inode.c 288 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/compat.h>
  33. #include <linux/bit_spinlock.h>
  34. #include <linux/xattr.h>
  35. #include <linux/posix_acl.h>
  36. #include <linux/falloc.h>
  37. #include <linux/slab.h>
  38. #include <linux/ratelimit.h>
  39. #include <linux/mount.h>
  40. #include <linux/btrfs.h>
  41. #include <linux/blkdev.h>
  42. #include <linux/posix_acl_xattr.h>
  43. #include <linux/uio.h>
  44. #include "ctree.h"
  45. #include "disk-io.h"
  46. #include "transaction.h"
  47. #include "btrfs_inode.h"
  48. #include "print-tree.h"
  49. #include "ordered-data.h"
  50. #include "xattr.h"
  51. #include "tree-log.h"
  52. #include "volumes.h"
  53. #include "compression.h"
  54. #include "locking.h"
  55. #include "free-space-cache.h"
  56. #include "inode-map.h"
  57. #include "backref.h"
  58. #include "hash.h"
  59. #include "props.h"
  60. #include "qgroup.h"
  61. #include "dedupe.h"
  62. struct btrfs_iget_args {
  63. struct btrfs_key *location;
  64. struct btrfs_root *root;
  65. };
  66. struct btrfs_dio_data {
  67. u64 outstanding_extents;
  68. u64 reserve;
  69. u64 unsubmitted_oe_range_start;
  70. u64 unsubmitted_oe_range_end;
  71. int overwrite;
  72. };
  73. static const struct inode_operations btrfs_dir_inode_operations;
  74. static const struct inode_operations btrfs_symlink_inode_operations;
  75. static const struct inode_operations btrfs_dir_ro_inode_operations;
  76. static const struct inode_operations btrfs_special_inode_operations;
  77. static const struct inode_operations btrfs_file_inode_operations;
  78. static const struct address_space_operations btrfs_aops;
  79. static const struct address_space_operations btrfs_symlink_aops;
  80. static const struct file_operations btrfs_dir_file_operations;
  81. static const struct extent_io_ops btrfs_extent_io_ops;
  82. static struct kmem_cache *btrfs_inode_cachep;
  83. struct kmem_cache *btrfs_trans_handle_cachep;
  84. struct kmem_cache *btrfs_transaction_cachep;
  85. struct kmem_cache *btrfs_path_cachep;
  86. struct kmem_cache *btrfs_free_space_cachep;
  87. #define S_SHIFT 12
  88. static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  89. [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
  90. [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
  91. [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
  92. [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
  93. [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
  94. [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
  95. [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
  96. };
  97. static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  98. static int btrfs_truncate(struct inode *inode);
  99. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  100. static noinline int cow_file_range(struct inode *inode,
  101. struct page *locked_page,
  102. u64 start, u64 end, u64 delalloc_end,
  103. int *page_started, unsigned long *nr_written,
  104. int unlock, struct btrfs_dedupe_hash *hash);
  105. static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
  106. u64 orig_start, u64 block_start,
  107. u64 block_len, u64 orig_block_len,
  108. u64 ram_bytes, int compress_type,
  109. int type);
  110. static void __endio_write_update_ordered(struct inode *inode,
  111. const u64 offset, const u64 bytes,
  112. const bool uptodate);
  113. /*
  114. * Cleanup all submitted ordered extents in specified range to handle errors
  115. * from the fill_dellaloc() callback.
  116. *
  117. * NOTE: caller must ensure that when an error happens, it can not call
  118. * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
  119. * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
  120. * to be released, which we want to happen only when finishing the ordered
  121. * extent (btrfs_finish_ordered_io()). Also note that the caller of the
  122. * fill_delalloc() callback already does proper cleanup for the first page of
  123. * the range, that is, it invokes the callback writepage_end_io_hook() for the
  124. * range of the first page.
  125. */
  126. static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
  127. const u64 offset,
  128. const u64 bytes)
  129. {
  130. return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
  131. bytes - PAGE_SIZE, false);
  132. }
  133. static int btrfs_dirty_inode(struct inode *inode);
  134. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  135. void btrfs_test_inode_set_ops(struct inode *inode)
  136. {
  137. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  138. }
  139. #endif
  140. static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
  141. struct inode *inode, struct inode *dir,
  142. const struct qstr *qstr)
  143. {
  144. int err;
  145. err = btrfs_init_acl(trans, inode, dir);
  146. if (!err)
  147. err = btrfs_xattr_security_init(trans, inode, dir, qstr);
  148. return err;
  149. }
  150. /*
  151. * this does all the hard work for inserting an inline extent into
  152. * the btree. The caller should have done a btrfs_drop_extents so that
  153. * no overlapping inline items exist in the btree
  154. */
  155. static int insert_inline_extent(struct btrfs_trans_handle *trans,
  156. struct btrfs_path *path, int extent_inserted,
  157. struct btrfs_root *root, struct inode *inode,
  158. u64 start, size_t size, size_t compressed_size,
  159. int compress_type,
  160. struct page **compressed_pages)
  161. {
  162. struct extent_buffer *leaf;
  163. struct page *page = NULL;
  164. char *kaddr;
  165. unsigned long ptr;
  166. struct btrfs_file_extent_item *ei;
  167. int err = 0;
  168. int ret;
  169. size_t cur_size = size;
  170. unsigned long offset;
  171. if (compressed_size && compressed_pages)
  172. cur_size = compressed_size;
  173. inode_add_bytes(inode, size);
  174. if (!extent_inserted) {
  175. struct btrfs_key key;
  176. size_t datasize;
  177. key.objectid = btrfs_ino(BTRFS_I(inode));
  178. key.offset = start;
  179. key.type = BTRFS_EXTENT_DATA_KEY;
  180. datasize = btrfs_file_extent_calc_inline_size(cur_size);
  181. path->leave_spinning = 1;
  182. ret = btrfs_insert_empty_item(trans, root, path, &key,
  183. datasize);
  184. if (ret) {
  185. err = ret;
  186. goto fail;
  187. }
  188. }
  189. leaf = path->nodes[0];
  190. ei = btrfs_item_ptr(leaf, path->slots[0],
  191. struct btrfs_file_extent_item);
  192. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  193. btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
  194. btrfs_set_file_extent_encryption(leaf, ei, 0);
  195. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  196. btrfs_set_file_extent_ram_bytes(leaf, ei, size);
  197. ptr = btrfs_file_extent_inline_start(ei);
  198. if (compress_type != BTRFS_COMPRESS_NONE) {
  199. struct page *cpage;
  200. int i = 0;
  201. while (compressed_size > 0) {
  202. cpage = compressed_pages[i];
  203. cur_size = min_t(unsigned long, compressed_size,
  204. PAGE_SIZE);
  205. kaddr = kmap_atomic(cpage);
  206. write_extent_buffer(leaf, kaddr, ptr, cur_size);
  207. kunmap_atomic(kaddr);
  208. i++;
  209. ptr += cur_size;
  210. compressed_size -= cur_size;
  211. }
  212. btrfs_set_file_extent_compression(leaf, ei,
  213. compress_type);
  214. } else {
  215. page = find_get_page(inode->i_mapping,
  216. start >> PAGE_SHIFT);
  217. btrfs_set_file_extent_compression(leaf, ei, 0);
  218. kaddr = kmap_atomic(page);
  219. offset = start & (PAGE_SIZE - 1);
  220. write_extent_buffer(leaf, kaddr + offset, ptr, size);
  221. kunmap_atomic(kaddr);
  222. put_page(page);
  223. }
  224. btrfs_mark_buffer_dirty(leaf);
  225. btrfs_release_path(path);
  226. /*
  227. * we're an inline extent, so nobody can
  228. * extend the file past i_size without locking
  229. * a page we already have locked.
  230. *
  231. * We must do any isize and inode updates
  232. * before we unlock the pages. Otherwise we
  233. * could end up racing with unlink.
  234. */
  235. BTRFS_I(inode)->disk_i_size = inode->i_size;
  236. ret = btrfs_update_inode(trans, root, inode);
  237. return ret;
  238. fail:
  239. return err;
  240. }
  241. /*
  242. * conditionally insert an inline extent into the file. This
  243. * does the checks required to make sure the data is small enough
  244. * to fit as an inline extent.
  245. */
  246. static noinline int cow_file_range_inline(struct btrfs_root *root,
  247. struct inode *inode, u64 start,
  248. u64 end, size_t compressed_size,
  249. int compress_type,
  250. struct page **compressed_pages)
  251. {
  252. struct btrfs_fs_info *fs_info = root->fs_info;
  253. struct btrfs_trans_handle *trans;
  254. u64 isize = i_size_read(inode);
  255. u64 actual_end = min(end + 1, isize);
  256. u64 inline_len = actual_end - start;
  257. u64 aligned_end = ALIGN(end, fs_info->sectorsize);
  258. u64 data_len = inline_len;
  259. int ret;
  260. struct btrfs_path *path;
  261. int extent_inserted = 0;
  262. u32 extent_item_size;
  263. if (compressed_size)
  264. data_len = compressed_size;
  265. if (start > 0 ||
  266. actual_end > fs_info->sectorsize ||
  267. data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
  268. (!compressed_size &&
  269. (actual_end & (fs_info->sectorsize - 1)) == 0) ||
  270. end + 1 < isize ||
  271. data_len > fs_info->max_inline) {
  272. return 1;
  273. }
  274. path = btrfs_alloc_path();
  275. if (!path)
  276. return -ENOMEM;
  277. trans = btrfs_join_transaction(root);
  278. if (IS_ERR(trans)) {
  279. btrfs_free_path(path);
  280. return PTR_ERR(trans);
  281. }
  282. trans->block_rsv = &fs_info->delalloc_block_rsv;
  283. if (compressed_size && compressed_pages)
  284. extent_item_size = btrfs_file_extent_calc_inline_size(
  285. compressed_size);
  286. else
  287. extent_item_size = btrfs_file_extent_calc_inline_size(
  288. inline_len);
  289. ret = __btrfs_drop_extents(trans, root, inode, path,
  290. start, aligned_end, NULL,
  291. 1, 1, extent_item_size, &extent_inserted);
  292. if (ret) {
  293. btrfs_abort_transaction(trans, ret);
  294. goto out;
  295. }
  296. if (isize > actual_end)
  297. inline_len = min_t(u64, isize, actual_end);
  298. ret = insert_inline_extent(trans, path, extent_inserted,
  299. root, inode, start,
  300. inline_len, compressed_size,
  301. compress_type, compressed_pages);
  302. if (ret && ret != -ENOSPC) {
  303. btrfs_abort_transaction(trans, ret);
  304. goto out;
  305. } else if (ret == -ENOSPC) {
  306. ret = 1;
  307. goto out;
  308. }
  309. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  310. btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
  311. btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
  312. out:
  313. /*
  314. * Don't forget to free the reserved space, as for inlined extent
  315. * it won't count as data extent, free them directly here.
  316. * And at reserve time, it's always aligned to page size, so
  317. * just free one page here.
  318. */
  319. btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
  320. btrfs_free_path(path);
  321. btrfs_end_transaction(trans);
  322. return ret;
  323. }
  324. struct async_extent {
  325. u64 start;
  326. u64 ram_size;
  327. u64 compressed_size;
  328. struct page **pages;
  329. unsigned long nr_pages;
  330. int compress_type;
  331. struct list_head list;
  332. };
  333. struct async_cow {
  334. struct inode *inode;
  335. struct btrfs_root *root;
  336. struct page *locked_page;
  337. u64 start;
  338. u64 end;
  339. struct list_head extents;
  340. struct btrfs_work work;
  341. };
  342. static noinline int add_async_extent(struct async_cow *cow,
  343. u64 start, u64 ram_size,
  344. u64 compressed_size,
  345. struct page **pages,
  346. unsigned long nr_pages,
  347. int compress_type)
  348. {
  349. struct async_extent *async_extent;
  350. async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
  351. BUG_ON(!async_extent); /* -ENOMEM */
  352. async_extent->start = start;
  353. async_extent->ram_size = ram_size;
  354. async_extent->compressed_size = compressed_size;
  355. async_extent->pages = pages;
  356. async_extent->nr_pages = nr_pages;
  357. async_extent->compress_type = compress_type;
  358. list_add_tail(&async_extent->list, &cow->extents);
  359. return 0;
  360. }
  361. static inline int inode_need_compress(struct inode *inode)
  362. {
  363. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  364. /* force compress */
  365. if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
  366. return 1;
  367. /* bad compression ratios */
  368. if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
  369. return 0;
  370. if (btrfs_test_opt(fs_info, COMPRESS) ||
  371. BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
  372. BTRFS_I(inode)->force_compress)
  373. return 1;
  374. return 0;
  375. }
  376. static inline void inode_should_defrag(struct btrfs_inode *inode,
  377. u64 start, u64 end, u64 num_bytes, u64 small_write)
  378. {
  379. /* If this is a small write inside eof, kick off a defrag */
  380. if (num_bytes < small_write &&
  381. (start > 0 || end + 1 < inode->disk_i_size))
  382. btrfs_add_inode_defrag(NULL, inode);
  383. }
  384. /*
  385. * we create compressed extents in two phases. The first
  386. * phase compresses a range of pages that have already been
  387. * locked (both pages and state bits are locked).
  388. *
  389. * This is done inside an ordered work queue, and the compression
  390. * is spread across many cpus. The actual IO submission is step
  391. * two, and the ordered work queue takes care of making sure that
  392. * happens in the same order things were put onto the queue by
  393. * writepages and friends.
  394. *
  395. * If this code finds it can't get good compression, it puts an
  396. * entry onto the work queue to write the uncompressed bytes. This
  397. * makes sure that both compressed inodes and uncompressed inodes
  398. * are written in the same order that the flusher thread sent them
  399. * down.
  400. */
  401. static noinline void compress_file_range(struct inode *inode,
  402. struct page *locked_page,
  403. u64 start, u64 end,
  404. struct async_cow *async_cow,
  405. int *num_added)
  406. {
  407. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  408. struct btrfs_root *root = BTRFS_I(inode)->root;
  409. u64 num_bytes;
  410. u64 blocksize = fs_info->sectorsize;
  411. u64 actual_end;
  412. u64 isize = i_size_read(inode);
  413. int ret = 0;
  414. struct page **pages = NULL;
  415. unsigned long nr_pages;
  416. unsigned long total_compressed = 0;
  417. unsigned long total_in = 0;
  418. int i;
  419. int will_compress;
  420. int compress_type = fs_info->compress_type;
  421. int redirty = 0;
  422. inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
  423. SZ_16K);
  424. actual_end = min_t(u64, isize, end + 1);
  425. again:
  426. will_compress = 0;
  427. nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
  428. BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
  429. nr_pages = min_t(unsigned long, nr_pages,
  430. BTRFS_MAX_COMPRESSED / PAGE_SIZE);
  431. /*
  432. * we don't want to send crud past the end of i_size through
  433. * compression, that's just a waste of CPU time. So, if the
  434. * end of the file is before the start of our current
  435. * requested range of bytes, we bail out to the uncompressed
  436. * cleanup code that can deal with all of this.
  437. *
  438. * It isn't really the fastest way to fix things, but this is a
  439. * very uncommon corner.
  440. */
  441. if (actual_end <= start)
  442. goto cleanup_and_bail_uncompressed;
  443. total_compressed = actual_end - start;
  444. /*
  445. * skip compression for a small file range(<=blocksize) that
  446. * isn't an inline extent, since it doesn't save disk space at all.
  447. */
  448. if (total_compressed <= blocksize &&
  449. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  450. goto cleanup_and_bail_uncompressed;
  451. total_compressed = min_t(unsigned long, total_compressed,
  452. BTRFS_MAX_UNCOMPRESSED);
  453. num_bytes = ALIGN(end - start + 1, blocksize);
  454. num_bytes = max(blocksize, num_bytes);
  455. total_in = 0;
  456. ret = 0;
  457. /*
  458. * we do compression for mount -o compress and when the
  459. * inode has not been flagged as nocompress. This flag can
  460. * change at any time if we discover bad compression ratios.
  461. */
  462. if (inode_need_compress(inode)) {
  463. WARN_ON(pages);
  464. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
  465. if (!pages) {
  466. /* just bail out to the uncompressed code */
  467. goto cont;
  468. }
  469. if (BTRFS_I(inode)->force_compress)
  470. compress_type = BTRFS_I(inode)->force_compress;
  471. /*
  472. * we need to call clear_page_dirty_for_io on each
  473. * page in the range. Otherwise applications with the file
  474. * mmap'd can wander in and change the page contents while
  475. * we are compressing them.
  476. *
  477. * If the compression fails for any reason, we set the pages
  478. * dirty again later on.
  479. */
  480. extent_range_clear_dirty_for_io(inode, start, end);
  481. redirty = 1;
  482. ret = btrfs_compress_pages(compress_type,
  483. inode->i_mapping, start,
  484. pages,
  485. &nr_pages,
  486. &total_in,
  487. &total_compressed);
  488. if (!ret) {
  489. unsigned long offset = total_compressed &
  490. (PAGE_SIZE - 1);
  491. struct page *page = pages[nr_pages - 1];
  492. char *kaddr;
  493. /* zero the tail end of the last page, we might be
  494. * sending it down to disk
  495. */
  496. if (offset) {
  497. kaddr = kmap_atomic(page);
  498. memset(kaddr + offset, 0,
  499. PAGE_SIZE - offset);
  500. kunmap_atomic(kaddr);
  501. }
  502. will_compress = 1;
  503. }
  504. }
  505. cont:
  506. if (start == 0) {
  507. /* lets try to make an inline extent */
  508. if (ret || total_in < (actual_end - start)) {
  509. /* we didn't compress the entire range, try
  510. * to make an uncompressed inline extent.
  511. */
  512. ret = cow_file_range_inline(root, inode, start, end,
  513. 0, BTRFS_COMPRESS_NONE, NULL);
  514. } else {
  515. /* try making a compressed inline extent */
  516. ret = cow_file_range_inline(root, inode, start, end,
  517. total_compressed,
  518. compress_type, pages);
  519. }
  520. if (ret <= 0) {
  521. unsigned long clear_flags = EXTENT_DELALLOC |
  522. EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
  523. unsigned long page_error_op;
  524. clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
  525. page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
  526. /*
  527. * inline extent creation worked or returned error,
  528. * we don't need to create any more async work items.
  529. * Unlock and free up our temp pages.
  530. */
  531. extent_clear_unlock_delalloc(inode, start, end, end,
  532. NULL, clear_flags,
  533. PAGE_UNLOCK |
  534. PAGE_CLEAR_DIRTY |
  535. PAGE_SET_WRITEBACK |
  536. page_error_op |
  537. PAGE_END_WRITEBACK);
  538. if (ret == 0)
  539. btrfs_free_reserved_data_space_noquota(inode,
  540. start,
  541. end - start + 1);
  542. goto free_pages_out;
  543. }
  544. }
  545. if (will_compress) {
  546. /*
  547. * we aren't doing an inline extent round the compressed size
  548. * up to a block size boundary so the allocator does sane
  549. * things
  550. */
  551. total_compressed = ALIGN(total_compressed, blocksize);
  552. /*
  553. * one last check to make sure the compression is really a
  554. * win, compare the page count read with the blocks on disk
  555. */
  556. total_in = ALIGN(total_in, PAGE_SIZE);
  557. if (total_compressed >= total_in) {
  558. will_compress = 0;
  559. } else {
  560. num_bytes = total_in;
  561. *num_added += 1;
  562. /*
  563. * The async work queues will take care of doing actual
  564. * allocation on disk for these compressed pages, and
  565. * will submit them to the elevator.
  566. */
  567. add_async_extent(async_cow, start, num_bytes,
  568. total_compressed, pages, nr_pages,
  569. compress_type);
  570. if (start + num_bytes < end) {
  571. start += num_bytes;
  572. pages = NULL;
  573. cond_resched();
  574. goto again;
  575. }
  576. return;
  577. }
  578. }
  579. if (pages) {
  580. /*
  581. * the compression code ran but failed to make things smaller,
  582. * free any pages it allocated and our page pointer array
  583. */
  584. for (i = 0; i < nr_pages; i++) {
  585. WARN_ON(pages[i]->mapping);
  586. put_page(pages[i]);
  587. }
  588. kfree(pages);
  589. pages = NULL;
  590. total_compressed = 0;
  591. nr_pages = 0;
  592. /* flag the file so we don't compress in the future */
  593. if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
  594. !(BTRFS_I(inode)->force_compress)) {
  595. BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
  596. }
  597. }
  598. cleanup_and_bail_uncompressed:
  599. /*
  600. * No compression, but we still need to write the pages in the file
  601. * we've been given so far. redirty the locked page if it corresponds
  602. * to our extent and set things up for the async work queue to run
  603. * cow_file_range to do the normal delalloc dance.
  604. */
  605. if (page_offset(locked_page) >= start &&
  606. page_offset(locked_page) <= end)
  607. __set_page_dirty_nobuffers(locked_page);
  608. /* unlocked later on in the async handlers */
  609. if (redirty)
  610. extent_range_redirty_for_io(inode, start, end);
  611. add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
  612. BTRFS_COMPRESS_NONE);
  613. *num_added += 1;
  614. return;
  615. free_pages_out:
  616. for (i = 0; i < nr_pages; i++) {
  617. WARN_ON(pages[i]->mapping);
  618. put_page(pages[i]);
  619. }
  620. kfree(pages);
  621. }
  622. static void free_async_extent_pages(struct async_extent *async_extent)
  623. {
  624. int i;
  625. if (!async_extent->pages)
  626. return;
  627. for (i = 0; i < async_extent->nr_pages; i++) {
  628. WARN_ON(async_extent->pages[i]->mapping);
  629. put_page(async_extent->pages[i]);
  630. }
  631. kfree(async_extent->pages);
  632. async_extent->nr_pages = 0;
  633. async_extent->pages = NULL;
  634. }
  635. /*
  636. * phase two of compressed writeback. This is the ordered portion
  637. * of the code, which only gets called in the order the work was
  638. * queued. We walk all the async extents created by compress_file_range
  639. * and send them down to the disk.
  640. */
  641. static noinline void submit_compressed_extents(struct inode *inode,
  642. struct async_cow *async_cow)
  643. {
  644. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  645. struct async_extent *async_extent;
  646. u64 alloc_hint = 0;
  647. struct btrfs_key ins;
  648. struct extent_map *em;
  649. struct btrfs_root *root = BTRFS_I(inode)->root;
  650. struct extent_io_tree *io_tree;
  651. int ret = 0;
  652. again:
  653. while (!list_empty(&async_cow->extents)) {
  654. async_extent = list_entry(async_cow->extents.next,
  655. struct async_extent, list);
  656. list_del(&async_extent->list);
  657. io_tree = &BTRFS_I(inode)->io_tree;
  658. retry:
  659. /* did the compression code fall back to uncompressed IO? */
  660. if (!async_extent->pages) {
  661. int page_started = 0;
  662. unsigned long nr_written = 0;
  663. lock_extent(io_tree, async_extent->start,
  664. async_extent->start +
  665. async_extent->ram_size - 1);
  666. /* allocate blocks */
  667. ret = cow_file_range(inode, async_cow->locked_page,
  668. async_extent->start,
  669. async_extent->start +
  670. async_extent->ram_size - 1,
  671. async_extent->start +
  672. async_extent->ram_size - 1,
  673. &page_started, &nr_written, 0,
  674. NULL);
  675. /* JDM XXX */
  676. /*
  677. * if page_started, cow_file_range inserted an
  678. * inline extent and took care of all the unlocking
  679. * and IO for us. Otherwise, we need to submit
  680. * all those pages down to the drive.
  681. */
  682. if (!page_started && !ret)
  683. extent_write_locked_range(io_tree,
  684. inode, async_extent->start,
  685. async_extent->start +
  686. async_extent->ram_size - 1,
  687. btrfs_get_extent,
  688. WB_SYNC_ALL);
  689. else if (ret)
  690. unlock_page(async_cow->locked_page);
  691. kfree(async_extent);
  692. cond_resched();
  693. continue;
  694. }
  695. lock_extent(io_tree, async_extent->start,
  696. async_extent->start + async_extent->ram_size - 1);
  697. ret = btrfs_reserve_extent(root, async_extent->ram_size,
  698. async_extent->compressed_size,
  699. async_extent->compressed_size,
  700. 0, alloc_hint, &ins, 1, 1);
  701. if (ret) {
  702. free_async_extent_pages(async_extent);
  703. if (ret == -ENOSPC) {
  704. unlock_extent(io_tree, async_extent->start,
  705. async_extent->start +
  706. async_extent->ram_size - 1);
  707. /*
  708. * we need to redirty the pages if we decide to
  709. * fallback to uncompressed IO, otherwise we
  710. * will not submit these pages down to lower
  711. * layers.
  712. */
  713. extent_range_redirty_for_io(inode,
  714. async_extent->start,
  715. async_extent->start +
  716. async_extent->ram_size - 1);
  717. goto retry;
  718. }
  719. goto out_free;
  720. }
  721. /*
  722. * here we're doing allocation and writeback of the
  723. * compressed pages
  724. */
  725. em = create_io_em(inode, async_extent->start,
  726. async_extent->ram_size, /* len */
  727. async_extent->start, /* orig_start */
  728. ins.objectid, /* block_start */
  729. ins.offset, /* block_len */
  730. ins.offset, /* orig_block_len */
  731. async_extent->ram_size, /* ram_bytes */
  732. async_extent->compress_type,
  733. BTRFS_ORDERED_COMPRESSED);
  734. if (IS_ERR(em))
  735. /* ret value is not necessary due to void function */
  736. goto out_free_reserve;
  737. free_extent_map(em);
  738. ret = btrfs_add_ordered_extent_compress(inode,
  739. async_extent->start,
  740. ins.objectid,
  741. async_extent->ram_size,
  742. ins.offset,
  743. BTRFS_ORDERED_COMPRESSED,
  744. async_extent->compress_type);
  745. if (ret) {
  746. btrfs_drop_extent_cache(BTRFS_I(inode),
  747. async_extent->start,
  748. async_extent->start +
  749. async_extent->ram_size - 1, 0);
  750. goto out_free_reserve;
  751. }
  752. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  753. /*
  754. * clear dirty, set writeback and unlock the pages.
  755. */
  756. extent_clear_unlock_delalloc(inode, async_extent->start,
  757. async_extent->start +
  758. async_extent->ram_size - 1,
  759. async_extent->start +
  760. async_extent->ram_size - 1,
  761. NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
  762. PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
  763. PAGE_SET_WRITEBACK);
  764. if (btrfs_submit_compressed_write(inode,
  765. async_extent->start,
  766. async_extent->ram_size,
  767. ins.objectid,
  768. ins.offset, async_extent->pages,
  769. async_extent->nr_pages)) {
  770. struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
  771. struct page *p = async_extent->pages[0];
  772. const u64 start = async_extent->start;
  773. const u64 end = start + async_extent->ram_size - 1;
  774. p->mapping = inode->i_mapping;
  775. tree->ops->writepage_end_io_hook(p, start, end,
  776. NULL, 0);
  777. p->mapping = NULL;
  778. extent_clear_unlock_delalloc(inode, start, end, end,
  779. NULL, 0,
  780. PAGE_END_WRITEBACK |
  781. PAGE_SET_ERROR);
  782. free_async_extent_pages(async_extent);
  783. }
  784. alloc_hint = ins.objectid + ins.offset;
  785. kfree(async_extent);
  786. cond_resched();
  787. }
  788. return;
  789. out_free_reserve:
  790. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  791. btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
  792. out_free:
  793. extent_clear_unlock_delalloc(inode, async_extent->start,
  794. async_extent->start +
  795. async_extent->ram_size - 1,
  796. async_extent->start +
  797. async_extent->ram_size - 1,
  798. NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
  799. EXTENT_DELALLOC_NEW |
  800. EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
  801. PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
  802. PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
  803. PAGE_SET_ERROR);
  804. free_async_extent_pages(async_extent);
  805. kfree(async_extent);
  806. goto again;
  807. }
  808. static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
  809. u64 num_bytes)
  810. {
  811. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  812. struct extent_map *em;
  813. u64 alloc_hint = 0;
  814. read_lock(&em_tree->lock);
  815. em = search_extent_mapping(em_tree, start, num_bytes);
  816. if (em) {
  817. /*
  818. * if block start isn't an actual block number then find the
  819. * first block in this inode and use that as a hint. If that
  820. * block is also bogus then just don't worry about it.
  821. */
  822. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  823. free_extent_map(em);
  824. em = search_extent_mapping(em_tree, 0, 0);
  825. if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
  826. alloc_hint = em->block_start;
  827. if (em)
  828. free_extent_map(em);
  829. } else {
  830. alloc_hint = em->block_start;
  831. free_extent_map(em);
  832. }
  833. }
  834. read_unlock(&em_tree->lock);
  835. return alloc_hint;
  836. }
  837. /*
  838. * when extent_io.c finds a delayed allocation range in the file,
  839. * the call backs end up in this code. The basic idea is to
  840. * allocate extents on disk for the range, and create ordered data structs
  841. * in ram to track those extents.
  842. *
  843. * locked_page is the page that writepage had locked already. We use
  844. * it to make sure we don't do extra locks or unlocks.
  845. *
  846. * *page_started is set to one if we unlock locked_page and do everything
  847. * required to start IO on it. It may be clean and already done with
  848. * IO when we return.
  849. */
  850. static noinline int cow_file_range(struct inode *inode,
  851. struct page *locked_page,
  852. u64 start, u64 end, u64 delalloc_end,
  853. int *page_started, unsigned long *nr_written,
  854. int unlock, struct btrfs_dedupe_hash *hash)
  855. {
  856. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  857. struct btrfs_root *root = BTRFS_I(inode)->root;
  858. u64 alloc_hint = 0;
  859. u64 num_bytes;
  860. unsigned long ram_size;
  861. u64 disk_num_bytes;
  862. u64 cur_alloc_size = 0;
  863. u64 blocksize = fs_info->sectorsize;
  864. struct btrfs_key ins;
  865. struct extent_map *em;
  866. unsigned clear_bits;
  867. unsigned long page_ops;
  868. bool extent_reserved = false;
  869. int ret = 0;
  870. if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
  871. WARN_ON_ONCE(1);
  872. ret = -EINVAL;
  873. goto out_unlock;
  874. }
  875. num_bytes = ALIGN(end - start + 1, blocksize);
  876. num_bytes = max(blocksize, num_bytes);
  877. disk_num_bytes = num_bytes;
  878. inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
  879. if (start == 0) {
  880. /* lets try to make an inline extent */
  881. ret = cow_file_range_inline(root, inode, start, end, 0,
  882. BTRFS_COMPRESS_NONE, NULL);
  883. if (ret == 0) {
  884. extent_clear_unlock_delalloc(inode, start, end,
  885. delalloc_end, NULL,
  886. EXTENT_LOCKED | EXTENT_DELALLOC |
  887. EXTENT_DELALLOC_NEW |
  888. EXTENT_DEFRAG, PAGE_UNLOCK |
  889. PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
  890. PAGE_END_WRITEBACK);
  891. btrfs_free_reserved_data_space_noquota(inode, start,
  892. end - start + 1);
  893. *nr_written = *nr_written +
  894. (end - start + PAGE_SIZE) / PAGE_SIZE;
  895. *page_started = 1;
  896. goto out;
  897. } else if (ret < 0) {
  898. goto out_unlock;
  899. }
  900. }
  901. BUG_ON(disk_num_bytes >
  902. btrfs_super_total_bytes(fs_info->super_copy));
  903. alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
  904. btrfs_drop_extent_cache(BTRFS_I(inode), start,
  905. start + num_bytes - 1, 0);
  906. while (disk_num_bytes > 0) {
  907. cur_alloc_size = disk_num_bytes;
  908. ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
  909. fs_info->sectorsize, 0, alloc_hint,
  910. &ins, 1, 1);
  911. if (ret < 0)
  912. goto out_unlock;
  913. cur_alloc_size = ins.offset;
  914. extent_reserved = true;
  915. ram_size = ins.offset;
  916. em = create_io_em(inode, start, ins.offset, /* len */
  917. start, /* orig_start */
  918. ins.objectid, /* block_start */
  919. ins.offset, /* block_len */
  920. ins.offset, /* orig_block_len */
  921. ram_size, /* ram_bytes */
  922. BTRFS_COMPRESS_NONE, /* compress_type */
  923. BTRFS_ORDERED_REGULAR /* type */);
  924. if (IS_ERR(em))
  925. goto out_reserve;
  926. free_extent_map(em);
  927. ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
  928. ram_size, cur_alloc_size, 0);
  929. if (ret)
  930. goto out_drop_extent_cache;
  931. if (root->root_key.objectid ==
  932. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  933. ret = btrfs_reloc_clone_csums(inode, start,
  934. cur_alloc_size);
  935. /*
  936. * Only drop cache here, and process as normal.
  937. *
  938. * We must not allow extent_clear_unlock_delalloc()
  939. * at out_unlock label to free meta of this ordered
  940. * extent, as its meta should be freed by
  941. * btrfs_finish_ordered_io().
  942. *
  943. * So we must continue until @start is increased to
  944. * skip current ordered extent.
  945. */
  946. if (ret)
  947. btrfs_drop_extent_cache(BTRFS_I(inode), start,
  948. start + ram_size - 1, 0);
  949. }
  950. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  951. /* we're not doing compressed IO, don't unlock the first
  952. * page (which the caller expects to stay locked), don't
  953. * clear any dirty bits and don't set any writeback bits
  954. *
  955. * Do set the Private2 bit so we know this page was properly
  956. * setup for writepage
  957. */
  958. page_ops = unlock ? PAGE_UNLOCK : 0;
  959. page_ops |= PAGE_SET_PRIVATE2;
  960. extent_clear_unlock_delalloc(inode, start,
  961. start + ram_size - 1,
  962. delalloc_end, locked_page,
  963. EXTENT_LOCKED | EXTENT_DELALLOC,
  964. page_ops);
  965. if (disk_num_bytes < cur_alloc_size)
  966. disk_num_bytes = 0;
  967. else
  968. disk_num_bytes -= cur_alloc_size;
  969. num_bytes -= cur_alloc_size;
  970. alloc_hint = ins.objectid + ins.offset;
  971. start += cur_alloc_size;
  972. extent_reserved = false;
  973. /*
  974. * btrfs_reloc_clone_csums() error, since start is increased
  975. * extent_clear_unlock_delalloc() at out_unlock label won't
  976. * free metadata of current ordered extent, we're OK to exit.
  977. */
  978. if (ret)
  979. goto out_unlock;
  980. }
  981. out:
  982. return ret;
  983. out_drop_extent_cache:
  984. btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
  985. out_reserve:
  986. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  987. btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
  988. out_unlock:
  989. clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
  990. EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
  991. page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
  992. PAGE_END_WRITEBACK;
  993. /*
  994. * If we reserved an extent for our delalloc range (or a subrange) and
  995. * failed to create the respective ordered extent, then it means that
  996. * when we reserved the extent we decremented the extent's size from
  997. * the data space_info's bytes_may_use counter and incremented the
  998. * space_info's bytes_reserved counter by the same amount. We must make
  999. * sure extent_clear_unlock_delalloc() does not try to decrement again
  1000. * the data space_info's bytes_may_use counter, therefore we do not pass
  1001. * it the flag EXTENT_CLEAR_DATA_RESV.
  1002. */
  1003. if (extent_reserved) {
  1004. extent_clear_unlock_delalloc(inode, start,
  1005. start + cur_alloc_size,
  1006. start + cur_alloc_size,
  1007. locked_page,
  1008. clear_bits,
  1009. page_ops);
  1010. start += cur_alloc_size;
  1011. if (start >= end)
  1012. goto out;
  1013. }
  1014. extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
  1015. locked_page,
  1016. clear_bits | EXTENT_CLEAR_DATA_RESV,
  1017. page_ops);
  1018. goto out;
  1019. }
  1020. /*
  1021. * work queue call back to started compression on a file and pages
  1022. */
  1023. static noinline void async_cow_start(struct btrfs_work *work)
  1024. {
  1025. struct async_cow *async_cow;
  1026. int num_added = 0;
  1027. async_cow = container_of(work, struct async_cow, work);
  1028. compress_file_range(async_cow->inode, async_cow->locked_page,
  1029. async_cow->start, async_cow->end, async_cow,
  1030. &num_added);
  1031. if (num_added == 0) {
  1032. btrfs_add_delayed_iput(async_cow->inode);
  1033. async_cow->inode = NULL;
  1034. }
  1035. }
  1036. /*
  1037. * work queue call back to submit previously compressed pages
  1038. */
  1039. static noinline void async_cow_submit(struct btrfs_work *work)
  1040. {
  1041. struct btrfs_fs_info *fs_info;
  1042. struct async_cow *async_cow;
  1043. struct btrfs_root *root;
  1044. unsigned long nr_pages;
  1045. async_cow = container_of(work, struct async_cow, work);
  1046. root = async_cow->root;
  1047. fs_info = root->fs_info;
  1048. nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
  1049. PAGE_SHIFT;
  1050. /*
  1051. * atomic_sub_return implies a barrier for waitqueue_active
  1052. */
  1053. if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
  1054. 5 * SZ_1M &&
  1055. waitqueue_active(&fs_info->async_submit_wait))
  1056. wake_up(&fs_info->async_submit_wait);
  1057. if (async_cow->inode)
  1058. submit_compressed_extents(async_cow->inode, async_cow);
  1059. }
  1060. static noinline void async_cow_free(struct btrfs_work *work)
  1061. {
  1062. struct async_cow *async_cow;
  1063. async_cow = container_of(work, struct async_cow, work);
  1064. if (async_cow->inode)
  1065. btrfs_add_delayed_iput(async_cow->inode);
  1066. kfree(async_cow);
  1067. }
  1068. static int cow_file_range_async(struct inode *inode, struct page *locked_page,
  1069. u64 start, u64 end, int *page_started,
  1070. unsigned long *nr_written)
  1071. {
  1072. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1073. struct async_cow *async_cow;
  1074. struct btrfs_root *root = BTRFS_I(inode)->root;
  1075. unsigned long nr_pages;
  1076. u64 cur_end;
  1077. clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
  1078. 1, 0, NULL, GFP_NOFS);
  1079. while (start < end) {
  1080. async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
  1081. BUG_ON(!async_cow); /* -ENOMEM */
  1082. async_cow->inode = igrab(inode);
  1083. async_cow->root = root;
  1084. async_cow->locked_page = locked_page;
  1085. async_cow->start = start;
  1086. if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
  1087. !btrfs_test_opt(fs_info, FORCE_COMPRESS))
  1088. cur_end = end;
  1089. else
  1090. cur_end = min(end, start + SZ_512K - 1);
  1091. async_cow->end = cur_end;
  1092. INIT_LIST_HEAD(&async_cow->extents);
  1093. btrfs_init_work(&async_cow->work,
  1094. btrfs_delalloc_helper,
  1095. async_cow_start, async_cow_submit,
  1096. async_cow_free);
  1097. nr_pages = (cur_end - start + PAGE_SIZE) >>
  1098. PAGE_SHIFT;
  1099. atomic_add(nr_pages, &fs_info->async_delalloc_pages);
  1100. btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
  1101. while (atomic_read(&fs_info->async_submit_draining) &&
  1102. atomic_read(&fs_info->async_delalloc_pages)) {
  1103. wait_event(fs_info->async_submit_wait,
  1104. (atomic_read(&fs_info->async_delalloc_pages) ==
  1105. 0));
  1106. }
  1107. *nr_written += nr_pages;
  1108. start = cur_end + 1;
  1109. }
  1110. *page_started = 1;
  1111. return 0;
  1112. }
  1113. static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
  1114. u64 bytenr, u64 num_bytes)
  1115. {
  1116. int ret;
  1117. struct btrfs_ordered_sum *sums;
  1118. LIST_HEAD(list);
  1119. ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
  1120. bytenr + num_bytes - 1, &list, 0);
  1121. if (ret == 0 && list_empty(&list))
  1122. return 0;
  1123. while (!list_empty(&list)) {
  1124. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  1125. list_del(&sums->list);
  1126. kfree(sums);
  1127. }
  1128. return 1;
  1129. }
  1130. /*
  1131. * when nowcow writeback call back. This checks for snapshots or COW copies
  1132. * of the extents that exist in the file, and COWs the file as required.
