &next->set_list);
  2219. }
  2220. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2221. {
  2222. struct sit_entry_set *ses;
  2223. unsigned int start_segno = START_SEGNO(segno);
  2224. list_for_each_entry(ses, head, set_list) {
  2225. if (ses->start_segno == start_segno) {
  2226. ses->entry_cnt++;
  2227. adjust_sit_entry_set(ses, head);
  2228. return;
  2229. }
  2230. }
  2231. ses = grab_sit_entry_set();
  2232. ses->start_segno = start_segno;
  2233. ses->entry_cnt++;
  2234. list_add(&ses->set_list, head);
  2235. }
  2236. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2237. {
  2238. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2239. struct list_head *set_list = &sm_info->sit_entry_set;
  2240. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2241. unsigned int segno;
  2242. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2243. add_sit_entry(segno, set_list);
  2244. }
  2245. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2246. {
  2247. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2248. struct f2fs_journal *journal = curseg->journal;
  2249. int i;
  2250. down_write(&curseg->journal_rwsem);
  2251. for (i = 0; i < sits_in_cursum(journal); i++) {
  2252. unsigned int segno;
  2253. bool dirtied;
  2254. segno = le32_to_cpu(segno_in_journal(journal, i));
  2255. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2256. if (!dirtied)
  2257. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2258. }
  2259. update_sits_in_cursum(journal, -i);
  2260. up_write(&curseg->journal_rwsem);
  2261. }
  2262. /*
  2263. * CP calls this function, which flushes SIT entries including sit_journal,
  2264. * and moves prefree segs to free segs.
  2265. */
  2266. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2267. {
  2268. struct sit_info *sit_i = SIT_I(sbi);
  2269. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2270. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2271. struct f2fs_journal *journal = curseg->journal;
  2272. struct sit_entry_set *ses, *tmp;
  2273. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2274. bool to_journal = true;
  2275. struct seg_entry *se;
  2276. mutex_lock(&sit_i->sentry_lock);
  2277. if (!sit_i->dirty_sentries)
  2278. goto out;
  2279. /*
  2280. * add and account sit entries of dirty bitmap in sit entry
  2281. * set temporarily
  2282. */
  2283. add_sits_in_set(sbi);
  2284. /*
  2285. * if there are no enough space in journal to store dirty sit
  2286. * entries, remove all entries from journal and add and account
  2287. * them in sit entry set.
  2288. */
  2289. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2290. remove_sits_in_journal(sbi);
  2291. /*
  2292. * there are two steps to flush sit entries:
  2293. * #1, flush sit entries to journal in current cold data summary block.
  2294. * #2, flush sit entries to sit page.
  2295. */
  2296. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2297. struct page *page = NULL;
  2298. struct f2fs_sit_block *raw_sit = NULL;
  2299. unsigned int start_segno = ses->start_segno;
  2300. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2301. (unsigned long)MAIN_SEGS(sbi));
  2302. unsigned int segno = start_segno;
  2303. if (to_journal &&
  2304. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2305. to_journal = false;
  2306. if (to_journal) {
  2307. down_write(&curseg->journal_rwsem);
  2308. } else {
  2309. page = get_next_sit_page(sbi, start_segno);
  2310. raw_sit = page_address(page);
  2311. }
  2312. /* flush dirty sit entries in region of current sit set */
  2313. for_each_set_bit_from(segno, bitmap, end) {
  2314. int offset, sit_offset;
  2315. se = get_seg_entry(sbi, segno);
  2316. /* add discard candidates */
  2317. if (!(cpc->reason & CP_DISCARD)) {
  2318. cpc->trim_start = segno;
  2319. add_discard_addrs(sbi, cpc, false);
  2320. }
  2321. if (to_journal) {
  2322. offset = lookup_journal_in_cursum(journal,
  2323. SIT_JOURNAL, segno, 1);
  2324. f2fs_bug_on(sbi, offset < 0);
  2325. segno_in_journal(journal, offset) =
  2326. cpu_to_le32(segno);
  2327. seg_info_to_raw_sit(se,
  2328. &sit_in_journal(journal, offset));
  2329. } else {
  2330. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2331. seg_info_to_raw_sit(se,
  2332. &raw_sit->entries[sit_offset]);
  2333. }
  2334. __clear_bit(segno, bitmap);
  2335. sit_i->dirty_sentries--;
  2336. ses->entry_cnt--;
  2337. }
  2338. if (to_journal)
  2339. up_write(&curseg->journal_rwsem);
  2340. else
  2341. f2fs_put_page(page, 1);
  2342. f2fs_bug_on(sbi, ses->entry_cnt);
  2343. release_sit_entry_set(ses);
  2344. }
  2345. f2fs_bug_on(sbi, !list_empty(head));
  2346. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2347. out:
  2348. if (cpc->reason & CP_DISCARD) {
  2349. __u64 trim_start = cpc->trim_start;
  2350. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2351. add_discard_addrs(sbi, cpc, false);
  2352. cpc->trim_start = trim_start;
  2353. }
  2354. mutex_unlock(&sit_i->sentry_lock);
  2355. set_prefree_as_free_segments(sbi);
  2356. }
  2357. static int build_sit_info(struct f2fs_sb_info *sbi)
  2358. {
  2359. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2360. struct sit_info *sit_i;
  2361. unsigned int sit_segs, start;
  2362. char *src_bitmap;
  2363. unsigned int bitmap_size;
  2364. /* allocate memory for SIT information */
  2365. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2366. if (!sit_i)
  2367. return -ENOMEM;
  2368. SM_I(sbi)->sit_info = sit_i;
  2369. sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
  2370. sizeof(struct seg_entry), GFP_KERNEL);
  2371. if (!sit_i->sentries)
  2372. return -ENOMEM;
  2373. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2374. sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2375. if (!sit_i->dirty_sentries_bitmap)
  2376. return -ENOMEM;
  2377. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2378. sit_i->sentries[start].cur_valid_map
  2379. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2380. sit_i->sentries[start].ckpt_valid_map
  2381. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2382. if (!sit_i->sentries[start].cur_valid_map ||
  2383. !sit_i->sentries[start].ckpt_valid_map)
  2384. return -ENOMEM;
  2385. #ifdef CONFIG_F2FS_CHECK_FS
  2386. sit_i->sentries[start].cur_valid_map_mir
  2387. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2388. if (!sit_i->sentries[start].cur_valid_map_mir)
  2389. return -ENOMEM;
  2390. #endif
  2391. if (f2fs_discard_en(sbi)) {
  2392. sit_i->sentries[start].discard_map
  2393. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2394. if (!sit_i->sentries[start].discard_map)
  2395. return -ENOMEM;
  2396. }
  2397. }
  2398. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2399. if (!sit_i->tmp_map)
  2400. return -ENOMEM;
  2401. if (sbi->segs_per_sec > 1) {
  2402. sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
  2403. sizeof(struct sec_entry), GFP_KERNEL);
  2404. if (!sit_i->sec_entries)
  2405. return -ENOMEM;
  2406. }
  2407. /* get information related with SIT */
  2408. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2409. /* setup SIT bitmap from ckeckpoint pack */
  2410. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2411. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2412. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2413. if (!sit_i->sit_bitmap)
  2414. return -ENOMEM;
  2415. #ifdef CONFIG_F2FS_CHECK_FS
  2416. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2417. if (!sit_i->sit_bitmap_mir)
  2418. return -ENOMEM;
  2419. #endif
  2420. /* init SIT information */
  2421. sit_i->s_ops = &default_salloc_ops;
  2422. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2423. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2424. sit_i->written_valid_blocks = 0;
  2425. sit_i->bitmap_size = bitmap_size;
  2426. sit_i->dirty_sentries = 0;
  2427. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2428. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2429. sit_i->mounted_time = ktime_get_real_seconds();
  2430. mutex_init(&sit_i->sentry_lock);
  2431. return 0;
  2432. }
  2433. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2434. {
  2435. struct free_segmap_info *free_i;
  2436. unsigned int bitmap_size, sec_bitmap_size;
  2437. /* allocate memory for free segmap information */
  2438. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2439. if (!free_i)
  2440. return -ENOMEM;
  2441. SM_I(sbi)->free_info = free_i;
  2442. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2443. free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
  2444. if (!free_i->free_segmap)
  2445. return -ENOMEM;
  2446. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2447. free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2448. if (!free_i->free_secmap)
  2449. return -ENOMEM;
  2450. /* set all segments as dirty temporarily */
  2451. memset(free_i->free_segmap, 0xff, bitmap_size);