  1133. *
  1134. * If no cow copies or snapshots exist, we write directly to the existing
  1135. * blocks on disk
  1136. */
  1137. static noinline int run_delalloc_nocow(struct inode *inode,
  1138. struct page *locked_page,
  1139. u64 start, u64 end, int *page_started, int force,
  1140. unsigned long *nr_written)
  1141. {
  1142. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1143. struct btrfs_root *root = BTRFS_I(inode)->root;
  1144. struct extent_buffer *leaf;
  1145. struct btrfs_path *path;
  1146. struct btrfs_file_extent_item *fi;
  1147. struct btrfs_key found_key;
  1148. struct extent_map *em;
  1149. u64 cow_start;
  1150. u64 cur_offset;
  1151. u64 extent_end;
  1152. u64 extent_offset;
  1153. u64 disk_bytenr;
  1154. u64 num_bytes;
  1155. u64 disk_num_bytes;
  1156. u64 ram_bytes;
  1157. int extent_type;
  1158. int ret, err;
  1159. int type;
  1160. int nocow;
  1161. int check_prev = 1;
  1162. bool nolock;
  1163. u64 ino = btrfs_ino(BTRFS_I(inode));
  1164. path = btrfs_alloc_path();
  1165. if (!path) {
  1166. extent_clear_unlock_delalloc(inode, start, end, end,
  1167. locked_page,
  1168. EXTENT_LOCKED | EXTENT_DELALLOC |
  1169. EXTENT_DO_ACCOUNTING |
  1170. EXTENT_DEFRAG, PAGE_UNLOCK |
  1171. PAGE_CLEAR_DIRTY |
  1172. PAGE_SET_WRITEBACK |
  1173. PAGE_END_WRITEBACK);
  1174. return -ENOMEM;
  1175. }
  1176. nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
  1177. cow_start = (u64)-1;
  1178. cur_offset = start;
  1179. while (1) {
  1180. ret = btrfs_lookup_file_extent(NULL, root, path, ino,
  1181. cur_offset, 0);
  1182. if (ret < 0)
  1183. goto error;
  1184. if (ret > 0 && path->slots[0] > 0 && check_prev) {
  1185. leaf = path->nodes[0];
  1186. btrfs_item_key_to_cpu(leaf, &found_key,
  1187. path->slots[0] - 1);
  1188. if (found_key.objectid == ino &&
  1189. found_key.type == BTRFS_EXTENT_DATA_KEY)
  1190. path->slots[0]--;
  1191. }
  1192. check_prev = 0;
  1193. next_slot:
  1194. leaf = path->nodes[0];
  1195. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  1196. ret = btrfs_next_leaf(root, path);
  1197. if (ret < 0)
  1198. goto error;
  1199. if (ret > 0)
  1200. break;
  1201. leaf = path->nodes[0];
  1202. }
  1203. nocow = 0;
  1204. disk_bytenr = 0;
  1205. num_bytes = 0;
  1206. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1207. if (found_key.objectid > ino)
  1208. break;
  1209. if (WARN_ON_ONCE(found_key.objectid < ino) ||
  1210. found_key.type < BTRFS_EXTENT_DATA_KEY) {
  1211. path->slots[0]++;
  1212. goto next_slot;
  1213. }
  1214. if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
  1215. found_key.offset > end)
  1216. break;
  1217. if (found_key.offset > cur_offset) {
  1218. extent_end = found_key.offset;
  1219. extent_type = 0;
  1220. goto out_check;
  1221. }
  1222. fi = btrfs_item_ptr(leaf, path->slots[0],
  1223. struct btrfs_file_extent_item);
  1224. extent_type = btrfs_file_extent_type(leaf, fi);
  1225. ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
  1226. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  1227. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1228. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1229. extent_offset = btrfs_file_extent_offset(leaf, fi);
  1230. extent_end = found_key.offset +
  1231. btrfs_file_extent_num_bytes(leaf, fi);
  1232. disk_num_bytes =
  1233. btrfs_file_extent_disk_num_bytes(leaf, fi);
  1234. if (extent_end <= start) {
  1235. path->slots[0]++;
  1236. goto next_slot;
  1237. }
  1238. if (disk_bytenr == 0)
  1239. goto out_check;
  1240. if (btrfs_file_extent_compression(leaf, fi) ||
  1241. btrfs_file_extent_encryption(leaf, fi) ||
  1242. btrfs_file_extent_other_encoding(leaf, fi))
  1243. goto out_check;
  1244. if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
  1245. goto out_check;
  1246. if (btrfs_extent_readonly(fs_info, disk_bytenr))
  1247. goto out_check;
  1248. if (btrfs_cross_ref_exist(root, ino,
  1249. found_key.offset -
  1250. extent_offset, disk_bytenr))
  1251. goto out_check;
  1252. disk_bytenr += extent_offset;
  1253. disk_bytenr += cur_offset - found_key.offset;
  1254. num_bytes = min(end + 1, extent_end) - cur_offset;
  1255. /*
  1256. * if there are pending snapshots for this root,
  1257. * we fall into common COW way.
  1258. */
  1259. if (!nolock) {
  1260. err = btrfs_start_write_no_snapshoting(root);
  1261. if (!err)
  1262. goto out_check;
  1263. }
  1264. /*
  1265. * force cow if csum exists in the range.
  1266. * this ensure that csum for a given extent are
  1267. * either valid or do not exist.
  1268. */
  1269. if (csum_exist_in_range(fs_info, disk_bytenr,
  1270. num_bytes)) {
  1271. if (!nolock)
  1272. btrfs_end_write_no_snapshoting(root);
  1273. goto out_check;
  1274. }
  1275. if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
  1276. if (!nolock)
  1277. btrfs_end_write_no_snapshoting(root);
  1278. goto out_check;
  1279. }
  1280. nocow = 1;
  1281. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  1282. extent_end = found_key.offset +
  1283. btrfs_file_extent_inline_len(leaf,
  1284. path->slots[0], fi);
  1285. extent_end = ALIGN(extent_end,
  1286. fs_info->sectorsize);
  1287. } else {
  1288. BUG_ON(1);
  1289. }
  1290. out_check:
  1291. if (extent_end <= start) {
  1292. path->slots[0]++;
  1293. if (!nolock && nocow)
  1294. btrfs_end_write_no_snapshoting(root);
  1295. if (nocow)
  1296. btrfs_dec_nocow_writers(fs_info, disk_bytenr);
  1297. goto next_slot;
  1298. }
  1299. if (!nocow) {
  1300. if (cow_start == (u64)-1)
  1301. cow_start = cur_offset;
  1302. cur_offset = extent_end;
  1303. if (cur_offset > end)
  1304. break;
  1305. path->slots[0]++;
  1306. goto next_slot;
  1307. }
  1308. btrfs_release_path(path);
  1309. if (cow_start != (u64)-1) {
  1310. ret = cow_file_range(inode, locked_page,
  1311. cow_start, found_key.offset - 1,
  1312. end, page_started, nr_written, 1,
  1313. NULL);
  1314. if (ret) {
  1315. if (!nolock && nocow)
  1316. btrfs_end_write_no_snapshoting(root);
  1317. if (nocow)
  1318. btrfs_dec_nocow_writers(fs_info,
  1319. disk_bytenr);
  1320. goto error;
  1321. }
  1322. cow_start = (u64)-1;
  1323. }
  1324. if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1325. u64 orig_start = found_key.offset - extent_offset;
  1326. em = create_io_em(inode, cur_offset, num_bytes,
  1327. orig_start,
  1328. disk_bytenr, /* block_start */
  1329. num_bytes, /* block_len */
  1330. disk_num_bytes, /* orig_block_len */
  1331. ram_bytes, BTRFS_COMPRESS_NONE,
  1332. BTRFS_ORDERED_PREALLOC);
  1333. if (IS_ERR(em)) {
  1334. if (!nolock && nocow)
  1335. btrfs_end_write_no_snapshoting(root);
  1336. if (nocow)
  1337. btrfs_dec_nocow_writers(fs_info,
  1338. disk_bytenr);
  1339. ret = PTR_ERR(em);
  1340. goto error;
  1341. }
  1342. free_extent_map(em);
  1343. }
  1344. if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1345. type = BTRFS_ORDERED_PREALLOC;
  1346. } else {
  1347. type = BTRFS_ORDERED_NOCOW;
  1348. }
  1349. ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
  1350. num_bytes, num_bytes, type);
  1351. if (nocow)
  1352. btrfs_dec_nocow_writers(fs_info, disk_bytenr);
  1353. BUG_ON(ret); /* -ENOMEM */
  1354. if (root->root_key.objectid ==
  1355. BTRFS_DATA_RELOC_TREE_OBJECTID)
  1356. /*
  1357. * Error handled later, as we must prevent
  1358. * extent_clear_unlock_delalloc() in error handler
  1359. * from freeing metadata of created ordered extent.
  1360. */
  1361. ret = btrfs_reloc_clone_csums(inode, cur_offset,
  1362. num_bytes);
  1363. extent_clear_unlock_delalloc(inode, cur_offset,
  1364. cur_offset + num_bytes - 1, end,
  1365. locked_page, EXTENT_LOCKED |
  1366. EXTENT_DELALLOC |
  1367. EXTENT_CLEAR_DATA_RESV,
  1368. PAGE_UNLOCK | PAGE_SET_PRIVATE2);
  1369. if (!nolock && nocow)
  1370. btrfs_end_write_no_snapshoting(root);
  1371. cur_offset = extent_end;
  1372. /*
  1373. * btrfs_reloc_clone_csums() error, now we're OK to call error
  1374. * handler, as metadata for created ordered extent will only
  1375. * be freed by btrfs_finish_ordered_io().
  1376. */
  1377. if (ret)
  1378. goto error;
  1379. if (cur_offset > end)
  1380. break;
  1381. }
  1382. btrfs_release_path(path);
  1383. if (cur_offset <= end && cow_start == (u64)-1) {
  1384. cow_start = cur_offset;
  1385. cur_offset = end;
  1386. }
  1387. if (cow_start != (u64)-1) {
  1388. ret = cow_file_range(inode, locked_page, cow_start, end, end,
  1389. page_started, nr_written, 1, NULL);
  1390. if (ret)
  1391. goto error;
  1392. }
  1393. error:
  1394. if (ret && cur_offset < end)
  1395. extent_clear_unlock_delalloc(inode, cur_offset, end, end,
  1396. locked_page, EXTENT_LOCKED |
  1397. EXTENT_DELALLOC | EXTENT_DEFRAG |
  1398. EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
  1399. PAGE_CLEAR_DIRTY |
  1400. PAGE_SET_WRITEBACK |
  1401. PAGE_END_WRITEBACK);
  1402. btrfs_free_path(path);
  1403. return ret;
  1404. }
  1405. static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
  1406. {
  1407. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
  1408. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
  1409. return 0;
  1410. /*
  1411. * @defrag_bytes is a hint value, no spinlock held here,
  1412. * if is not zero, it means the file is defragging.
  1413. * Force cow if given extent needs to be defragged.
  1414. */
  1415. if (BTRFS_I(inode)->defrag_bytes &&
  1416. test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
  1417. EXTENT_DEFRAG, 0, NULL))
  1418. return 1;
  1419. return 0;
  1420. }
  1421. /*
  1422. * extent_io.c call back to do delayed allocation processing
  1423. */
  1424. static int run_delalloc_range(struct inode *inode, struct page *locked_page,
  1425. u64 start, u64 end, int *page_started,
  1426. unsigned long *nr_written)
  1427. {
  1428. int ret;
  1429. int force_cow = need_force_cow(inode, start, end);
  1430. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
  1431. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1432. page_started, 1, nr_written);
  1433. } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
  1434. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1435. page_started, 0, nr_written);
  1436. } else if (!inode_need_compress(inode)) {
  1437. ret = cow_file_range(inode, locked_page, start, end, end,
  1438. page_started, nr_written, 1, NULL);
  1439. } else {
  1440. set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1441. &BTRFS_I(inode)->runtime_flags);
  1442. ret = cow_file_range_async(inode, locked_page, start, end,
  1443. page_started, nr_written);
  1444. }
  1445. if (ret)
  1446. btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
  1447. return ret;
  1448. }
  1449. static void btrfs_split_extent_hook(struct inode *inode,
  1450. struct extent_state *orig, u64 split)
  1451. {
  1452. u64 size;
  1453. /* not delalloc, ignore it */
  1454. if (!(orig->state & EXTENT_DELALLOC))
  1455. return;
  1456. size = orig->end - orig->start + 1;
  1457. if (size > BTRFS_MAX_EXTENT_SIZE) {
  1458. u32 num_extents;
  1459. u64 new_size;
  1460. /*
  1461. * See the explanation in btrfs_merge_extent_hook, the same
  1462. * applies here, just in reverse.
  1463. */
  1464. new_size = orig->end - split + 1;
  1465. num_extents = count_max_extents(new_size);
  1466. new_size = split - orig->start;
  1467. num_extents += count_max_extents(new_size);
  1468. if (count_max_extents(size) >= num_extents)
  1469. return;
  1470. }
  1471. spin_lock(&BTRFS_I(inode)->lock);
  1472. BTRFS_I(inode)->outstanding_extents++;
  1473. spin_unlock(&BTRFS_I(inode)->lock);
  1474. }
  1475. /*
  1476. * extent_io.c merge_extent_hook, used to track merged delayed allocation
  1477. * extents so we can keep track of new extents that are just merged onto old
  1478. * extents, such as when we are doing sequential writes, so we can properly
  1479. * account for the metadata space we'll need.
  1480. */
  1481. static void btrfs_merge_extent_hook(struct inode *inode,
  1482. struct extent_state *new,
  1483. struct extent_state *other)
  1484. {
  1485. u64 new_size, old_size;
  1486. u32 num_extents;
  1487. /* not delalloc, ignore it */
  1488. if (!(other->state & EXTENT_DELALLOC))
  1489. return;
  1490. if (new->start > other->start)
  1491. new_size = new->end - other->start + 1;
  1492. else
  1493. new_size = other->end - new->start + 1;
  1494. /* we're not bigger than the max, unreserve the space and go */
  1495. if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
  1496. spin_lock(&BTRFS_I(inode)->lock);
  1497. BTRFS_I(inode)->outstanding_extents--;
  1498. spin_unlock(&BTRFS_I(inode)->lock);
  1499. return;
  1500. }
  1501. /*
  1502. * We have to add up either side to figure out how many extents were
  1503. * accounted for before we merged into one big extent. If the number of
  1504. * extents we accounted for is <= the amount we need for the new range
  1505. * then we can return, otherwise drop. Think of it like this
  1506. *
  1507. * [ 4k][MAX_SIZE]
  1508. *
  1509. * So we've grown the extent by a MAX_SIZE extent, this would mean we
  1510. * need 2 outstanding extents, on one side we have 1 and the other side
  1511. * we have 1 so they are == and we can return. But in this case
  1512. *
  1513. * [MAX_SIZE+4k][MAX_SIZE+4k]
  1514. *
  1515. * Each range on their own accounts for 2 extents, but merged together
  1516. * they are only 3 extents worth of accounting, so we need to drop in
  1517. * this case.
  1518. */
  1519. old_size = other->end - other->start + 1;
  1520. num_extents = count_max_extents(old_size);
  1521. old_size = new->end - new->start + 1;
  1522. num_extents += count_max_extents(old_size);
  1523. if (count_max_extents(new_size) >= num_extents)
  1524. return;
  1525. spin_lock(&BTRFS_I(inode)->lock);
  1526. BTRFS_I(inode)->outstanding_extents--;
  1527. spin_unlock(&BTRFS_I(inode)->lock);
  1528. }
  1529. static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
  1530. struct inode *inode)
  1531. {
  1532. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1533. spin_lock(&root->delalloc_lock);
  1534. if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1535. list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
  1536. &root->delalloc_inodes);
  1537. set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1538. &BTRFS_I(inode)->runtime_flags);
  1539. root->nr_delalloc_inodes++;
  1540. if (root->nr_delalloc_inodes == 1) {
  1541. spin_lock(&fs_info->delalloc_root_lock);
  1542. BUG_ON(!list_empty(&root->delalloc_root));
  1543. list_add_tail(&root->delalloc_root,
  1544. &fs_info->delalloc_roots);
  1545. spin_unlock(&fs_info->delalloc_root_lock);
  1546. }
  1547. }
  1548. spin_unlock(&root->delalloc_lock);
  1549. }
  1550. static void btrfs_del_delalloc_inode(struct btrfs_root *root,
  1551. struct btrfs_inode *inode)
  1552. {
  1553. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1554. spin_lock(&root->delalloc_lock);
  1555. if (!list_empty(&inode->delalloc_inodes)) {
  1556. list_del_init(&inode->delalloc_inodes);
  1557. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1558. &inode->runtime_flags);
  1559. root->nr_delalloc_inodes--;
  1560. if (!root->nr_delalloc_inodes) {
  1561. spin_lock(&fs_info->delalloc_root_lock);
  1562. BUG_ON(list_empty(&root->delalloc_root));
  1563. list_del_init(&root->delalloc_root);
  1564. spin_unlock(&fs_info->delalloc_root_lock);
  1565. }
  1566. }
  1567. spin_unlock(&root->delalloc_lock);
  1568. }
  1569. /*
  1570. * extent_io.c set_bit_hook, used to track delayed allocation
  1571. * bytes in this file, and to maintain the list of inodes that
  1572. * have pending delalloc work to be done.
  1573. */
  1574. static void btrfs_set_bit_hook(struct inode *inode,
  1575. struct extent_state *state, unsigned *bits)
  1576. {
  1577. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1578. if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
  1579. WARN_ON(1);
  1580. /*
  1581. * set_bit and clear bit hooks normally require _irqsave/restore
  1582. * but in this case, we are only testing for the DELALLOC
  1583. * bit, which is only set or cleared with irqs on
  1584. */
  1585. if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1586. struct btrfs_root *root = BTRFS_I(inode)->root;
  1587. u64 len = state->end + 1 - state->start;
  1588. bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
  1589. if (*bits & EXTENT_FIRST_DELALLOC) {
  1590. *bits &= ~EXTENT_FIRST_DELALLOC;
  1591. } else {
  1592. spin_lock(&BTRFS_I(inode)->lock);
  1593. BTRFS_I(inode)->outstanding_extents++;
  1594. spin_unlock(&BTRFS_I(inode)->lock);
  1595. }
  1596. /* For sanity tests */
  1597. if (btrfs_is_testing(fs_info))
  1598. return;
  1599. __percpu_counter_add(&fs_info->delalloc_bytes, len,
  1600. fs_info->delalloc_batch);
  1601. spin_lock(&BTRFS_I(inode)->lock);
  1602. BTRFS_I(inode)->delalloc_bytes += len;
  1603. if (*bits & EXTENT_DEFRAG)
  1604. BTRFS_I(inode)->defrag_bytes += len;
  1605. if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1606. &BTRFS_I(inode)->runtime_flags))
  1607. btrfs_add_delalloc_inodes(root, inode);
  1608. spin_unlock(&BTRFS_I(inode)->lock);
  1609. }
  1610. if (!(state->state & EXTENT_DELALLOC_NEW) &&
  1611. (*bits & EXTENT_DELALLOC_NEW)) {
  1612. spin_lock(&BTRFS_I(inode)->lock);
  1613. BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
  1614. state->start;
  1615. spin_unlock(&BTRFS_I(inode)->lock);
  1616. }
  1617. }
  1618. /*
  1619. * extent_io.c clear_bit_hook, see set_bit_hook for why
  1620. */
  1621. static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
  1622. struct extent_state *state,
  1623. unsigned *bits)
  1624. {
  1625. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1626. u64 len = state->end + 1 - state->start;
  1627. u32 num_extents = count_max_extents(len);
  1628. spin_lock(&inode->lock);
  1629. if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
  1630. inode->defrag_bytes -= len;
  1631. spin_unlock(&inode->lock);
  1632. /*
  1633. * set_bit and clear bit hooks normally require _irqsave/restore
  1634. * but in this case, we are only testing for the DELALLOC
  1635. * bit, which is only set or cleared with irqs on
  1636. */
  1637. if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1638. struct btrfs_root *root = inode->root;
  1639. bool do_list = !btrfs_is_free_space_inode(inode);
  1640. if (*bits & EXTENT_FIRST_DELALLOC) {
  1641. *bits &= ~EXTENT_FIRST_DELALLOC;
  1642. } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
  1643. spin_lock(&inode->lock);
  1644. inode->outstanding_extents -= num_extents;
  1645. spin_unlock(&inode->lock);
  1646. }
  1647. /*
  1648. * We don't reserve metadata space for space cache inodes so we
  1649. * don't need to call dellalloc_release_metadata if there is an
  1650. * error.
  1651. */
  1652. if (*bits & EXTENT_CLEAR_META_RESV &&
  1653. root != fs_info->tree_root)
  1654. btrfs_delalloc_release_metadata(inode, len);
  1655. /* For sanity tests. */
  1656. if (btrfs_is_testing(fs_info))
  1657. return;
  1658. if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
  1659. do_list && !(state->state & EXTENT_NORESERVE) &&
  1660. (*bits & EXTENT_CLEAR_DATA_RESV))
  1661. btrfs_free_reserved_data_space_noquota(
  1662. &inode->vfs_inode,
  1663. state->start, len);
  1664. __percpu_counter_add(&fs_info->delalloc_bytes, -len,
  1665. fs_info->delalloc_batch);
  1666. spin_lock(&inode->lock);
  1667. inode->delalloc_bytes -= len;
  1668. if (do_list && inode->delalloc_bytes == 0 &&
  1669. test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  1670. &inode->runtime_flags))
  1671. btrfs_del_delalloc_inode(root, inode);
  1672. spin_unlock(&inode->lock);
  1673. }
  1674. if ((state->state & EXTENT_DELALLOC_NEW) &&
  1675. (*bits & EXTENT_DELALLOC_NEW)) {
  1676. spin_lock(&inode->lock);
  1677. ASSERT(inode->new_delalloc_bytes >= len);
  1678. inode->new_delalloc_bytes -= len;
  1679. spin_unlock(&inode->lock);
  1680. }
  1681. }
  1682. /*
  1683. * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
  1684. * we don't create bios that span stripes or chunks
  1685. *
  1686. * return 1 if page cannot be merged to bio
  1687. * return 0 if page can be merged to bio
  1688. * return error otherwise
  1689. */
  1690. int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
  1691. size_t size, struct bio *bio,
  1692. unsigned long bio_flags)
  1693. {
  1694. struct inode *inode = page->mapping->host;
  1695. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1696. u64 logical = (u64)bio->bi_iter.bi_sector << 9;
  1697. u64 length = 0;
  1698. u64 map_length;
  1699. int ret;
  1700. if (bio_flags & EXTENT_BIO_COMPRESSED)
  1701. return 0;
  1702. length = bio->bi_iter.bi_size;
  1703. map_length = length;
  1704. ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
  1705. NULL, 0);
  1706. if (ret < 0)
  1707. return ret;
  1708. if (map_length < length + size)
  1709. return 1;
  1710. return 0;
  1711. }
  1712. /*
  1713. * in order to insert checksums into the metadata in large chunks,
  1714. * we wait until bio submission time. All the pages in the bio are
  1715. * checksummed and sums are attached onto the ordered extent record.
  1716. *
  1717. * At IO completion time the cums attached on the ordered extent record
  1718. * are inserted into the btree
  1719. */
  1720. static blk_status_t __btrfs_submit_bio_start(struct inode *inode,
  1721. struct bio *bio, int mirror_num, unsigned long bio_flags,
  1722. u64 bio_offset)
  1723. {
  1724. blk_status_t ret = 0;
  1725. ret = btrfs_csum_one_bio(inode, bio, 0, 0);
  1726. BUG_ON(ret); /* -ENOMEM */
  1727. return 0;
  1728. }
  1729. /*
  1730. * in order to insert checksums into the metadata in large chunks,
  1731. * we wait until bio submission time. All the pages in the bio are
  1732. * checksummed and sums are attached onto the ordered extent record.
  1733. *
  1734. * At IO completion time the cums attached on the ordered extent record
  1735. * are inserted into the btree
  1736. */
  1737. static blk_status_t __btrfs_submit_bio_done(struct inode *inode,
  1738. struct bio *bio, int mirror_num, unsigned long bio_flags,
  1739. u64 bio_offset)
  1740. {
  1741. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1742. blk_status_t ret;
  1743. ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
  1744. if (ret) {
  1745. bio->bi_status = ret;
  1746. bio_endio(bio);
  1747. }
  1748. return ret;
  1749. }
  1750. /*
  1751. * extent_io.c submission hook. This does the right thing for csum calculation
  1752. * on write, or reading the csums from the tree before a read
  1753. */
  1754. static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
  1755. int mirror_num, unsigned long bio_flags,
  1756. u64 bio_offset)
  1757. {
  1758. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1759. struct btrfs_root *root = BTRFS_I(inode)->root;
  1760. enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
  1761. blk_status_t ret = 0;
  1762. int skip_sum;
  1763. int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
  1764. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  1765. if (btrfs_is_free_space_inode(BTRFS_I(inode)))
  1766. metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
  1767. if (bio_op(bio) != REQ_OP_WRITE) {
  1768. ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
  1769. if (ret)
  1770. goto out;
  1771. if (bio_flags & EXTENT_BIO_COMPRESSED) {
  1772. ret = btrfs_submit_compressed_read(inode, bio,
  1773. mirror_num,
  1774. bio_flags);
  1775. goto out;
  1776. } else if (!skip_sum) {
  1777. ret = btrfs_lookup_bio_sums(inode, bio, NULL);
  1778. if (ret)
  1779. goto out;
  1780. }
  1781. goto mapit;
  1782. } else if (async && !skip_sum) {
  1783. /* csum items have already been cloned */
  1784. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  1785. goto mapit;
  1786. /* we're doing a write, do the async checksumming */
  1787. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
  1788. bio_flags, bio_offset,
  1789. __btrfs_submit_bio_start,
  1790. __btrfs_submit_bio_done);
  1791. goto out;
  1792. } else if (!skip_sum) {
  1793. ret = btrfs_csum_one_bio(inode, bio, 0, 0);
  1794. if (ret)
  1795. goto out;
  1796. }
  1797. mapit:
  1798. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  1799. out:
  1800. if (ret) {
  1801. bio->bi_status = ret;
  1802. bio_endio(bio);
  1803. }
  1804. return ret;
  1805. }
  1806. /*
  1807. * given a list of ordered sums record them in the inode. This happens
  1808. * at IO completion time based on sums calculated at bio submission time.
  1809. */
  1810. static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
  1811. struct inode *inode, struct list_head *list)
  1812. {
  1813. struct btrfs_ordered_sum *sum;
  1814. list_for_each_entry(sum, list, list) {
  1815. trans->adding_csums = 1;
  1816. btrfs_csum_file_blocks(trans,
  1817. BTRFS_I(inode)->root->fs_info->csum_root, sum);
  1818. trans->adding_csums = 0;
  1819. }
  1820. return 0;
  1821. }
  1822. int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
  1823. struct extent_state **cached_state, int dedupe)
  1824. {
  1825. WARN_ON((end & (PAGE_SIZE - 1)) == 0);
  1826. return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
  1827. cached_state);
  1828. }
  1829. /* see btrfs_writepage_start_hook for details on why this is required */
  1830. struct btrfs_writepage_fixup {
  1831. struct page *page;
  1832. struct btrfs_work work;
  1833. };
  1834. static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
  1835. {
  1836. struct btrfs_writepage_fixup *fixup;
  1837. struct btrfs_ordered_extent *ordered;
  1838. struct extent_state *cached_state = NULL;
  1839. struct page *page;
  1840. struct inode *inode;
  1841. u64 page_start;
  1842. u64 page_end;
  1843. int ret;
  1844. fixup = container_of(work, struct btrfs_writepage_fixup, work);
  1845. page = fixup->page;
  1846. again:
  1847. lock_page(page);
  1848. if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
  1849. ClearPageChecked(page);
  1850. goto out_page;
  1851. }
  1852. inode = page->mapping->host;
  1853. page_start = page_offset(page);
  1854. page_end = page_offset(page) + PAGE_SIZE - 1;
  1855. lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
  1856. &cached_state);
  1857. /* already ordered? We're done */
  1858. if (PagePrivate2(page))
  1859. goto out;
  1860. ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
  1861. PAGE_SIZE);
  1862. if (ordered) {
  1863. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
  1864. page_end, &cached_state, GFP_NOFS);
  1865. unlock_page(page);
  1866. btrfs_start_ordered_extent(inode, ordered, 1);
  1867. btrfs_put_ordered_extent(ordered);
  1868. goto again;
  1869. }
  1870. ret = btrfs_delalloc_reserve_space(inode, page_start,
  1871. PAGE_SIZE);
  1872. if (ret) {
  1873. mapping_set_error(page->mapping, ret);
  1874. end_extent_writepage(page, ret, page_start, page_end);
  1875. ClearPageChecked(page);
  1876. goto out;
  1877. }
  1878. btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
  1879. 0);
  1880. ClearPageChecked(page);
  1881. set_page_dirty(page);
  1882. out:
  1883. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
  1884. &cached_state, GFP_NOFS);
  1885. out_page:
  1886. unlock_page(page);
  1887. put_page(page);
  1888. kfree(fixup);
  1889. }
  1890. /*
  1891. * There are a few paths in the higher layers of the kernel that directly
  1892. * set the page dirty bit without asking the filesystem if it is a
  1893. * good idea. This causes problems because we want to make sure COW
  1894. * properly happens and the data=ordered rules are followed.
  1895. *
  1896. * In our case any range that doesn't have the ORDERED bit set
  1897. * hasn't been properly setup for IO. We kick off an async process
  1898. * to fix it up. The async helper will wait for ordered extents, set
  1899. * the delalloc bit and make it safe to write the page.
  1900. */
  1901. static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
  1902. {
  1903. struct inode *inode = page->mapping->host;
  1904. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1905. struct btrfs_writepage_fixup *fixup;
  1906. /* this page is properly in the ordered list */
  1907. if (TestClearPagePrivate2(page))
  1908. return 0;
  1909. if (PageChecked(page))
  1910. return -EAGAIN;
  1911. fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
  1912. if (!fixup)
  1913. return -EAGAIN;
  1914. SetPageChecked(page);
  1915. get_page(page);
  1916. btrfs_init_work(&fixup->work, btrfs_fixup_helper,
  1917. btrfs_writepage_fixup_worker, NULL, NULL);
  1918. fixup->page = page;
  1919. btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
  1920. return -EBUSY;
  1921. }
  1922. static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
  1923. struct inode *inode, u64 file_pos,
  1924. u64 disk_bytenr, u64 disk_num_bytes,
  1925. u64 num_bytes, u64 ram_bytes,
  1926. u8 compression, u8 encryption,
  1927. u16 other_encoding, int extent_type)
  1928. {
  1929. struct btrfs_root *root = BTRFS_I(inode)->root;
  1930. struct btrfs_file_extent_item *fi;
  1931. struct btrfs_path *path;
  1932. struct extent_buffer *leaf;
  1933. struct btrfs_key ins;
  1934. int extent_inserted = 0;
  1935. int ret;
  1936. path = btrfs_alloc_path();
  1937. if (!path)
  1938. return -ENOMEM;
  1939. /*
  1940. * we may be replacing one extent in the tree with another.
  1941. * The new extent is pinned in the extent map, and we don't want
  1942. * to drop it from the cache until it is completely in the btree.
  1943. *
  1944. * So, tell btrfs_drop_extents to leave this extent in the cache.
  1945. * the caller is expected to unpin it and allow it to be merged
  1946. * with the others.
  1947. */
  1948. ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
  1949. file_pos + num_bytes, NULL, 0,
  1950. 1, sizeof(*fi), &extent_inserted);
  1951. if (ret)
  1952. goto out;
  1953. if (!extent_inserted) {
  1954. ins.objectid = btrfs_ino(BTRFS_I(inode));
  1955. ins.offset = file_pos;
  1956. ins.type = BTRFS_EXTENT_DATA_KEY;
  1957. path->leave_spinning = 1;
  1958. ret = btrfs_insert_empty_item(trans, root, path, &ins,
  1959. sizeof(*fi));
  1960. if (ret)
  1961. goto out;
  1962. }
  1963. leaf = path->nodes[0];
  1964. fi = btrfs_item_ptr(leaf, path->slots[0],
  1965. struct btrfs_file_extent_item);
  1966. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1967. btrfs_set_file_extent_type(leaf, fi, extent_type);
  1968. btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
  1969. btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
  1970. btrfs_set_file_extent_offset(leaf, fi, 0);
  1971. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1972. btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
  1973. btrfs_set_file_extent_compression(leaf, fi, compression);
  1974. btrfs_set_file_extent_encryption(leaf, fi, encryption);
  1975. btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
  1976. btrfs_mark_buffer_dirty(leaf);
  1977. btrfs_release_path(path);
  1978. inode_add_bytes(inode, num_bytes);
  1979. ins.objectid = disk_bytenr;
  1980. ins.offset = disk_num_bytes;
  1981. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1982. ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
  1983. btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
  1984. /*
  1985. * Release the reserved range from inode dirty range map, as it is
  1986. * already moved into delayed_ref_head
  1987. */
  1988. btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
  1989. out:
  1990. btrfs_free_path(path);
  1991. return ret;
  1992. }
  1993. /* snapshot-aware defrag */
  1994. struct sa_defrag_extent_backref {
  1995. struct rb_node node;
  1996. struct old_sa_defrag_extent *old;
  1997. u64 root_id;
  1998. u64 inum;
  1999. u64 file_pos;
  2000. u64 extent_offset;
  2001. u64 num_bytes;
  2002. u64 generation;
  2003. };
  2004. struct old_sa_defrag_extent {
  2005. struct list_head list;
  2006. struct new_sa_defrag_extent *new;
  2007. u64 extent_offset;
  2008. u64 bytenr;
  2009. u64 offset;
  2010. u64 len;
  2011. int count;
  2012. };
  2013. struct new_sa_defrag_extent {
  2014. struct rb_root root;
  2015. struct list_head head;
  2016. struct btrfs_path *path;
  2017. struct inode *inode;
  2018. u64 file_pos;
  2019. u64 len;
  2020. u64 bytenr;
  2021. u64 disk_len;
  2022. u8 compress_type;
  2023. };
  2024. static int backref_comp(struct sa_defrag_extent_backref *b1,
  2025. struct sa_defrag_extent_backref *b2)
  2026. {
  2027. if (b1->root_id < b2->root_id)
  2028. return -1;
  2029. else if (b1->root_id > b2->root_id)
  2030. return 1;
  2031. if (b1->inum < b2->inum)
  2032. return -1;
  2033. else if (b1->inum > b2->inum)
  2034. return 1;
  2035. if (b1->file_pos < b2->file_pos)
  2036. return -1;
  2037. else if (b1->file_pos > b2->file_pos)
  2038. return 1;
  2039. /*
  2040. * [------------------------------] ===> (a range of space)
  2041. * |<--->| |<---->| =============> (fs/file tree A)
  2042. * |<---------------------------->| ===> (fs/file tree B)
  2043. *
  2044. * A range of space can refer to two file extents in one tree while
  2045. * refer to only one file extent in another tree.
  2046. *
  2047. * So we may process a disk offset more than one time(two extents in A)
  2048. * and locate at the same extent(one extent in B), then insert two same
  2049. * backrefs(both refer to the extent in B).
  2050. */
  2051. return 0;
  2052. }
  2053. static void backref_insert(struct rb_root *root,
  2054. struct sa_defrag_extent_backref *backref)
  2055. {
  2056. struct rb_node **p = &root->rb_node;
  2057. struct rb_node *parent = NULL;
  2058. struct sa_defrag_extent_backref *entry;
  2059. int ret;
  2060. while (*p) {
  2061. parent = *p;
  2062. entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
  2063. ret = backref_comp(backref, entry);
  2064. if (ret < 0)
  2065. p = &(*p)->rb_left;
  2066. else
  2067. p = &(*p)->rb_right;
  2068. }
  2069. rb_link_node(&backref->node, parent, p);
  2070. rb_insert_color(&backref->node, root);
  2071. }
  2072. /*
  2073. * Note the backref might has changed, and in this case we just return 0.
  2074. */
  2075. static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
  2076. void *ctx)
  2077. {
  2078. struct btrfs_file_extent_item *extent;
  2079. struct old_sa_defrag_extent *old = ctx;
  2080. struct new_sa_defrag_extent *new = old->new;
  2081. struct btrfs_path *path = new->path;
  2082. struct btrfs_key key;
  2083. struct btrfs_root *root;
  2084. struct sa_defrag_extent_backref *backref;
  2085. struct extent_buffer *leaf;
  2086. struct inode *inode = new->inode;
  2087. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2088. int slot;
  2089. int ret;
  2090. u64 extent_offset;
  2091. u64 num_bytes;
  2092. if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
  2093. inum == btrfs_ino(BTRFS_I(inode)))
  2094. return 0;
  2095. key.objectid = root_id;
  2096. key.type = BTRFS_ROOT_ITEM_KEY;
  2097. key.offset = (u64)-1;
  2098. root = btrfs_read_fs_root_no_name(fs_info, &key);
  2099. if (IS_ERR(root)) {
  2100. if (PTR_ERR(root) == -ENOENT)
  2101. return 0;
  2102. WARN_ON(1);
  2103. btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
  2104. inum, offset, root_id);
  2105. return PTR_ERR(root);
  2106. }
  2107. key.objectid = inum;
  2108. key.type = BTRFS_EXTENT_DATA_KEY;
  2109. if (offset > (u64)-1 << 32)
  2110. key.offset = 0;
  2111. else
  2112. key.offset = offset;
  2113. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2114. if (WARN_ON(ret < 0))
  2115. return ret;
  2116. ret = 0;
  2117. while (1) {
  2118. cond_resched();
  2119. leaf = path->nodes[0];
  2120. slot = path->slots[0];
  2121. if (slot >= btrfs_header_nritems(leaf)) {
  2122. ret = btrfs_next_leaf(root, path);
  2123. if (ret < 0) {
  2124. goto out;
  2125. } else if (ret > 0) {
  2126. ret = 0;
  2127. goto out;
  2128. }
  2129. continue;
  2130. }
  2131. path->slots[0]++;
  2132. btrfs_item_key_to_cpu(leaf, &key, slot);
  2133. if (key.objectid > inum)
  2134. goto out;
  2135. if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
  2136. continue;
  2137. extent = btrfs_item_ptr(leaf, slot,
  2138. struct btrfs_file_extent_item);
  2139. if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
  2140. continue;
  2141. /*
  2142. * 'offset' refers to the exact key.offset,
  2143. * NOT the 'offset' field in btrfs_extent_data_ref, ie.
  2144. * (key.offset - extent_offset).
  2145. */
  2146. if (key.offset != offset)
  2147. continue;
  2148. extent_offset = btrfs_file_extent_offset(leaf, extent);
  2149. num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
  2150. if (extent_offset >= old->extent_offset + old->offset +
  2151. old->len || extent_offset + num_bytes <=
  2152. old->extent_offset + old->offset)
  2153. continue;
  2154. break;
  2155. }
  2156. backref = kmalloc(sizeof(*backref), GFP_NOFS);
  2157. if (!backref) {
  2158. ret = -ENOENT;
  2159. goto out;
  2160. }
  2161. backref->root_id = root_id;
  2162. backref->inum = inum;
  2163. backref->file_pos = offset;
  2164. backref->num_bytes = num_bytes;
  2165. backref->extent_offset = extent_offset;
  2166. backref->generation = btrfs_file_extent_generation(leaf, extent);
  2167. backref->old = old;
  2168. backref_insert(&new->root, backref);
  2169. old->count++;
  2170. out:
  2171. btrfs_release_path(path);
  2172. WARN_ON(ret);
  2173. return ret;
  2174. }
  2175. static noinline bool record_extent_backrefs(struct btrfs_path *path,
  2176. struct new_sa_defrag_extent *new)
  2177. {
  2178. struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
  2179. struct old_sa_defrag_extent *old, *tmp;
  2180. int ret;
  2181. new->path = path;
  2182. list_for_each_entry_safe(old, tmp, &new->head, list) {
  2183. ret = iterate_inodes_from_logical(old->bytenr +
  2184. old->extent_offset, fs_info,
  2185. path, record_one_backref,
  2186. old);
  2187. if (ret < 0 && ret != -ENOENT)
  2188. return false;
  2189. /* no backref to be processed for this extent */
  2190. if (!old->count) {
  2191. list_del(&old->list);
  2192. kfree(old);
  2193. }
  2194. }
  2195. if (list_empty(&new->head))
  2196. return false;
  2197. return true;
  2198. }
  2199. static int relink_is_mergable(struct extent_buffer *leaf,
  2200. struct btrfs_file_extent_item *fi,
  2201. struct new_sa_defrag_extent *new)
  2202. {
  2203. if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
  2204. return 0;
  2205. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2206. return 0;
  2207. if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
  2208. return 0;
  2209. if (btrfs_file_extent_encryption(leaf, fi) ||
  2210. btrfs_file_extent_other_encoding(leaf, fi))
  2211. return 0;
  2212. return 1;
  2213. }
  2214. /*
  2215. * Note the backref might has changed, and in this case we just return 0.