  2452. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2453. /* init free segmap information */
  2454. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2455. free_i->free_segments = 0;
  2456. free_i->free_sections = 0;
  2457. spin_lock_init(&free_i->segmap_lock);
  2458. return 0;
  2459. }
  2460. static int build_curseg(struct f2fs_sb_info *sbi)
  2461. {
  2462. struct curseg_info *array;
  2463. int i;
  2464. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2465. if (!array)
  2466. return -ENOMEM;
  2467. SM_I(sbi)->curseg_array = array;
  2468. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2469. mutex_init(&array[i].curseg_mutex);
  2470. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2471. if (!array[i].sum_blk)
  2472. return -ENOMEM;
  2473. init_rwsem(&array[i].journal_rwsem);
  2474. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2475. GFP_KERNEL);
  2476. if (!array[i].journal)
  2477. return -ENOMEM;
  2478. array[i].segno = NULL_SEGNO;
  2479. array[i].next_blkoff = 0;
  2480. }
  2481. return restore_curseg_summaries(sbi);
  2482. }
  2483. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2484. {
  2485. struct sit_info *sit_i = SIT_I(sbi);
  2486. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2487. struct f2fs_journal *journal = curseg->journal;
  2488. struct seg_entry *se;
  2489. struct f2fs_sit_entry sit;
  2490. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2491. unsigned int i, start, end;
  2492. unsigned int readed, start_blk = 0;
  2493. do {
  2494. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2495. META_SIT, true);
  2496. start = start_blk * sit_i->sents_per_block;
  2497. end = (start_blk + readed) * sit_i->sents_per_block;
  2498. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2499. struct f2fs_sit_block *sit_blk;
  2500. struct page *page;
  2501. se = &sit_i->sentries[start];
  2502. page = get_current_sit_page(sbi, start);
  2503. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2504. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2505. f2fs_put_page(page, 1);
  2506. check_block_count(sbi, start, &sit);
  2507. seg_info_from_raw_sit(se, &sit);
  2508. /* build discard map only one time */
  2509. if (f2fs_discard_en(sbi)) {
  2510. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2511. memset(se->discard_map, 0xff,
  2512. SIT_VBLOCK_MAP_SIZE);
  2513. } else {
  2514. memcpy(se->discard_map,
  2515. se->cur_valid_map,
  2516. SIT_VBLOCK_MAP_SIZE);
  2517. sbi->discard_blks +=
  2518. sbi->blocks_per_seg -
  2519. se->valid_blocks;
  2520. }
  2521. }
  2522. if (sbi->segs_per_sec > 1)
  2523. get_sec_entry(sbi, start)->valid_blocks +=
  2524. se->valid_blocks;
  2525. }
  2526. start_blk += readed;
  2527. } while (start_blk < sit_blk_cnt);
  2528. down_read(&curseg->journal_rwsem);
  2529. for (i = 0; i < sits_in_cursum(journal); i++) {
  2530. unsigned int old_valid_blocks;
  2531. start = le32_to_cpu(segno_in_journal(journal, i));
  2532. se = &sit_i->sentries[start];
  2533. sit = sit_in_journal(journal, i);
  2534. old_valid_blocks = se->valid_blocks;
  2535. check_block_count(sbi, start, &sit);
  2536. seg_info_from_raw_sit(se, &sit);
  2537. if (f2fs_discard_en(sbi)) {
  2538. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2539. memset(se->discard_map, 0xff,
  2540. SIT_VBLOCK_MAP_SIZE);
  2541. } else {
  2542. memcpy(se->discard_map, se->cur_valid_map,
  2543. SIT_VBLOCK_MAP_SIZE);
  2544. sbi->discard_blks += old_valid_blocks -
  2545. se->valid_blocks;
  2546. }
  2547. }
  2548. if (sbi->segs_per_sec > 1)
  2549. get_sec_entry(sbi, start)->valid_blocks +=
  2550. se->valid_blocks - old_valid_blocks;
  2551. }
  2552. up_read(&curseg->journal_rwsem);
  2553. }
  2554. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2555. {
  2556. unsigned int start;
  2557. int type;
  2558. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2559. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2560. if (!sentry->valid_blocks)
  2561. __set_free(sbi, start);
  2562. else
  2563. SIT_I(sbi)->written_valid_blocks +=
  2564. sentry->valid_blocks;
  2565. }
  2566. /* set use the current segments */
  2567. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2568. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2569. __set_test_and_inuse(sbi, curseg_t->segno);
  2570. }
  2571. }
  2572. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2573. {
  2574. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2575. struct free_segmap_info *free_i = FREE_I(sbi);
  2576. unsigned int segno = 0, offset = 0;
  2577. unsigned short valid_blocks;
  2578. while (1) {
  2579. /* find dirty segment based on free segmap */
  2580. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2581. if (segno >= MAIN_SEGS(sbi))
  2582. break;
  2583. offset = segno + 1;
  2584. valid_blocks = get_valid_blocks(sbi, segno, false);
  2585. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2586. continue;
  2587. if (valid_blocks > sbi->blocks_per_seg) {
  2588. f2fs_bug_on(sbi, 1);
  2589. continue;
  2590. }
  2591. mutex_lock(&dirty_i->seglist_lock);
  2592. __locate_dirty_segment(sbi, segno, DIRTY);
  2593. mutex_unlock(&dirty_i->seglist_lock);
  2594. }
  2595. }
  2596. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2597. {
  2598. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2599. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2600. dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2601. if (!dirty_i->victim_secmap)
  2602. return -ENOMEM;
  2603. return 0;
  2604. }
  2605. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2606. {
  2607. struct dirty_seglist_info *dirty_i;
  2608. unsigned int bitmap_size, i;
  2609. /* allocate memory for dirty segments list information */
  2610. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2611. if (!dirty_i)
  2612. return -ENOMEM;
  2613. SM_I(sbi)->dirty_info = dirty_i;
  2614. mutex_init(&dirty_i->seglist_lock);
  2615. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2616. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2617. dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
  2618. if (!dirty_i->dirty_segmap[i])
  2619. return -ENOMEM;
  2620. }
  2621. init_dirty_segmap(sbi);
  2622. return init_victim_secmap(sbi);
  2623. }
  2624. /*
  2625. * Update min, max modified time for cost-benefit GC algorithm
  2626. */
  2627. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2628. {
  2629. struct sit_info *sit_i = SIT_I(sbi);
  2630. unsigned int segno;
  2631. mutex_lock(&sit_i->sentry_lock);
  2632. sit_i->min_mtime = LLONG_MAX;
  2633. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2634. unsigned int i;
  2635. unsigned long long mtime = 0;
  2636. for (i = 0; i < sbi->segs_per_sec; i++)
  2637. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2638. mtime = div_u64(mtime, sbi->segs_per_sec);
  2639. if (sit_i->min_mtime > mtime)
  2640. sit_i->min_mtime = mtime;
  2641. }
  2642. sit_i->max_mtime = get_mtime(sbi);
  2643. mutex_unlock(&sit_i->sentry_lock);
  2644. }
  2645. int build_segment_manager(struct f2fs_sb_info *sbi)
  2646. {
  2647. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2648. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2649. struct f2fs_sm_info *sm_info;
  2650. int err;
  2651. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2652. if (!sm_info)
  2653. return -ENOMEM;
  2654. /* init sm info */
  2655. sbi->sm_info = sm_info;
  2656. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2657. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2658. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2659. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2660. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2661. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2662. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2663. sm_info->rec_prefree_segments = sm_info->main_segments *
  2664. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2665. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2666. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2667. if (!test_opt(sbi, LFS))
  2668. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2669. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2670. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2671. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  2672. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2673. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2674. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2675. err = create_flush_cmd_control(sbi);
  2676. if (err)
  2677. return err;
  2678. }
  2679. err = create_discard_cmd_control(sbi);
  2680. if (err)
  2681. return err;
  2682. err = build_sit_info(sbi);
  2683. if (err)
  2684. return err;
  2685. err = build_free_segmap(sbi);
  2686. if (err)
  2687. return err;
  2688. err = build_curseg(sbi);
  2689. if (err)
  2690. return err;