  2216. */
  2217. static noinline int relink_extent_backref(struct btrfs_path *path,
  2218. struct sa_defrag_extent_backref *prev,
  2219. struct sa_defrag_extent_backref *backref)
  2220. {
  2221. struct btrfs_file_extent_item *extent;
  2222. struct btrfs_file_extent_item *item;
  2223. struct btrfs_ordered_extent *ordered;
  2224. struct btrfs_trans_handle *trans;
  2225. struct btrfs_root *root;
  2226. struct btrfs_key key;
  2227. struct extent_buffer *leaf;
  2228. struct old_sa_defrag_extent *old = backref->old;
  2229. struct new_sa_defrag_extent *new = old->new;
  2230. struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
  2231. struct inode *inode;
  2232. struct extent_state *cached = NULL;
  2233. int ret = 0;
  2234. u64 start;
  2235. u64 len;
  2236. u64 lock_start;
  2237. u64 lock_end;
  2238. bool merge = false;
  2239. int index;
  2240. if (prev && prev->root_id == backref->root_id &&
  2241. prev->inum == backref->inum &&
  2242. prev->file_pos + prev->num_bytes == backref->file_pos)
  2243. merge = true;
  2244. /* step 1: get root */
  2245. key.objectid = backref->root_id;
  2246. key.type = BTRFS_ROOT_ITEM_KEY;
  2247. key.offset = (u64)-1;
  2248. index = srcu_read_lock(&fs_info->subvol_srcu);
  2249. root = btrfs_read_fs_root_no_name(fs_info, &key);
  2250. if (IS_ERR(root)) {
  2251. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2252. if (PTR_ERR(root) == -ENOENT)
  2253. return 0;
  2254. return PTR_ERR(root);
  2255. }
  2256. if (btrfs_root_readonly(root)) {
  2257. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2258. return 0;
  2259. }
  2260. /* step 2: get inode */
  2261. key.objectid = backref->inum;
  2262. key.type = BTRFS_INODE_ITEM_KEY;
  2263. key.offset = 0;
  2264. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  2265. if (IS_ERR(inode)) {
  2266. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2267. return 0;
  2268. }
  2269. srcu_read_unlock(&fs_info->subvol_srcu, index);
  2270. /* step 3: relink backref */
  2271. lock_start = backref->file_pos;
  2272. lock_end = backref->file_pos + backref->num_bytes - 1;
  2273. lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
  2274. &cached);
  2275. ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
  2276. if (ordered) {
  2277. btrfs_put_ordered_extent(ordered);
  2278. goto out_unlock;
  2279. }
  2280. trans = btrfs_join_transaction(root);
  2281. if (IS_ERR(trans)) {
  2282. ret = PTR_ERR(trans);
  2283. goto out_unlock;
  2284. }
  2285. key.objectid = backref->inum;
  2286. key.type = BTRFS_EXTENT_DATA_KEY;
  2287. key.offset = backref->file_pos;
  2288. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2289. if (ret < 0) {
  2290. goto out_free_path;
  2291. } else if (ret > 0) {
  2292. ret = 0;
  2293. goto out_free_path;
  2294. }
  2295. extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2296. struct btrfs_file_extent_item);
  2297. if (btrfs_file_extent_generation(path->nodes[0], extent) !=
  2298. backref->generation)
  2299. goto out_free_path;
  2300. btrfs_release_path(path);
  2301. start = backref->file_pos;
  2302. if (backref->extent_offset < old->extent_offset + old->offset)
  2303. start += old->extent_offset + old->offset -
  2304. backref->extent_offset;
  2305. len = min(backref->extent_offset + backref->num_bytes,
  2306. old->extent_offset + old->offset + old->len);
  2307. len -= max(backref->extent_offset, old->extent_offset + old->offset);
  2308. ret = btrfs_drop_extents(trans, root, inode, start,
  2309. start + len, 1);
  2310. if (ret)
  2311. goto out_free_path;
  2312. again:
  2313. key.objectid = btrfs_ino(BTRFS_I(inode));
  2314. key.type = BTRFS_EXTENT_DATA_KEY;
  2315. key.offset = start;
  2316. path->leave_spinning = 1;
  2317. if (merge) {
  2318. struct btrfs_file_extent_item *fi;
  2319. u64 extent_len;
  2320. struct btrfs_key found_key;
  2321. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2322. if (ret < 0)
  2323. goto out_free_path;
  2324. path->slots[0]--;
  2325. leaf = path->nodes[0];
  2326. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2327. fi = btrfs_item_ptr(leaf, path->slots[0],
  2328. struct btrfs_file_extent_item);
  2329. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2330. if (extent_len + found_key.offset == start &&
  2331. relink_is_mergable(leaf, fi, new)) {
  2332. btrfs_set_file_extent_num_bytes(leaf, fi,
  2333. extent_len + len);
  2334. btrfs_mark_buffer_dirty(leaf);
  2335. inode_add_bytes(inode, len);
  2336. ret = 1;
  2337. goto out_free_path;
  2338. } else {
  2339. merge = false;
  2340. btrfs_release_path(path);
  2341. goto again;
  2342. }
  2343. }
  2344. ret = btrfs_insert_empty_item(trans, root, path, &key,
  2345. sizeof(*extent));
  2346. if (ret) {
  2347. btrfs_abort_transaction(trans, ret);
  2348. goto out_free_path;
  2349. }
  2350. leaf = path->nodes[0];
  2351. item = btrfs_item_ptr(leaf, path->slots[0],
  2352. struct btrfs_file_extent_item);
  2353. btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
  2354. btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
  2355. btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
  2356. btrfs_set_file_extent_num_bytes(leaf, item, len);
  2357. btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
  2358. btrfs_set_file_extent_generation(leaf, item, trans->transid);
  2359. btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
  2360. btrfs_set_file_extent_compression(leaf, item, new->compress_type);
  2361. btrfs_set_file_extent_encryption(leaf, item, 0);
  2362. btrfs_set_file_extent_other_encoding(leaf, item, 0);
  2363. btrfs_mark_buffer_dirty(leaf);
  2364. inode_add_bytes(inode, len);
  2365. btrfs_release_path(path);
  2366. ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
  2367. new->disk_len, 0,
  2368. backref->root_id, backref->inum,
  2369. new->file_pos); /* start - extent_offset */
  2370. if (ret) {
  2371. btrfs_abort_transaction(trans, ret);
  2372. goto out_free_path;
  2373. }
  2374. ret = 1;
  2375. out_free_path:
  2376. btrfs_release_path(path);
  2377. path->leave_spinning = 0;
  2378. btrfs_end_transaction(trans);
  2379. out_unlock:
  2380. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
  2381. &cached, GFP_NOFS);
  2382. iput(inode);
  2383. return ret;
  2384. }
  2385. static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
  2386. {
  2387. struct old_sa_defrag_extent *old, *tmp;
  2388. if (!new)
  2389. return;
  2390. list_for_each_entry_safe(old, tmp, &new->head, list) {
  2391. kfree(old);
  2392. }
  2393. kfree(new);
  2394. }
  2395. static void relink_file_extents(struct new_sa_defrag_extent *new)
  2396. {
  2397. struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
  2398. struct btrfs_path *path;
  2399. struct sa_defrag_extent_backref *backref;
  2400. struct sa_defrag_extent_backref *prev = NULL;
  2401. struct inode *inode;
  2402. struct btrfs_root *root;
  2403. struct rb_node *node;
  2404. int ret;
  2405. inode = new->inode;
  2406. root = BTRFS_I(inode)->root;
  2407. path = btrfs_alloc_path();
  2408. if (!path)
  2409. return;
  2410. if (!record_extent_backrefs(path, new)) {
  2411. btrfs_free_path(path);
  2412. goto out;
  2413. }
  2414. btrfs_release_path(path);
  2415. while (1) {
  2416. node = rb_first(&new->root);
  2417. if (!node)
  2418. break;
  2419. rb_erase(node, &new->root);
  2420. backref = rb_entry(node, struct sa_defrag_extent_backref, node);
  2421. ret = relink_extent_backref(path, prev, backref);
  2422. WARN_ON(ret < 0);
  2423. kfree(prev);
  2424. if (ret == 1)
  2425. prev = backref;
  2426. else
  2427. prev = NULL;
  2428. cond_resched();
  2429. }
  2430. kfree(prev);
  2431. btrfs_free_path(path);
  2432. out:
  2433. free_sa_defrag_extent(new);
  2434. atomic_dec(&fs_info->defrag_running);
  2435. wake_up(&fs_info->transaction_wait);
  2436. }
  2437. static struct new_sa_defrag_extent *
  2438. record_old_file_extents(struct inode *inode,
  2439. struct btrfs_ordered_extent *ordered)
  2440. {
  2441. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2442. struct btrfs_root *root = BTRFS_I(inode)->root;
  2443. struct btrfs_path *path;
  2444. struct btrfs_key key;
  2445. struct old_sa_defrag_extent *old;
  2446. struct new_sa_defrag_extent *new;
  2447. int ret;
  2448. new = kmalloc(sizeof(*new), GFP_NOFS);
  2449. if (!new)
  2450. return NULL;
  2451. new->inode = inode;
  2452. new->file_pos = ordered->file_offset;
  2453. new->len = ordered->len;
  2454. new->bytenr = ordered->start;
  2455. new->disk_len = ordered->disk_len;
  2456. new->compress_type = ordered->compress_type;
  2457. new->root = RB_ROOT;
  2458. INIT_LIST_HEAD(&new->head);
  2459. path = btrfs_alloc_path();
  2460. if (!path)
  2461. goto out_kfree;
  2462. key.objectid = btrfs_ino(BTRFS_I(inode));
  2463. key.type = BTRFS_EXTENT_DATA_KEY;
  2464. key.offset = new->file_pos;
  2465. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2466. if (ret < 0)
  2467. goto out_free_path;
  2468. if (ret > 0 && path->slots[0] > 0)
  2469. path->slots[0]--;
  2470. /* find out all the old extents for the file range */
  2471. while (1) {
  2472. struct btrfs_file_extent_item *extent;
  2473. struct extent_buffer *l;
  2474. int slot;
  2475. u64 num_bytes;
  2476. u64 offset;
  2477. u64 end;
  2478. u64 disk_bytenr;
  2479. u64 extent_offset;
  2480. l = path->nodes[0];
  2481. slot = path->slots[0];
  2482. if (slot >= btrfs_header_nritems(l)) {
  2483. ret = btrfs_next_leaf(root, path);
  2484. if (ret < 0)
  2485. goto out_free_path;
  2486. else if (ret > 0)
  2487. break;
  2488. continue;
  2489. }
  2490. btrfs_item_key_to_cpu(l, &key, slot);
  2491. if (key.objectid != btrfs_ino(BTRFS_I(inode)))
  2492. break;
  2493. if (key.type != BTRFS_EXTENT_DATA_KEY)
  2494. break;
  2495. if (key.offset >= new->file_pos + new->len)
  2496. break;
  2497. extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
  2498. num_bytes = btrfs_file_extent_num_bytes(l, extent);
  2499. if (key.offset + num_bytes < new->file_pos)
  2500. goto next;
  2501. disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
  2502. if (!disk_bytenr)
  2503. goto next;
  2504. extent_offset = btrfs_file_extent_offset(l, extent);
  2505. old = kmalloc(sizeof(*old), GFP_NOFS);
  2506. if (!old)
  2507. goto out_free_path;
  2508. offset = max(new->file_pos, key.offset);
  2509. end = min(new->file_pos + new->len, key.offset + num_bytes);
  2510. old->bytenr = disk_bytenr;
  2511. old->extent_offset = extent_offset;
  2512. old->offset = offset - key.offset;
  2513. old->len = end - offset;
  2514. old->new = new;
  2515. old->count = 0;
  2516. list_add_tail(&old->list, &new->head);
  2517. next:
  2518. path->slots[0]++;
  2519. cond_resched();
  2520. }
  2521. btrfs_free_path(path);
  2522. atomic_inc(&fs_info->defrag_running);
  2523. return new;
  2524. out_free_path:
  2525. btrfs_free_path(path);
  2526. out_kfree:
  2527. free_sa_defrag_extent(new);
  2528. return NULL;
  2529. }
  2530. static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
  2531. u64 start, u64 len)
  2532. {
  2533. struct btrfs_block_group_cache *cache;
  2534. cache = btrfs_lookup_block_group(fs_info, start);
  2535. ASSERT(cache);
  2536. spin_lock(&cache->lock);
  2537. cache->delalloc_bytes -= len;
  2538. spin_unlock(&cache->lock);
  2539. btrfs_put_block_group(cache);
  2540. }
  2541. /* as ordered data IO finishes, this gets called so we can finish
  2542. * an ordered extent if the range of bytes in the file it covers are
  2543. * fully written.
  2544. */
  2545. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
  2546. {
  2547. struct inode *inode = ordered_extent->inode;
  2548. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2549. struct btrfs_root *root = BTRFS_I(inode)->root;
  2550. struct btrfs_trans_handle *trans = NULL;
  2551. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2552. struct extent_state *cached_state = NULL;
  2553. struct new_sa_defrag_extent *new = NULL;
  2554. int compress_type = 0;
  2555. int ret = 0;
  2556. u64 logical_len = ordered_extent->len;
  2557. bool nolock;
  2558. bool truncated = false;
  2559. bool range_locked = false;
  2560. bool clear_new_delalloc_bytes = false;
  2561. if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
  2562. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
  2563. !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
  2564. clear_new_delalloc_bytes = true;
  2565. nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
  2566. if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
  2567. ret = -EIO;
  2568. goto out;
  2569. }
  2570. btrfs_free_io_failure_record(BTRFS_I(inode),
  2571. ordered_extent->file_offset,
  2572. ordered_extent->file_offset +
  2573. ordered_extent->len - 1);
  2574. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
  2575. truncated = true;
  2576. logical_len = ordered_extent->truncated_len;
  2577. /* Truncated the entire extent, don't bother adding */
  2578. if (!logical_len)
  2579. goto out;
  2580. }
  2581. if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
  2582. BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
  2583. /*
  2584. * For mwrite(mmap + memset to write) case, we still reserve
  2585. * space for NOCOW range.
  2586. * As NOCOW won't cause a new delayed ref, just free the space
  2587. */
  2588. btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
  2589. ordered_extent->len);
  2590. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  2591. if (nolock)
  2592. trans = btrfs_join_transaction_nolock(root);
  2593. else
  2594. trans = btrfs_join_transaction(root);
  2595. if (IS_ERR(trans)) {
  2596. ret = PTR_ERR(trans);
  2597. trans = NULL;
  2598. goto out;
  2599. }
  2600. trans->block_rsv = &fs_info->delalloc_block_rsv;
  2601. ret = btrfs_update_inode_fallback(trans, root, inode);
  2602. if (ret) /* -ENOMEM or corruption */
  2603. btrfs_abort_transaction(trans, ret);
  2604. goto out;
  2605. }
  2606. range_locked = true;
  2607. lock_extent_bits(io_tree, ordered_extent->file_offset,
  2608. ordered_extent->file_offset + ordered_extent->len - 1,
  2609. &cached_state);
  2610. ret = test_range_bit(io_tree, ordered_extent->file_offset,
  2611. ordered_extent->file_offset + ordered_extent->len - 1,
  2612. EXTENT_DEFRAG, 1, cached_state);
  2613. if (ret) {
  2614. u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  2615. if (0 && last_snapshot >= BTRFS_I(inode)->generation)
  2616. /* the inode is shared */
  2617. new = record_old_file_extents(inode, ordered_extent);
  2618. clear_extent_bit(io_tree, ordered_extent->file_offset,
  2619. ordered_extent->file_offset + ordered_extent->len - 1,
  2620. EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
  2621. }
  2622. if (nolock)
  2623. trans = btrfs_join_transaction_nolock(root);
  2624. else
  2625. trans = btrfs_join_transaction(root);
  2626. if (IS_ERR(trans)) {
  2627. ret = PTR_ERR(trans);
  2628. trans = NULL;
  2629. goto out;
  2630. }
  2631. trans->block_rsv = &fs_info->delalloc_block_rsv;
  2632. if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
  2633. compress_type = ordered_extent->compress_type;
  2634. if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
  2635. BUG_ON(compress_type);
  2636. ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
  2637. ordered_extent->file_offset,
  2638. ordered_extent->file_offset +
  2639. logical_len);
  2640. } else {
  2641. BUG_ON(root == fs_info->tree_root);
  2642. ret = insert_reserved_file_extent(trans, inode,
  2643. ordered_extent->file_offset,
  2644. ordered_extent->start,
  2645. ordered_extent->disk_len,
  2646. logical_len, logical_len,
  2647. compress_type, 0, 0,
  2648. BTRFS_FILE_EXTENT_REG);
  2649. if (!ret)
  2650. btrfs_release_delalloc_bytes(fs_info,
  2651. ordered_extent->start,
  2652. ordered_extent->disk_len);
  2653. }
  2654. unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
  2655. ordered_extent->file_offset, ordered_extent->len,
  2656. trans->transid);
  2657. if (ret < 0) {
  2658. btrfs_abort_transaction(trans, ret);
  2659. goto out;
  2660. }
  2661. add_pending_csums(trans, inode, &ordered_extent->list);
  2662. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  2663. ret = btrfs_update_inode_fallback(trans, root, inode);
  2664. if (ret) { /* -ENOMEM or corruption */
  2665. btrfs_abort_transaction(trans, ret);
  2666. goto out;
  2667. }
  2668. ret = 0;
  2669. out:
  2670. if (range_locked || clear_new_delalloc_bytes) {
  2671. unsigned int clear_bits = 0;
  2672. if (range_locked)
  2673. clear_bits |= EXTENT_LOCKED;
  2674. if (clear_new_delalloc_bytes)
  2675. clear_bits |= EXTENT_DELALLOC_NEW;
  2676. clear_extent_bit(&BTRFS_I(inode)->io_tree,
  2677. ordered_extent->file_offset,
  2678. ordered_extent->file_offset +
  2679. ordered_extent->len - 1,
  2680. clear_bits,
  2681. (clear_bits & EXTENT_LOCKED) ? 1 : 0,
  2682. 0, &cached_state, GFP_NOFS);
  2683. }
  2684. if (root != fs_info->tree_root)
  2685. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2686. ordered_extent->len);
  2687. if (trans)
  2688. btrfs_end_transaction(trans);
  2689. if (ret || truncated) {
  2690. u64 start, end;
  2691. if (truncated)
  2692. start = ordered_extent->file_offset + logical_len;
  2693. else
  2694. start = ordered_extent->file_offset;
  2695. end = ordered_extent->file_offset + ordered_extent->len - 1;
  2696. clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
  2697. /* Drop the cache for the part of the extent we didn't write. */
  2698. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2699. /*
  2700. * If the ordered extent had an IOERR or something else went
  2701. * wrong we need to return the space for this ordered extent
  2702. * back to the allocator. We only free the extent in the
  2703. * truncated case if we didn't write out the extent at all.
  2704. */
  2705. if ((ret || !logical_len) &&
  2706. !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
  2707. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
  2708. btrfs_free_reserved_extent(fs_info,
  2709. ordered_extent->start,
  2710. ordered_extent->disk_len, 1);
  2711. }
  2712. /*
  2713. * This needs to be done to make sure anybody waiting knows we are done
  2714. * updating everything for this ordered extent.
  2715. */
  2716. btrfs_remove_ordered_extent(inode, ordered_extent);
  2717. /* for snapshot-aware defrag */
  2718. if (new) {
  2719. if (ret) {
  2720. free_sa_defrag_extent(new);
  2721. atomic_dec(&fs_info->defrag_running);
  2722. } else {
  2723. relink_file_extents(new);
  2724. }
  2725. }
  2726. /* once for us */
  2727. btrfs_put_ordered_extent(ordered_extent);
  2728. /* once for the tree */
  2729. btrfs_put_ordered_extent(ordered_extent);
  2730. return ret;
  2731. }
  2732. static void finish_ordered_fn(struct btrfs_work *work)
  2733. {
  2734. struct btrfs_ordered_extent *ordered_extent;
  2735. ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
  2736. btrfs_finish_ordered_io(ordered_extent);
  2737. }
  2738. static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
  2739. struct extent_state *state, int uptodate)
  2740. {
  2741. struct inode *inode = page->mapping->host;
  2742. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2743. struct btrfs_ordered_extent *ordered_extent = NULL;
  2744. struct btrfs_workqueue *wq;
  2745. btrfs_work_func_t func;
  2746. trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
  2747. ClearPagePrivate2(page);
  2748. if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
  2749. end - start + 1, uptodate))
  2750. return;
  2751. if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
  2752. wq = fs_info->endio_freespace_worker;
  2753. func = btrfs_freespace_write_helper;
  2754. } else {
  2755. wq = fs_info->endio_write_workers;
  2756. func = btrfs_endio_write_helper;
  2757. }
  2758. btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
  2759. NULL);
  2760. btrfs_queue_work(wq, &ordered_extent->work);
  2761. }
  2762. static int __readpage_endio_check(struct inode *inode,
  2763. struct btrfs_io_bio *io_bio,
  2764. int icsum, struct page *page,
  2765. int pgoff, u64 start, size_t len)
  2766. {
  2767. char *kaddr;
  2768. u32 csum_expected;
  2769. u32 csum = ~(u32)0;
  2770. csum_expected = *(((u32 *)io_bio->csum) + icsum);
  2771. kaddr = kmap_atomic(page);
  2772. csum = btrfs_csum_data(kaddr + pgoff, csum, len);
  2773. btrfs_csum_final(csum, (u8 *)&csum);
  2774. if (csum != csum_expected)
  2775. goto zeroit;
  2776. kunmap_atomic(kaddr);
  2777. return 0;
  2778. zeroit:
  2779. btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
  2780. io_bio->mirror_num);
  2781. memset(kaddr + pgoff, 1, len);
  2782. flush_dcache_page(page);
  2783. kunmap_atomic(kaddr);
  2784. if (csum_expected == 0)
  2785. return 0;
  2786. return -EIO;
  2787. }
  2788. /*
  2789. * when reads are done, we need to check csums to verify the data is correct
  2790. * if there's a match, we allow the bio to finish. If not, the code in
  2791. * extent_io.c will try to find good copies for us.
  2792. */
  2793. static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  2794. u64 phy_offset, struct page *page,
  2795. u64 start, u64 end, int mirror)
  2796. {
  2797. size_t offset = start - page_offset(page);
  2798. struct inode *inode = page->mapping->host;
  2799. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2800. struct btrfs_root *root = BTRFS_I(inode)->root;
  2801. if (PageChecked(page)) {
  2802. ClearPageChecked(page);
  2803. return 0;
  2804. }
  2805. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  2806. return 0;
  2807. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
  2808. test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
  2809. clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
  2810. return 0;
  2811. }
  2812. phy_offset >>= inode->i_sb->s_blocksize_bits;
  2813. return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
  2814. start, (size_t)(end - start + 1));
  2815. }
  2816. void btrfs_add_delayed_iput(struct inode *inode)
  2817. {
  2818. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2819. struct btrfs_inode *binode = BTRFS_I(inode);
  2820. if (atomic_add_unless(&inode->i_count, -1, 1))
  2821. return;
  2822. spin_lock(&fs_info->delayed_iput_lock);
  2823. if (binode->delayed_iput_count == 0) {
  2824. ASSERT(list_empty(&binode->delayed_iput));
  2825. list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
  2826. } else {
  2827. binode->delayed_iput_count++;
  2828. }
  2829. spin_unlock(&fs_info->delayed_iput_lock);
  2830. }
  2831. void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
  2832. {
  2833. spin_lock(&fs_info->delayed_iput_lock);
  2834. while (!list_empty(&fs_info->delayed_iputs)) {
  2835. struct btrfs_inode *inode;
  2836. inode = list_first_entry(&fs_info->delayed_iputs,
  2837. struct btrfs_inode, delayed_iput);
  2838. if (inode->delayed_iput_count) {
  2839. inode->delayed_iput_count--;
  2840. list_move_tail(&inode->delayed_iput,
  2841. &fs_info->delayed_iputs);
  2842. } else {
  2843. list_del_init(&inode->delayed_iput);
  2844. }
  2845. spin_unlock(&fs_info->delayed_iput_lock);
  2846. iput(&inode->vfs_inode);
  2847. spin_lock(&fs_info->delayed_iput_lock);
  2848. }
  2849. spin_unlock(&fs_info->delayed_iput_lock);
  2850. }
  2851. /*
  2852. * This is called in transaction commit time. If there are no orphan
  2853. * files in the subvolume, it removes orphan item and frees block_rsv
  2854. * structure.
  2855. */
  2856. void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
  2857. struct btrfs_root *root)
  2858. {
  2859. struct btrfs_fs_info *fs_info = root->fs_info;
  2860. struct btrfs_block_rsv *block_rsv;
  2861. int ret;
  2862. if (atomic_read(&root->orphan_inodes) ||
  2863. root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
  2864. return;
  2865. spin_lock(&root->orphan_lock);
  2866. if (atomic_read(&root->orphan_inodes)) {
  2867. spin_unlock(&root->orphan_lock);
  2868. return;
  2869. }
  2870. if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
  2871. spin_unlock(&root->orphan_lock);
  2872. return;
  2873. }
  2874. block_rsv = root->orphan_block_rsv;
  2875. root->orphan_block_rsv = NULL;
  2876. spin_unlock(&root->orphan_lock);
  2877. if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
  2878. btrfs_root_refs(&root->root_item) > 0) {
  2879. ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
  2880. root->root_key.objectid);
  2881. if (ret)
  2882. btrfs_abort_transaction(trans, ret);
  2883. else
  2884. clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
  2885. &root->state);
  2886. }
  2887. if (block_rsv) {
  2888. WARN_ON(block_rsv->size > 0);
  2889. btrfs_free_block_rsv(fs_info, block_rsv);
  2890. }
  2891. }
  2892. /*
  2893. * This creates an orphan entry for the given inode in case something goes
  2894. * wrong in the middle of an unlink/truncate.
  2895. *
  2896. * NOTE: caller of this function should reserve 5 units of metadata for
  2897. * this function.
  2898. */
  2899. int btrfs_orphan_add(struct btrfs_trans_handle *trans,
  2900. struct btrfs_inode *inode)
  2901. {
  2902. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  2903. struct btrfs_root *root = inode->root;
  2904. struct btrfs_block_rsv *block_rsv = NULL;
  2905. int reserve = 0;
  2906. int insert = 0;
  2907. int ret;
  2908. if (!root->orphan_block_rsv) {
  2909. block_rsv = btrfs_alloc_block_rsv(fs_info,
  2910. BTRFS_BLOCK_RSV_TEMP);
  2911. if (!block_rsv)
  2912. return -ENOMEM;
  2913. }
  2914. spin_lock(&root->orphan_lock);
  2915. if (!root->orphan_block_rsv) {
  2916. root->orphan_block_rsv = block_rsv;
  2917. } else if (block_rsv) {
  2918. btrfs_free_block_rsv(fs_info, block_rsv);
  2919. block_rsv = NULL;
  2920. }
  2921. if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2922. &inode->runtime_flags)) {
  2923. #if 0
  2924. /*
  2925. * For proper ENOSPC handling, we should do orphan
  2926. * cleanup when mounting. But this introduces backward
  2927. * compatibility issue.
  2928. */
  2929. if (!xchg(&root->orphan_item_inserted, 1))
  2930. insert = 2;
  2931. else
  2932. insert = 1;
  2933. #endif
  2934. insert = 1;
  2935. atomic_inc(&root->orphan_inodes);
  2936. }
  2937. if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2938. &inode->runtime_flags))
  2939. reserve = 1;
  2940. spin_unlock(&root->orphan_lock);
  2941. /* grab metadata reservation from transaction handle */
  2942. if (reserve) {
  2943. ret = btrfs_orphan_reserve_metadata(trans, inode);
  2944. ASSERT(!ret);
  2945. if (ret) {
  2946. atomic_dec(&root->orphan_inodes);
  2947. clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2948. &inode->runtime_flags);
  2949. if (insert)
  2950. clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2951. &inode->runtime_flags);
  2952. return ret;
  2953. }
  2954. }
  2955. /* insert an orphan item to track this unlinked/truncated file */
  2956. if (insert >= 1) {
  2957. ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
  2958. if (ret) {
  2959. atomic_dec(&root->orphan_inodes);
  2960. if (reserve) {
  2961. clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2962. &inode->runtime_flags);
  2963. btrfs_orphan_release_metadata(inode);
  2964. }
  2965. if (ret != -EEXIST) {
  2966. clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2967. &inode->runtime_flags);
  2968. btrfs_abort_transaction(trans, ret);
  2969. return ret;
  2970. }
  2971. }
  2972. ret = 0;
  2973. }
  2974. /* insert an orphan item to track subvolume contains orphan files */
  2975. if (insert >= 2) {
  2976. ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
  2977. root->root_key.objectid);
  2978. if (ret && ret != -EEXIST) {
  2979. btrfs_abort_transaction(trans, ret);
  2980. return ret;
  2981. }
  2982. }
  2983. return 0;
  2984. }
  2985. /*
  2986. * We have done the truncate/delete so we can go ahead and remove the orphan
  2987. * item for this particular inode.
  2988. */
  2989. static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
  2990. struct btrfs_inode *inode)
  2991. {
  2992. struct btrfs_root *root = inode->root;
  2993. int delete_item = 0;
  2994. int release_rsv = 0;
  2995. int ret = 0;
  2996. spin_lock(&root->orphan_lock);
  2997. if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2998. &inode->runtime_flags))
  2999. delete_item = 1;
  3000. if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  3001. &inode->runtime_flags))
  3002. release_rsv = 1;
  3003. spin_unlock(&root->orphan_lock);
  3004. if (delete_item) {
  3005. atomic_dec(&root->orphan_inodes);
  3006. if (trans)
  3007. ret = btrfs_del_orphan_item(trans, root,
  3008. btrfs_ino(inode));
  3009. }
  3010. if (release_rsv)
  3011. btrfs_orphan_release_metadata(inode);
  3012. return ret;
  3013. }
  3014. /*
  3015. * this cleans up any orphans that may be left on the list from the last use
  3016. * of this root.
  3017. */
  3018. int btrfs_orphan_cleanup(struct btrfs_root *root)
  3019. {
  3020. struct btrfs_fs_info *fs_info = root->fs_info;
  3021. struct btrfs_path *path;
  3022. struct extent_buffer *leaf;
  3023. struct btrfs_key key, found_key;
  3024. struct btrfs_trans_handle *trans;
  3025. struct inode *inode;
  3026. u64 last_objectid = 0;
  3027. int ret = 0, nr_unlink = 0, nr_truncate = 0;
  3028. if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
  3029. return 0;
  3030. path = btrfs_alloc_path();
  3031. if (!path) {
  3032. ret = -ENOMEM;
  3033. goto out;
  3034. }
  3035. path->reada = READA_BACK;
  3036. key.objectid = BTRFS_ORPHAN_OBJECTID;
  3037. key.type = BTRFS_ORPHAN_ITEM_KEY;
  3038. key.offset = (u64)-1;
  3039. while (1) {
  3040. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3041. if (ret < 0)
  3042. goto out;
  3043. /*
  3044. * if ret == 0 means we found what we were searching for, which
  3045. * is weird, but possible, so only screw with path if we didn't
  3046. * find the key and see if we have stuff that matches
  3047. */
  3048. if (ret > 0) {
  3049. ret = 0;
  3050. if (path->slots[0] == 0)
  3051. break;
  3052. path->slots[0]--;
  3053. }
  3054. /* pull out the item */
  3055. leaf = path->nodes[0];
  3056. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3057. /* make sure the item matches what we want */
  3058. if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
  3059. break;
  3060. if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
  3061. break;
  3062. /* release the path since we're done with it */
  3063. btrfs_release_path(path);
  3064. /*
  3065. * this is where we are basically btrfs_lookup, without the
  3066. * crossing root thing. we store the inode number in the
  3067. * offset of the orphan item.
  3068. */
  3069. if (found_key.offset == last_objectid) {
  3070. btrfs_err(fs_info,
  3071. "Error removing orphan entry, stopping orphan cleanup");
  3072. ret = -EINVAL;
  3073. goto out;
  3074. }
  3075. last_objectid = found_key.offset;
  3076. found_key.objectid = found_key.offset;
  3077. found_key.type = BTRFS_INODE_ITEM_KEY;
  3078. found_key.offset = 0;
  3079. inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
  3080. ret = PTR_ERR_OR_ZERO(inode);
  3081. if (ret && ret != -ENOENT)
  3082. goto out;
  3083. if (ret == -ENOENT && root == fs_info->tree_root) {
  3084. struct btrfs_root *dead_root;
  3085. struct btrfs_fs_info *fs_info = root->fs_info;
  3086. int is_dead_root = 0;
  3087. /*
  3088. * this is an orphan in the tree root. Currently these
  3089. * could come from 2 sources:
  3090. * a) a snapshot deletion in progress
  3091. * b) a free space cache inode
  3092. * We need to distinguish those two, as the snapshot
  3093. * orphan must not get deleted.
  3094. * find_dead_roots already ran before us, so if this
  3095. * is a snapshot deletion, we should find the root
  3096. * in the dead_roots list
  3097. */
  3098. spin_lock(&fs_info->trans_lock);
  3099. list_for_each_entry(dead_root, &fs_info->dead_roots,
  3100. root_list) {
  3101. if (dead_root->root_key.objectid ==
  3102. found_key.objectid) {
  3103. is_dead_root = 1;
  3104. break;
  3105. }
  3106. }
  3107. spin_unlock(&fs_info->trans_lock);
  3108. if (is_dead_root) {
  3109. /* prevent this orphan from being found again */
  3110. key.offset = found_key.objectid - 1;
  3111. continue;
  3112. }
  3113. }
  3114. /*
  3115. * Inode is already gone but the orphan item is still there,
  3116. * kill the orphan item.
  3117. */
  3118. if (ret == -ENOENT) {
  3119. trans = btrfs_start_transaction(root, 1);
  3120. if (IS_ERR(trans)) {
  3121. ret = PTR_ERR(trans);
  3122. goto out;
  3123. }
  3124. btrfs_debug(fs_info, "auto deleting %Lu",
  3125. found_key.objectid);
  3126. ret = btrfs_del_orphan_item(trans, root,
  3127. found_key.objectid);
  3128. btrfs_end_transaction(trans);
  3129. if (ret)
  3130. goto out;
  3131. continue;
  3132. }
  3133. /*
  3134. * add this inode to the orphan list so btrfs_orphan_del does
  3135. * the proper thing when we hit it
  3136. */
  3137. set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  3138. &BTRFS_I(inode)->runtime_flags);
  3139. atomic_inc(&root->orphan_inodes);
  3140. /* if we have links, this was a truncate, lets do that */
  3141. if (inode->i_nlink) {
  3142. if (WARN_ON(!S_ISREG(inode->i_mode))) {
  3143. iput(inode);
  3144. continue;
  3145. }
  3146. nr_truncate++;
  3147. /* 1 for the orphan item deletion. */
  3148. trans = btrfs_start_transaction(root, 1);
  3149. if (IS_ERR(trans)) {
  3150. iput(inode);
  3151. ret = PTR_ERR(trans);
  3152. goto out;
  3153. }
  3154. ret = btrfs_orphan_add(trans, BTRFS_I(inode));
  3155. btrfs_end_transaction(trans);
  3156. if (ret) {
  3157. iput(inode);
  3158. goto out;
  3159. }
  3160. ret = btrfs_truncate(inode);
  3161. if (ret)
  3162. btrfs_orphan_del(NULL, BTRFS_I(inode));
  3163. } else {
  3164. nr_unlink++;
  3165. }
  3166. /* this will do delete_inode and everything for us */
  3167. iput(inode);
  3168. if (ret)
  3169. goto out;
  3170. }
  3171. /* release the path since we're done with it */
  3172. btrfs_release_path(path);
  3173. root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
  3174. if (root->orphan_block_rsv)
  3175. btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
  3176. (u64)-1);
  3177. if (root->orphan_block_rsv ||
  3178. test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
  3179. trans = btrfs_join_transaction(root);
  3180. if (!IS_ERR(trans))
  3181. btrfs_end_transaction(trans);
  3182. }
  3183. if (nr_unlink)
  3184. btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
  3185. if (nr_truncate)
  3186. btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
  3187. out:
  3188. if (ret)
  3189. btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
  3190. btrfs_free_path(path);
  3191. return ret;
  3192. }
  3193. /*
  3194. * very simple check to peek ahead in the leaf looking for xattrs. If we
  3195. * don't find any xattrs, we know there can't be any acls.
  3196. *
  3197. * slot is the slot the inode is in, objectid is the objectid of the inode
  3198. */
  3199. static noinline int acls_after_inode_item(struct extent_buffer *leaf,
  3200. int slot, u64 objectid,
  3201. int *first_xattr_slot)
  3202. {
  3203. u32 nritems = btrfs_header_nritems(leaf);
  3204. struct btrfs_key found_key;
  3205. static u64 xattr_access = 0;
  3206. static u64 xattr_default = 0;
  3207. int scanned = 0;
  3208. if (!xattr_access) {
  3209. xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
  3210. strlen(XATTR_NAME_POSIX_ACL_ACCESS));
  3211. xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
  3212. strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
  3213. }
  3214. slot++;
  3215. *first_xattr_slot = -1;
  3216. while (slot < nritems) {
  3217. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3218. /* we found a different objectid, there must not be acls */
  3219. if (found_key.objectid != objectid)
  3220. return 0;
  3221. /* we found an xattr, assume we've got an acl */
  3222. if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
  3223. if (*first_xattr_slot == -1)
  3224. *first_xattr_slot = slot;
  3225. if (found_key.offset == xattr_access ||
  3226. found_key.offset == xattr_default)
  3227. return 1;
  3228. }
  3229. /*
  3230. * we found a key greater than an xattr key, there can't
  3231. * be any acls later on
  3232. */
  3233. if (found_key.type > BTRFS_XATTR_ITEM_KEY)
  3234. return 0;
  3235. slot++;
  3236. scanned++;
  3237. /*
  3238. * it goes inode, inode backrefs, xattrs, extents,
  3239. * so if there are a ton of hard links to an inode there can
  3240. * be a lot of backrefs. Don't waste time searching too hard,
  3241. * this is just an optimization
  3242. */
  3243. if (scanned >= 8)
  3244. break;
  3245. }
  3246. /* we hit the end of the leaf before we found an xattr or
  3247. * something larger than an xattr. We have to assume the inode
  3248. * has acls
  3249. */
  3250. if (*first_xattr_slot == -1)
  3251. *first_xattr_slot = slot;
  3252. return 1;
  3253. }
  3254. /*
  3255. * read an inode from the btree into the in-memory inode
  3256. */
  3257. static int btrfs_read_locked_inode(struct inode *inode)
  3258. {
  3259. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  3260. struct btrfs_path *path;
  3261. struct extent_buffer *leaf;
  3262. struct btrfs_inode_item *inode_item;
  3263. struct btrfs_root *root = BTRFS_I(inode)->root;
  3264. struct btrfs_key location;
  3265. unsigned long ptr;
  3266. int maybe_acls;
  3267. u32 rdev;
  3268. int ret;
  3269. bool filled = false;
  3270. int first_xattr_slot;
  3271. ret = btrfs_fill_inode(inode, &rdev);
  3272. if (!ret)
  3273. filled = true;
  3274. path = btrfs_alloc_path();
  3275. if (!path) {
  3276. ret = -ENOMEM;
  3277. goto make_bad;
  3278. }
  3279. memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
  3280. ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
  3281. if (ret) {
  3282. if (ret > 0)
  3283. ret = -ENOENT;
  3284. goto make_bad;
  3285. }
  3286. leaf = path->nodes[0];
  3287. if (filled)
  3288. goto cache_index;
  3289. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  3290. struct btrfs_inode_item);
  3291. inode->i_mode = btrfs_inode_mode(leaf, inode_item);
  3292. set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
  3293. i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
  3294. i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
  3295. btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
  3296. inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
  3297. inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
  3298. inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
  3299. inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
  3300. inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
  3301. inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
  3302. BTRFS_I(inode)->i_otime.tv_sec =
  3303. btrfs_timespec_sec(leaf, &inode_item->otime);
  3304. BTRFS_I(inode)->i_otime.tv_nsec =
  3305. btrfs_timespec_nsec(leaf, &inode_item->otime);
  3306. inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
  3307. BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
  3308. BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
  3309. inode->i_version = btrfs_inode_sequence(leaf, inode_item);
  3310. inode->i_generation = BTRFS_I(inode)->generation;
  3311. inode->i_rdev = 0;
  3312. rdev = btrfs_inode_rdev(leaf, inode_item);
  3313. BTRFS_I(inode)->index_cnt = (u64)-1;
  3314. BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
  3315. cache_index:
  3316. /*
  3317. * If we were modified in the current generation and evicted from memory
  3318. * and then re-read we need to do a full sync since we don't have any
  3319. * idea about which extents were modified before we were evicted from
  3320. * cache.
  3321. *
  3322. * This is required for both inode re-read from disk and delayed inode
  3323. * in delayed_nodes_tree.
  3324. */
  3325. if (BTRFS_I(inode)->last_trans == fs_info->generation)
  3326. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  3327. &BTRFS_I(inode)->runtime_flags);
  3328. /*
  3329. * We don't persist the id of the transaction where an unlink operation
  3330. * against the inode was last made. So here we assume the inode might
  3331. * have been evicted, and therefore the exact value of last_unlink_trans
  3332. * lost, and set it to last_trans to avoid metadata inconsistencies
  3333. * between the inode and its parent if the inode is fsync'ed and the log
  3334. * replayed. For example, in the scenario:
  3335. *
  3336. * touch mydir/foo
  3337. * ln mydir/foo mydir/bar
  3338. * sync
  3339. * unlink mydir/bar
  3340. * echo 2 > /proc/sys/vm/drop_caches # evicts inode
  3341. * xfs_io -c fsync mydir/foo
  3342. * <power failure>
  3343. * mount fs, triggers fsync log replay
  3344. *
  3345. * We must make sure that when we fsync our inode foo we also log its
  3346. * parent inode, otherwise after log replay the parent still has the
  3347. * dentry with the "bar" name but our inode foo has a link count of 1
  3348. * and doesn't have an inode ref with the name "bar" anymore.
  3349. *
  3350. * Setting last_unlink_trans to last_trans is a pessimistic approach,
  3351. * but it guarantees correctness at the expense of occasional full
  3352. * transaction commits on fsync if our inode is a directory, or if our
  3353. * inode is not a directory, logging its parent unnecessarily.
  3354. */
  3355. BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
  3356. path->slots[0]++;
  3357. if (inode->i_nlink != 1 ||
  3358. path->slots[0] >= btrfs_header_nritems(leaf))
  3359. goto cache_acl;
  3360. btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
  3361. if (location.objectid != btrfs_ino(BTRFS_I(inode)))
  3362. goto cache_acl;
  3363. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3364. if (location.type == BTRFS_INODE_REF_KEY) {
  3365. struct btrfs_inode_ref *ref;
  3366. ref = (struct btrfs_inode_ref *)ptr;
  3367. BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
  3368. } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
  3369. struct btrfs_inode_extref *extref;
  3370. extref = (struct btrfs_inode_extref *)ptr;
  3371. BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
  3372. extref);
  3373. }
  3374. cache_acl:
  3375. /*
  3376. * try to precache a NULL acl entry for files that don't have
  3377. * any xattrs or acls
  3378. */
  3379. maybe_acls = acls_after_inode_item(leaf, path->slots[0],
  3380. btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
  3381. if (first_xattr_slot != -1) {
  3382. path->slots[0] = first_xattr_slot;
  3383. ret = btrfs_load_inode_props(inode, path);
  3384. if (ret)
  3385. btrfs_err(fs_info,
  3386. "error loading props for ino %llu (root %llu): %d",
  3387. btrfs_ino(BTRFS_I(inode)),
  3388. root->root_key.objectid, ret);
  3389. }
  3390. btrfs_free_path(path);
  3391. if (!maybe_acls)
  3392. cache_no_acl(inode);
  3393. switch (inode->i_mode & S_IFMT) {
  3394. case S_IFREG:
  3395. inode->i_mapping->a_ops = &btrfs_aops;
  3396. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  3397. inode->i_fop = &btrfs_file_operations;
  3398. inode->i_op = &btrfs_file_inode_operations;
  3399. break;
  3400. case S_IFDIR:
  3401. inode->i_fop = &btrfs_dir_file_operations;
  3402. inode->i_op = &btrfs_dir_inode_operations;
  3403. break;
  3404. case S_IFLNK:
  3405. inode->i_op = &btrfs_symlink_inode_operations;
  3406. inode_nohighmem(inode);
  3407. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  3408. break;
  3409. default:
  3410. inode->i_op = &btrfs_special_inode_operations;
  3411. init_special_inode(inode, inode->i_mode, rdev);
  3412. break;
  3413. }
  3414. btrfs_update_iflags(inode);
  3415. return 0;
  3416. make_bad:
  3417. btrfs_free_path(path);
  3418. make_bad_inode(inode);
  3419. return ret;
  3420. }
  3421. /*
  3422. * given a leaf and an inode, copy the inode fields into the leaf
  3423. */
  3424. static void fill_inode_item(struct btrfs_trans_handle *trans,
  3425. struct extent_buffer *leaf,
  3426. struct btrfs_inode_item *item,
  3427. struct inode *inode)
  3428. {
  3429. struct btrfs_map_token token;
  3430. btrfs_init_map_token(&token);
  3431. btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
  3432. btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
  3433. btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
  3434. &token);
  3435. btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
  3436. btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
  3437. btrfs_set_token_timespec_sec(leaf, &item->atime,
  3438. inode->i_atime.tv_sec, &token);
  3439. btrfs_set_token_timespec_nsec(leaf, &item->atime,
  3440. inode->i_atime.tv_nsec, &token);
  3441. btrfs_set_token_timespec_sec(leaf, &item->mtime,
  3442. inode->i_mtime.tv_sec, &token);
  3443. btrfs_set_token_timespec_nsec(leaf, &item->mtime,
  3444. inode->i_mtime.tv_nsec, &token);
  3445. btrfs_set_token_timespec_sec(leaf, &item->ctime,
  3446. inode->i_ctime.tv_sec, &token);
  3447. btrfs_set_token_timespec_nsec(leaf, &item->ctime,
  3448. inode->i_ctime.tv_nsec, &token);
  3449. btrfs_set_token_timespec_sec(leaf, &item->otime,
  3450. BTRFS_I(inode)->i_otime.tv_sec, &token);
  3451. btrfs_set_token_timespec_nsec(leaf, &item->otime,
  3452. BTRFS_I(inode)->i_otime.tv_nsec, &token);
  3453. btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
  3454. &token);
  3455. btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
  3456. &token);
  3457. btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
  3458. btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
  3459. btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
  3460. btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
  3461. btrfs_set_token_inode_block_group(leaf, item, 0, &token);
  3462. }
  3463. /*
  3464. * copy everything in the in-memory inode into the btree.
  3465. */
  3466. static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
  3467. struct btrfs_root *root, struct inode *inode)
  3468. {
  3469. struct btrfs_inode_item *inode_item;
  3470. struct btrfs_path *path;
  3471. struct extent_buffer *leaf;
  3472. int ret;
  3473. path = btrfs_alloc_path();
  3474. if (!path)
  3475. return -ENOMEM;
  3476. path->leave_spinning = 1;
  3477. ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
  3478. 1);
  3479. if (ret) {
  3480. if (ret > 0)
  3481. ret = -ENOENT;
  3482. goto failed;
  3483. }
  3484. leaf = path->nodes[0];
  3485. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  3486. struct btrfs_inode_item);
  3487. fill_inode_item(trans, leaf, inode_item, inode);
  3488. btrfs_mark_buffer_dirty(leaf);
  3489. btrfs_set_inode_last_trans(trans, inode);
  3490. ret = 0;
  3491. failed:
  3492. btrfs_free_path(path);
  3493. return ret;
  3494. }
  3495. /*
  3496. * copy everything in the in-memory inode into the btree.
  3497. */
  3498. noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
  3499. struct btrfs_root *root, struct inode *inode)
  3500. {
  3501. struct btrfs_fs_info *fs_info = root->fs_info;
  3502. int ret;
  3503. /*
  3504. * If the inode is a free space inode, we can deadlock during commit
  3505. * if we put it into the delayed code.
  3506. *
  3507. * The data relocation inode should also be directly updated
  3508. * without delay
  3509. */
  3510. if (!btrfs_is_free_space_inode(BTRFS_I(inode))
  3511. && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
  3512. && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
  3513. btrfs_update_root_times(trans, root);
  3514. ret = btrfs_delayed_update_inode(trans, root, inode);
  3515. if (!ret)
  3516. btrfs_set_inode_last_trans(trans, inode);
  3517. return ret;
  3518. }
  3519. return btrfs_update_inode_item(trans, root, inode);
  3520. }
  3521. noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
  3522. struct btrfs_root *root,
  3523. struct inode *inode)
  3524. {
  3525. int ret;
  3526. ret = btrfs_update_inode(trans, root, inode);
  3527. if (ret == -ENOSPC)
  3528. return btrfs_update_inode_item(trans, root, inode);
  3529. return ret;
  3530. }
  3531. /*
  3532. * unlink helper that gets used here in inode.c and in the tree logging
  3533. * recovery code. It remove a link in a directory with a given name, and
  3534. * also drops the back refs in the inode to the directory
  3535. */
  3536. static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  3537. struct btrfs_root *root,
  3538. struct btrfs_inode *dir,
  3539. struct btrfs_inode *inode,
  3540. const char *name, int name_len)
  3541. {
  3542. struct btrfs_fs_info *fs_info = root->fs_info;
  3543. struct btrfs_path *path;
  3544. int ret = 0;
  3545. struct extent_buffer *leaf;
  3546. struct btrfs_dir_item *di;
  3547. struct btrfs_key key;
  3548. u64 index;
  3549. u64 ino = btrfs_ino(inode);
  3550. u64 dir_ino = btrfs_ino(dir);
  3551. path = btrfs_alloc_path();
  3552. if (!path) {
  3553. ret = -ENOMEM;
  3554. goto out;
  3555. }
  3556. path->leave_spinning = 1;
  3557. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  3558. name, name_len, -1);
  3559. if (IS_ERR(di)) {
  3560. ret = PTR_ERR(di);
  3561. goto err;
  3562. }
  3563. if (!di) {
  3564. ret = -ENOENT;
  3565. goto err;
  3566. }
  3567. leaf = path->nodes[0];
  3568. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  3569. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  3570. if (ret)
  3571. goto err;
  3572. btrfs_release_path(path);
  3573. /*
  3574. * If we don't have dir index, we have to get it by looking up
  3575. * the inode ref, since we get the inode ref, remove it directly,
  3576. * it is unnecessary to do delayed deletion.
  3577. *
  3578. * But if we have dir index, needn't search inode ref to get it.
  3579. * Since the inode ref is close to the inode item, it is better
  3580. * that we delay to delete it, and just do this deletion when
  3581. * we update the inode item.
  3582. */
  3583. if (inode->dir_index) {
  3584. ret = btrfs_delayed_delete_inode_ref(inode);
  3585. if (!ret) {
  3586. index = inode->dir_index;
  3587. goto skip_backref;
  3588. }
  3589. }
  3590. ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
  3591. dir_ino, &index);
  3592. if (ret) {
  3593. btrfs_info(fs_info,
  3594. "failed to delete reference to %.*s, inode %llu parent %llu",
  3595. name_len, name, ino, dir_ino);
  3596. btrfs_abort_transaction(trans, ret);
  3597. goto err;
  3598. }
  3599. skip_backref:
  3600. ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
  3601. if (ret) {
  3602. btrfs_abort_transaction(trans, ret);
  3603. goto err;
  3604. }
  3605. ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
  3606. dir_ino);
  3607. if (ret != 0 && ret != -ENOENT) {
  3608. btrfs_abort_transaction(trans, ret);
  3609. goto err;
  3610. }
  3611. ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
  3612. index);
  3613. if (ret == -ENOENT)
  3614. ret = 0;
  3615. else if (ret)
  3616. btrfs_abort_transaction(trans, ret);
  3617. err:
  3618. btrfs_free_path(path);
  3619. if (ret)
  3620. goto out;
  3621. btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
  3622. inode_inc_iversion(&inode->vfs_inode);
  3623. inode_inc_iversion(&dir->vfs_inode);
  3624. inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
  3625. dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
  3626. ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
  3627. out:
  3628. return ret;
  3629. }
  3630. int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  3631. struct btrfs_root *root,
  3632. struct btrfs_inode *dir, struct btrfs_inode *inode,
  3633. const char *name, int name_len)
  3634. {
  3635. int ret;
  3636. ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
  3637. if (!ret) {
  3638. drop_nlink(&inode->vfs_inode);
  3639. ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
  3640. }
  3641. return ret;
  3642. }
  3643. /*
  3644. * helper to start transaction for unlink and rmdir.
  3645. *
  3646. * unlink and rmdir are special in btrfs, they do not always free space, so
  3647. * if we cannot make our reservations the normal way try and see if there is
  3648. * plenty of slack room in the global reserve to migrate, otherwise we cannot
  3649. * allow the unlink to occur.
  3650. */
  3651. static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
  3652. {
  3653. struct btrfs_root *root = BTRFS_I(dir)->root;
  3654. /*
  3655. * 1 for the possible orphan item
  3656. * 1 for the dir item
  3657. * 1 for the dir index
  3658. * 1 for the inode ref
  3659. * 1 for the inode
  3660. */
  3661. return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
  3662. }
  3663. static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
  3664. {
  3665. struct btrfs_root *root = BTRFS_I(dir)->root;
  3666. struct btrfs_trans_handle *trans;
  3667. struct inode *inode = d_inode(dentry);
  3668. int ret;
  3669. trans = __unlink_start_trans(dir);
  3670. if (IS_ERR(trans))
  3671. return PTR_ERR(trans);
  3672. btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
  3673. 0);
  3674. ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
  3675. BTRFS_I(d_inode(dentry)), dentry->d_name.name,
  3676. dentry->d_name.len);
  3677. if (ret)
  3678. goto out;
  3679. if (inode->i_nlink == 0) {
  3680. ret = btrfs_orphan_add(trans, BTRFS_I(inode));
  3681. if (ret)
  3682. goto out;
  3683. }
  3684. out:
  3685. btrfs_end_transaction(trans);
  3686. btrfs_btree_balance_dirty(root->fs_info);
  3687. return ret;
  3688. }
  3689. int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
  3690. struct btrfs_root *root,
  3691. struct inode *dir, u64 objectid,
  3692. const char *name, int name_len)
  3693. {
  3694. struct btrfs_fs_info *fs_info = root->fs_info;
  3695. struct btrfs_path *path;
  3696. struct extent_buffer *leaf;
  3697. struct btrfs_dir_item *di;
  3698. struct btrfs_key key;
  3699. u64 index;
  3700. int ret;
  3701. u64 dir_ino = btrfs_ino(BTRFS_I(dir));
  3702. path = btrfs_alloc_path();
  3703. if (!path)
  3704. return -ENOMEM;
  3705. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  3706. name, name_len, -1);
  3707. if (IS_ERR_OR_NULL(di)) {
  3708. if (!di)
  3709. ret = -ENOENT;
  3710. else
  3711. ret = PTR_ERR(di);
  3712. goto out;
  3713. }
  3714. leaf = path->nodes[0];
  3715. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  3716. WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
  3717. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  3718. if (ret) {
  3719. btrfs_abort_transaction(trans, ret);
  3720. goto out;
  3721. }
  3722. btrfs_release_path(path);
  3723. ret = btrfs_del_root_ref(trans, fs_info, objectid,
  3724. root->root_key.objectid, dir_ino,
  3725. &index, name, name_len);
  3726. if (ret < 0) {
  3727. if (ret != -ENOENT) {
  3728. btrfs_abort_transaction(trans, ret);
  3729. goto out;
  3730. }
  3731. di = btrfs_search_dir_index_item(root, path, dir_ino,
  3732. name, name_len);
  3733. if (IS_ERR_OR_NULL(di)) {
  3734. if (!di)
  3735. ret = -ENOENT;
  3736. else
  3737. ret = PTR_ERR(di);
  3738. btrfs_abort_transaction(trans, ret);
  3739. goto out;
  3740. }
  3741. leaf = path->nodes[0];
  3742. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3743. btrfs_release_path(path);
  3744. index = key.offset;
  3745. }
  3746. btrfs_release_path(path);
  3747. ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
  3748. if (ret) {
  3749. btrfs_abort_transaction(trans, ret);
  3750. goto out;
  3751. }
  3752. btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
  3753. inode_inc_iversion(dir);
  3754. dir->i_mtime = dir->i_ctime = current_time(dir);
  3755. ret = btrfs_update_inode_fallback(trans, root, dir);
  3756. if (ret)
  3757. btrfs_abort_transaction(trans, ret);
  3758. out:
  3759. btrfs_free_path(path);
  3760. return ret;
  3761. }
  3762. static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
  3763. {
  3764. struct inode *inode = d_inode(dentry);
  3765. int err = 0;
  3766. struct btrfs_root *root = BTRFS_I(dir)->root;
  3767. struct btrfs_trans_handle *trans;
  3768. u64 last_unlink_trans;
  3769. if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  3770. return -ENOTEMPTY;
  3771. if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
  3772. return -EPERM;
  3773. trans = __unlink_start_trans(dir);
  3774. if (IS_ERR(trans))
  3775. return PTR_ERR(trans);
  3776. if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  3777. err = btrfs_unlink_subvol(trans, root, dir,
  3778. BTRFS_I(inode)->location.objectid,
  3779. dentry->d_name.name,
  3780. dentry->d_name.len);
  3781. goto out;
  3782. }
  3783. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3784. if (err)
  3785. goto out;
  3786. last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
  3787. /* now the directory is empty */
  3788. err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
  3789. BTRFS_I(d_inode(dentry)), dentry->d_name.name,
  3790. dentry->d_name.len);
  3791. if (!err) {
  3792. btrfs_i_size_write(BTRFS_I(inode), 0);
  3793. /*
  3794. * Propagate the last_unlink_trans value of the deleted dir to
  3795. * its parent directory. This is to prevent an unrecoverable
  3796. * log tree in the case we do something like this:
  3797. * 1) create dir foo
  3798. * 2) create snapshot under dir foo
  3799. * 3) delete the snapshot
  3800. * 4) rmdir foo
  3801. * 5) mkdir foo
  3802. * 6) fsync foo or some file inside foo
  3803. */
  3804. if (last_unlink_trans >= trans->transid)
  3805. BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
  3806. }
  3807. out:
  3808. btrfs_end_transaction(trans);
  3809. btrfs_btree_balance_dirty(root->fs_info);
  3810. return err;
  3811. }
  3812. static int truncate_space_check(struct btrfs_trans_handle *trans,
  3813. struct btrfs_root *root,
  3814. u64 bytes_deleted)
  3815. {
  3816. struct btrfs_fs_info *fs_info = root->fs_info;
  3817. int ret;
  3818. /*
  3819. * This is only used to apply pressure to the enospc system, we don't
  3820. * intend to use this reservation at all.
  3821. */
  3822. bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
  3823. bytes_deleted *= fs_info->nodesize;
  3824. ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
  3825. bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
  3826. if (!ret) {
  3827. trace_btrfs_space_reservation(fs_info, "transaction",
  3828. trans->transid,
  3829. bytes_deleted, 1);
  3830. trans->bytes_reserved += bytes_deleted;
  3831. }
  3832. return ret;
  3833. }
  3834. static int truncate_inline_extent(struct inode *inode,
  3835. struct btrfs_path *path,
  3836. struct btrfs_key *found_key,
  3837. const u64 item_end,
  3838. const u64 new_size)
  3839. {
  3840. struct extent_buffer *leaf = path->nodes[0];
  3841. int slot = path->slots[0];
  3842. struct btrfs_file_extent_item *fi;
  3843. u32 size = (u32)(new_size - found_key->offset);
  3844. struct btrfs_root *root = BTRFS_I(inode)->root;
  3845. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  3846. if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
  3847. loff_t offset = new_size;
  3848. loff_t page_end = ALIGN(offset, PAGE_SIZE);
  3849. /*
  3850. * Zero out the remaining of the last page of our inline extent,
  3851. * instead of directly truncating our inline extent here - that
  3852. * would be much more complex (decompressing all the data, then
  3853. * compressing the truncated data, which might be bigger than
  3854. * the size of the inline extent, resize the extent, etc).
  3855. * We release the path because to get the page we might need to
  3856. * read the extent item from disk (data not in the page cache).
  3857. */
  3858. btrfs_release_path(path);
  3859. return btrfs_truncate_block(inode, offset, page_end - offset,
  3860. 0);
  3861. }
  3862. btrfs_set_file_extent_ram_bytes(leaf, fi, size);
  3863. size = btrfs_file_extent_calc_inline_size(size);
  3864. btrfs_truncate_item(root->fs_info, path, size, 1);
  3865. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  3866. inode_sub_bytes(inode, item_end + 1 - new_size);
  3867. return 0;
  3868. }
  3869. /*
  3870. * this can truncate away extent items, csum items and directory items.
  3871. * It starts at a high offset and removes keys until it can't find
  3872. * any higher than new_size
  3873. *
  3874. * csum items that cross the new i_size are truncated to the new size
  3875. * as well.
  3876. *
  3877. * min_type is the minimum key type to truncate down to. If set to 0, this
  3878. * will kill all the items on this inode, including the INODE_ITEM_KEY.
  3879. */
  3880. int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
  3881. struct btrfs_root *root,
  3882. struct inode *inode,
  3883. u64 new_size, u32 min_type)
  3884. {
  3885. struct btrfs_fs_info *fs_info = root->fs_info;
  3886. struct btrfs_path *path;
  3887. struct extent_buffer *leaf;
  3888. struct btrfs_file_extent_item *fi;
  3889. struct btrfs_key key;
  3890. struct btrfs_key found_key;
  3891. u64 extent_start = 0;
  3892. u64 extent_num_bytes = 0;
  3893. u64 extent_offset = 0;
  3894. u64 item_end = 0;
  3895. u64 last_size = new_size;
  3896. u32 found_type = (u8)-1;
  3897. int found_extent;
  3898. int del_item;
  3899. int pending_del_nr = 0;
  3900. int pending_del_slot = 0;
  3901. int extent_type = -1;
  3902. int ret;
  3903. int err = 0;
  3904. u64 ino = btrfs_ino(BTRFS_I(inode));
  3905. u64 bytes_deleted = 0;
  3906. bool be_nice = 0;
  3907. bool should_throttle = 0;
  3908. bool should_end = 0;
  3909. BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
  3910. /*
  3911. * for non-free space inodes and ref cows, we want to back off from
  3912. * time to time
  3913. */
  3914. if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
  3915. test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  3916. be_nice = 1;
  3917. path = btrfs_alloc_path();
  3918. if (!path)
  3919. return -ENOMEM;
  3920. path->reada = READA_BACK;
  3921. /*
  3922. * We want to drop from the next block forward in case this new size is
  3923. * not block aligned since we will be keeping the last block of the
  3924. * extent just the way it is.
  3925. */
  3926. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  3927. root == fs_info->tree_root)
  3928. btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
  3929. fs_info->sectorsize),
  3930. (u64)-1, 0);
  3931. /*
  3932. * This function is also used to drop the items in the log tree before
  3933. * we relog the inode, so if root != BTRFS_I(inode)->root, it means
  3934. * it is used to drop the loged items. So we shouldn't kill the delayed
  3935. * items.
  3936. */
  3937. if (min_type == 0 && root == BTRFS_I(inode)->root)
  3938. btrfs_kill_delayed_inode_items(BTRFS_I(inode));
  3939. key.objectid = ino;
  3940. key.offset = (u64)-1;
  3941. key.type = (u8)-1;
  3942. search_again:
  3943. /*
  3944. * with a 16K leaf size and 128MB extents, you can actually queue
  3945. * up a huge file in a single leaf. Most of the time that
  3946. * bytes_deleted is > 0, it will be huge by the time we get here
  3947. */
  3948. if (be_nice && bytes_deleted > SZ_32M) {
  3949. if (btrfs_should_end_transaction(trans)) {
  3950. err = -EAGAIN;
  3951. goto error;
  3952. }
  3953. }
  3954. path->leave_spinning = 1;
  3955. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  3956. if (ret < 0) {
  3957. err = ret;
  3958. goto out;
  3959. }
  3960. if (ret > 0) {
  3961. /* there are no items in the tree for us to truncate, we're
  3962. * done
  3963. */
  3964. if (path->slots[0] == 0)
  3965. goto out;
  3966. path->slots[0]--;
  3967. }
  3968. while (1) {
  3969. fi = NULL;
  3970. leaf = path->nodes[0];
  3971. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3972. found_type = found_key.type;
  3973. if (found_key.objectid != ino)
  3974. break;
  3975. if (found_type < min_type)
  3976. break;
  3977. item_end = found_key.offset;
  3978. if (found_type == BTRFS_EXTENT_DATA_KEY) {
  3979. fi = btrfs_item_ptr(leaf, path->slots[0],
  3980. struct btrfs_file_extent_item);
  3981. extent_type = btrfs_file_extent_type(leaf, fi);
  3982. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  3983. item_end +=
  3984. btrfs_file_extent_num_bytes(leaf, fi);
  3985. trace_btrfs_truncate_show_fi_regular(
  3986. BTRFS_I(inode), leaf, fi,
  3987. found_key.offset);
  3988. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  3989. item_end += btrfs_file_extent_inline_len(leaf,
  3990. path->slots[0], fi);
  3991. trace_btrfs_truncate_show_fi_inline(
  3992. BTRFS_I(inode), leaf, fi, path->slots[0],
  3993. found_key.offset);
  3994. }
  3995. item_end--;
  3996. }
  3997. if (found_type > min_type) {
  3998. del_item = 1;
  3999. } else {
  4000. if (item_end < new_size)
  4001. break;
  4002. if (found_key.offset >= new_size)
  4003. del_item = 1;
  4004. else
  4005. del_item = 0;
  4006. }
  4007. found_extent = 0;
  4008. /* FIXME, shrink the extent if the ref count is only 1 */
  4009. if (found_type != BTRFS_EXTENT_DATA_KEY)
  4010. goto delete;
  4011. if (del_item)
  4012. last_size = found_key.offset;
  4013. else
  4014. last_size = new_size;
  4015. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  4016. u64 num_dec;
  4017. extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
  4018. if (!del_item) {
  4019. u64 orig_num_bytes =
  4020. btrfs_file_extent_num_bytes(leaf, fi);
  4021. extent_num_bytes = ALIGN(new_size -
  4022. found_key.offset,
  4023. fs_info->sectorsize);
  4024. btrfs_set_file_extent_num_bytes(leaf, fi,
  4025. extent_num_bytes);
  4026. num_dec = (orig_num_bytes -
  4027. extent_num_bytes);
  4028. if (test_bit(BTRFS_ROOT_REF_COWS,
  4029. &root->state) &&
  4030. extent_start != 0)
  4031. inode_sub_bytes(inode, num_dec);
  4032. btrfs_mark_buffer_dirty(leaf);
  4033. } else {
  4034. extent_num_bytes =
  4035. btrfs_file_extent_disk_num_bytes(leaf,
  4036. fi);
  4037. extent_offset = found_key.offset -
  4038. btrfs_file_extent_offset(leaf, fi);
  4039. /* FIXME blocksize != 4096 */
  4040. num_dec = btrfs_file_extent_num_bytes(leaf, fi);
  4041. if (extent_start != 0) {
  4042. found_extent = 1;
  4043. if (test_bit(BTRFS_ROOT_REF_COWS,
  4044. &root->state))
  4045. inode_sub_bytes(inode, num_dec);
  4046. }
  4047. }
  4048. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  4049. /*
  4050. * we can't truncate inline items that have had
  4051. * special encodings
  4052. */
  4053. if (!del_item &&
  4054. btrfs_file_extent_encryption(leaf, fi) == 0 &&
  4055. btrfs_file_extent_other_encoding(leaf, fi) == 0) {
  4056. /*
  4057. * Need to release path in order to truncate a
  4058. * compressed extent. So delete any accumulated
  4059. * extent items so far.
  4060. */
  4061. if (btrfs_file_extent_compression(leaf, fi) !=
  4062. BTRFS_COMPRESS_NONE && pending_del_nr) {
  4063. err = btrfs_del_items(trans, root, path,
  4064. pending_del_slot,
  4065. pending_del_nr);
  4066. if (err) {
  4067. btrfs_abort_transaction(trans,
  4068. err);
  4069. goto error;
  4070. }
  4071. pending_del_nr = 0;
  4072. }
  4073. err = truncate_inline_extent(inode, path,
  4074. &found_key,
  4075. item_end,
  4076. new_size);
  4077. if (err) {
  4078. btrfs_abort_transaction(trans, err);
  4079. goto error;
  4080. }
  4081. } else if (test_bit(BTRFS_ROOT_REF_COWS,
  4082. &root->state)) {
  4083. inode_sub_bytes(inode, item_end + 1 - new_size);
  4084. }
  4085. }
  4086. delete:
  4087. if (del_item) {
  4088. if (!pending_del_nr) {
  4089. /* no pending yet, add ourselves */
  4090. pending_del_slot = path->slots[0];
  4091. pending_del_nr = 1;
  4092. } else if (pending_del_nr &&
  4093. path->slots[0] + 1 == pending_del_slot) {
  4094. /* hop on the pending chunk */
  4095. pending_del_nr++;
  4096. pending_del_slot = path->slots[0];
  4097. } else {
  4098. BUG();
  4099. }
  4100. } else {
  4101. break;
  4102. }
  4103. should_throttle = 0;
  4104. if (found_extent &&
  4105. (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  4106. root == fs_info->tree_root)) {
  4107. btrfs_set_path_blocking(path);
  4108. bytes_deleted += extent_num_bytes;
  4109. ret = btrfs_free_extent(trans, fs_info, extent_start,
  4110. extent_num_bytes, 0,
  4111. btrfs_header_owner(leaf),
  4112. ino, extent_offset);
  4113. BUG_ON(ret);
  4114. if (btrfs_should_throttle_delayed_refs(trans, fs_info))
  4115. btrfs_async_run_delayed_refs(fs_info,
  4116. trans->delayed_ref_updates * 2,
  4117. trans->transid, 0);
  4118. if (be_nice) {
  4119. if (truncate_space_check(trans, root,
  4120. extent_num_bytes)) {
  4121. should_end = 1;
  4122. }
  4123. if (btrfs_should_throttle_delayed_refs(trans,
  4124. fs_info))
  4125. should_throttle = 1;
  4126. }
  4127. }
  4128. if (found_type == BTRFS_INODE_ITEM_KEY)
  4129. break;
  4130. if (path->slots[0] == 0 ||
  4131. path->slots[0] != pending_del_slot ||
  4132. should_throttle || should_end) {
  4133. if (pending_del_nr) {
  4134. ret = btrfs_del_items(trans, root, path,
  4135. pending_del_slot,
  4136. pending_del_nr);
  4137. if (ret) {
  4138. btrfs_abort_transaction(trans, ret);
  4139. goto error;
  4140. }
  4141. pending_del_nr = 0;
  4142. }
  4143. btrfs_release_path(path);
  4144. if (should_throttle) {
  4145. unsigned long updates = trans->delayed_ref_updates;
  4146. if (updates) {
  4147. trans->delayed_ref_updates = 0;
  4148. ret = btrfs_run_delayed_refs(trans,
  4149. fs_info,
  4150. updates * 2);
  4151. if (ret && !err)
  4152. err = ret;
  4153. }
  4154. }
  4155. /*
  4156. * if we failed to refill our space rsv, bail out
  4157. * and let the transaction restart
  4158. */
  4159. if (should_end) {
  4160. err = -EAGAIN;
  4161. goto error;
  4162. }
  4163. goto search_again;
  4164. } else {
  4165. path->slots[0]--;
  4166. }
  4167. }
  4168. out:
  4169. if (pending_del_nr) {
  4170. ret = btrfs_del_items(trans, root, path, pending_del_slot,
  4171. pending_del_nr);
  4172. if (ret)
  4173. btrfs_abort_transaction(trans, ret);
  4174. }
  4175. error:
  4176. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4177. ASSERT(last_size >= new_size);
  4178. if (!err && last_size > new_size)
  4179. last_size = new_size;
  4180. btrfs_ordered_update_i_size(inode, last_size, NULL);
  4181. }
  4182. btrfs_free_path(path);
  4183. if (be_nice && bytes_deleted > SZ_32M) {
  4184. unsigned long updates = trans->delayed_ref_updates;
  4185. if (updates) {
  4186. trans->delayed_ref_updates = 0;
  4187. ret = btrfs_run_delayed_refs(trans, fs_info,
  4188. updates * 2);
  4189. if (ret && !err)
  4190. err = ret;
  4191. }
  4192. }
  4193. return err;
  4194. }
  4195. /*
  4196. * btrfs_truncate_block - read, zero a chunk and write a block
  4197. * @inode - inode that we're zeroing
  4198. * @from - the offset to start zeroing
  4199. * @len - the length to zero, 0 to zero the entire range respective to the
  4200. * offset
  4201. * @front - zero up to the offset instead of from the offset on
  4202. *
  4203. * This will find the block for the "from" offset and cow the block and zero the
  4204. * part we want to zero. This is used with truncate and hole punching.
  4205. */
  4206. int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
  4207. int front)
  4208. {
  4209. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4210. struct address_space *mapping = inode->i_mapping;
  4211. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  4212. struct btrfs_ordered_extent *ordered;
  4213. struct extent_state *cached_state = NULL;
  4214. char *kaddr;
  4215. u32 blocksize = fs_info->sectorsize;
  4216. pgoff_t index = from >> PAGE_SHIFT;
  4217. unsigned offset = from & (blocksize - 1);
  4218. struct page *page;
  4219. gfp_t mask = btrfs_alloc_write_mask(mapping);
  4220. int ret = 0;
  4221. u64 block_start;
  4222. u64 block_end;
  4223. if ((offset & (blocksize - 1)) == 0 &&
  4224. (!len || ((len & (blocksize - 1)) == 0)))
  4225. goto out;
  4226. ret = btrfs_delalloc_reserve_space(inode,
  4227. round_down(from, blocksize), blocksize);
  4228. if (ret)
  4229. goto out;
  4230. again:
  4231. page = find_or_create_page(mapping, index, mask);
  4232. if (!page) {
  4233. btrfs_delalloc_release_space(inode,
  4234. round_down(from, blocksize),
  4235. blocksize);
  4236. ret = -ENOMEM;
  4237. goto out;
  4238. }
  4239. block_start = round_down(from, blocksize);
  4240. block_end = block_start + blocksize - 1;
  4241. if (!PageUptodate(page)) {
  4242. ret = btrfs_readpage(NULL, page);
  4243. lock_page(page);
  4244. if (page->mapping != mapping) {
  4245. unlock_page(page);
  4246. put_page(page);
  4247. goto again;
  4248. }
  4249. if (!PageUptodate(page)) {
  4250. ret = -EIO;
  4251. goto out_unlock;
  4252. }
  4253. }
  4254. wait_on_page_writeback(page);
  4255. lock_extent_bits(io_tree, block_start, block_end, &cached_state);
  4256. set_page_extent_mapped(page);
  4257. ordered = btrfs_lookup_ordered_extent(inode, block_start);
  4258. if (ordered) {
  4259. unlock_extent_cached(io_tree, block_start, block_end,
  4260. &cached_state, GFP_NOFS);
  4261. unlock_page(page);
  4262. put_page(page);
  4263. btrfs_start_ordered_extent(inode, ordered, 1);
  4264. btrfs_put_ordered_extent(ordered);
  4265. goto again;
  4266. }
  4267. clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
  4268. EXTENT_DIRTY | EXTENT_DELALLOC |
  4269. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  4270. 0, 0, &cached_state, GFP_NOFS);
  4271. ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
  4272. &cached_state, 0);
  4273. if (ret) {
  4274. unlock_extent_cached(io_tree, block_start, block_end,
  4275. &cached_state, GFP_NOFS);
  4276. goto out_unlock;
  4277. }
  4278. if (offset != blocksize) {
  4279. if (!len)
  4280. len = blocksize - offset;
  4281. kaddr = kmap(page);
  4282. if (front)
  4283. memset(kaddr + (block_start - page_offset(page)),
  4284. 0, offset);
  4285. else
  4286. memset(kaddr + (block_start - page_offset(page)) + offset,
  4287. 0, len);
  4288. flush_dcache_page(page);
  4289. kunmap(page);
  4290. }
  4291. ClearPageChecked(page);
  4292. set_page_dirty(page);
  4293. unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
  4294. GFP_NOFS);
  4295. out_unlock:
  4296. if (ret)
  4297. btrfs_delalloc_release_space(inode, block_start,
  4298. blocksize);
  4299. unlock_page(page);
  4300. put_page(page);
  4301. out:
  4302. return ret;
  4303. }
  4304. static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
  4305. u64 offset, u64 len)
  4306. {
  4307. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4308. struct btrfs_trans_handle *trans;
  4309. int ret;
  4310. /*
  4311. * Still need to make sure the inode looks like it's been updated so
  4312. * that any holes get logged if we fsync.
  4313. */
  4314. if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  4315. BTRFS_I(inode)->last_trans = fs_info->generation;
  4316. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  4317. BTRFS_I(inode)->last_log_commit = root->last_log_commit;
  4318. return 0;
  4319. }
  4320. /*
  4321. * 1 - for the one we're dropping
  4322. * 1 - for the one we're adding
  4323. * 1 - for updating the inode.
  4324. */
  4325. trans = btrfs_start_transaction(root, 3);
  4326. if (IS_ERR(trans))
  4327. return PTR_ERR(trans);
  4328. ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
  4329. if (ret) {
  4330. btrfs_abort_transaction(trans, ret);
  4331. btrfs_end_transaction(trans);
  4332. return ret;
  4333. }
  4334. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
  4335. offset, 0, 0, len, 0, len, 0, 0, 0);
  4336. if (ret)
  4337. btrfs_abort_transaction(trans, ret);
  4338. else
  4339. btrfs_update_inode(trans, root, inode);
  4340. btrfs_end_transaction(trans);
  4341. return ret;
  4342. }
  4343. /*
  4344. * This function puts in dummy file extents for the area we're creating a hole
  4345. * for. So if we are truncating this file to a larger size we need to insert
  4346. * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
  4347. * the range between oldsize and size
  4348. */
  4349. int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
  4350. {
  4351. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4352. struct btrfs_root *root = BTRFS_I(inode)->root;
  4353. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  4354. struct extent_map *em = NULL;
  4355. struct extent_state *cached_state = NULL;
  4356. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  4357. u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
  4358. u64 block_end = ALIGN(size, fs_info->sectorsize);
  4359. u64 last_byte;
  4360. u64 cur_offset;
  4361. u64 hole_size;
  4362. int err = 0;
  4363. /*
  4364. * If our size started in the middle of a block we need to zero out the
  4365. * rest of the block before we expand the i_size, otherwise we could
  4366. * expose stale data.
  4367. */
  4368. err = btrfs_truncate_block(inode, oldsize, 0, 0);
  4369. if (err)
  4370. return err;
  4371. if (size <= hole_start)
  4372. return 0;
  4373. while (1) {
  4374. struct btrfs_ordered_extent *ordered;
  4375. lock_extent_bits(io_tree, hole_start, block_end - 1,
  4376. &cached_state);
  4377. ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
  4378. block_end - hole_start);
  4379. if (!ordered)
  4380. break;
  4381. unlock_extent_cached(io_tree, hole_start, block_end - 1,
  4382. &cached_state, GFP_NOFS);
  4383. btrfs_start_ordered_extent(inode, ordered, 1);
  4384. btrfs_put_ordered_extent(ordered);
  4385. }
  4386. cur_offset = hole_start;
  4387. while (1) {
  4388. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
  4389. block_end - cur_offset, 0);
  4390. if (IS_ERR(em)) {
  4391. err = PTR_ERR(em);
  4392. em = NULL;
  4393. break;
  4394. }
  4395. last_byte = min(extent_map_end(em), block_end);
  4396. last_byte = ALIGN(last_byte, fs_info->sectorsize);
  4397. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  4398. struct extent_map *hole_em;
  4399. hole_size = last_byte - cur_offset;
  4400. err = maybe_insert_hole(root, inode, cur_offset,
  4401. hole_size);
  4402. if (err)
  4403. break;
  4404. btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
  4405. cur_offset + hole_size - 1, 0);
  4406. hole_em = alloc_extent_map();
  4407. if (!hole_em) {
  4408. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  4409. &BTRFS_I(inode)->runtime_flags);
  4410. goto next;
  4411. }
  4412. hole_em->start = cur_offset;
  4413. hole_em->len = hole_size;
  4414. hole_em->orig_start = cur_offset;
  4415. hole_em->block_start = EXTENT_MAP_HOLE;
  4416. hole_em->block_len = 0;
  4417. hole_em->orig_block_len = 0;
  4418. hole_em->ram_bytes = hole_size;
  4419. hole_em->bdev = fs_info->fs_devices->latest_bdev;
  4420. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  4421. hole_em->generation = fs_info->generation;
  4422. while (1) {
  4423. write_lock(&em_tree->lock);
  4424. err = add_extent_mapping(em_tree, hole_em, 1);
  4425. write_unlock(&em_tree->lock);
  4426. if (err != -EEXIST)
  4427. break;
  4428. btrfs_drop_extent_cache(BTRFS_I(inode),
  4429. cur_offset,
  4430. cur_offset +
  4431. hole_size - 1, 0);
  4432. }
  4433. free_extent_map(hole_em);
  4434. }
  4435. next:
  4436. free_extent_map(em);
  4437. em = NULL;
  4438. cur_offset = last_byte;
  4439. if (cur_offset >= block_end)
  4440. break;
  4441. }
  4442. free_extent_map(em);
  4443. unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
  4444. GFP_NOFS);
  4445. return err;
  4446. }
  4447. static int btrfs_setsize(struct inode *inode, struct iattr *attr)
  4448. {
  4449. struct btrfs_root *root = BTRFS_I(inode)->root;
  4450. struct btrfs_trans_handle *trans;
  4451. loff_t oldsize = i_size_read(inode);
  4452. loff_t newsize = attr->ia_size;
  4453. int mask = attr->ia_valid;
  4454. int ret;
  4455. /*
  4456. * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
  4457. * special case where we need to update the times despite not having
  4458. * these flags set. For all other operations the VFS set these flags
  4459. * explicitly if it wants a timestamp update.