  2691. /* reinit free segmap based on SIT */
  2692. build_sit_entries(sbi);
  2693. init_free_segmap(sbi);
  2694. err = build_dirty_segmap(sbi);
  2695. if (err)
  2696. return err;
  2697. init_min_max_mtime(sbi);
  2698. return 0;
  2699. }
  2700. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2701. enum dirty_type dirty_type)
  2702. {
  2703. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2704. mutex_lock(&dirty_i->seglist_lock);
  2705. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2706. dirty_i->nr_dirty[dirty_type] = 0;
  2707. mutex_unlock(&dirty_i->seglist_lock);
  2708. }
  2709. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2710. {
  2711. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2712. kvfree(dirty_i->victim_secmap);
  2713. }
  2714. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2715. {
  2716. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2717. int i;
  2718. if (!dirty_i)
  2719. return;
  2720. /* discard pre-free/dirty segments list */
  2721. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2722. discard_dirty_segmap(sbi, i);
  2723. destroy_victim_secmap(sbi);
  2724. SM_I(sbi)->dirty_info = NULL;
  2725. kfree(dirty_i);
  2726. }
  2727. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2728. {
  2729. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2730. int i;
  2731. if (!array)
  2732. return;
  2733. SM_I(sbi)->curseg_array = NULL;
  2734. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2735. kfree(array[i].sum_blk);
  2736. kfree(array[i].journal);
  2737. }
  2738. kfree(array);
  2739. }
  2740. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2741. {
  2742. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2743. if (!free_i)
  2744. return;
  2745. SM_I(sbi)->free_info = NULL;
  2746. kvfree(free_i->free_segmap);
  2747. kvfree(free_i->free_secmap);
  2748. kfree(free_i);
  2749. }
  2750. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2751. {
  2752. struct sit_info *sit_i = SIT_I(sbi);
  2753. unsigned int start;
  2754. if (!sit_i)
  2755. return;
  2756. if (sit_i->sentries) {
  2757. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2758. kfree(sit_i->sentries[start].cur_valid_map);
  2759. #ifdef CONFIG_F2FS_CHECK_FS
  2760. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2761. #endif
  2762. kfree(sit_i->sentries[start].ckpt_valid_map);
  2763. kfree(sit_i->sentries[start].discard_map);
  2764. }
  2765. }
  2766. kfree(sit_i->tmp_map);
  2767. kvfree(sit_i->sentries);
  2768. kvfree(sit_i->sec_entries);
  2769. kvfree(sit_i->dirty_sentries_bitmap);
  2770. SM_I(sbi)->sit_info = NULL;
  2771. kfree(sit_i->sit_bitmap);
  2772. #ifdef CONFIG_F2FS_CHECK_FS
  2773. kfree(sit_i->sit_bitmap_mir);
  2774. #endif
  2775. kfree(sit_i);
  2776. }
  2777. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2778. {
  2779. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2780. if (!sm_info)
  2781. return;
  2782. destroy_flush_cmd_control(sbi, true);
  2783. destroy_discard_cmd_control(sbi);
  2784. destroy_dirty_segmap(sbi);
  2785. destroy_curseg(sbi);
  2786. destroy_free_segmap(sbi);
  2787. destroy_sit_info(sbi);
  2788. sbi->sm_info = NULL;
  2789. kfree(sm_info);
  2790. }
  2791. int __init create_segment_manager_caches(void)
  2792. {
  2793. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2794. sizeof(struct discard_entry));
  2795. if (!discard_entry_slab)
  2796. goto fail;
  2797. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2798. sizeof(struct discard_cmd));
  2799. if (!discard_cmd_slab)
  2800. goto destroy_discard_entry;
  2801. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2802. sizeof(struct sit_entry_set));
  2803. if (!sit_entry_set_slab)
  2804. goto destroy_discard_cmd;
  2805. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2806. sizeof(struct inmem_pages));
  2807. if (!inmem_entry_slab)
  2808. goto destroy_sit_entry_set;
  2809. return 0;
  2810. destroy_sit_entry_set:
  2811. kmem_cache_destroy(sit_entry_set_slab);
  2812. destroy_discard_cmd:
  2813. kmem_cache_destroy(discard_cmd_slab);
  2814. destroy_discard_entry:
  2815. kmem_cache_destroy(discard_entry_slab);
  2816. fail:
  2817. return -ENOMEM;
  2818. }
  2819. void destroy_segment_manager_caches(void)
  2820. {
  2821. kmem_cache_destroy(sit_entry_set_slab);
  2822. kmem_cache_destroy(discard_cmd_slab);
  2823. kmem_cache_destroy(discard_entry_slab);
  2824. kmem_cache_destroy(inmem_entry_slab);
  2825. }