  4460. */
  4461. if (newsize != oldsize) {
  4462. inode_inc_iversion(inode);
  4463. if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
  4464. inode->i_ctime = inode->i_mtime =
  4465. current_time(inode);
  4466. }
  4467. if (newsize > oldsize) {
  4468. /*
  4469. * Don't do an expanding truncate while snapshoting is ongoing.
  4470. * This is to ensure the snapshot captures a fully consistent
  4471. * state of this file - if the snapshot captures this expanding
  4472. * truncation, it must capture all writes that happened before
  4473. * this truncation.
  4474. */
  4475. btrfs_wait_for_snapshot_creation(root);
  4476. ret = btrfs_cont_expand(inode, oldsize, newsize);
  4477. if (ret) {
  4478. btrfs_end_write_no_snapshoting(root);
  4479. return ret;
  4480. }
  4481. trans = btrfs_start_transaction(root, 1);
  4482. if (IS_ERR(trans)) {
  4483. btrfs_end_write_no_snapshoting(root);
  4484. return PTR_ERR(trans);
  4485. }
  4486. i_size_write(inode, newsize);
  4487. btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
  4488. pagecache_isize_extended(inode, oldsize, newsize);
  4489. ret = btrfs_update_inode(trans, root, inode);
  4490. btrfs_end_write_no_snapshoting(root);
  4491. btrfs_end_transaction(trans);
  4492. } else {
  4493. /*
  4494. * We're truncating a file that used to have good data down to
  4495. * zero. Make sure it gets into the ordered flush list so that
  4496. * any new writes get down to disk quickly.
  4497. */
  4498. if (newsize == 0)
  4499. set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  4500. &BTRFS_I(inode)->runtime_flags);
  4501. /*
  4502. * 1 for the orphan item we're going to add
  4503. * 1 for the orphan item deletion.
  4504. */
  4505. trans = btrfs_start_transaction(root, 2);
  4506. if (IS_ERR(trans))
  4507. return PTR_ERR(trans);
  4508. /*
  4509. * We need to do this in case we fail at _any_ point during the
  4510. * actual truncate. Once we do the truncate_setsize we could
  4511. * invalidate pages which forces any outstanding ordered io to
  4512. * be instantly completed which will give us extents that need
  4513. * to be truncated. If we fail to get an orphan inode down we
  4514. * could have left over extents that were never meant to live,
  4515. * so we need to guarantee from this point on that everything
  4516. * will be consistent.
  4517. */
  4518. ret = btrfs_orphan_add(trans, BTRFS_I(inode));
  4519. btrfs_end_transaction(trans);
  4520. if (ret)
  4521. return ret;
  4522. /* we don't support swapfiles, so vmtruncate shouldn't fail */
  4523. truncate_setsize(inode, newsize);
  4524. /* Disable nonlocked read DIO to avoid the end less truncate */
  4525. btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
  4526. inode_dio_wait(inode);
  4527. btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
  4528. ret = btrfs_truncate(inode);
  4529. if (ret && inode->i_nlink) {
  4530. int err;
  4531. /* To get a stable disk_i_size */
  4532. err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
  4533. if (err) {
  4534. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4535. return err;
  4536. }
  4537. /*
  4538. * failed to truncate, disk_i_size is only adjusted down
  4539. * as we remove extents, so it should represent the true
  4540. * size of the inode, so reset the in memory size and
  4541. * delete our orphan entry.
  4542. */
  4543. trans = btrfs_join_transaction(root);
  4544. if (IS_ERR(trans)) {
  4545. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4546. return ret;
  4547. }
  4548. i_size_write(inode, BTRFS_I(inode)->disk_i_size);
  4549. err = btrfs_orphan_del(trans, BTRFS_I(inode));
  4550. if (err)
  4551. btrfs_abort_transaction(trans, err);
  4552. btrfs_end_transaction(trans);
  4553. }
  4554. }
  4555. return ret;
  4556. }
  4557. static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
  4558. {
  4559. struct inode *inode = d_inode(dentry);
  4560. struct btrfs_root *root = BTRFS_I(inode)->root;
  4561. int err;
  4562. if (btrfs_root_readonly(root))
  4563. return -EROFS;
  4564. err = setattr_prepare(dentry, attr);
  4565. if (err)
  4566. return err;
  4567. if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
  4568. err = btrfs_setsize(inode, attr);
  4569. if (err)
  4570. return err;
  4571. }
  4572. if (attr->ia_valid) {
  4573. setattr_copy(inode, attr);
  4574. inode_inc_iversion(inode);
  4575. err = btrfs_dirty_inode(inode);
  4576. if (!err && attr->ia_valid & ATTR_MODE)
  4577. err = posix_acl_chmod(inode, inode->i_mode);
  4578. }
  4579. return err;
  4580. }
  4581. /*
  4582. * While truncating the inode pages during eviction, we get the VFS calling
  4583. * btrfs_invalidatepage() against each page of the inode. This is slow because
  4584. * the calls to btrfs_invalidatepage() result in a huge amount of calls to
  4585. * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
  4586. * extent_state structures over and over, wasting lots of time.
  4587. *
  4588. * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
  4589. * those expensive operations on a per page basis and do only the ordered io
  4590. * finishing, while we release here the extent_map and extent_state structures,
  4591. * without the excessive merging and splitting.
  4592. */
  4593. static void evict_inode_truncate_pages(struct inode *inode)
  4594. {
  4595. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  4596. struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
  4597. struct rb_node *node;
  4598. ASSERT(inode->i_state & I_FREEING);
  4599. truncate_inode_pages_final(&inode->i_data);
  4600. write_lock(&map_tree->lock);
  4601. while (!RB_EMPTY_ROOT(&map_tree->map)) {
  4602. struct extent_map *em;
  4603. node = rb_first(&map_tree->map);
  4604. em = rb_entry(node, struct extent_map, rb_node);
  4605. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  4606. clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
  4607. remove_extent_mapping(map_tree, em);
  4608. free_extent_map(em);
  4609. if (need_resched()) {
  4610. write_unlock(&map_tree->lock);
  4611. cond_resched();
  4612. write_lock(&map_tree->lock);
  4613. }
  4614. }
  4615. write_unlock(&map_tree->lock);
  4616. /*
  4617. * Keep looping until we have no more ranges in the io tree.
  4618. * We can have ongoing bios started by readpages (called from readahead)
  4619. * that have their endio callback (extent_io.c:end_bio_extent_readpage)
  4620. * still in progress (unlocked the pages in the bio but did not yet
  4621. * unlocked the ranges in the io tree). Therefore this means some
  4622. * ranges can still be locked and eviction started because before
  4623. * submitting those bios, which are executed by a separate task (work
  4624. * queue kthread), inode references (inode->i_count) were not taken
  4625. * (which would be dropped in the end io callback of each bio).
  4626. * Therefore here we effectively end up waiting for those bios and
  4627. * anyone else holding locked ranges without having bumped the inode's
  4628. * reference count - if we don't do it, when they access the inode's
  4629. * io_tree to unlock a range it may be too late, leading to an
  4630. * use-after-free issue.
  4631. */
  4632. spin_lock(&io_tree->lock);
  4633. while (!RB_EMPTY_ROOT(&io_tree->state)) {
  4634. struct extent_state *state;
  4635. struct extent_state *cached_state = NULL;
  4636. u64 start;
  4637. u64 end;
  4638. node = rb_first(&io_tree->state);
  4639. state = rb_entry(node, struct extent_state, rb_node);
  4640. start = state->start;
  4641. end = state->end;
  4642. spin_unlock(&io_tree->lock);
  4643. lock_extent_bits(io_tree, start, end, &cached_state);
  4644. /*
  4645. * If still has DELALLOC flag, the extent didn't reach disk,
  4646. * and its reserved space won't be freed by delayed_ref.
  4647. * So we need to free its reserved space here.
  4648. * (Refer to comment in btrfs_invalidatepage, case 2)
  4649. *
  4650. * Note, end is the bytenr of last byte, so we need + 1 here.
  4651. */
  4652. if (state->state & EXTENT_DELALLOC)
  4653. btrfs_qgroup_free_data(inode, start, end - start + 1);
  4654. clear_extent_bit(io_tree, start, end,
  4655. EXTENT_LOCKED | EXTENT_DIRTY |
  4656. EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
  4657. EXTENT_DEFRAG, 1, 1,
  4658. &cached_state, GFP_NOFS);
  4659. cond_resched();
  4660. spin_lock(&io_tree->lock);
  4661. }
  4662. spin_unlock(&io_tree->lock);
  4663. }
  4664. void btrfs_evict_inode(struct inode *inode)
  4665. {
  4666. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4667. struct btrfs_trans_handle *trans;
  4668. struct btrfs_root *root = BTRFS_I(inode)->root;
  4669. struct btrfs_block_rsv *rsv, *global_rsv;
  4670. int steal_from_global = 0;
  4671. u64 min_size;
  4672. int ret;
  4673. trace_btrfs_inode_evict(inode);
  4674. if (!root) {
  4675. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  4676. return;
  4677. }
  4678. min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
  4679. evict_inode_truncate_pages(inode);
  4680. if (inode->i_nlink &&
  4681. ((btrfs_root_refs(&root->root_item) != 0 &&
  4682. root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
  4683. btrfs_is_free_space_inode(BTRFS_I(inode))))
  4684. goto no_delete;
  4685. if (is_bad_inode(inode)) {
  4686. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4687. goto no_delete;
  4688. }
  4689. /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
  4690. if (!special_file(inode->i_mode))
  4691. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  4692. btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
  4693. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
  4694. BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  4695. &BTRFS_I(inode)->runtime_flags));
  4696. goto no_delete;
  4697. }
  4698. if (inode->i_nlink > 0) {
  4699. BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
  4700. root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
  4701. goto no_delete;
  4702. }
  4703. ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
  4704. if (ret) {
  4705. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4706. goto no_delete;
  4707. }
  4708. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  4709. if (!rsv) {
  4710. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4711. goto no_delete;
  4712. }
  4713. rsv->size = min_size;
  4714. rsv->failfast = 1;
  4715. global_rsv = &fs_info->global_block_rsv;
  4716. btrfs_i_size_write(BTRFS_I(inode), 0);
  4717. /*
  4718. * This is a bit simpler than btrfs_truncate since we've already
  4719. * reserved our space for our orphan item in the unlink, so we just
  4720. * need to reserve some slack space in case we add bytes and update
  4721. * inode item when doing the truncate.
  4722. */
  4723. while (1) {
  4724. ret = btrfs_block_rsv_refill(root, rsv, min_size,
  4725. BTRFS_RESERVE_FLUSH_LIMIT);
  4726. /*
  4727. * Try and steal from the global reserve since we will
  4728. * likely not use this space anyway, we want to try as
  4729. * hard as possible to get this to work.
  4730. */
  4731. if (ret)
  4732. steal_from_global++;
  4733. else
  4734. steal_from_global = 0;
  4735. ret = 0;
  4736. /*
  4737. * steal_from_global == 0: we reserved stuff, hooray!
  4738. * steal_from_global == 1: we didn't reserve stuff, boo!
  4739. * steal_from_global == 2: we've committed, still not a lot of
  4740. * room but maybe we'll have room in the global reserve this
  4741. * time.
  4742. * steal_from_global == 3: abandon all hope!
  4743. */
  4744. if (steal_from_global > 2) {
  4745. btrfs_warn(fs_info,
  4746. "Could not get space for a delete, will truncate on mount %d",
  4747. ret);
  4748. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4749. btrfs_free_block_rsv(fs_info, rsv);
  4750. goto no_delete;
  4751. }
  4752. trans = btrfs_join_transaction(root);
  4753. if (IS_ERR(trans)) {
  4754. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4755. btrfs_free_block_rsv(fs_info, rsv);
  4756. goto no_delete;
  4757. }
  4758. /*
  4759. * We can't just steal from the global reserve, we need to make
  4760. * sure there is room to do it, if not we need to commit and try
  4761. * again.
  4762. */
  4763. if (steal_from_global) {
  4764. if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
  4765. ret = btrfs_block_rsv_migrate(global_rsv, rsv,
  4766. min_size, 0);
  4767. else
  4768. ret = -ENOSPC;
  4769. }
  4770. /*
  4771. * Couldn't steal from the global reserve, we have too much
  4772. * pending stuff built up, commit the transaction and try it
  4773. * again.
  4774. */
  4775. if (ret) {
  4776. ret = btrfs_commit_transaction(trans);
  4777. if (ret) {
  4778. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4779. btrfs_free_block_rsv(fs_info, rsv);
  4780. goto no_delete;
  4781. }
  4782. continue;
  4783. } else {
  4784. steal_from_global = 0;
  4785. }
  4786. trans->block_rsv = rsv;
  4787. ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
  4788. if (ret != -ENOSPC && ret != -EAGAIN)
  4789. break;
  4790. trans->block_rsv = &fs_info->trans_block_rsv;
  4791. btrfs_end_transaction(trans);
  4792. trans = NULL;
  4793. btrfs_btree_balance_dirty(fs_info);
  4794. }
  4795. btrfs_free_block_rsv(fs_info, rsv);
  4796. /*
  4797. * Errors here aren't a big deal, it just means we leave orphan items
  4798. * in the tree. They will be cleaned up on the next mount.
  4799. */
  4800. if (ret == 0) {
  4801. trans->block_rsv = root->orphan_block_rsv;
  4802. btrfs_orphan_del(trans, BTRFS_I(inode));
  4803. } else {
  4804. btrfs_orphan_del(NULL, BTRFS_I(inode));
  4805. }
  4806. trans->block_rsv = &fs_info->trans_block_rsv;
  4807. if (!(root == fs_info->tree_root ||
  4808. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
  4809. btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
  4810. btrfs_end_transaction(trans);
  4811. btrfs_btree_balance_dirty(fs_info);
  4812. no_delete:
  4813. btrfs_remove_delayed_node(BTRFS_I(inode));
  4814. clear_inode(inode);
  4815. }
  4816. /*
  4817. * this returns the key found in the dir entry in the location pointer.
  4818. * If no dir entries were found, location->objectid is 0.
  4819. */
  4820. static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
  4821. struct btrfs_key *location)
  4822. {
  4823. const char *name = dentry->d_name.name;
  4824. int namelen = dentry->d_name.len;
  4825. struct btrfs_dir_item *di;
  4826. struct btrfs_path *path;
  4827. struct btrfs_root *root = BTRFS_I(dir)->root;
  4828. int ret = 0;
  4829. path = btrfs_alloc_path();
  4830. if (!path)
  4831. return -ENOMEM;
  4832. di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
  4833. name, namelen, 0);
  4834. if (IS_ERR(di))
  4835. ret = PTR_ERR(di);
  4836. if (IS_ERR_OR_NULL(di))
  4837. goto out_err;
  4838. btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
  4839. out:
  4840. btrfs_free_path(path);
  4841. return ret;
  4842. out_err:
  4843. location->objectid = 0;
  4844. goto out;
  4845. }
  4846. /*
  4847. * when we hit a tree root in a directory, the btrfs part of the inode
  4848. * needs to be changed to reflect the root directory of the tree root. This
  4849. * is kind of like crossing a mount point.
  4850. */
  4851. static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
  4852. struct inode *dir,
  4853. struct dentry *dentry,
  4854. struct btrfs_key *location,
  4855. struct btrfs_root **sub_root)
  4856. {
  4857. struct btrfs_path *path;
  4858. struct btrfs_root *new_root;
  4859. struct btrfs_root_ref *ref;
  4860. struct extent_buffer *leaf;
  4861. struct btrfs_key key;
  4862. int ret;
  4863. int err = 0;
  4864. path = btrfs_alloc_path();
  4865. if (!path) {
  4866. err = -ENOMEM;
  4867. goto out;
  4868. }
  4869. err = -ENOENT;
  4870. key.objectid = BTRFS_I(dir)->root->root_key.objectid;
  4871. key.type = BTRFS_ROOT_REF_KEY;
  4872. key.offset = location->objectid;
  4873. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  4874. if (ret) {
  4875. if (ret < 0)
  4876. err = ret;
  4877. goto out;
  4878. }
  4879. leaf = path->nodes[0];
  4880. ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
  4881. if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
  4882. btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
  4883. goto out;
  4884. ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
  4885. (unsigned long)(ref + 1),
  4886. dentry->d_name.len);
  4887. if (ret)
  4888. goto out;
  4889. btrfs_release_path(path);
  4890. new_root = btrfs_read_fs_root_no_name(fs_info, location);
  4891. if (IS_ERR(new_root)) {
  4892. err = PTR_ERR(new_root);
  4893. goto out;
  4894. }
  4895. *sub_root = new_root;
  4896. location->objectid = btrfs_root_dirid(&new_root->root_item);
  4897. location->type = BTRFS_INODE_ITEM_KEY;
  4898. location->offset = 0;
  4899. err = 0;
  4900. out:
  4901. btrfs_free_path(path);
  4902. return err;
  4903. }
  4904. static void inode_tree_add(struct inode *inode)
  4905. {
  4906. struct btrfs_root *root = BTRFS_I(inode)->root;
  4907. struct btrfs_inode *entry;
  4908. struct rb_node **p;
  4909. struct rb_node *parent;
  4910. struct rb_node *new = &BTRFS_I(inode)->rb_node;
  4911. u64 ino = btrfs_ino(BTRFS_I(inode));
  4912. if (inode_unhashed(inode))
  4913. return;
  4914. parent = NULL;
  4915. spin_lock(&root->inode_lock);
  4916. p = &root->inode_tree.rb_node;
  4917. while (*p) {
  4918. parent = *p;
  4919. entry = rb_entry(parent, struct btrfs_inode, rb_node);
  4920. if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
  4921. p = &parent->rb_left;
  4922. else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
  4923. p = &parent->rb_right;
  4924. else {
  4925. WARN_ON(!(entry->vfs_inode.i_state &
  4926. (I_WILL_FREE | I_FREEING)));
  4927. rb_replace_node(parent, new, &root->inode_tree);
  4928. RB_CLEAR_NODE(parent);
  4929. spin_unlock(&root->inode_lock);
  4930. return;
  4931. }
  4932. }
  4933. rb_link_node(new, parent, p);
  4934. rb_insert_color(new, &root->inode_tree);
  4935. spin_unlock(&root->inode_lock);
  4936. }
  4937. static void inode_tree_del(struct inode *inode)
  4938. {
  4939. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  4940. struct btrfs_root *root = BTRFS_I(inode)->root;
  4941. int empty = 0;
  4942. spin_lock(&root->inode_lock);
  4943. if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
  4944. rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  4945. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  4946. empty = RB_EMPTY_ROOT(&root->inode_tree);
  4947. }
  4948. spin_unlock(&root->inode_lock);
  4949. if (empty && btrfs_root_refs(&root->root_item) == 0) {
  4950. synchronize_srcu(&fs_info->subvol_srcu);
  4951. spin_lock(&root->inode_lock);
  4952. empty = RB_EMPTY_ROOT(&root->inode_tree);
  4953. spin_unlock(&root->inode_lock);
  4954. if (empty)
  4955. btrfs_add_dead_root(root);
  4956. }
  4957. }
  4958. void btrfs_invalidate_inodes(struct btrfs_root *root)
  4959. {
  4960. struct btrfs_fs_info *fs_info = root->fs_info;
  4961. struct rb_node *node;
  4962. struct rb_node *prev;
  4963. struct btrfs_inode *entry;
  4964. struct inode *inode;
  4965. u64 objectid = 0;
  4966. if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  4967. WARN_ON(btrfs_root_refs(&root->root_item) != 0);
  4968. spin_lock(&root->inode_lock);
  4969. again:
  4970. node = root->inode_tree.rb_node;
  4971. prev = NULL;
  4972. while (node) {
  4973. prev = node;
  4974. entry = rb_entry(node, struct btrfs_inode, rb_node);
  4975. if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
  4976. node = node->rb_left;
  4977. else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
  4978. node = node->rb_right;
  4979. else
  4980. break;
  4981. }
  4982. if (!node) {
  4983. while (prev) {
  4984. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  4985. if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
  4986. node = prev;
  4987. break;
  4988. }
  4989. prev = rb_next(prev);
  4990. }
  4991. }
  4992. while (node) {
  4993. entry = rb_entry(node, struct btrfs_inode, rb_node);
  4994. objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
  4995. inode = igrab(&entry->vfs_inode);
  4996. if (inode) {
  4997. spin_unlock(&root->inode_lock);
  4998. if (atomic_read(&inode->i_count) > 1)
  4999. d_prune_aliases(inode);
  5000. /*
  5001. * btrfs_drop_inode will have it removed from
  5002. * the inode cache when its usage count
  5003. * hits zero.
  5004. */
  5005. iput(inode);
  5006. cond_resched();
  5007. spin_lock(&root->inode_lock);
  5008. goto again;
  5009. }
  5010. if (cond_resched_lock(&root->inode_lock))
  5011. goto again;
  5012. node = rb_next(node);
  5013. }
  5014. spin_unlock(&root->inode_lock);
  5015. }
  5016. static int btrfs_init_locked_inode(struct inode *inode, void *p)
  5017. {
  5018. struct btrfs_iget_args *args = p;
  5019. inode->i_ino = args->location->objectid;
  5020. memcpy(&BTRFS_I(inode)->location, args->location,
  5021. sizeof(*args->location));
  5022. BTRFS_I(inode)->root = args->root;
  5023. return 0;
  5024. }
  5025. static int btrfs_find_actor(struct inode *inode, void *opaque)
  5026. {
  5027. struct btrfs_iget_args *args = opaque;
  5028. return args->location->objectid == BTRFS_I(inode)->location.objectid &&
  5029. args->root == BTRFS_I(inode)->root;
  5030. }
  5031. static struct inode *btrfs_iget_locked(struct super_block *s,
  5032. struct btrfs_key *location,
  5033. struct btrfs_root *root)
  5034. {
  5035. struct inode *inode;
  5036. struct btrfs_iget_args args;
  5037. unsigned long hashval = btrfs_inode_hash(location->objectid, root);
  5038. args.location = location;
  5039. args.root = root;
  5040. inode = iget5_locked(s, hashval, btrfs_find_actor,
  5041. btrfs_init_locked_inode,
  5042. (void *)&args);
  5043. return inode;
  5044. }
  5045. /* Get an inode object given its location and corresponding root.
  5046. * Returns in *is_new if the inode was read from disk
  5047. */
  5048. struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
  5049. struct btrfs_root *root, int *new)
  5050. {
  5051. struct inode *inode;
  5052. inode = btrfs_iget_locked(s, location, root);
  5053. if (!inode)
  5054. return ERR_PTR(-ENOMEM);
  5055. if (inode->i_state & I_NEW) {
  5056. int ret;
  5057. ret = btrfs_read_locked_inode(inode);
  5058. if (!is_bad_inode(inode)) {
  5059. inode_tree_add(inode);
  5060. unlock_new_inode(inode);
  5061. if (new)
  5062. *new = 1;
  5063. } else {
  5064. unlock_new_inode(inode);
  5065. iput(inode);
  5066. ASSERT(ret < 0);
  5067. inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
  5068. }
  5069. }
  5070. return inode;
  5071. }
  5072. static struct inode *new_simple_dir(struct super_block *s,
  5073. struct btrfs_key *key,
  5074. struct btrfs_root *root)
  5075. {
  5076. struct inode *inode = new_inode(s);
  5077. if (!inode)
  5078. return ERR_PTR(-ENOMEM);
  5079. BTRFS_I(inode)->root = root;
  5080. memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
  5081. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  5082. inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
  5083. inode->i_op = &btrfs_dir_ro_inode_operations;
  5084. inode->i_opflags &= ~IOP_XATTR;
  5085. inode->i_fop = &simple_dir_operations;
  5086. inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
  5087. inode->i_mtime = current_time(inode);
  5088. inode->i_atime = inode->i_mtime;
  5089. inode->i_ctime = inode->i_mtime;
  5090. BTRFS_I(inode)->i_otime = inode->i_mtime;
  5091. return inode;
  5092. }
  5093. struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
  5094. {
  5095. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  5096. struct inode *inode;
  5097. struct btrfs_root *root = BTRFS_I(dir)->root;
  5098. struct btrfs_root *sub_root = root;
  5099. struct btrfs_key location;
  5100. int index;
  5101. int ret = 0;
  5102. if (dentry->d_name.len > BTRFS_NAME_LEN)
  5103. return ERR_PTR(-ENAMETOOLONG);
  5104. ret = btrfs_inode_by_name(dir, dentry, &location);
  5105. if (ret < 0)
  5106. return ERR_PTR(ret);
  5107. if (location.objectid == 0)
  5108. return ERR_PTR(-ENOENT);
  5109. if (location.type == BTRFS_INODE_ITEM_KEY) {
  5110. inode = btrfs_iget(dir->i_sb, &location, root, NULL);
  5111. return inode;
  5112. }
  5113. BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
  5114. index = srcu_read_lock(&fs_info->subvol_srcu);
  5115. ret = fixup_tree_root_location(fs_info, dir, dentry,
  5116. &location, &sub_root);
  5117. if (ret < 0) {
  5118. if (ret != -ENOENT)
  5119. inode = ERR_PTR(ret);
  5120. else
  5121. inode = new_simple_dir(dir->i_sb, &location, sub_root);
  5122. } else {
  5123. inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
  5124. }
  5125. srcu_read_unlock(&fs_info->subvol_srcu, index);
  5126. if (!IS_ERR(inode) && root != sub_root) {
  5127. down_read(&fs_info->cleanup_work_sem);
  5128. if (!(inode->i_sb->s_flags & MS_RDONLY))
  5129. ret = btrfs_orphan_cleanup(sub_root);
  5130. up_read(&fs_info->cleanup_work_sem);
  5131. if (ret) {
  5132. iput(inode);
  5133. inode = ERR_PTR(ret);
  5134. }
  5135. }
  5136. return inode;
  5137. }
  5138. static int btrfs_dentry_delete(const struct dentry *dentry)
  5139. {
  5140. struct btrfs_root *root;
  5141. struct inode *inode = d_inode(dentry);
  5142. if (!inode && !IS_ROOT(dentry))
  5143. inode = d_inode(dentry->d_parent);
  5144. if (inode) {
  5145. root = BTRFS_I(inode)->root;
  5146. if (btrfs_root_refs(&root->root_item) == 0)
  5147. return 1;
  5148. if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  5149. return 1;
  5150. }
  5151. return 0;
  5152. }
  5153. static void btrfs_dentry_release(struct dentry *dentry)
  5154. {
  5155. kfree(dentry->d_fsdata);
  5156. }
  5157. static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
  5158. unsigned int flags)
  5159. {
  5160. struct inode *inode;
  5161. inode = btrfs_lookup_dentry(dir, dentry);
  5162. if (IS_ERR(inode)) {
  5163. if (PTR_ERR(inode) == -ENOENT)
  5164. inode = NULL;
  5165. else
  5166. return ERR_CAST(inode);
  5167. }
  5168. return d_splice_alias(inode, dentry);
  5169. }
  5170. unsigned char btrfs_filetype_table[] = {
  5171. DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
  5172. };
  5173. static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
  5174. {
  5175. struct inode *inode = file_inode(file);
  5176. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  5177. struct btrfs_root *root = BTRFS_I(inode)->root;
  5178. struct btrfs_item *item;
  5179. struct btrfs_dir_item *di;
  5180. struct btrfs_key key;
  5181. struct btrfs_key found_key;
  5182. struct btrfs_path *path;
  5183. struct list_head ins_list;
  5184. struct list_head del_list;
  5185. int ret;
  5186. struct extent_buffer *leaf;
  5187. int slot;
  5188. unsigned char d_type;
  5189. int over = 0;
  5190. char tmp_name[32];
  5191. char *name_ptr;
  5192. int name_len;
  5193. bool put = false;
  5194. struct btrfs_key location;
  5195. if (!dir_emit_dots(file, ctx))
  5196. return 0;
  5197. path = btrfs_alloc_path();
  5198. if (!path)
  5199. return -ENOMEM;
  5200. path->reada = READA_FORWARD;
  5201. INIT_LIST_HEAD(&ins_list);
  5202. INIT_LIST_HEAD(&del_list);
  5203. put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
  5204. key.type = BTRFS_DIR_INDEX_KEY;
  5205. key.offset = ctx->pos;
  5206. key.objectid = btrfs_ino(BTRFS_I(inode));
  5207. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5208. if (ret < 0)
  5209. goto err;
  5210. while (1) {
  5211. leaf = path->nodes[0];
  5212. slot = path->slots[0];
  5213. if (slot >= btrfs_header_nritems(leaf)) {
  5214. ret = btrfs_next_leaf(root, path);
  5215. if (ret < 0)
  5216. goto err;
  5217. else if (ret > 0)
  5218. break;
  5219. continue;
  5220. }
  5221. item = btrfs_item_nr(slot);
  5222. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  5223. if (found_key.objectid != key.objectid)
  5224. break;
  5225. if (found_key.type != BTRFS_DIR_INDEX_KEY)
  5226. break;
  5227. if (found_key.offset < ctx->pos)
  5228. goto next;
  5229. if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
  5230. goto next;
  5231. ctx->pos = found_key.offset;
  5232. di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
  5233. if (verify_dir_item(fs_info, leaf, di))
  5234. goto next;
  5235. name_len = btrfs_dir_name_len(leaf, di);
  5236. if (name_len <= sizeof(tmp_name)) {
  5237. name_ptr = tmp_name;
  5238. } else {
  5239. name_ptr = kmalloc(name_len, GFP_KERNEL);
  5240. if (!name_ptr) {
  5241. ret = -ENOMEM;
  5242. goto err;
  5243. }
  5244. }
  5245. read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
  5246. name_len);
  5247. d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
  5248. btrfs_dir_item_key_to_cpu(leaf, di, &location);
  5249. over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
  5250. d_type);
  5251. if (name_ptr != tmp_name)
  5252. kfree(name_ptr);
  5253. if (over)
  5254. goto nopos;
  5255. ctx->pos++;
  5256. next:
  5257. path->slots[0]++;
  5258. }
  5259. ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
  5260. if (ret)
  5261. goto nopos;
  5262. /*
  5263. * Stop new entries from being returned after we return the last
  5264. * entry.
  5265. *
  5266. * New directory entries are assigned a strictly increasing
  5267. * offset. This means that new entries created during readdir
  5268. * are *guaranteed* to be seen in the future by that readdir.
  5269. * This has broken buggy programs which operate on names as
  5270. * they're returned by readdir. Until we re-use freed offsets
  5271. * we have this hack to stop new entries from being returned
  5272. * under the assumption that they'll never reach this huge
  5273. * offset.
  5274. *
  5275. * This is being careful not to overflow 32bit loff_t unless the
  5276. * last entry requires it because doing so has broken 32bit apps
  5277. * in the past.
  5278. */
  5279. if (ctx->pos >= INT_MAX)
  5280. ctx->pos = LLONG_MAX;
  5281. else
  5282. ctx->pos = INT_MAX;
  5283. nopos:
  5284. ret = 0;
  5285. err:
  5286. if (put)
  5287. btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
  5288. btrfs_free_path(path);
  5289. return ret;
  5290. }
  5291. int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  5292. {
  5293. struct btrfs_root *root = BTRFS_I(inode)->root;
  5294. struct btrfs_trans_handle *trans;
  5295. int ret = 0;
  5296. bool nolock = false;
  5297. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  5298. return 0;
  5299. if (btrfs_fs_closing(root->fs_info) &&
  5300. btrfs_is_free_space_inode(BTRFS_I(inode)))
  5301. nolock = true;
  5302. if (wbc->sync_mode == WB_SYNC_ALL) {
  5303. if (nolock)
  5304. trans = btrfs_join_transaction_nolock(root);
  5305. else
  5306. trans = btrfs_join_transaction(root);
  5307. if (IS_ERR(trans))
  5308. return PTR_ERR(trans);
  5309. ret = btrfs_commit_transaction(trans);
  5310. }
  5311. return ret;
  5312. }
  5313. /*
  5314. * This is somewhat expensive, updating the tree every time the
  5315. * inode changes. But, it is most likely to find the inode in cache.
  5316. * FIXME, needs more benchmarking...there are no reasons other than performance
  5317. * to keep or drop this code.
  5318. */
  5319. static int btrfs_dirty_inode(struct inode *inode)
  5320. {
  5321. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  5322. struct btrfs_root *root = BTRFS_I(inode)->root;
  5323. struct btrfs_trans_handle *trans;
  5324. int ret;
  5325. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  5326. return 0;
  5327. trans = btrfs_join_transaction(root);
  5328. if (IS_ERR(trans))
  5329. return PTR_ERR(trans);
  5330. ret = btrfs_update_inode(trans, root, inode);
  5331. if (ret && ret == -ENOSPC) {
  5332. /* whoops, lets try again with the full transaction */
  5333. btrfs_end_transaction(trans);
  5334. trans = btrfs_start_transaction(root, 1);
  5335. if (IS_ERR(trans))
  5336. return PTR_ERR(trans);
  5337. ret = btrfs_update_inode(trans, root, inode);
  5338. }
  5339. btrfs_end_transaction(trans);
  5340. if (BTRFS_I(inode)->delayed_node)
  5341. btrfs_balance_delayed_items(fs_info);
  5342. return ret;
  5343. }
  5344. /*
  5345. * This is a copy of file_update_time. We need this so we can return error on
  5346. * ENOSPC for updating the inode in the case of file write and mmap writes.
  5347. */
  5348. static int btrfs_update_time(struct inode *inode, struct timespec *now,
  5349. int flags)
  5350. {
  5351. struct btrfs_root *root = BTRFS_I(inode)->root;
  5352. if (btrfs_root_readonly(root))
  5353. return -EROFS;
  5354. if (flags & S_VERSION)
  5355. inode_inc_iversion(inode);
  5356. if (flags & S_CTIME)
  5357. inode->i_ctime = *now;
  5358. if (flags & S_MTIME)
  5359. inode->i_mtime = *now;
  5360. if (flags & S_ATIME)
  5361. inode->i_atime = *now;
  5362. return btrfs_dirty_inode(inode);
  5363. }
  5364. /*
  5365. * find the highest existing sequence number in a directory
  5366. * and then set the in-memory index_cnt variable to reflect
  5367. * free sequence numbers
  5368. */
  5369. static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
  5370. {
  5371. struct btrfs_root *root = inode->root;
  5372. struct btrfs_key key, found_key;
  5373. struct btrfs_path *path;
  5374. struct extent_buffer *leaf;
  5375. int ret;
  5376. key.objectid = btrfs_ino(inode);
  5377. key.type = BTRFS_DIR_INDEX_KEY;
  5378. key.offset = (u64)-1;
  5379. path = btrfs_alloc_path();
  5380. if (!path)
  5381. return -ENOMEM;
  5382. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5383. if (ret < 0)
  5384. goto out;
  5385. /* FIXME: we should be able to handle this */
  5386. if (ret == 0)
  5387. goto out;
  5388. ret = 0;
  5389. /*
  5390. * MAGIC NUMBER EXPLANATION:
  5391. * since we search a directory based on f_pos we have to start at 2
  5392. * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
  5393. * else has to start at 2
  5394. */
  5395. if (path->slots[0] == 0) {
  5396. inode->index_cnt = 2;
  5397. goto out;
  5398. }
  5399. path->slots[0]--;
  5400. leaf = path->nodes[0];
  5401. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5402. if (found_key.objectid != btrfs_ino(inode) ||
  5403. found_key.type != BTRFS_DIR_INDEX_KEY) {
  5404. inode->index_cnt = 2;
  5405. goto out;
  5406. }
  5407. inode->index_cnt = found_key.offset + 1;
  5408. out:
  5409. btrfs_free_path(path);
  5410. return ret;
  5411. }
  5412. /*
  5413. * helper to find a free sequence number in a given directory. This current
  5414. * code is very simple, later versions will do smarter things in the btree
  5415. */
  5416. int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
  5417. {
  5418. int ret = 0;
  5419. if (dir->index_cnt == (u64)-1) {
  5420. ret = btrfs_inode_delayed_dir_index_count(dir);
  5421. if (ret) {
  5422. ret = btrfs_set_inode_index_count(dir);
  5423. if (ret)
  5424. return ret;
  5425. }
  5426. }
  5427. *index = dir->index_cnt;
  5428. dir->index_cnt++;
  5429. return ret;
  5430. }
  5431. static int btrfs_insert_inode_locked(struct inode *inode)
  5432. {
  5433. struct btrfs_iget_args args;
  5434. args.location = &BTRFS_I(inode)->location;
  5435. args.root = BTRFS_I(inode)->root;
  5436. return insert_inode_locked4(inode,
  5437. btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
  5438. btrfs_find_actor, &args);
  5439. }
  5440. static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
  5441. struct btrfs_root *root,
  5442. struct inode *dir,
  5443. const char *name, int name_len,
  5444. u64 ref_objectid, u64 objectid,
  5445. umode_t mode, u64 *index)
  5446. {
  5447. struct btrfs_fs_info *fs_info = root->fs_info;
  5448. struct inode *inode;
  5449. struct btrfs_inode_item *inode_item;
  5450. struct btrfs_key *location;
  5451. struct btrfs_path *path;
  5452. struct btrfs_inode_ref *ref;
  5453. struct btrfs_key key[2];
  5454. u32 sizes[2];
  5455. int nitems = name ? 2 : 1;
  5456. unsigned long ptr;
  5457. int ret;
  5458. path = btrfs_alloc_path();
  5459. if (!path)
  5460. return ERR_PTR(-ENOMEM);
  5461. inode = new_inode(fs_info->sb);
  5462. if (!inode) {
  5463. btrfs_free_path(path);
  5464. return ERR_PTR(-ENOMEM);
  5465. }
  5466. /*
  5467. * O_TMPFILE, set link count to 0, so that after this point,
  5468. * we fill in an inode item with the correct link count.
  5469. */
  5470. if (!name)
  5471. set_nlink(inode, 0);
  5472. /*
  5473. * we have to initialize this early, so we can reclaim the inode
  5474. * number if we fail afterwards in this function.
  5475. */
  5476. inode->i_ino = objectid;
  5477. if (dir && name) {
  5478. trace_btrfs_inode_request(dir);
  5479. ret = btrfs_set_inode_index(BTRFS_I(dir), index);
  5480. if (ret) {
  5481. btrfs_free_path(path);
  5482. iput(inode);
  5483. return ERR_PTR(ret);
  5484. }
  5485. } else if (dir) {
  5486. *index = 0;
  5487. }
  5488. /*
  5489. * index_cnt is ignored for everything but a dir,
  5490. * btrfs_get_inode_index_count has an explanation for the magic
  5491. * number
  5492. */
  5493. BTRFS_I(inode)->index_cnt = 2;
  5494. BTRFS_I(inode)->dir_index = *index;
  5495. BTRFS_I(inode)->root = root;
  5496. BTRFS_I(inode)->generation = trans->transid;
  5497. inode->i_generation = BTRFS_I(inode)->generation;
  5498. /*
  5499. * We could have gotten an inode number from somebody who was fsynced
  5500. * and then removed in this same transaction, so let's just set full
  5501. * sync since it will be a full sync anyway and this will blow away the
  5502. * old info in the log.
  5503. */
  5504. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  5505. key[0].objectid = objectid;
  5506. key[0].type = BTRFS_INODE_ITEM_KEY;
  5507. key[0].offset = 0;
  5508. sizes[0] = sizeof(struct btrfs_inode_item);
  5509. if (name) {
  5510. /*
  5511. * Start new inodes with an inode_ref. This is slightly more
  5512. * efficient for small numbers of hard links since they will
  5513. * be packed into one item. Extended refs will kick in if we
  5514. * add more hard links than can fit in the ref item.
  5515. */
  5516. key[1].objectid = objectid;
  5517. key[1].type = BTRFS_INODE_REF_KEY;
  5518. key[1].offset = ref_objectid;
  5519. sizes[1] = name_len + sizeof(*ref);
  5520. }
  5521. location = &BTRFS_I(inode)->location;
  5522. location->objectid = objectid;
  5523. location->offset = 0;
  5524. location->type = BTRFS_INODE_ITEM_KEY;
  5525. ret = btrfs_insert_inode_locked(inode);
  5526. if (ret < 0)
  5527. goto fail;
  5528. path->leave_spinning = 1;
  5529. ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
  5530. if (ret != 0)
  5531. goto fail_unlock;
  5532. inode_init_owner(inode, dir, mode);
  5533. inode_set_bytes(inode, 0);
  5534. inode->i_mtime = current_time(inode);
  5535. inode->i_atime = inode->i_mtime;
  5536. inode->i_ctime = inode->i_mtime;
  5537. BTRFS_I(inode)->i_otime = inode->i_mtime;
  5538. inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  5539. struct btrfs_inode_item);
  5540. memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
  5541. sizeof(*inode_item));
  5542. fill_inode_item(trans, path->nodes[0], inode_item, inode);
  5543. if (name) {
  5544. ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
  5545. struct btrfs_inode_ref);
  5546. btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
  5547. btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
  5548. ptr = (unsigned long)(ref + 1);
  5549. write_extent_buffer(path->nodes[0], name, ptr, name_len);
  5550. }
  5551. btrfs_mark_buffer_dirty(path->nodes[0]);
  5552. btrfs_free_path(path);
  5553. btrfs_inherit_iflags(inode, dir);
  5554. if (S_ISREG(mode)) {
  5555. if (btrfs_test_opt(fs_info, NODATASUM))
  5556. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
  5557. if (btrfs_test_opt(fs_info, NODATACOW))
  5558. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
  5559. BTRFS_INODE_NODATASUM;
  5560. }
  5561. inode_tree_add(inode);
  5562. trace_btrfs_inode_new(inode);
  5563. btrfs_set_inode_last_trans(trans, inode);
  5564. btrfs_update_root_times(trans, root);
  5565. ret = btrfs_inode_inherit_props(trans, inode, dir);
  5566. if (ret)
  5567. btrfs_err(fs_info,
  5568. "error inheriting props for ino %llu (root %llu): %d",
  5569. btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
  5570. return inode;
  5571. fail_unlock:
  5572. unlock_new_inode(inode);
  5573. fail:
  5574. if (dir && name)
  5575. BTRFS_I(dir)->index_cnt--;
  5576. btrfs_free_path(path);
  5577. iput(inode);
  5578. return ERR_PTR(ret);
  5579. }
  5580. static inline u8 btrfs_inode_type(struct inode *inode)
  5581. {
  5582. return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
  5583. }
  5584. /*
  5585. * utility function to add 'inode' into 'parent_inode' with
  5586. * a give name and a given sequence number.
  5587. * if 'add_backref' is true, also insert a backref from the
  5588. * inode to the parent directory.
  5589. */
  5590. int btrfs_add_link(struct btrfs_trans_handle *trans,
  5591. struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
  5592. const char *name, int name_len, int add_backref, u64 index)
  5593. {
  5594. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  5595. int ret = 0;
  5596. struct btrfs_key key;
  5597. struct btrfs_root *root = parent_inode->root;
  5598. u64 ino = btrfs_ino(inode);
  5599. u64 parent_ino = btrfs_ino(parent_inode);
  5600. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5601. memcpy(&key, &inode->root->root_key, sizeof(key));
  5602. } else {
  5603. key.objectid = ino;
  5604. key.type = BTRFS_INODE_ITEM_KEY;
  5605. key.offset = 0;
  5606. }
  5607. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5608. ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
  5609. root->root_key.objectid, parent_ino,
  5610. index, name, name_len);
  5611. } else if (add_backref) {
  5612. ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
  5613. parent_ino, index);
  5614. }
  5615. /* Nothing to clean up yet */
  5616. if (ret)
  5617. return ret;
  5618. ret = btrfs_insert_dir_item(trans, root, name, name_len,
  5619. parent_inode, &key,
  5620. btrfs_inode_type(&inode->vfs_inode), index);
  5621. if (ret == -EEXIST || ret == -EOVERFLOW)
  5622. goto fail_dir_item;
  5623. else if (ret) {
  5624. btrfs_abort_transaction(trans, ret);
  5625. return ret;
  5626. }
  5627. btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
  5628. name_len * 2);
  5629. inode_inc_iversion(&parent_inode->vfs_inode);
  5630. parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
  5631. current_time(&parent_inode->vfs_inode);
  5632. ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
  5633. if (ret)
  5634. btrfs_abort_transaction(trans, ret);
  5635. return ret;
  5636. fail_dir_item:
  5637. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  5638. u64 local_index;
  5639. int err;
  5640. err = btrfs_del_root_ref(trans, fs_info, key.objectid,
  5641. root->root_key.objectid, parent_ino,
  5642. &local_index, name, name_len);
  5643. } else if (add_backref) {
  5644. u64 local_index;
  5645. int err;
  5646. err = btrfs_del_inode_ref(trans, root, name, name_len,
  5647. ino, parent_ino, &local_index);
  5648. }
  5649. return ret;
  5650. }
  5651. static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
  5652. struct btrfs_inode *dir, struct dentry *dentry,
  5653. struct btrfs_inode *inode, int backref, u64 index)
  5654. {
  5655. int err = btrfs_add_link(trans, dir, inode,
  5656. dentry->d_name.name, dentry->d_name.len,
  5657. backref, index);
  5658. if (err > 0)
  5659. err = -EEXIST;
  5660. return err;
  5661. }
  5662. static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
  5663. umode_t mode, dev_t rdev)
  5664. {
  5665. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  5666. struct btrfs_trans_handle *trans;
  5667. struct btrfs_root *root = BTRFS_I(dir)->root;
  5668. struct inode *inode = NULL;
  5669. int err;
  5670. int drop_inode = 0;
  5671. u64 objectid;
  5672. u64 index = 0;
  5673. /*
  5674. * 2 for inode item and ref
  5675. * 2 for dir items
  5676. * 1 for xattr if selinux is on
  5677. */
  5678. trans = btrfs_start_transaction(root, 5);
  5679. if (IS_ERR(trans))
  5680. return PTR_ERR(trans);
  5681. err = btrfs_find_free_ino(root, &objectid);
  5682. if (err)
  5683. goto out_unlock;
  5684. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5685. dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
  5686. mode, &index);
  5687. if (IS_ERR(inode)) {
  5688. err = PTR_ERR(inode);
  5689. goto out_unlock;
  5690. }
  5691. /*
  5692. * If the active LSM wants to access the inode during
  5693. * d_instantiate it needs these. Smack checks to see
  5694. * if the filesystem supports xattrs by looking at the
  5695. * ops vector.
  5696. */
  5697. inode->i_op = &btrfs_special_inode_operations;
  5698. init_special_inode(inode, inode->i_mode, rdev);
  5699. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5700. if (err)
  5701. goto out_unlock_inode;
  5702. err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
  5703. 0, index);
  5704. if (err) {
  5705. goto out_unlock_inode;
  5706. } else {
  5707. btrfs_update_inode(trans, root, inode);
  5708. unlock_new_inode(inode);
  5709. d_instantiate(dentry, inode);
  5710. }
  5711. out_unlock:
  5712. btrfs_end_transaction(trans);
  5713. btrfs_balance_delayed_items(fs_info);
  5714. btrfs_btree_balance_dirty(fs_info);
  5715. if (drop_inode) {
  5716. inode_dec_link_count(inode);
  5717. iput(inode);
  5718. }
  5719. return err;
  5720. out_unlock_inode:
  5721. drop_inode = 1;
  5722. unlock_new_inode(inode);
  5723. goto out_unlock;
  5724. }
  5725. static int btrfs_create(struct inode *dir, struct dentry *dentry,
  5726. umode_t mode, bool excl)
  5727. {
  5728. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  5729. struct btrfs_trans_handle *trans;
  5730. struct btrfs_root *root = BTRFS_I(dir)->root;
  5731. struct inode *inode = NULL;
  5732. int drop_inode_on_err = 0;
  5733. int err;
  5734. u64 objectid;
  5735. u64 index = 0;
  5736. /*
  5737. * 2 for inode item and ref
  5738. * 2 for dir items
  5739. * 1 for xattr if selinux is on
  5740. */
  5741. trans = btrfs_start_transaction(root, 5);
  5742. if (IS_ERR(trans))
  5743. return PTR_ERR(trans);
  5744. err = btrfs_find_free_ino(root, &objectid);
  5745. if (err)
  5746. goto out_unlock;
  5747. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5748. dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
  5749. mode, &index);
  5750. if (IS_ERR(inode)) {
  5751. err = PTR_ERR(inode);
  5752. goto out_unlock;
  5753. }
  5754. drop_inode_on_err = 1;
  5755. /*
  5756. * If the active LSM wants to access the inode during
  5757. * d_instantiate it needs these. Smack checks to see
  5758. * if the filesystem supports xattrs by looking at the
  5759. * ops vector.
  5760. */
  5761. inode->i_fop = &btrfs_file_operations;
  5762. inode->i_op = &btrfs_file_inode_operations;
  5763. inode->i_mapping->a_ops = &btrfs_aops;
  5764. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5765. if (err)
  5766. goto out_unlock_inode;
  5767. err = btrfs_update_inode(trans, root, inode);
  5768. if (err)
  5769. goto out_unlock_inode;
  5770. err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
  5771. 0, index);
  5772. if (err)
  5773. goto out_unlock_inode;
  5774. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  5775. unlock_new_inode(inode);
  5776. d_instantiate(dentry, inode);
  5777. out_unlock:
  5778. btrfs_end_transaction(trans);
  5779. if (err && drop_inode_on_err) {
  5780. inode_dec_link_count(inode);
  5781. iput(inode);
  5782. }
  5783. btrfs_balance_delayed_items(fs_info);
  5784. btrfs_btree_balance_dirty(fs_info);
  5785. return err;
  5786. out_unlock_inode:
  5787. unlock_new_inode(inode);
  5788. goto out_unlock;
  5789. }
  5790. static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
  5791. struct dentry *dentry)
  5792. {
  5793. struct btrfs_trans_handle *trans = NULL;
  5794. struct btrfs_root *root = BTRFS_I(dir)->root;
  5795. struct inode *inode = d_inode(old_dentry);
  5796. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  5797. u64 index;
  5798. int err;
  5799. int drop_inode = 0;
  5800. /* do not allow sys_link's with other subvols of the same device */
  5801. if (root->objectid != BTRFS_I(inode)->root->objectid)
  5802. return -EXDEV;
  5803. if (inode->i_nlink >= BTRFS_LINK_MAX)
  5804. return -EMLINK;
  5805. err = btrfs_set_inode_index(BTRFS_I(dir), &index);
  5806. if (err)
  5807. goto fail;
  5808. /*
  5809. * 2 items for inode and inode ref
  5810. * 2 items for dir items
  5811. * 1 item for parent inode
  5812. */
  5813. trans = btrfs_start_transaction(root, 5);
  5814. if (IS_ERR(trans)) {
  5815. err = PTR_ERR(trans);
  5816. trans = NULL;
  5817. goto fail;
  5818. }
  5819. /* There are several dir indexes for this inode, clear the cache. */
  5820. BTRFS_I(inode)->dir_index = 0ULL;
  5821. inc_nlink(inode);
  5822. inode_inc_iversion(inode);
  5823. inode->i_ctime = current_time(inode);
  5824. ihold(inode);
  5825. set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
  5826. err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
  5827. 1, index);
  5828. if (err) {
  5829. drop_inode = 1;
  5830. } else {
  5831. struct dentry *parent = dentry->d_parent;
  5832. err = btrfs_update_inode(trans, root, inode);
  5833. if (err)
  5834. goto fail;
  5835. if (inode->i_nlink == 1) {
  5836. /*
  5837. * If new hard link count is 1, it's a file created
  5838. * with open(2) O_TMPFILE flag.
  5839. */
  5840. err = btrfs_orphan_del(trans, BTRFS_I(inode));
  5841. if (err)
  5842. goto fail;
  5843. }
  5844. d_instantiate(dentry, inode);
  5845. btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
  5846. }
  5847. btrfs_balance_delayed_items(fs_info);
  5848. fail:
  5849. if (trans)
  5850. btrfs_end_transaction(trans);
  5851. if (drop_inode) {
  5852. inode_dec_link_count(inode);
  5853. iput(inode);
  5854. }
  5855. btrfs_btree_balance_dirty(fs_info);
  5856. return err;
  5857. }
  5858. static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  5859. {
  5860. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  5861. struct inode *inode = NULL;
  5862. struct btrfs_trans_handle *trans;
  5863. struct btrfs_root *root = BTRFS_I(dir)->root;
  5864. int err = 0;
  5865. int drop_on_err = 0;
  5866. u64 objectid = 0;
  5867. u64 index = 0;
  5868. /*
  5869. * 2 items for inode and ref
  5870. * 2 items for dir items
  5871. * 1 for xattr if selinux is on
  5872. */
  5873. trans = btrfs_start_transaction(root, 5);
  5874. if (IS_ERR(trans))
  5875. return PTR_ERR(trans);
  5876. err = btrfs_find_free_ino(root, &objectid);
  5877. if (err)
  5878. goto out_fail;
  5879. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  5880. dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
  5881. S_IFDIR | mode, &index);
  5882. if (IS_ERR(inode)) {
  5883. err = PTR_ERR(inode);
  5884. goto out_fail;
  5885. }
  5886. drop_on_err = 1;
  5887. /* these must be set before we unlock the inode */
  5888. inode->i_op = &btrfs_dir_inode_operations;
  5889. inode->i_fop = &btrfs_dir_file_operations;
  5890. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  5891. if (err)
  5892. goto out_fail_inode;
  5893. btrfs_i_size_write(BTRFS_I(inode), 0);
  5894. err = btrfs_update_inode(trans, root, inode);
  5895. if (err)
  5896. goto out_fail_inode;
  5897. err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
  5898. dentry->d_name.name,
  5899. dentry->d_name.len, 0, index);
  5900. if (err)
  5901. goto out_fail_inode;
  5902. d_instantiate(dentry, inode);
  5903. /*
  5904. * mkdir is special. We're unlocking after we call d_instantiate
  5905. * to avoid a race with nfsd calling d_instantiate.
  5906. */
  5907. unlock_new_inode(inode);
  5908. drop_on_err = 0;
  5909. out_fail:
  5910. btrfs_end_transaction(trans);
  5911. if (drop_on_err) {
  5912. inode_dec_link_count(inode);
  5913. iput(inode);
  5914. }
  5915. btrfs_balance_delayed_items(fs_info);
  5916. btrfs_btree_balance_dirty(fs_info);
  5917. return err;
  5918. out_fail_inode:
  5919. unlock_new_inode(inode);
  5920. goto out_fail;
  5921. }
  5922. /* Find next extent map of a given extent map, caller needs to ensure locks */
  5923. static struct extent_map *next_extent_map(struct extent_map *em)
  5924. {
  5925. struct rb_node *next;
  5926. next = rb_next(&em->rb_node);
  5927. if (!next)
  5928. return NULL;
  5929. return container_of(next, struct extent_map, rb_node);
  5930. }
  5931. static struct extent_map *prev_extent_map(struct extent_map *em)
  5932. {
  5933. struct rb_node *prev;
  5934. prev = rb_prev(&em->rb_node);
  5935. if (!prev)
  5936. return NULL;
  5937. return container_of(prev, struct extent_map, rb_node);
  5938. }
  5939. /* helper for btfs_get_extent. Given an existing extent in the tree,
  5940. * the existing extent is the nearest extent to map_start,
  5941. * and an extent that you want to insert, deal with overlap and insert
  5942. * the best fitted new extent into the tree.
  5943. */
  5944. static int merge_extent_mapping(struct extent_map_tree *em_tree,
  5945. struct extent_map *existing,
  5946. struct extent_map *em,
  5947. u64 map_start)
  5948. {
  5949. struct extent_map *prev;
  5950. struct extent_map *next;
  5951. u64 start;
  5952. u64 end;
  5953. u64 start_diff;
  5954. BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
  5955. if (existing->start > map_start) {
  5956. next = existing;
  5957. prev = prev_extent_map(next);
  5958. } else {
  5959. prev = existing;
  5960. next = next_extent_map(prev);
  5961. }
  5962. start = prev ? extent_map_end(prev) : em->start;
  5963. start = max_t(u64, start, em->start);
  5964. end = next ? next->start : extent_map_end(em);
  5965. end = min_t(u64, end, extent_map_end(em));
  5966. start_diff = start - em->start;
  5967. em->start = start;
  5968. em->len = end - start;
  5969. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  5970. !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  5971. em->block_start += start_diff;
  5972. em->block_len -= start_diff;
  5973. }
  5974. return add_extent_mapping(em_tree, em, 0);
  5975. }
  5976. static noinline int uncompress_inline(struct btrfs_path *path,
  5977. struct page *page,
  5978. size_t pg_offset, u64 extent_offset,
  5979. struct btrfs_file_extent_item *item)
  5980. {
  5981. int ret;
  5982. struct extent_buffer *leaf = path->nodes[0];
  5983. char *tmp;
  5984. size_t max_size;
  5985. unsigned long inline_size;
  5986. unsigned long ptr;
  5987. int compress_type;
  5988. WARN_ON(pg_offset != 0);
  5989. compress_type = btrfs_file_extent_compression(leaf, item);
  5990. max_size = btrfs_file_extent_ram_bytes(leaf, item);
  5991. inline_size = btrfs_file_extent_inline_item_len(leaf,
  5992. btrfs_item_nr(path->slots[0]));
  5993. tmp = kmalloc(inline_size, GFP_NOFS);
  5994. if (!tmp)
  5995. return -ENOMEM;
  5996. ptr = btrfs_file_extent_inline_start(item);
  5997. read_extent_buffer(leaf, tmp, ptr, inline_size);
  5998. max_size = min_t(unsigned long, PAGE_SIZE, max_size);
  5999. ret = btrfs_decompress(compress_type, tmp, page,
  6000. extent_offset, inline_size, max_size);
  6001. /*
  6002. * decompression code contains a memset to fill in any space between the end
  6003. * of the uncompressed data and the end of max_size in case the decompressed
  6004. * data ends up shorter than ram_bytes. That doesn't cover the hole between
  6005. * the end of an inline extent and the beginning of the next block, so we
  6006. * cover that region here.
  6007. */
  6008. if (max_size + pg_offset < PAGE_SIZE) {
  6009. char *map = kmap(page);
  6010. memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
  6011. kunmap(page);
  6012. }
  6013. kfree(tmp);
  6014. return ret;
  6015. }
  6016. /*
  6017. * a bit scary, this does extent mapping from logical file offset to the disk.
  6018. * the ugly parts come from merging extents from the disk with the in-ram
  6019. * representation. This gets more complex because of the data=ordered code,
  6020. * where the in-ram extents might be locked pending data=ordered completion.
  6021. *
  6022. * This also copies inline extents directly into the page.
  6023. */
  6024. struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
  6025. struct page *page,
  6026. size_t pg_offset, u64 start, u64 len,
  6027. int create)
  6028. {
  6029. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  6030. int ret;
  6031. int err = 0;
  6032. u64 extent_start = 0;
  6033. u64 extent_end = 0;
  6034. u64 objectid = btrfs_ino(inode);
  6035. u32 found_type;
  6036. struct btrfs_path *path = NULL;
  6037. struct btrfs_root *root = inode->root;
  6038. struct btrfs_file_extent_item *item;
  6039. struct extent_buffer *leaf;
  6040. struct btrfs_key found_key;
  6041. struct extent_map *em = NULL;
  6042. struct extent_map_tree *em_tree = &inode->extent_tree;
  6043. struct extent_io_tree *io_tree = &inode->io_tree;
  6044. struct btrfs_trans_handle *trans = NULL;
  6045. const bool new_inline = !page || create;
  6046. again:
  6047. read_lock(&em_tree->lock);
  6048. em = lookup_extent_mapping(em_tree, start, len);
  6049. if (em)
  6050. em->bdev = fs_info->fs_devices->latest_bdev;
  6051. read_unlock(&em_tree->lock);
  6052. if (em) {
  6053. if (em->start > start || em->start + em->len <= start)
  6054. free_extent_map(em);
  6055. else if (em->block_start == EXTENT_MAP_INLINE && page)
  6056. free_extent_map(em);
  6057. else
  6058. goto out;
  6059. }
  6060. em = alloc_extent_map();
  6061. if (!em) {
  6062. err = -ENOMEM;
  6063. goto out;
  6064. }
  6065. em->bdev = fs_info->fs_devices->latest_bdev;
  6066. em->start = EXTENT_MAP_HOLE;
  6067. em->orig_start = EXTENT_MAP_HOLE;
  6068. em->len = (u64)-1;
  6069. em->block_len = (u64)-1;
  6070. if (!path) {
  6071. path = btrfs_alloc_path();
  6072. if (!path) {
  6073. err = -ENOMEM;
  6074. goto out;
  6075. }
  6076. /*
  6077. * Chances are we'll be called again, so go ahead and do
  6078. * readahead
  6079. */
  6080. path->reada = READA_FORWARD;
  6081. }
  6082. ret = btrfs_lookup_file_extent(trans, root, path,
  6083. objectid, start, trans != NULL);
  6084. if (ret < 0) {
  6085. err = ret;
  6086. goto out;
  6087. }
  6088. if (ret != 0) {
  6089. if (path->slots[0] == 0)
  6090. goto not_found;
  6091. path->slots[0]--;
  6092. }
  6093. leaf = path->nodes[0];
  6094. item = btrfs_item_ptr(leaf, path->slots[0],
  6095. struct btrfs_file_extent_item);
  6096. /* are we inside the extent that was found? */
  6097. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6098. found_type = found_key.type;
  6099. if (found_key.objectid != objectid ||
  6100. found_type != BTRFS_EXTENT_DATA_KEY) {
  6101. /*
  6102. * If we backup past the first extent we want to move forward
  6103. * and see if there is an extent in front of us, otherwise we'll
  6104. * say there is a hole for our whole search range which can
  6105. * cause problems.
  6106. */
  6107. extent_end = start;
  6108. goto next;
  6109. }
  6110. found_type = btrfs_file_extent_type(leaf, item);
  6111. extent_start = found_key.offset;
  6112. if (found_type == BTRFS_FILE_EXTENT_REG ||
  6113. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  6114. extent_end = extent_start +
  6115. btrfs_file_extent_num_bytes(leaf, item);
  6116. trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
  6117. extent_start);
  6118. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  6119. size_t size;
  6120. size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
  6121. extent_end = ALIGN(extent_start + size,
  6122. fs_info->sectorsize);
  6123. trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
  6124. path->slots[0],
  6125. extent_start);
  6126. }
  6127. next:
  6128. if (start >= extent_end) {
  6129. path->slots[0]++;
  6130. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  6131. ret = btrfs_next_leaf(root, path);
  6132. if (ret < 0) {
  6133. err = ret;
  6134. goto out;
  6135. }
  6136. if (ret > 0)
  6137. goto not_found;
  6138. leaf = path->nodes[0];
  6139. }
  6140. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6141. if (found_key.objectid != objectid ||
  6142. found_key.type != BTRFS_EXTENT_DATA_KEY)
  6143. goto not_found;
  6144. if (start + len <= found_key.offset)
  6145. goto not_found;
  6146. if (start > found_key.offset)
  6147. goto next;
  6148. em->start = start;
  6149. em->orig_start = start;
  6150. em->len = found_key.offset - start;
  6151. goto not_found_em;
  6152. }
  6153. btrfs_extent_item_to_extent_map(inode, path, item,
  6154. new_inline, em);
  6155. if (found_type == BTRFS_FILE_EXTENT_REG ||
  6156. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  6157. goto insert;
  6158. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  6159. unsigned long ptr;
  6160. char *map;
  6161. size_t size;
  6162. size_t extent_offset;
  6163. size_t copy_size;
  6164. if (new_inline)
  6165. goto out;
  6166. size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
  6167. extent_offset = page_offset(page) + pg_offset - extent_start;
  6168. copy_size = min_t(u64, PAGE_SIZE - pg_offset,
  6169. size - extent_offset);
  6170. em->start = extent_start + extent_offset;
  6171. em->len = ALIGN(copy_size, fs_info->sectorsize);
  6172. em->orig_block_len = em->len;
  6173. em->orig_start = em->start;
  6174. ptr = btrfs_file_extent_inline_start(item) + extent_offset;
  6175. if (create == 0 && !PageUptodate(page)) {
  6176. if (btrfs_file_extent_compression(leaf, item) !=
  6177. BTRFS_COMPRESS_NONE) {
  6178. ret = uncompress_inline(path, page, pg_offset,
  6179. extent_offset, item);
  6180. if (ret) {
  6181. err = ret;
  6182. goto out;
  6183. }
  6184. } else {
  6185. map = kmap(page);
  6186. read_extent_buffer(leaf, map + pg_offset, ptr,
  6187. copy_size);
  6188. if (pg_offset + copy_size < PAGE_SIZE) {
  6189. memset(map + pg_offset + copy_size, 0,
  6190. PAGE_SIZE - pg_offset -
  6191. copy_size);
  6192. }
  6193. kunmap(page);
  6194. }
  6195. flush_dcache_page(page);
  6196. } else if (create && PageUptodate(page)) {
  6197. BUG();
  6198. if (!trans) {
  6199. kunmap(page);
  6200. free_extent_map(em);
  6201. em = NULL;
  6202. btrfs_release_path(path);
  6203. trans = btrfs_join_transaction(root);
  6204. if (IS_ERR(trans))
  6205. return ERR_CAST(trans);
  6206. goto again;
  6207. }
  6208. map = kmap(page);
  6209. write_extent_buffer(leaf, map + pg_offset, ptr,
  6210. copy_size);
  6211. kunmap(page);
  6212. btrfs_mark_buffer_dirty(leaf);
  6213. }
  6214. set_extent_uptodate(io_tree, em->start,
  6215. extent_map_end(em) - 1, NULL, GFP_NOFS);
  6216. goto insert;
  6217. }
  6218. not_found:
  6219. em->start = start;
  6220. em->orig_start = start;
  6221. em->len = len;
  6222. not_found_em:
  6223. em->block_start = EXTENT_MAP_HOLE;
  6224. set_bit(EXTENT_FLAG_VACANCY, &em->flags);
  6225. insert:
  6226. btrfs_release_path(path);
  6227. if (em->start > start || extent_map_end(em) <= start) {
  6228. btrfs_err(fs_info,
  6229. "bad extent! em: [%llu %llu] passed [%llu %llu]",
  6230. em->start, em->len, start, len);
  6231. err = -EIO;
  6232. goto out;
  6233. }
  6234. err = 0;
  6235. write_lock(&em_tree->lock);
  6236. ret = add_extent_mapping(em_tree, em, 0);
  6237. /* it is possible that someone inserted the extent into the tree
  6238. * while we had the lock dropped. It is also possible that
  6239. * an overlapping map exists in the tree
  6240. */
  6241. if (ret == -EEXIST) {
  6242. struct extent_map *existing;
  6243. ret = 0;
  6244. existing = search_extent_mapping(em_tree, start, len);
  6245. /*
  6246. * existing will always be non-NULL, since there must be
  6247. * extent causing the -EEXIST.
  6248. */
  6249. if (existing->start == em->start &&
  6250. extent_map_end(existing) >= extent_map_end(em) &&
  6251. em->block_start == existing->block_start) {
  6252. /*
  6253. * The existing extent map already encompasses the
  6254. * entire extent map we tried to add.
  6255. */
  6256. free_extent_map(em);
  6257. em = existing;
  6258. err = 0;
  6259. } else if (start >= extent_map_end(existing) ||
  6260. start <= existing->start) {
  6261. /*
  6262. * The existing extent map is the one nearest to
  6263. * the [start, start + len) range which overlaps
  6264. */
  6265. err = merge_extent_mapping(em_tree, existing,
  6266. em, start);
  6267. free_extent_map(existing);
  6268. if (err) {
  6269. free_extent_map(em);
  6270. em = NULL;
  6271. }
  6272. } else {
  6273. free_extent_map(em);
  6274. em = existing;
  6275. err = 0;
  6276. }
  6277. }
  6278. write_unlock(&em_tree->lock);
  6279. out:
  6280. trace_btrfs_get_extent(root, inode, em);
  6281. btrfs_free_path(path);
  6282. if (trans) {
  6283. ret = btrfs_end_transaction(trans);
  6284. if (!err)
  6285. err = ret;
  6286. }
  6287. if (err) {
  6288. free_extent_map(em);
  6289. return ERR_PTR(err);
  6290. }
  6291. BUG_ON(!em); /* Error is always set */
  6292. return em;
  6293. }
  6294. struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
  6295. struct page *page,
  6296. size_t pg_offset, u64 start, u64 len,
  6297. int create)
  6298. {
  6299. struct extent_map *em;
  6300. struct extent_map *hole_em = NULL;
  6301. u64 range_start = start;
  6302. u64 end;
  6303. u64 found;
  6304. u64 found_end;
  6305. int err = 0;
  6306. em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
  6307. if (IS_ERR(em))
  6308. return em;
  6309. /*
  6310. * If our em maps to:
  6311. * - a hole or
  6312. * - a pre-alloc extent,
  6313. * there might actually be delalloc bytes behind it.
  6314. */
  6315. if (em->block_start != EXTENT_MAP_HOLE &&
  6316. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  6317. return em;
  6318. else
  6319. hole_em = em;
  6320. /* check to see if we've wrapped (len == -1 or similar) */
  6321. end = start + len;
  6322. if (end < start)
  6323. end = (u64)-1;
  6324. else
  6325. end -= 1;
  6326. em = NULL;
  6327. /* ok, we didn't find anything, lets look for delalloc */
  6328. found = count_range_bits(&inode->io_tree, &range_start,
  6329. end, len, EXTENT_DELALLOC, 1);
  6330. found_end = range_start + found;
  6331. if (found_end < range_start)
  6332. found_end = (u64)-1;
  6333. /*
  6334. * we didn't find anything useful, return
  6335. * the original results from get_extent()
  6336. */
  6337. if (range_start > end || found_end <= start) {
  6338. em = hole_em;
  6339. hole_em = NULL;
  6340. goto out;
  6341. }
  6342. /* adjust the range_start to make sure it doesn't
  6343. * go backwards from the start they passed in
  6344. */
  6345. range_start = max(start, range_start);
  6346. found = found_end - range_start;
  6347. if (found > 0) {
  6348. u64 hole_start = start;
  6349. u64 hole_len = len;
  6350. em = alloc_extent_map();
  6351. if (!em) {
  6352. err = -ENOMEM;
  6353. goto out;
  6354. }
  6355. /*
  6356. * when btrfs_get_extent can't find anything it
  6357. * returns one huge hole
  6358. *
  6359. * make sure what it found really fits our range, and
  6360. * adjust to make sure it is based on the start from
  6361. * the caller
  6362. */
  6363. if (hole_em) {
  6364. u64 calc_end = extent_map_end(hole_em);
  6365. if (calc_end <= start || (hole_em->start > end)) {
  6366. free_extent_map(hole_em);
  6367. hole_em = NULL;
  6368. } else {
  6369. hole_start = max(hole_em->start, start);
  6370. hole_len = calc_end - hole_start;
  6371. }
  6372. }
  6373. em->bdev = NULL;
  6374. if (hole_em && range_start > hole_start) {
  6375. /* our hole starts before our delalloc, so we
  6376. * have to return just the parts of the hole
  6377. * that go until the delalloc starts
  6378. */
  6379. em->len = min(hole_len,
  6380. range_start - hole_start);
  6381. em->start = hole_start;
  6382. em->orig_start = hole_start;
  6383. /*
  6384. * don't adjust block start at all,
  6385. * it is fixed at EXTENT_MAP_HOLE
  6386. */
  6387. em->block_start = hole_em->block_start;
  6388. em->block_len = hole_len;
  6389. if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
  6390. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  6391. } else {
  6392. em->start = range_start;
  6393. em->len = found;
  6394. em->orig_start = range_start;
  6395. em->block_start = EXTENT_MAP_DELALLOC;
  6396. em->block_len = found;
  6397. }
  6398. } else if (hole_em) {
  6399. return hole_em;
  6400. }
  6401. out:
  6402. free_extent_map(hole_em);
  6403. if (err) {
  6404. free_extent_map(em);
  6405. return ERR_PTR(err);
  6406. }
  6407. return em;
  6408. }
  6409. static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
  6410. const u64 start,
  6411. const u64 len,
  6412. const u64 orig_start,
  6413. const u64 block_start,
  6414. const u64 block_len,
  6415. const u64 orig_block_len,
  6416. const u64 ram_bytes,
  6417. const int type)
  6418. {
  6419. struct extent_map *em = NULL;
  6420. int ret;
  6421. if (type != BTRFS_ORDERED_NOCOW) {
  6422. em = create_io_em(inode, start, len, orig_start,
  6423. block_start, block_len, orig_block_len,
  6424. ram_bytes,
  6425. BTRFS_COMPRESS_NONE, /* compress_type */
  6426. type);
  6427. if (IS_ERR(em))
  6428. goto out;
  6429. }
  6430. ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
  6431. len, block_len, type);
  6432. if (ret) {
  6433. if (em) {
  6434. free_extent_map(em);
  6435. btrfs_drop_extent_cache(BTRFS_I(inode), start,
  6436. start + len - 1, 0);
  6437. }
  6438. em = ERR_PTR(ret);
  6439. }
  6440. out:
  6441. return em;
  6442. }
  6443. static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
  6444. u64 start, u64 len)
  6445. {
  6446. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  6447. struct btrfs_root *root = BTRFS_I(inode)->root;
  6448. struct extent_map *em;
  6449. struct btrfs_key ins;
  6450. u64 alloc_hint;
  6451. int ret;
  6452. alloc_hint = get_extent_allocation_hint(inode, start, len);
  6453. ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
  6454. 0, alloc_hint, &ins, 1, 1);
  6455. if (ret)
  6456. return ERR_PTR(ret);
  6457. em = btrfs_create_dio_extent(inode, start, ins.offset, start,
  6458. ins.objectid, ins.offset, ins.offset,
  6459. ins.offset, BTRFS_ORDERED_REGULAR);
  6460. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  6461. if (IS_ERR(em))
  6462. btrfs_free_reserved_extent(fs_info, ins.objectid,
  6463. ins.offset, 1);
  6464. return em;
  6465. }
  6466. /*
  6467. * returns 1 when the nocow is safe, < 1 on error, 0 if the
  6468. * block must be cow'd
  6469. */
  6470. noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
  6471. u64 *orig_start, u64 *orig_block_len,
  6472. u64 *ram_bytes)
  6473. {
  6474. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  6475. struct btrfs_path *path;
  6476. int ret;
  6477. struct extent_buffer *leaf;
  6478. struct btrfs_root *root = BTRFS_I(inode)->root;
  6479. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  6480. struct btrfs_file_extent_item *fi;
  6481. struct btrfs_key key;
  6482. u64 disk_bytenr;
  6483. u64 backref_offset;
  6484. u64 extent_end;
  6485. u64 num_bytes;
  6486. int slot;
  6487. int found_type;
  6488. bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
  6489. path = btrfs_alloc_path();
  6490. if (!path)
  6491. return -ENOMEM;
  6492. ret = btrfs_lookup_file_extent(NULL, root, path,
  6493. btrfs_ino(BTRFS_I(inode)), offset, 0);
  6494. if (ret < 0)
  6495. goto out;
  6496. slot = path->slots[0];
  6497. if (ret == 1) {
  6498. if (slot == 0) {
  6499. /* can't find the item, must cow */
  6500. ret = 0;
  6501. goto out;
  6502. }
  6503. slot--;
  6504. }
  6505. ret = 0;
  6506. leaf = path->nodes[0];
  6507. btrfs_item_key_to_cpu(leaf, &key, slot);
  6508. if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
  6509. key.type != BTRFS_EXTENT_DATA_KEY) {
  6510. /* not our file or wrong item type, must cow */
  6511. goto out;
  6512. }
  6513. if (key.offset > offset) {
  6514. /* Wrong offset, must cow */
  6515. goto out;
  6516. }
  6517. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  6518. found_type = btrfs_file_extent_type(leaf, fi);
  6519. if (found_type != BTRFS_FILE_EXTENT_REG &&
  6520. found_type != BTRFS_FILE_EXTENT_PREALLOC) {
  6521. /* not a regular extent, must cow */
  6522. goto out;
  6523. }
  6524. if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
  6525. goto out;
  6526. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  6527. if (extent_end <= offset)
  6528. goto out;
  6529. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  6530. if (disk_bytenr == 0)
  6531. goto out;
  6532. if (btrfs_file_extent_compression(leaf, fi) ||
  6533. btrfs_file_extent_encryption(leaf, fi) ||
  6534. btrfs_file_extent_other_encoding(leaf, fi))
  6535. goto out;
  6536. backref_offset = btrfs_file_extent_offset(leaf, fi);
  6537. if (orig_start) {
  6538. *orig_start = key.offset - backref_offset;
  6539. *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
  6540. *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
  6541. }
  6542. if (btrfs_extent_readonly(fs_info, disk_bytenr))
  6543. goto out;
  6544. num_bytes = min(offset + *len, extent_end) - offset;
  6545. if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  6546. u64 range_end;
  6547. range_end = round_up(offset + num_bytes,
  6548. root->fs_info->sectorsize) - 1;
  6549. ret = test_range_bit(io_tree, offset, range_end,
  6550. EXTENT_DELALLOC, 0, NULL);
  6551. if (ret) {
  6552. ret = -EAGAIN;
  6553. goto out;
  6554. }
  6555. }
  6556. btrfs_release_path(path);
  6557. /*
  6558. * look for other files referencing this extent, if we
  6559. * find any we must cow
  6560. */
  6561. ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
  6562. key.offset - backref_offset, disk_bytenr);
  6563. if (ret) {
  6564. ret = 0;
  6565. goto out;
  6566. }
  6567. /*
  6568. * adjust disk_bytenr and num_bytes to cover just the bytes
  6569. * in this extent we are about to write. If there
  6570. * are any csums in that range we have to cow in order
  6571. * to keep the csums correct
  6572. */
  6573. disk_bytenr += backref_offset;
  6574. disk_bytenr += offset - key.offset;
  6575. if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
  6576. goto out;
  6577. /*
  6578. * all of the above have passed, it is safe to overwrite this extent
  6579. * without cow
  6580. */
  6581. *len = num_bytes;
  6582. ret = 1;
  6583. out:
  6584. btrfs_free_path(path);
  6585. return ret;
  6586. }
  6587. bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
  6588. {
  6589. struct radix_tree_root *root = &inode->i_mapping->page_tree;
  6590. int found = false;
  6591. void **pagep = NULL;
  6592. struct page *page = NULL;
  6593. int start_idx;
  6594. int end_idx;
  6595. start_idx = start >> PAGE_SHIFT;
  6596. /*
  6597. * end is the last byte in the last page. end == start is legal
  6598. */
  6599. end_idx = end >> PAGE_SHIFT;
  6600. rcu_read_lock();
  6601. /* Most of the code in this while loop is lifted from
  6602. * find_get_page. It's been modified to begin searching from a
  6603. * page and return just the first page found in that range. If the
  6604. * found idx is less than or equal to the end idx then we know that
  6605. * a page exists. If no pages are found or if those pages are
  6606. * outside of the range then we're fine (yay!) */
  6607. while (page == NULL &&
  6608. radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
  6609. page = radix_tree_deref_slot(pagep);
  6610. if (unlikely(!page))
  6611. break;
  6612. if (radix_tree_exception(page)) {
  6613. if (radix_tree_deref_retry(page)) {
  6614. page = NULL;
  6615. continue;
  6616. }
  6617. /*
  6618. * Otherwise, shmem/tmpfs must be storing a swap entry
  6619. * here as an exceptional entry: so return it without
  6620. * attempting to raise page count.
  6621. */
  6622. page = NULL;
  6623. break; /* TODO: Is this relevant for this use case? */
  6624. }
  6625. if (!page_cache_get_speculative(page)) {
  6626. page = NULL;
  6627. continue;
  6628. }
  6629. /*
  6630. * Has the page moved?
  6631. * This is part of the lockless pagecache protocol. See
  6632. * include/linux/pagemap.h for details.
  6633. */
  6634. if (unlikely(page != *pagep)) {
  6635. put_page(page);
  6636. page = NULL;
  6637. }
  6638. }
  6639. if (page) {
  6640. if (page->index <= end_idx)
  6641. found = true;
  6642. put_page(page);
  6643. }
  6644. rcu_read_unlock();
  6645. return found;
  6646. }
  6647. static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
  6648. struct extent_state **cached_state, int writing)
  6649. {
  6650. struct btrfs_ordered_extent *ordered;
  6651. int ret = 0;
  6652. while (1) {
  6653. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6654. cached_state);
  6655. /*
  6656. * We're concerned with the entire range that we're going to be
  6657. * doing DIO to, so we need to make sure there's no ordered
  6658. * extents in this range.
  6659. */
  6660. ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
  6661. lockend - lockstart + 1);
  6662. /*
  6663. * We need to make sure there are no buffered pages in this
  6664. * range either, we could have raced between the invalidate in
  6665. * generic_file_direct_write and locking the extent. The
  6666. * invalidate needs to happen so that reads after a write do not
  6667. * get stale data.
  6668. */
  6669. if (!ordered &&
  6670. (!writing ||
  6671. !btrfs_page_exists_in_range(inode, lockstart, lockend)))
  6672. break;
  6673. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6674. cached_state, GFP_NOFS);
  6675. if (ordered) {
  6676. /*
  6677. * If we are doing a DIO read and the ordered extent we
  6678. * found is for a buffered write, we can not wait for it
  6679. * to complete and retry, because if we do so we can
  6680. * deadlock with concurrent buffered writes on page
  6681. * locks. This happens only if our DIO read covers more
  6682. * than one extent map, if at this point has already
  6683. * created an ordered extent for a previous extent map
  6684. * and locked its range in the inode's io tree, and a
  6685. * concurrent write against that previous extent map's
  6686. * range and this range started (we unlock the ranges
  6687. * in the io tree only when the bios complete and
  6688. * buffered writes always lock pages before attempting
  6689. * to lock range in the io tree).
  6690. */
  6691. if (writing ||
  6692. test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
  6693. btrfs_start_ordered_extent(inode, ordered, 1);
  6694. else
  6695. ret = -ENOTBLK;
  6696. btrfs_put_ordered_extent(ordered);
  6697. } else {
  6698. /*
  6699. * We could trigger writeback for this range (and wait
  6700. * for it to complete) and then invalidate the pages for
  6701. * this range (through invalidate_inode_pages2_range()),
  6702. * but that can lead us to a deadlock with a concurrent
  6703. * call to readpages() (a buffered read or a defrag call
  6704. * triggered a readahead) on a page lock due to an
  6705. * ordered dio extent we created before but did not have
  6706. * yet a corresponding bio submitted (whence it can not
  6707. * complete), which makes readpages() wait for that
  6708. * ordered extent to complete while holding a lock on
  6709. * that page.
  6710. */
  6711. ret = -ENOTBLK;
  6712. }
  6713. if (ret)
  6714. break;
  6715. cond_resched();
  6716. }
  6717. return ret;
  6718. }
  6719. /* The callers of this must take lock_extent() */
  6720. static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
  6721. u64 orig_start, u64 block_start,
  6722. u64 block_len, u64 orig_block_len,
  6723. u64 ram_bytes, int compress_type,
  6724. int type)
  6725. {
  6726. struct extent_map_tree *em_tree;
  6727. struct extent_map *em;
  6728. struct btrfs_root *root = BTRFS_I(inode)->root;
  6729. int ret;
  6730. ASSERT(type == BTRFS_ORDERED_PREALLOC ||
  6731. type == BTRFS_ORDERED_COMPRESSED ||
  6732. type == BTRFS_ORDERED_NOCOW ||
  6733. type == BTRFS_ORDERED_REGULAR);
  6734. em_tree = &BTRFS_I(inode)->extent_tree;
  6735. em = alloc_extent_map();
  6736. if (!em)
  6737. return ERR_PTR(-ENOMEM);
  6738. em->start = start;
  6739. em->orig_start = orig_start;
  6740. em->len = len;
  6741. em->block_len = block_len;
  6742. em->block_start = block_start;
  6743. em->bdev = root->fs_info->fs_devices->latest_bdev;
  6744. em->orig_block_len = orig_block_len;
  6745. em->ram_bytes = ram_bytes;
  6746. em->generation = -1;
  6747. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  6748. if (type == BTRFS_ORDERED_PREALLOC) {
  6749. set_bit(EXTENT_FLAG_FILLING, &em->flags);
  6750. } else if (type == BTRFS_ORDERED_COMPRESSED) {
  6751. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  6752. em->compress_type = compress_type;
  6753. }
  6754. do {
  6755. btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
  6756. em->start + em->len - 1, 0);
  6757. write_lock(&em_tree->lock);
  6758. ret = add_extent_mapping(em_tree, em, 1);
  6759. write_unlock(&em_tree->lock);
  6760. /*
  6761. * The caller has taken lock_extent(), who could race with us
  6762. * to add em?
  6763. */
  6764. } while (ret == -EEXIST);
  6765. if (ret) {
  6766. free_extent_map(em);
  6767. return ERR_PTR(ret);
  6768. }
  6769. /* em got 2 refs now, callers needs to do free_extent_map once. */
  6770. return em;
  6771. }
  6772. static void adjust_dio_outstanding_extents(struct inode *inode,
  6773. struct btrfs_dio_data *dio_data,
  6774. const u64 len)
  6775. {
  6776. unsigned num_extents = count_max_extents(len);
  6777. /*
  6778. * If we have an outstanding_extents count still set then we're
  6779. * within our reservation, otherwise we need to adjust our inode
  6780. * counter appropriately.
  6781. */
  6782. if (dio_data->outstanding_extents >= num_extents) {
  6783. dio_data->outstanding_extents -= num_extents;
  6784. } else {
  6785. /*
  6786. * If dio write length has been split due to no large enough
  6787. * contiguous space, we need to compensate our inode counter
  6788. * appropriately.
  6789. */
  6790. u64 num_needed = num_extents - dio_data->outstanding_extents;
  6791. spin_lock(&BTRFS_I(inode)->lock);
  6792. BTRFS_I(inode)->outstanding_extents += num_needed;
  6793. spin_unlock(&BTRFS_I(inode)->lock);
  6794. }
  6795. }
  6796. static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
  6797. struct buffer_head *bh_result, int create)
  6798. {
  6799. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  6800. struct extent_map *em;
  6801. struct extent_state *cached_state = NULL;
  6802. struct btrfs_dio_data *dio_data = NULL;
  6803. u64 start = iblock << inode->i_blkbits;
  6804. u64 lockstart, lockend;
  6805. u64 len = bh_result->b_size;
  6806. int unlock_bits = EXTENT_LOCKED;
  6807. int ret = 0;
  6808. if (create)
  6809. unlock_bits |= EXTENT_DIRTY;
  6810. else
  6811. len = min_t(u64, len, fs_info->sectorsize);
  6812. lockstart = start;
  6813. lockend = start + len - 1;
  6814. if (current->journal_info) {
  6815. /*
  6816. * Need to pull our outstanding extents and set journal_info to NULL so
  6817. * that anything that needs to check if there's a transaction doesn't get
  6818. * confused.
  6819. */
  6820. dio_data = current->journal_info;
  6821. current->journal_info = NULL;
  6822. }
  6823. /*
  6824. * If this errors out it's because we couldn't invalidate pagecache for
  6825. * this range and we need to fallback to buffered.
  6826. */
  6827. if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
  6828. create)) {
  6829. ret = -ENOTBLK;
  6830. goto err;
  6831. }
  6832. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
  6833. if (IS_ERR(em)) {
  6834. ret = PTR_ERR(em);
  6835. goto unlock_err;
  6836. }
  6837. /*
  6838. * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
  6839. * io. INLINE is special, and we could probably kludge it in here, but
  6840. * it's still buffered so for safety lets just fall back to the generic
  6841. * buffered path.
  6842. *
  6843. * For COMPRESSED we _have_ to read the entire extent in so we can
  6844. * decompress it, so there will be buffering required no matter what we
  6845. * do, so go ahead and fallback to buffered.
  6846. *
  6847. * We return -ENOTBLK because that's what makes DIO go ahead and go back
  6848. * to buffered IO. Don't blame me, this is the price we pay for using
  6849. * the generic code.
  6850. */
  6851. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
  6852. em->block_start == EXTENT_MAP_INLINE) {
  6853. free_extent_map(em);
  6854. ret = -ENOTBLK;
  6855. goto unlock_err;
  6856. }
  6857. /* Just a good old fashioned hole, return */
  6858. if (!create && (em->block_start == EXTENT_MAP_HOLE ||
  6859. test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  6860. free_extent_map(em);
  6861. goto unlock_err;
  6862. }
  6863. /*
  6864. * We don't allocate a new extent in the following cases
  6865. *
  6866. * 1) The inode is marked as NODATACOW. In this case we'll just use the
  6867. * existing extent.
  6868. * 2) The extent is marked as PREALLOC. We're good to go here and can
  6869. * just use the extent.
  6870. *
  6871. */
  6872. if (!create) {
  6873. len = min(len, em->len - (start - em->start));
  6874. lockstart = start + len;
  6875. goto unlock;
  6876. }
  6877. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
  6878. ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
  6879. em->block_start != EXTENT_MAP_HOLE)) {
  6880. int type;
  6881. u64 block_start, orig_start, orig_block_len, ram_bytes;
  6882. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  6883. type = BTRFS_ORDERED_PREALLOC;
  6884. else
  6885. type = BTRFS_ORDERED_NOCOW;
  6886. len = min(len, em->len - (start - em->start));
  6887. block_start = em->block_start + (start - em->start);
  6888. if (can_nocow_extent(inode, start, &len, &orig_start,
  6889. &orig_block_len, &ram_bytes) == 1 &&
  6890. btrfs_inc_nocow_writers(fs_info, block_start)) {
  6891. struct extent_map *em2;
  6892. em2 = btrfs_create_dio_extent(inode, start, len,
  6893. orig_start, block_start,
  6894. len, orig_block_len,
  6895. ram_bytes, type);
  6896. btrfs_dec_nocow_writers(fs_info, block_start);
  6897. if (type == BTRFS_ORDERED_PREALLOC) {
  6898. free_extent_map(em);
  6899. em = em2;
  6900. }
  6901. if (em2 && IS_ERR(em2)) {
  6902. ret = PTR_ERR(em2);
  6903. goto unlock_err;
  6904. }
  6905. /*
  6906. * For inode marked NODATACOW or extent marked PREALLOC,
  6907. * use the existing or preallocated extent, so does not
  6908. * need to adjust btrfs_space_info's bytes_may_use.
  6909. */
  6910. btrfs_free_reserved_data_space_noquota(inode,
  6911. start, len);
  6912. goto unlock;
  6913. }
  6914. }
  6915. /*
  6916. * this will cow the extent, reset the len in case we changed
  6917. * it above
  6918. */
  6919. len = bh_result->b_size;
  6920. free_extent_map(em);
  6921. em = btrfs_new_extent_direct(inode, start, len);
  6922. if (IS_ERR(em)) {
  6923. ret = PTR_ERR(em);
  6924. goto unlock_err;
  6925. }
  6926. len = min(len, em->len - (start - em->start));
  6927. unlock:
  6928. bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
  6929. inode->i_blkbits;
  6930. bh_result->b_size = len;
  6931. bh_result->b_bdev = em->bdev;
  6932. set_buffer_mapped(bh_result);
  6933. if (create) {
  6934. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  6935. set_buffer_new(bh_result);
  6936. /*
  6937. * Need to update the i_size under the extent lock so buffered
  6938. * readers will get the updated i_size when we unlock.
  6939. */
  6940. if (!dio_data->overwrite && start + len > i_size_read(inode))
  6941. i_size_write(inode, start + len);
  6942. adjust_dio_outstanding_extents(inode, dio_data, len);
  6943. WARN_ON(dio_data->reserve < len);
  6944. dio_data->reserve -= len;
  6945. dio_data->unsubmitted_oe_range_end = start + len;
  6946. current->journal_info = dio_data;
  6947. }
  6948. /*
  6949. * In the case of write we need to clear and unlock the entire range,
  6950. * in the case of read we need to unlock only the end area that we
  6951. * aren't using if there is any left over space.
  6952. */
  6953. if (lockstart < lockend) {
  6954. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  6955. lockend, unlock_bits, 1, 0,
  6956. &cached_state, GFP_NOFS);
  6957. } else {
  6958. free_extent_state(cached_state);
  6959. }
  6960. free_extent_map(em);
  6961. return 0;
  6962. unlock_err:
  6963. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  6964. unlock_bits, 1, 0, &cached_state, GFP_NOFS);
  6965. err:
  6966. if (dio_data)
  6967. current->journal_info = dio_data;
  6968. /*
  6969. * Compensate the delalloc release we do in btrfs_direct_IO() when we
  6970. * write less data then expected, so that we don't underflow our inode's
  6971. * outstanding extents counter.
  6972. */
  6973. if (create && dio_data)
  6974. adjust_dio_outstanding_extents(inode, dio_data, len);
  6975. return ret;
  6976. }
  6977. static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
  6978. int mirror_num)
  6979. {
  6980. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  6981. int ret;
  6982. BUG_ON(bio_op(bio) == REQ_OP_WRITE);
  6983. bio_get(bio);
  6984. ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
  6985. if (ret)
  6986. goto err;
  6987. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  6988. err:
  6989. bio_put(bio);
  6990. return ret;
  6991. }
  6992. static int btrfs_check_dio_repairable(struct inode *inode,
  6993. struct bio *failed_bio,
  6994. struct io_failure_record *failrec,
  6995. int failed_mirror)
  6996. {
  6997. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  6998. int num_copies;
  6999. num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
  7000. if (num_copies == 1) {
  7001. /*
  7002. * we only have a single copy of the data, so don't bother with
  7003. * all the retry and error correction code that follows. no
  7004. * matter what the error is, it is very likely to persist.
  7005. */
  7006. btrfs_debug(fs_info,
  7007. "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
  7008. num_copies, failrec->this_mirror, failed_mirror);
  7009. return 0;
  7010. }
  7011. failrec->failed_mirror = failed_mirror;
  7012. failrec->this_mirror++;
  7013. if (failrec->this_mirror == failed_mirror)
  7014. failrec->this_mirror++;
  7015. if (failrec->this_mirror > num_copies) {
  7016. btrfs_debug(fs_info,
  7017. "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
  7018. num_copies, failrec->this_mirror, failed_mirror);
  7019. return 0;
  7020. }
  7021. return 1;
  7022. }
  7023. static int dio_read_error(struct inode *inode, struct bio *failed_bio,
  7024. struct page *page, unsigned int pgoff,
  7025. u64 start, u64 end, int failed_mirror,
  7026. bio_end_io_t *repair_endio, void *repair_arg)
  7027. {
  7028. struct io_failure_record *failrec;
  7029. struct bio *bio;
  7030. int isector;
  7031. int read_mode = 0;
  7032. int ret;
  7033. BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
  7034. ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
  7035. if (ret)
  7036. return ret;
  7037. ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
  7038. failed_mirror);
  7039. if (!ret) {
  7040. free_io_failure(BTRFS_I(inode), failrec);
  7041. return -EIO;
  7042. }
  7043. if ((failed_bio->bi_vcnt > 1)
  7044. || (failed_bio->bi_io_vec->bv_len
  7045. > btrfs_inode_sectorsize(inode)))
  7046. read_mode |= REQ_FAILFAST_DEV;
  7047. isector = start - btrfs_io_bio(failed_bio)->logical;
  7048. isector >>= inode->i_sb->s_blocksize_bits;
  7049. bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
  7050. pgoff, isector, repair_endio, repair_arg);
  7051. if (!bio) {
  7052. free_io_failure(BTRFS_I(inode), failrec);
  7053. return -EIO;
  7054. }
  7055. bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
  7056. btrfs_debug(BTRFS_I(inode)->root->fs_info,
  7057. "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
  7058. read_mode, failrec->this_mirror, failrec->in_validation);
  7059. ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
  7060. if (ret) {
  7061. free_io_failure(BTRFS_I(inode), failrec);
  7062. bio_put(bio);
  7063. }
  7064. return ret;
  7065. }
  7066. struct btrfs_retry_complete {
  7067. struct completion done;
  7068. struct inode *inode;
  7069. u64 start;
  7070. int uptodate;
  7071. };
  7072. static void btrfs_retry_endio_nocsum(struct bio *bio)
  7073. {
  7074. struct btrfs_retry_complete *done = bio->bi_private;
  7075. struct bio_vec *bvec;
  7076. int i;
  7077. if (bio->bi_status)
  7078. goto end;
  7079. ASSERT(bio->bi_vcnt == 1);
  7080. ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
  7081. done->uptodate = 1;
  7082. bio_for_each_segment_all(bvec, bio, i)
  7083. clean_io_failure(BTRFS_I(done->inode), done->start,
  7084. bvec->bv_page, 0);
  7085. end:
  7086. complete(&done->done);
  7087. bio_put(bio);
  7088. }
  7089. static int __btrfs_correct_data_nocsum(struct inode *inode,
  7090. struct btrfs_io_bio *io_bio)
  7091. {
  7092. struct btrfs_fs_info *fs_info;
  7093. struct bio_vec *bvec;
  7094. struct btrfs_retry_complete done;
  7095. u64 start;
  7096. unsigned int pgoff;
  7097. u32 sectorsize;
  7098. int nr_sectors;
  7099. int i;
  7100. int ret;
  7101. fs_info = BTRFS_I(inode)->root->fs_info;
  7102. sectorsize = fs_info->sectorsize;
  7103. start = io_bio->logical;
  7104. done.inode = inode;
  7105. bio_for_each_segment_all(bvec, &io_bio->bio, i) {
  7106. nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
  7107. pgoff = bvec->bv_offset;
  7108. next_block_or_try_again:
  7109. done.uptodate = 0;
  7110. done.start = start;
  7111. init_completion(&done.done);
  7112. ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
  7113. pgoff, start, start + sectorsize - 1,
  7114. io_bio->mirror_num,
  7115. btrfs_retry_endio_nocsum, &done);
  7116. if (ret)
  7117. return ret;
  7118. wait_for_completion(&done.done);
  7119. if (!done.uptodate) {
  7120. /* We might have another mirror, so try again */
  7121. goto next_block_or_try_again;
  7122. }
  7123. start += sectorsize;
  7124. nr_sectors--;
  7125. if (nr_sectors) {
  7126. pgoff += sectorsize;
  7127. ASSERT(pgoff < PAGE_SIZE);
  7128. goto next_block_or_try_again;
  7129. }
  7130. }
  7131. return 0;
  7132. }
  7133. static void btrfs_retry_endio(struct bio *bio)
  7134. {
  7135. struct btrfs_retry_complete *done = bio->bi_private;
  7136. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  7137. struct bio_vec *bvec;
  7138. int uptodate;
  7139. int ret;
  7140. int i;
  7141. if (bio->bi_status)
  7142. goto end;
  7143. uptodate = 1;
  7144. ASSERT(bio->bi_vcnt == 1);
  7145. ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
  7146. bio_for_each_segment_all(bvec, bio, i) {
  7147. ret = __readpage_endio_check(done->inode, io_bio, i,
  7148. bvec->bv_page, bvec->bv_offset,
  7149. done->start, bvec->bv_len);
  7150. if (!ret)
  7151. clean_io_failure(BTRFS_I(done->inode), done->start,
  7152. bvec->bv_page, bvec->bv_offset);
  7153. else
  7154. uptodate = 0;
  7155. }
  7156. done->uptodate = uptodate;
  7157. end:
  7158. complete(&done->done);
  7159. bio_put(bio);
  7160. }
  7161. static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
  7162. struct btrfs_io_bio *io_bio, blk_status_t err)
  7163. {
  7164. struct btrfs_fs_info *fs_info;
  7165. struct bio_vec *bvec;
  7166. struct btrfs_retry_complete done;
  7167. u64 start;
  7168. u64 offset = 0;
  7169. u32 sectorsize;
  7170. int nr_sectors;
  7171. unsigned int pgoff;
  7172. int csum_pos;
  7173. int i;
  7174. int ret;
  7175. fs_info = BTRFS_I(inode)->root->fs_info;
  7176. sectorsize = fs_info->sectorsize;
  7177. err = 0;
  7178. start = io_bio->logical;
  7179. done.inode = inode;
  7180. bio_for_each_segment_all(bvec, &io_bio->bio, i) {
  7181. nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
  7182. pgoff = bvec->bv_offset;
  7183. next_block:
  7184. csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
  7185. ret = __readpage_endio_check(inode, io_bio, csum_pos,
  7186. bvec->bv_page, pgoff, start,
  7187. sectorsize);
  7188. if (likely(!ret))
  7189. goto next;
  7190. try_again:
  7191. done.uptodate = 0;
  7192. done.start = start;
  7193. init_completion(&done.done);
  7194. ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
  7195. pgoff, start, start + sectorsize - 1,
  7196. io_bio->mirror_num,
  7197. btrfs_retry_endio, &done);
  7198. if (ret) {
  7199. err = errno_to_blk_status(ret);
  7200. goto next;
  7201. }
  7202. wait_for_completion(&done.done);
  7203. if (!done.uptodate) {
  7204. /* We might have another mirror, so try again */
  7205. goto try_again;
  7206. }
  7207. next:
  7208. offset += sectorsize;
  7209. start += sectorsize;
  7210. ASSERT(nr_sectors);
  7211. nr_sectors--;
  7212. if (nr_sectors) {
  7213. pgoff += sectorsize;
  7214. ASSERT(pgoff < PAGE_SIZE);
  7215. goto next_block;
  7216. }
  7217. }
  7218. return err;
  7219. }
  7220. static blk_status_t btrfs_subio_endio_read(struct inode *inode,
  7221. struct btrfs_io_bio *io_bio, blk_status_t err)
  7222. {
  7223. bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  7224. if (skip_csum) {
  7225. if (unlikely(err))
  7226. return __btrfs_correct_data_nocsum(inode, io_bio);
  7227. else
  7228. return 0;
  7229. } else {
  7230. return __btrfs_subio_endio_read(inode, io_bio, err);
  7231. }
  7232. }
  7233. static void btrfs_endio_direct_read(struct bio *bio)
  7234. {
  7235. struct btrfs_dio_private *dip = bio->bi_private;
  7236. struct inode *inode = dip->inode;
  7237. struct bio *dio_bio;
  7238. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  7239. blk_status_t err = bio->bi_status;
  7240. if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
  7241. err = btrfs_subio_endio_read(inode, io_bio, err);
  7242. unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
  7243. dip->logical_offset + dip->bytes - 1);
  7244. dio_bio = dip->dio_bio;
  7245. kfree(dip);
  7246. dio_bio->bi_status = bio->bi_status;
  7247. dio_end_io(dio_bio);
  7248. if (io_bio->end_io)
  7249. io_bio->end_io(io_bio, blk_status_to_errno(err));
  7250. bio_put(bio);
  7251. }
  7252. static void __endio_write_update_ordered(struct inode *inode,
  7253. const u64 offset, const u64 bytes,
  7254. const bool uptodate)
  7255. {
  7256. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  7257. struct btrfs_ordered_extent *ordered = NULL;
  7258. struct btrfs_workqueue *wq;
  7259. btrfs_work_func_t func;
  7260. u64 ordered_offset = offset;
  7261. u64 ordered_bytes = bytes;
  7262. int ret;
  7263. if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
  7264. wq = fs_info->endio_freespace_worker;
  7265. func = btrfs_freespace_write_helper;
  7266. } else {
  7267. wq = fs_info->endio_write_workers;
  7268. func = btrfs_endio_write_helper;
  7269. }
  7270. again:
  7271. ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
  7272. &ordered_offset,
  7273. ordered_bytes,
  7274. uptodate);
  7275. if (!ret)
  7276. goto out_test;
  7277. btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
  7278. btrfs_queue_work(wq, &ordered->work);
  7279. out_test:
  7280. /*
  7281. * our bio might span multiple ordered extents. If we haven't
  7282. * completed the accounting for the whole dio, go back and try again
  7283. */
  7284. if (ordered_offset < offset + bytes) {
  7285. ordered_bytes = offset + bytes - ordered_offset;
  7286. ordered = NULL;
  7287. goto again;
  7288. }
  7289. }
  7290. static void btrfs_endio_direct_write(struct bio *bio)
  7291. {
  7292. struct btrfs_dio_private *dip = bio->bi_private;
  7293. struct bio *dio_bio = dip->dio_bio;
  7294. __endio_write_update_ordered(dip->inode, dip->logical_offset,
  7295. dip->bytes, !bio->bi_status);
  7296. kfree(dip);
  7297. dio_bio->bi_status = bio->bi_status;
  7298. dio_end_io(dio_bio);
  7299. bio_put(bio);
  7300. }
  7301. static blk_status_t __btrfs_submit_bio_start_direct_io(struct inode *inode,
  7302. struct bio *bio, int mirror_num,
  7303. unsigned long bio_flags, u64 offset)
  7304. {
  7305. blk_status_t ret;
  7306. ret = btrfs_csum_one_bio(inode, bio, offset, 1);
  7307. BUG_ON(ret); /* -ENOMEM */
  7308. return 0;
  7309. }
  7310. static void btrfs_end_dio_bio(struct bio *bio)
  7311. {
  7312. struct btrfs_dio_private *dip = bio->bi_private;
  7313. blk_status_t err = bio->bi_status;
  7314. if (err)
  7315. btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
  7316. "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
  7317. btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
  7318. bio->bi_opf,
  7319. (unsigned long long)bio->bi_iter.bi_sector,
  7320. bio->bi_iter.bi_size, err);
  7321. if (dip->subio_endio)
  7322. err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
  7323. if (err) {
  7324. dip->errors = 1;
  7325. /*
  7326. * before atomic variable goto zero, we must make sure
  7327. * dip->errors is perceived to be set.
  7328. */
  7329. smp_mb__before_atomic();
  7330. }
  7331. /* if there are more bios still pending for this dio, just exit */
  7332. if (!atomic_dec_and_test(&dip->pending_bios))
  7333. goto out;
  7334. if (dip->errors) {
  7335. bio_io_error(dip->orig_bio);
  7336. } else {
  7337. dip->dio_bio->bi_status = 0;
  7338. bio_endio(dip->orig_bio);
  7339. }
  7340. out:
  7341. bio_put(bio);
  7342. }
  7343. static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
  7344. u64 first_sector, gfp_t gfp_flags)
  7345. {
  7346. struct bio *bio;
  7347. bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
  7348. if (bio)
  7349. bio_associate_current(bio);
  7350. return bio;
  7351. }
  7352. static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
  7353. struct btrfs_dio_private *dip,
  7354. struct bio *bio,
  7355. u64 file_offset)
  7356. {
  7357. struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
  7358. struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
  7359. blk_status_t ret;
  7360. /*
  7361. * We load all the csum data we need when we submit
  7362. * the first bio to reduce the csum tree search and
  7363. * contention.
  7364. */
  7365. if (dip->logical_offset == file_offset) {
  7366. ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
  7367. file_offset);
  7368. if (ret)
  7369. return ret;
  7370. }
  7371. if (bio == dip->orig_bio)
  7372. return 0;
  7373. file_offset -= dip->logical_offset;
  7374. file_offset >>= inode->i_sb->s_blocksize_bits;
  7375. io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
  7376. return 0;
  7377. }
  7378. static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
  7379. u64 file_offset, int skip_sum,
  7380. int async_submit)
  7381. {
  7382. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  7383. struct btrfs_dio_private *dip = bio->bi_private;
  7384. bool write = bio_op(bio) == REQ_OP_WRITE;
  7385. blk_status_t ret;
  7386. if (async_submit)
  7387. async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
  7388. bio_get(bio);
  7389. if (!write) {
  7390. ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
  7391. if (ret)
  7392. goto err;
  7393. }
  7394. if (skip_sum)
  7395. goto map;
  7396. if (write && async_submit) {
  7397. ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
  7398. file_offset,
  7399. __btrfs_submit_bio_start_direct_io,
  7400. __btrfs_submit_bio_done);
  7401. goto err;
  7402. } else if (write) {
  7403. /*
  7404. * If we aren't doing async submit, calculate the csum of the
  7405. * bio now.
  7406. */
  7407. ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
  7408. if (ret)
  7409. goto err;
  7410. } else {
  7411. ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
  7412. file_offset);
  7413. if (ret)
  7414. goto err;
  7415. }
  7416. map:
  7417. ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
  7418. err:
  7419. bio_put(bio);
  7420. return ret;
  7421. }
  7422. static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
  7423. int skip_sum)
  7424. {
  7425. struct inode *inode = dip->inode;
  7426. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  7427. struct btrfs_root *root = BTRFS_I(inode)->root;
  7428. struct bio *bio;
  7429. struct bio *orig_bio = dip->orig_bio;
  7430. struct bio_vec *bvec;
  7431. u64 start_sector = orig_bio->bi_iter.bi_sector;
  7432. u64 file_offset = dip->logical_offset;
  7433. u64 submit_len = 0;
  7434. u64 map_length;
  7435. u32 blocksize = fs_info->sectorsize;
  7436. int async_submit = 0;
  7437. int nr_sectors;
  7438. int ret;
  7439. int i, j;
  7440. map_length = orig_bio->bi_iter.bi_size;
  7441. ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
  7442. &map_length, NULL, 0);
  7443. if (ret)
  7444. return -EIO;
  7445. if (map_length >= orig_bio->bi_iter.bi_size) {
  7446. bio = orig_bio;
  7447. dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
  7448. goto submit;
  7449. }
  7450. /* async crcs make it difficult to collect full stripe writes. */
  7451. if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
  7452. async_submit = 0;
  7453. else
  7454. async_submit = 1;
  7455. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
  7456. if (!bio)
  7457. return -ENOMEM;
  7458. bio->bi_opf = orig_bio->bi_opf;
  7459. bio->bi_private = dip;
  7460. bio->bi_end_io = btrfs_end_dio_bio;
  7461. btrfs_io_bio(bio)->logical = file_offset;
  7462. atomic_inc(&dip->pending_bios);
  7463. bio_for_each_segment_all(bvec, orig_bio, j) {
  7464. nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
  7465. i = 0;
  7466. next_block:
  7467. if (unlikely(map_length < submit_len + blocksize ||
  7468. bio_add_page(bio, bvec->bv_page, blocksize,
  7469. bvec->bv_offset + (i * blocksize)) < blocksize)) {
  7470. /*
  7471. * inc the count before we submit the bio so
  7472. * we know the end IO handler won't happen before
  7473. * we inc the count. Otherwise, the dip might get freed
  7474. * before we're done setting it up
  7475. */
  7476. atomic_inc(&dip->pending_bios);
  7477. ret = __btrfs_submit_dio_bio(bio, inode,
  7478. file_offset, skip_sum,
  7479. async_submit);
  7480. if (ret) {
  7481. bio_put(bio);
  7482. atomic_dec(&dip->pending_bios);
  7483. goto out_err;
  7484. }
  7485. start_sector += submit_len >> 9;
  7486. file_offset += submit_len;
  7487. submit_len = 0;
  7488. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
  7489. start_sector, GFP_NOFS);
  7490. if (!bio)
  7491. goto out_err;
  7492. bio->bi_opf = orig_bio->bi_opf;
  7493. bio->bi_private = dip;
  7494. bio->bi_end_io = btrfs_end_dio_bio;
  7495. btrfs_io_bio(bio)->logical = file_offset;
  7496. map_length = orig_bio->bi_iter.bi_size;
  7497. ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
  7498. start_sector << 9,
  7499. &map_length, NULL, 0);
  7500. if (ret) {
  7501. bio_put(bio);
  7502. goto out_err;
  7503. }
  7504. goto next_block;
  7505. } else {
  7506. submit_len += blocksize;
  7507. if (--nr_sectors) {
  7508. i++;
  7509. goto next_block;
  7510. }
  7511. }
  7512. }
  7513. submit:
  7514. ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
  7515. async_submit);
  7516. if (!ret)
  7517. return 0;
  7518. bio_put(bio);
  7519. out_err:
  7520. dip->errors = 1;
  7521. /*
  7522. * before atomic variable goto zero, we must
  7523. * make sure dip->errors is perceived to be set.
  7524. */
  7525. smp_mb__before_atomic();
  7526. if (atomic_dec_and_test(&dip->pending_bios))
  7527. bio_io_error(dip->orig_bio);
  7528. /* bio_end_io() will handle error, so we needn't return it */
  7529. return 0;
  7530. }
  7531. static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
  7532. loff_t file_offset)
  7533. {
  7534. struct btrfs_dio_private *dip = NULL;
  7535. struct bio *io_bio = NULL;
  7536. struct btrfs_io_bio *btrfs_bio;
  7537. int skip_sum;
  7538. bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
  7539. int ret = 0;
  7540. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  7541. io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
  7542. if (!io_bio) {
  7543. ret = -ENOMEM;
  7544. goto free_ordered;
  7545. }
  7546. dip = kzalloc(sizeof(*dip), GFP_NOFS);
  7547. if (!dip) {
  7548. ret = -ENOMEM;
  7549. goto free_ordered;
  7550. }
  7551. dip->private = dio_bio->bi_private;
  7552. dip->inode = inode;
  7553. dip->logical_offset = file_offset;
  7554. dip->bytes = dio_bio->bi_iter.bi_size;
  7555. dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
  7556. io_bio->bi_private = dip;
  7557. dip->orig_bio = io_bio;
  7558. dip->dio_bio = dio_bio;
  7559. atomic_set(&dip->pending_bios, 0);
  7560. btrfs_bio = btrfs_io_bio(io_bio);
  7561. btrfs_bio->logical = file_offset;
  7562. if (write) {
  7563. io_bio->bi_end_io = btrfs_endio_direct_write;
  7564. } else {
  7565. io_bio->bi_end_io = btrfs_endio_direct_read;
  7566. dip->subio_endio = btrfs_subio_endio_read;
  7567. }
  7568. /*
  7569. * Reset the range for unsubmitted ordered extents (to a 0 length range)
  7570. * even if we fail to submit a bio, because in such case we do the
  7571. * corresponding error handling below and it must not be done a second
  7572. * time by btrfs_direct_IO().
  7573. */
  7574. if (write) {
  7575. struct btrfs_dio_data *dio_data = current->journal_info;
  7576. dio_data->unsubmitted_oe_range_end = dip->logical_offset +
  7577. dip->bytes;
  7578. dio_data->unsubmitted_oe_range_start =
  7579. dio_data->unsubmitted_oe_range_end;
  7580. }
  7581. ret = btrfs_submit_direct_hook(dip, skip_sum);
  7582. if (!ret)
  7583. return;
  7584. if (btrfs_bio->end_io)
  7585. btrfs_bio->end_io(btrfs_bio, ret);
  7586. free_ordered:
  7587. /*
  7588. * If we arrived here it means either we failed to submit the dip
  7589. * or we either failed to clone the dio_bio or failed to allocate the
  7590. * dip. If we cloned the dio_bio and allocated the dip, we can just
  7591. * call bio_endio against our io_bio so that we get proper resource
  7592. * cleanup if we fail to submit the dip, otherwise, we must do the
  7593. * same as btrfs_endio_direct_[write|read] because we can't call these
  7594. * callbacks - they require an allocated dip and a clone of dio_bio.
  7595. */
  7596. if (io_bio && dip) {
  7597. io_bio->bi_status = BLK_STS_IOERR;
  7598. bio_endio(io_bio);
  7599. /*
  7600. * The end io callbacks free our dip, do the final put on io_bio
  7601. * and all the cleanup and final put for dio_bio (through
  7602. * dio_end_io()).
  7603. */
  7604. dip = NULL;
  7605. io_bio = NULL;
  7606. } else {
  7607. if (write)
  7608. __endio_write_update_ordered(inode,
  7609. file_offset,
  7610. dio_bio->bi_iter.bi_size,
  7611. false);
  7612. else
  7613. unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
  7614. file_offset + dio_bio->bi_iter.bi_size - 1);
  7615. dio_bio->bi_status = BLK_STS_IOERR;
  7616. /*
  7617. * Releases and cleans up our dio_bio, no need to bio_put()
  7618. * nor bio_endio()/bio_io_error() against dio_bio.
  7619. */
  7620. dio_end_io(dio_bio);
  7621. }
  7622. if (io_bio)
  7623. bio_put(io_bio);
  7624. kfree(dip);
  7625. }
  7626. static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
  7627. struct kiocb *iocb,
  7628. const struct iov_iter *iter, loff_t offset)
  7629. {
  7630. int seg;
  7631. int i;
  7632. unsigned int blocksize_mask = fs_info->sectorsize - 1;
  7633. ssize_t retval = -EINVAL;
  7634. if (offset & blocksize_mask)
  7635. goto out;
  7636. if (iov_iter_alignment(iter) & blocksize_mask)
  7637. goto out;
  7638. /* If this is a write we don't need to check anymore */
  7639. if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
  7640. return 0;
  7641. /*
  7642. * Check to make sure we don't have duplicate iov_base's in this
  7643. * iovec, if so return EINVAL, otherwise we'll get csum errors
  7644. * when reading back.
  7645. */
  7646. for (seg = 0; seg < iter->nr_segs; seg++) {
  7647. for (i = seg + 1; i < iter->nr_segs; i++) {
  7648. if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
  7649. goto out;
  7650. }
  7651. }
  7652. retval = 0;
  7653. out:
  7654. return retval;
  7655. }
  7656. static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  7657. {
  7658. struct file *file = iocb->ki_filp;
  7659. struct inode *inode = file->f_mapping->host;
  7660. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  7661. struct btrfs_dio_data dio_data = { 0 };
  7662. loff_t offset = iocb->ki_pos;
  7663. size_t count = 0;
  7664. int flags = 0;
  7665. bool wakeup = true;
  7666. bool relock = false;
  7667. ssize_t ret;
  7668. if (check_direct_IO(fs_info, iocb, iter, offset))
  7669. return 0;
  7670. inode_dio_begin(inode);
  7671. smp_mb__after_atomic();
  7672. /*
  7673. * The generic stuff only does filemap_write_and_wait_range, which
  7674. * isn't enough if we've written compressed pages to this area, so
  7675. * we need to flush the dirty pages again to make absolutely sure
  7676. * that any outstanding dirty pages are on disk.
  7677. */
  7678. count = iov_iter_count(iter);
  7679. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  7680. &BTRFS_I(inode)->runtime_flags))
  7681. filemap_fdatawrite_range(inode->i_mapping, offset,
  7682. offset + count - 1);
  7683. if (iov_iter_rw(iter) == WRITE) {
  7684. /*
  7685. * If the write DIO is beyond the EOF, we need update
  7686. * the isize, but it is protected by i_mutex. So we can
  7687. * not unlock the i_mutex at this case.
  7688. */
  7689. if (offset + count <= inode->i_size) {
  7690. dio_data.overwrite = 1;
  7691. inode_unlock(inode);
  7692. relock = true;
  7693. }
  7694. ret = btrfs_delalloc_reserve_space(inode, offset, count);
  7695. if (ret)
  7696. goto out;
  7697. dio_data.outstanding_extents = count_max_extents(count);
  7698. /*
  7699. * We need to know how many extents we reserved so that we can
  7700. * do the accounting properly if we go over the number we
  7701. * originally calculated. Abuse current->journal_info for this.
  7702. */
  7703. dio_data.reserve = round_up(count,
  7704. fs_info->sectorsize);
  7705. dio_data.unsubmitted_oe_range_start = (u64)offset;
  7706. dio_data.unsubmitted_oe_range_end = (u64)offset;
  7707. current->journal_info = &dio_data;
  7708. down_read(&BTRFS_I(inode)->dio_sem);
  7709. } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
  7710. &BTRFS_I(inode)->runtime_flags)) {
  7711. inode_dio_end(inode);
  7712. flags = DIO_LOCKING | DIO_SKIP_HOLES;
  7713. wakeup = false;
  7714. }
  7715. ret = __blockdev_direct_IO(iocb, inode,
  7716. fs_info->fs_devices->latest_bdev,
  7717. iter, btrfs_get_blocks_direct, NULL,
  7718. btrfs_submit_direct, flags);
  7719. if (iov_iter_rw(iter) == WRITE) {
  7720. up_read(&BTRFS_I(inode)->dio_sem);
  7721. current->journal_info = NULL;
  7722. if (ret < 0 && ret != -EIOCBQUEUED) {
  7723. if (dio_data.reserve)
  7724. btrfs_delalloc_release_space(inode, offset,
  7725. dio_data.reserve);
  7726. /*
  7727. * On error we might have left some ordered extents
  7728. * without submitting corresponding bios for them, so
  7729. * cleanup them up to avoid other tasks getting them
  7730. * and waiting for them to complete forever.
  7731. */
  7732. if (dio_data.unsubmitted_oe_range_start <
  7733. dio_data.unsubmitted_oe_range_end)
  7734. __endio_write_update_ordered(inode,
  7735. dio_data.unsubmitted_oe_range_start,
  7736. dio_data.unsubmitted_oe_range_end -
  7737. dio_data.unsubmitted_oe_range_start,
  7738. false);
  7739. } else if (ret >= 0 && (size_t)ret < count)
  7740. btrfs_delalloc_release_space(inode, offset,
  7741. count - (size_t)ret);
  7742. }
  7743. out:
  7744. if (wakeup)
  7745. inode_dio_end(inode);
  7746. if (relock)
  7747. inode_lock(inode);
  7748. return ret;
  7749. }
  7750. #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
  7751. static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  7752. __u64 start, __u64 len)
  7753. {
  7754. int ret;
  7755. ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
  7756. if (ret)
  7757. return ret;
  7758. return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
  7759. }
  7760. int btrfs_readpage(struct file *file, struct page *page)
  7761. {
  7762. struct extent_io_tree *tree;
  7763. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7764. return extent_read_full_page(tree, page, btrfs_get_extent, 0);
  7765. }
  7766. static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
  7767. {
  7768. struct extent_io_tree *tree;
  7769. struct inode *inode = page->mapping->host;
  7770. int ret;
  7771. if (current->flags & PF_MEMALLOC) {
  7772. redirty_page_for_writepage(wbc, page);
  7773. unlock_page(page);
  7774. return 0;
  7775. }
  7776. /*
  7777. * If we are under memory pressure we will call this directly from the
  7778. * VM, we need to make sure we have the inode referenced for the ordered
  7779. * extent. If not just return like we didn't do anything.
  7780. */
  7781. if (!igrab(inode)) {
  7782. redirty_page_for_writepage(wbc, page);
  7783. return AOP_WRITEPAGE_ACTIVATE;
  7784. }
  7785. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7786. ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
  7787. btrfs_add_delayed_iput(inode);
  7788. return ret;
  7789. }
  7790. static int btrfs_writepages(struct address_space *mapping,
  7791. struct writeback_control *wbc)
  7792. {
  7793. struct extent_io_tree *tree;
  7794. tree = &BTRFS_I(mapping->host)->io_tree;
  7795. return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
  7796. }
  7797. static int
  7798. btrfs_readpages(struct file *file, struct address_space *mapping,
  7799. struct list_head *pages, unsigned nr_pages)
  7800. {
  7801. struct extent_io_tree *tree;
  7802. tree = &BTRFS_I(mapping->host)->io_tree;
  7803. return extent_readpages(tree, mapping, pages, nr_pages,
  7804. btrfs_get_extent);
  7805. }
  7806. static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  7807. {
  7808. struct extent_io_tree *tree;
  7809. struct extent_map_tree *map;
  7810. int ret;
  7811. tree = &BTRFS_I(page->mapping->host)->io_tree;
  7812. map = &BTRFS_I(page->mapping->host)->extent_tree;
  7813. ret = try_release_extent_mapping(map, tree, page, gfp_flags);
  7814. if (ret == 1) {
  7815. ClearPagePrivate(page);
  7816. set_page_private(page, 0);
  7817. put_page(page);
  7818. }
  7819. return ret;
  7820. }
  7821. static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  7822. {
  7823. if (PageWriteback(page) || PageDirty(page))
  7824. return 0;
  7825. return __btrfs_releasepage(page, gfp_flags);
  7826. }
  7827. static void btrfs_invalidatepage(struct page *page, unsigned int offset,
  7828. unsigned int length)
  7829. {
  7830. struct inode *inode = page->mapping->host;
  7831. struct extent_io_tree *tree;
  7832. struct btrfs_ordered_extent *ordered;
  7833. struct extent_state *cached_state = NULL;
  7834. u64 page_start = page_offset(page);
  7835. u64 page_end = page_start + PAGE_SIZE - 1;
  7836. u64 start;
  7837. u64 end;
  7838. int inode_evicting = inode->i_state & I_FREEING;
  7839. /*
  7840. * we have the page locked, so new writeback can't start,
  7841. * and the dirty bit won't be cleared while we are here.
  7842. *
  7843. * Wait for IO on this page so that we can safely clear
  7844. * the PagePrivate2 bit and do ordered accounting
  7845. */
  7846. wait_on_page_writeback(page);
  7847. tree = &BTRFS_I(inode)->io_tree;
  7848. if (offset) {
  7849. btrfs_releasepage(page, GFP_NOFS);
  7850. return;
  7851. }
  7852. if (!inode_evicting)
  7853. lock_extent_bits(tree, page_start, page_end, &cached_state);
  7854. again:
  7855. start = page_start;
  7856. ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
  7857. page_end - start + 1);
  7858. if (ordered) {
  7859. end = min(page_end, ordered->file_offset + ordered->len - 1);
  7860. /*
  7861. * IO on this page will never be started, so we need
  7862. * to account for any ordered extents now
  7863. */
  7864. if (!inode_evicting)
  7865. clear_extent_bit(tree, start, end,
  7866. EXTENT_DIRTY | EXTENT_DELALLOC |
  7867. EXTENT_DELALLOC_NEW |
  7868. EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
  7869. EXTENT_DEFRAG, 1, 0, &cached_state,
  7870. GFP_NOFS);
  7871. /*
  7872. * whoever cleared the private bit is responsible
  7873. * for the finish_ordered_io
  7874. */
  7875. if (TestClearPagePrivate2(page)) {
  7876. struct btrfs_ordered_inode_tree *tree;
  7877. u64 new_len;
  7878. tree = &BTRFS_I(inode)->ordered_tree;
  7879. spin_lock_irq(&tree->lock);
  7880. set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
  7881. new_len = start - ordered->file_offset;
  7882. if (new_len < ordered->truncated_len)
  7883. ordered->truncated_len = new_len;
  7884. spin_unlock_irq(&tree->lock);
  7885. if (btrfs_dec_test_ordered_pending(inode, &ordered,
  7886. start,
  7887. end - start + 1, 1))
  7888. btrfs_finish_ordered_io(ordered);
  7889. }
  7890. btrfs_put_ordered_extent(ordered);
  7891. if (!inode_evicting) {
  7892. cached_state = NULL;
  7893. lock_extent_bits(tree, start, end,
  7894. &cached_state);
  7895. }
  7896. start = end + 1;
  7897. if (start < page_end)
  7898. goto again;
  7899. }
  7900. /*
  7901. * Qgroup reserved space handler
  7902. * Page here will be either
  7903. * 1) Already written to disk
  7904. * In this case, its reserved space is released from data rsv map
  7905. * and will be freed by delayed_ref handler finally.
  7906. * So even we call qgroup_free_data(), it won't decrease reserved
  7907. * space.
  7908. * 2) Not written to disk
  7909. * This means the reserved space should be freed here. However,
  7910. * if a truncate invalidates the page (by clearing PageDirty)
  7911. * and the page is accounted for while allocating extent
  7912. * in btrfs_check_data_free_space() we let delayed_ref to
  7913. * free the entire extent.
  7914. */
  7915. if (PageDirty(page))
  7916. btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
  7917. if (!inode_evicting) {
  7918. clear_extent_bit(tree, page_start, page_end,
  7919. EXTENT_LOCKED | EXTENT_DIRTY |
  7920. EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
  7921. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
  7922. &cached_state, GFP_NOFS);
  7923. __btrfs_releasepage(page, GFP_NOFS);
  7924. }
  7925. ClearPageChecked(page);
  7926. if (PagePrivate(page)) {
  7927. ClearPagePrivate(page);
  7928. set_page_private(page, 0);
  7929. put_page(page);
  7930. }
  7931. }
  7932. /*
  7933. * btrfs_page_mkwrite() is not allowed to change the file size as it gets
  7934. * called from a page fault handler when a page is first dirtied. Hence we must
  7935. * be careful to check for EOF conditions here. We set the page up correctly
  7936. * for a written page which means we get ENOSPC checking when writing into
  7937. * holes and correct delalloc and unwritten extent mapping on filesystems that
  7938. * support these features.
  7939. *
  7940. * We are not allowed to take the i_mutex here so we have to play games to
  7941. * protect against truncate races as the page could now be beyond EOF. Because
  7942. * vmtruncate() writes the inode size before removing pages, once we have the
  7943. * page lock we can determine safely if the page is beyond EOF. If it is not
  7944. * beyond EOF, then the page is guaranteed safe against truncation until we
  7945. * unlock the page.
  7946. */
  7947. int btrfs_page_mkwrite(struct vm_fault *vmf)
  7948. {
  7949. struct page *page = vmf->page;
  7950. struct inode *inode = file_inode(vmf->vma->vm_file);
  7951. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  7952. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  7953. struct btrfs_ordered_extent *ordered;
  7954. struct extent_state *cached_state = NULL;
  7955. char *kaddr;
  7956. unsigned long zero_start;
  7957. loff_t size;
  7958. int ret;
  7959. int reserved = 0;
  7960. u64 reserved_space;
  7961. u64 page_start;
  7962. u64 page_end;
  7963. u64 end;
  7964. reserved_space = PAGE_SIZE;
  7965. sb_start_pagefault(inode->i_sb);
  7966. page_start = page_offset(page);
  7967. page_end = page_start + PAGE_SIZE - 1;
  7968. end = page_end;
  7969. /*
  7970. * Reserving delalloc space after obtaining the page lock can lead to
  7971. * deadlock. For example, if a dirty page is locked by this function
  7972. * and the call to btrfs_delalloc_reserve_space() ends up triggering
  7973. * dirty page write out, then the btrfs_writepage() function could
  7974. * end up waiting indefinitely to get a lock on the page currently
  7975. * being processed by btrfs_page_mkwrite() function.
  7976. */
  7977. ret = btrfs_delalloc_reserve_space(inode, page_start,
  7978. reserved_space);
  7979. if (!ret) {
  7980. ret = file_update_time(vmf->vma->vm_file);
  7981. reserved = 1;
  7982. }
  7983. if (ret) {
  7984. if (ret == -ENOMEM)
  7985. ret = VM_FAULT_OOM;
  7986. else /* -ENOSPC, -EIO, etc */
  7987. ret = VM_FAULT_SIGBUS;
  7988. if (reserved)
  7989. goto out;
  7990. goto out_noreserve;
  7991. }
  7992. ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
  7993. again:
  7994. lock_page(page);
  7995. size = i_size_read(inode);
  7996. if ((page->mapping != inode->i_mapping) ||
  7997. (page_start >= size)) {
  7998. /* page got truncated out from underneath us */
  7999. goto out_unlock;
  8000. }
  8001. wait_on_page_writeback(page);
  8002. lock_extent_bits(io_tree, page_start, page_end, &cached_state);
  8003. set_page_extent_mapped(page);
  8004. /*
  8005. * we can't set the delalloc bits if there are pending ordered
  8006. * extents. Drop our locks and wait for them to finish
  8007. */
  8008. ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
  8009. PAGE_SIZE);
  8010. if (ordered) {
  8011. unlock_extent_cached(io_tree, page_start, page_end,
  8012. &cached_state, GFP_NOFS);
  8013. unlock_page(page);
  8014. btrfs_start_ordered_extent(inode, ordered, 1);
  8015. btrfs_put_ordered_extent(ordered);
  8016. goto again;
  8017. }
  8018. if (page->index == ((size - 1) >> PAGE_SHIFT)) {
  8019. reserved_space = round_up(size - page_start,
  8020. fs_info->sectorsize);
  8021. if (reserved_space < PAGE_SIZE) {
  8022. end = page_start + reserved_space - 1;
  8023. spin_lock(&BTRFS_I(inode)->lock);
  8024. BTRFS_I(inode)->outstanding_extents++;
  8025. spin_unlock(&BTRFS_I(inode)->lock);
  8026. btrfs_delalloc_release_space(inode, page_start,
  8027. PAGE_SIZE - reserved_space);
  8028. }
  8029. }
  8030. /*
  8031. * page_mkwrite gets called when the page is firstly dirtied after it's
  8032. * faulted in, but write(2) could also dirty a page and set delalloc
  8033. * bits, thus in this case for space account reason, we still need to
  8034. * clear any delalloc bits within this page range since we have to
  8035. * reserve data&meta space before lock_page() (see above comments).
  8036. */
  8037. clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
  8038. EXTENT_DIRTY | EXTENT_DELALLOC |
  8039. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  8040. 0, 0, &cached_state, GFP_NOFS);
  8041. ret = btrfs_set_extent_delalloc(inode, page_start, end,
  8042. &cached_state, 0);
  8043. if (ret) {
  8044. unlock_extent_cached(io_tree, page_start, page_end,
  8045. &cached_state, GFP_NOFS);
  8046. ret = VM_FAULT_SIGBUS;
  8047. goto out_unlock;
  8048. }
  8049. ret = 0;
  8050. /* page is wholly or partially inside EOF */
  8051. if (page_start + PAGE_SIZE > size)
  8052. zero_start = size & ~PAGE_MASK;
  8053. else
  8054. zero_start = PAGE_SIZE;
  8055. if (zero_start != PAGE_SIZE) {
  8056. kaddr = kmap(page);
  8057. memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
  8058. flush_dcache_page(page);
  8059. kunmap(page);
  8060. }
  8061. ClearPageChecked(page);
  8062. set_page_dirty(page);
  8063. SetPageUptodate(page);
  8064. BTRFS_I(inode)->last_trans = fs_info->generation;
  8065. BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
  8066. BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
  8067. unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
  8068. out_unlock:
  8069. if (!ret) {
  8070. sb_end_pagefault(inode->i_sb);
  8071. return VM_FAULT_LOCKED;
  8072. }
  8073. unlock_page(page);
  8074. out:
  8075. btrfs_delalloc_release_space(inode, page_start, reserved_space);
  8076. out_noreserve:
  8077. sb_end_pagefault(inode->i_sb);
  8078. return ret;
  8079. }
  8080. static int btrfs_truncate(struct inode *inode)
  8081. {
  8082. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  8083. struct btrfs_root *root = BTRFS_I(inode)->root;
  8084. struct btrfs_block_rsv *rsv;
  8085. int ret = 0;
  8086. int err = 0;
  8087. struct btrfs_trans_handle *trans;
  8088. u64 mask = fs_info->sectorsize - 1;
  8089. u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
  8090. ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
  8091. (u64)-1);
  8092. if (ret)
  8093. return ret;
  8094. /*
  8095. * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
  8096. * 3 things going on here
  8097. *
  8098. * 1) We need to reserve space for our orphan item and the space to
  8099. * delete our orphan item. Lord knows we don't want to have a dangling
  8100. * orphan item because we didn't reserve space to remove it.
  8101. *
  8102. * 2) We need to reserve space to update our inode.
  8103. *
  8104. * 3) We need to have something to cache all the space that is going to
  8105. * be free'd up by the truncate operation, but also have some slack
  8106. * space reserved in case it uses space during the truncate (thank you
  8107. * very much snapshotting).
  8108. *
  8109. * And we need these to all be separate. The fact is we can use a lot of
  8110. * space doing the truncate, and we have no earthly idea how much space
  8111. * we will use, so we need the truncate reservation to be separate so it
  8112. * doesn't end up using space reserved for updating the inode or
  8113. * removing the orphan item. We also need to be able to stop the
  8114. * transaction and start a new one, which means we need to be able to
  8115. * update the inode several times, and we have no idea of knowing how
  8116. * many times that will be, so we can't just reserve 1 item for the
  8117. * entirety of the operation, so that has to be done separately as well.
  8118. * Then there is the orphan item, which does indeed need to be held on
  8119. * to for the whole operation, and we need nobody to touch this reserved
  8120. * space except the orphan code.
  8121. *
  8122. * So that leaves us with
  8123. *
  8124. * 1) root->orphan_block_rsv - for the orphan deletion.
  8125. * 2) rsv - for the truncate reservation, which we will steal from the
  8126. * transaction reservation.
  8127. * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
  8128. * updating the inode.
  8129. */
  8130. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  8131. if (!rsv)
  8132. return -ENOMEM;
  8133. rsv->size = min_size;
  8134. rsv->failfast = 1;
  8135. /*
  8136. * 1 for the truncate slack space
  8137. * 1 for updating the inode.
  8138. */
  8139. trans = btrfs_start_transaction(root, 2);
  8140. if (IS_ERR(trans)) {
  8141. err = PTR_ERR(trans);
  8142. goto out;
  8143. }
  8144. /* Migrate the slack space for the truncate to our reserve */
  8145. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
  8146. min_size, 0);
  8147. BUG_ON(ret);
  8148. /*
  8149. * So if we truncate and then write and fsync we normally would just
  8150. * write the extents that changed, which is a problem if we need to
  8151. * first truncate that entire inode. So set this flag so we write out
  8152. * all of the extents in the inode to the sync log so we're completely
  8153. * safe.
  8154. */
  8155. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  8156. trans->block_rsv = rsv;
  8157. while (1) {
  8158. ret = btrfs_truncate_inode_items(trans, root, inode,
  8159. inode->i_size,
  8160. BTRFS_EXTENT_DATA_KEY);
  8161. if (ret != -ENOSPC && ret != -EAGAIN) {
  8162. err = ret;
  8163. break;
  8164. }
  8165. trans->block_rsv = &fs_info->trans_block_rsv;
  8166. ret = btrfs_update_inode(trans, root, inode);
  8167. if (ret) {
  8168. err = ret;
  8169. break;
  8170. }
  8171. btrfs_end_transaction(trans);
  8172. btrfs_btree_balance_dirty(fs_info);
  8173. trans = btrfs_start_transaction(root, 2);
  8174. if (IS_ERR(trans)) {
  8175. ret = err = PTR_ERR(trans);
  8176. trans = NULL;
  8177. break;
  8178. }
  8179. btrfs_block_rsv_release(fs_info, rsv, -1);
  8180. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
  8181. rsv, min_size, 0);
  8182. BUG_ON(ret); /* shouldn't happen */
  8183. trans->block_rsv = rsv;
  8184. }
  8185. if (ret == 0 && inode->i_nlink > 0) {
  8186. trans->block_rsv = root->orphan_block_rsv;
  8187. ret = btrfs_orphan_del(trans, BTRFS_I(inode));
  8188. if (ret)
  8189. err = ret;
  8190. }
  8191. if (trans) {
  8192. trans->block_rsv = &fs_info->trans_block_rsv;
  8193. ret = btrfs_update_inode(trans, root, inode);
  8194. if (ret && !err)
  8195. err = ret;
  8196. ret = btrfs_end_transaction(trans);
  8197. btrfs_btree_balance_dirty(fs_info);
  8198. }
  8199. out:
  8200. btrfs_free_block_rsv(fs_info, rsv);
  8201. if (ret && !err)
  8202. err = ret;
  8203. return err;
  8204. }
  8205. /*
  8206. * create a new subvolume directory/inode (helper for the ioctl).
  8207. */
  8208. int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
  8209. struct btrfs_root *new_root,
  8210. struct btrfs_root *parent_root,
  8211. u64 new_dirid)
  8212. {
  8213. struct inode *inode;
  8214. int err;
  8215. u64 index = 0;
  8216. inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
  8217. new_dirid, new_dirid,
  8218. S_IFDIR | (~current_umask() & S_IRWXUGO),
  8219. &index);
  8220. if (IS_ERR(inode))
  8221. return PTR_ERR(inode);
  8222. inode->i_op = &btrfs_dir_inode_operations;
  8223. inode->i_fop = &btrfs_dir_file_operations;
  8224. set_nlink(inode, 1);
  8225. btrfs_i_size_write(BTRFS_I(inode), 0);
  8226. unlock_new_inode(inode);
  8227. err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
  8228. if (err)
  8229. btrfs_err(new_root->fs_info,
  8230. "error inheriting subvolume %llu properties: %d",
  8231. new_root->root_key.objectid, err);
  8232. err = btrfs_update_inode(trans, new_root, inode);
  8233. iput(inode);
  8234. return err;
  8235. }
  8236. struct inode *btrfs_alloc_inode(struct super_block *sb)
  8237. {
  8238. struct btrfs_inode *ei;
  8239. struct inode *inode;
  8240. ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
  8241. if (!ei)
  8242. return NULL;
  8243. ei->root = NULL;
  8244. ei->generation = 0;
  8245. ei->last_trans = 0;
  8246. ei->last_sub_trans = 0;
  8247. ei->logged_trans = 0;
  8248. ei->delalloc_bytes = 0;
  8249. ei->new_delalloc_bytes = 0;
  8250. ei->defrag_bytes = 0;
  8251. ei->disk_i_size = 0;
  8252. ei->flags = 0;
  8253. ei->csum_bytes = 0;
  8254. ei->index_cnt = (u64)-1;
  8255. ei->dir_index = 0;
  8256. ei->last_unlink_trans = 0;
  8257. ei->last_log_commit = 0;
  8258. ei->delayed_iput_count = 0;
  8259. spin_lock_init(&ei->lock);
  8260. ei->outstanding_extents = 0;
  8261. ei->reserved_extents = 0;
  8262. ei->runtime_flags = 0;
  8263. ei->force_compress = BTRFS_COMPRESS_NONE;
  8264. ei->delayed_node = NULL;
  8265. ei->i_otime.tv_sec = 0;
  8266. ei->i_otime.tv_nsec = 0;
  8267. inode = &ei->vfs_inode;
  8268. extent_map_tree_init(&ei->extent_tree);
  8269. extent_io_tree_init(&ei->io_tree, &inode->i_data);
  8270. extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
  8271. ei->io_tree.track_uptodate = 1;
  8272. ei->io_failure_tree.track_uptodate = 1;
  8273. atomic_set(&ei->sync_writers, 0);
  8274. mutex_init(&ei->log_mutex);
  8275. mutex_init(&ei->delalloc_mutex);
  8276. btrfs_ordered_inode_tree_init(&ei->ordered_tree);
  8277. INIT_LIST_HEAD(&ei->delalloc_inodes);
  8278. INIT_LIST_HEAD(&ei->delayed_iput);
  8279. RB_CLEAR_NODE(&ei->rb_node);
  8280. init_rwsem(&ei->dio_sem);
  8281. return inode;
  8282. }
  8283. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  8284. void btrfs_test_destroy_inode(struct inode *inode)
  8285. {
  8286. btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
  8287. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  8288. }
  8289. #endif
  8290. static void btrfs_i_callback(struct rcu_head *head)
  8291. {
  8292. struct inode *inode = container_of(head, struct inode, i_rcu);
  8293. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  8294. }
  8295. void btrfs_destroy_inode(struct inode *inode)
  8296. {
  8297. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  8298. struct btrfs_ordered_extent *ordered;
  8299. struct btrfs_root *root = BTRFS_I(inode)->root;
  8300. WARN_ON(!hlist_empty(&inode->i_dentry));
  8301. WARN_ON(inode->i_data.nrpages);
  8302. WARN_ON(BTRFS_I(inode)->outstanding_extents);
  8303. WARN_ON(BTRFS_I(inode)->reserved_extents);
  8304. WARN_ON(BTRFS_I(inode)->delalloc_bytes);
  8305. WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
  8306. WARN_ON(BTRFS_I(inode)->csum_bytes);
  8307. WARN_ON(BTRFS_I(inode)->defrag_bytes);
  8308. /*
  8309. * This can happen where we create an inode, but somebody else also
  8310. * created the same inode and we need to destroy the one we already
  8311. * created.
  8312. */
  8313. if (!root)
  8314. goto free;
  8315. if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  8316. &BTRFS_I(inode)->runtime_flags)) {
  8317. btrfs_info(fs_info, "inode %llu still on the orphan list",
  8318. btrfs_ino(BTRFS_I(inode)));
  8319. atomic_dec(&root->orphan_inodes);
  8320. }
  8321. while (1) {
  8322. ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
  8323. if (!ordered)
  8324. break;
  8325. else {
  8326. btrfs_err(fs_info,
  8327. "found ordered extent %llu %llu on inode cleanup",
  8328. ordered->file_offset, ordered->len);
  8329. btrfs_remove_ordered_extent(inode, ordered);
  8330. btrfs_put_ordered_extent(ordered);
  8331. btrfs_put_ordered_extent(ordered);
  8332. }
  8333. }
  8334. btrfs_qgroup_check_reserved_leak(inode);
  8335. inode_tree_del(inode);
  8336. btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
  8337. free:
  8338. call_rcu(&inode->i_rcu, btrfs_i_callback);
  8339. }
  8340. int btrfs_drop_inode(struct inode *inode)
  8341. {
  8342. struct btrfs_root *root = BTRFS_I(inode)->root;
  8343. if (root == NULL)
  8344. return 1;
  8345. /* the snap/subvol tree is on deleting */
  8346. if (btrfs_root_refs(&root->root_item) == 0)
  8347. return 1;
  8348. else
  8349. return generic_drop_inode(inode);
  8350. }
  8351. static void init_once(void *foo)
  8352. {
  8353. struct btrfs_inode *ei = (struct btrfs_inode *) foo;
  8354. inode_init_once(&ei->vfs_inode);
  8355. }
  8356. void btrfs_destroy_cachep(void)
  8357. {
  8358. /*
  8359. * Make sure all delayed rcu free inodes are flushed before we
  8360. * destroy cache.
  8361. */
  8362. rcu_barrier();
  8363. kmem_cache_destroy(btrfs_inode_cachep);
  8364. kmem_cache_destroy(btrfs_trans_handle_cachep);
  8365. kmem_cache_destroy(btrfs_transaction_cachep);
  8366. kmem_cache_destroy(btrfs_path_cachep);
  8367. kmem_cache_destroy(btrfs_free_space_cachep);
  8368. }
  8369. int btrfs_init_cachep(void)
  8370. {
  8371. btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
  8372. sizeof(struct btrfs_inode), 0,
  8373. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
  8374. init_once);
  8375. if (!btrfs_inode_cachep)
  8376. goto fail;
  8377. btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
  8378. sizeof(struct btrfs_trans_handle), 0,
  8379. SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
  8380. if (!btrfs_trans_handle_cachep)
  8381. goto fail;
  8382. btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
  8383. sizeof(struct btrfs_transaction), 0,
  8384. SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
  8385. if (!btrfs_transaction_cachep)
  8386. goto fail;
  8387. btrfs_path_cachep = kmem_cache_create("btrfs_path",
  8388. sizeof(struct btrfs_path), 0,
  8389. SLAB_MEM_SPREAD, NULL);
  8390. if (!btrfs_path_cachep)
  8391. goto fail;
  8392. btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
  8393. sizeof(struct btrfs_free_space), 0,
  8394. SLAB_MEM_SPREAD, NULL);
  8395. if (!btrfs_free_space_cachep)
  8396. goto fail;
  8397. return 0;
  8398. fail:
  8399. btrfs_destroy_cachep();
  8400. return -ENOMEM;
  8401. }
  8402. static int btrfs_getattr(const struct path *path, struct kstat *stat,
  8403. u32 request_mask, unsigned int flags)
  8404. {
  8405. u64 delalloc_bytes;
  8406. struct inode *inode = d_inode(path->dentry);
  8407. u32 blocksize = inode->i_sb->s_blocksize;
  8408. generic_fillattr(inode, stat);
  8409. stat->dev = BTRFS_I(inode)->root->anon_dev;
  8410. spin_lock(&BTRFS_I(inode)->lock);
  8411. delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
  8412. spin_unlock(&BTRFS_I(inode)->lock);
  8413. stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
  8414. ALIGN(delalloc_bytes, blocksize)) >> 9;
  8415. return 0;
  8416. }
  8417. static int btrfs_rename_exchange(struct inode *old_dir,
  8418. struct dentry *old_dentry,
  8419. struct inode *new_dir,
  8420. struct dentry *new_dentry)
  8421. {
  8422. struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
  8423. struct btrfs_trans_handle *trans;
  8424. struct btrfs_root *root = BTRFS_I(old_dir)->root;
  8425. struct btrfs_root *dest = BTRFS_I(new_dir)->root;
  8426. struct inode *new_inode = new_dentry->d_inode;
  8427. struct inode *old_inode = old_dentry->d_inode;
  8428. struct timespec ctime = current_time(old_inode);
  8429. struct dentry *parent;
  8430. u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
  8431. u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
  8432. u64 old_idx = 0;
  8433. u64 new_idx = 0;
  8434. u64 root_objectid;
  8435. int ret;
  8436. bool root_log_pinned = false;
  8437. bool dest_log_pinned = false;
  8438. /* we only allow rename subvolume link between subvolumes */
  8439. if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
  8440. return -EXDEV;
  8441. /* close the race window with snapshot create/destroy ioctl */
  8442. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  8443. down_read(&fs_info->subvol_sem);
  8444. if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
  8445. down_read(&fs_info->subvol_sem);
  8446. /*
  8447. * We want to reserve the absolute worst case amount of items. So if
  8448. * both inodes are subvols and we need to unlink them then that would
  8449. * require 4 item modifications, but if they are both normal inodes it
  8450. * would require 5 item modifications, so we'll assume their normal
  8451. * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
  8452. * should cover the worst case number of items we'll modify.
  8453. */
  8454. trans = btrfs_start_transaction(root, 12);
  8455. if (IS_ERR(trans)) {
  8456. ret = PTR_ERR(trans);
  8457. goto out_notrans;
  8458. }
  8459. /*
  8460. * We need to find a free sequence number both in the source and
  8461. * in the destination directory for the exchange.
  8462. */
  8463. ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
  8464. if (ret)
  8465. goto out_fail;
  8466. ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
  8467. if (ret)
  8468. goto out_fail;
  8469. BTRFS_I(old_inode)->dir_index = 0ULL;
  8470. BTRFS_I(new_inode)->dir_index = 0ULL;
  8471. /* Reference for the source. */
  8472. if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
  8473. /* force full log commit if subvolume involved. */
  8474. btrfs_set_log_full_commit(fs_info, trans);
  8475. } else {
  8476. btrfs_pin_log_trans(root);
  8477. root_log_pinned = true;
  8478. ret = btrfs_insert_inode_ref(trans, dest,
  8479. new_dentry->d_name.name,
  8480. new_dentry->d_name.len,
  8481. old_ino,
  8482. btrfs_ino(BTRFS_I(new_dir)),
  8483. old_idx);
  8484. if (ret)
  8485. goto out_fail;
  8486. }
  8487. /* And now for the dest. */
  8488. if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
  8489. /* force full log commit if subvolume involved. */
  8490. btrfs_set_log_full_commit(fs_info, trans);
  8491. } else {
  8492. btrfs_pin_log_trans(dest);
  8493. dest_log_pinned = true;
  8494. ret = btrfs_insert_inode_ref(trans, root,
  8495. old_dentry->d_name.name,
  8496. old_dentry->d_name.len,
  8497. new_ino,
  8498. btrfs_ino(BTRFS_I(old_dir)),
  8499. new_idx);
  8500. if (ret)
  8501. goto out_fail;
  8502. }
  8503. /* Update inode version and ctime/mtime. */
  8504. inode_inc_iversion(old_dir);
  8505. inode_inc_iversion(new_dir);
  8506. inode_inc_iversion(old_inode);
  8507. inode_inc_iversion(new_inode);
  8508. old_dir->i_ctime = old_dir->i_mtime = ctime;
  8509. new_dir->i_ctime = new_dir->i_mtime = ctime;
  8510. old_inode->i_ctime = ctime;
  8511. new_inode->i_ctime = ctime;
  8512. if (old_dentry->d_parent != new_dentry->d_parent) {
  8513. btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
  8514. BTRFS_I(old_inode), 1);
  8515. btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
  8516. BTRFS_I(new_inode), 1);
  8517. }
  8518. /* src is a subvolume */
  8519. if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
  8520. root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
  8521. ret = btrfs_unlink_subvol(trans, root, old_dir,
  8522. root_objectid,
  8523. old_dentry->d_name.name,
  8524. old_dentry->d_name.len);
  8525. } else { /* src is an inode */
  8526. ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
  8527. BTRFS_I(old_dentry->d_inode),
  8528. old_dentry->d_name.name,
  8529. old_dentry->d_name.len);
  8530. if (!ret)
  8531. ret = btrfs_update_inode(trans, root, old_inode);
  8532. }
  8533. if (ret) {
  8534. btrfs_abort_transaction(trans, ret);
  8535. goto out_fail;
  8536. }
  8537. /* dest is a subvolume */
  8538. if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
  8539. root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
  8540. ret = btrfs_unlink_subvol(trans, dest, new_dir,
  8541. root_objectid,
  8542. new_dentry->d_name.name,
  8543. new_dentry->d_name.len);
  8544. } else { /* dest is an inode */
  8545. ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
  8546. BTRFS_I(new_dentry->d_inode),
  8547. new_dentry->d_name.name,
  8548. new_dentry->d_name.len);
  8549. if (!ret)
  8550. ret = btrfs_update_inode(trans, dest, new_inode);
  8551. }
  8552. if (ret) {
  8553. btrfs_abort_transaction(trans, ret);
  8554. goto out_fail;
  8555. }
  8556. ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
  8557. new_dentry->d_name.name,
  8558. new_dentry->d_name.len, 0, old_idx);
  8559. if (ret) {
  8560. btrfs_abort_transaction(trans, ret);
  8561. goto out_fail;
  8562. }
  8563. ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
  8564. old_dentry->d_name.name,
  8565. old_dentry->d_name.len, 0, new_idx);
  8566. if (ret) {
  8567. btrfs_abort_transaction(trans, ret);
  8568. goto out_fail;
  8569. }
  8570. if (old_inode->i_nlink == 1)
  8571. BTRFS_I(old_inode)->dir_index = old_idx;
  8572. if (new_inode->i_nlink == 1)
  8573. BTRFS_I(new_inode)->dir_index = new_idx;
  8574. if (root_log_pinned) {
  8575. parent = new_dentry->d_parent;
  8576. btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
  8577. parent);
  8578. btrfs_end_log_trans(root);
  8579. root_log_pinned = false;
  8580. }
  8581. if (dest_log_pinned) {
  8582. parent = old_dentry->d_parent;
  8583. btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
  8584. parent);
  8585. btrfs_end_log_trans(dest);
  8586. dest_log_pinned = false;
  8587. }
  8588. out_fail:
  8589. /*
  8590. * If we have pinned a log and an error happened, we unpin tasks
  8591. * trying to sync the log and force them to fallback to a transaction
  8592. * commit if the log currently contains any of the inodes involved in
  8593. * this rename operation (to ensure we do not persist a log with an
  8594. * inconsistent state for any of these inodes or leading to any
  8595. * inconsistencies when replayed). If the transaction was aborted, the
  8596. * abortion reason is propagated to userspace when attempting to commit
  8597. * the transaction. If the log does not contain any of these inodes, we
  8598. * allow the tasks to sync it.
  8599. */
  8600. if (ret && (root_log_pinned || dest_log_pinned)) {
  8601. if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
  8602. btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
  8603. btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
  8604. (new_inode &&
  8605. btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
  8606. btrfs_set_log_full_commit(fs_info, trans);
  8607. if (root_log_pinned) {
  8608. btrfs_end_log_trans(root);
  8609. root_log_pinned = false;
  8610. }
  8611. if (dest_log_pinned) {
  8612. btrfs_end_log_trans(dest);
  8613. dest_log_pinned = false;
  8614. }
  8615. }
  8616. ret = btrfs_end_transaction(trans);
  8617. out_notrans:
  8618. if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
  8619. up_read(&fs_info->subvol_sem);
  8620. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  8621. up_read(&fs_info->subvol_sem);
  8622. return ret;
  8623. }
  8624. static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
  8625. struct btrfs_root *root,
  8626. struct inode *dir,
  8627. struct dentry *dentry)
  8628. {
  8629. int ret;
  8630. struct inode *inode;
  8631. u64 objectid;
  8632. u64 index;
  8633. ret = btrfs_find_free_ino(root, &objectid);
  8634. if (ret)
  8635. return ret;
  8636. inode = btrfs_new_inode(trans, root, dir,
  8637. dentry->d_name.name,
  8638. dentry->d_name.len,
  8639. btrfs_ino(BTRFS_I(dir)),
  8640. objectid,
  8641. S_IFCHR | WHITEOUT_MODE,
  8642. &index);
  8643. if (IS_ERR(inode)) {
  8644. ret = PTR_ERR(inode);
  8645. return ret;
  8646. }
  8647. inode->i_op = &btrfs_special_inode_operations;
  8648. init_special_inode(inode, inode->i_mode,
  8649. WHITEOUT_DEV);
  8650. ret = btrfs_init_inode_security(trans, inode, dir,
  8651. &dentry->d_name);
  8652. if (ret)
  8653. goto out;
  8654. ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
  8655. BTRFS_I(inode), 0, index);
  8656. if (ret)
  8657. goto out;
  8658. ret = btrfs_update_inode(trans, root, inode);
  8659. out:
  8660. unlock_new_inode(inode);
  8661. if (ret)
  8662. inode_dec_link_count(inode);
  8663. iput(inode);
  8664. return ret;
  8665. }
  8666. static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  8667. struct inode *new_dir, struct dentry *new_dentry,
  8668. unsigned int flags)
  8669. {
  8670. struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
  8671. struct btrfs_trans_handle *trans;
  8672. unsigned int trans_num_items;
  8673. struct btrfs_root *root = BTRFS_I(old_dir)->root;
  8674. struct btrfs_root *dest = BTRFS_I(new_dir)->root;
  8675. struct inode *new_inode = d_inode(new_dentry);
  8676. struct inode *old_inode = d_inode(old_dentry);
  8677. u64 index = 0;
  8678. u64 root_objectid;
  8679. int ret;
  8680. u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
  8681. bool log_pinned = false;
  8682. if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  8683. return -EPERM;
  8684. /* we only allow rename subvolume link between subvolumes */
  8685. if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
  8686. return -EXDEV;
  8687. if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
  8688. (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
  8689. return -ENOTEMPTY;
  8690. if (S_ISDIR(old_inode->i_mode) && new_inode &&
  8691. new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  8692. return -ENOTEMPTY;
  8693. /* check for collisions, even if the name isn't there */
  8694. ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
  8695. new_dentry->d_name.name,
  8696. new_dentry->d_name.len);
  8697. if (ret) {
  8698. if (ret == -EEXIST) {
  8699. /* we shouldn't get
  8700. * eexist without a new_inode */
  8701. if (WARN_ON(!new_inode)) {
  8702. return ret;
  8703. }
  8704. } else {
  8705. /* maybe -EOVERFLOW */
  8706. return ret;
  8707. }
  8708. }
  8709. ret = 0;
  8710. /*
  8711. * we're using rename to replace one file with another. Start IO on it
  8712. * now so we don't add too much work to the end of the transaction
  8713. */
  8714. if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
  8715. filemap_flush(old_inode->i_mapping);
  8716. /* close the racy window with snapshot create/destroy ioctl */
  8717. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  8718. down_read(&fs_info->subvol_sem);
  8719. /*
  8720. * We want to reserve the absolute worst case amount of items. So if
  8721. * both inodes are subvols and we need to unlink them then that would
  8722. * require 4 item modifications, but if they are both normal inodes it
  8723. * would require 5 item modifications, so we'll assume they are normal
  8724. * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
  8725. * should cover the worst case number of items we'll modify.
  8726. * If our rename has the whiteout flag, we need more 5 units for the
  8727. * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
  8728. * when selinux is enabled).
  8729. */
  8730. trans_num_items = 11;
  8731. if (flags & RENAME_WHITEOUT)
  8732. trans_num_items += 5;
  8733. trans = btrfs_start_transaction(root, trans_num_items);
  8734. if (IS_ERR(trans)) {
  8735. ret = PTR_ERR(trans);
  8736. goto out_notrans;
  8737. }
  8738. if (dest != root)
  8739. btrfs_record_root_in_trans(trans, dest);
  8740. ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
  8741. if (ret)
  8742. goto out_fail;
  8743. BTRFS_I(old_inode)->dir_index = 0ULL;
  8744. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  8745. /* force full log commit if subvolume involved. */
  8746. btrfs_set_log_full_commit(fs_info, trans);
  8747. } else {
  8748. btrfs_pin_log_trans(root);
  8749. log_pinned = true;
  8750. ret = btrfs_insert_inode_ref(trans, dest,
  8751. new_dentry->d_name.name,
  8752. new_dentry->d_name.len,
  8753. old_ino,
  8754. btrfs_ino(BTRFS_I(new_dir)), index);
  8755. if (ret)
  8756. goto out_fail;
  8757. }
  8758. inode_inc_iversion(old_dir);
  8759. inode_inc_iversion(new_dir);
  8760. inode_inc_iversion(old_inode);
  8761. old_dir->i_ctime = old_dir->i_mtime =
  8762. new_dir->i_ctime = new_dir->i_mtime =
  8763. old_inode->i_ctime = current_time(old_dir);
  8764. if (old_dentry->d_parent != new_dentry->d_parent)
  8765. btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
  8766. BTRFS_I(old_inode), 1);
  8767. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  8768. root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
  8769. ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
  8770. old_dentry->d_name.name,
  8771. old_dentry->d_name.len);
  8772. } else {
  8773. ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
  8774. BTRFS_I(d_inode(old_dentry)),
  8775. old_dentry->d_name.name,
  8776. old_dentry->d_name.len);
  8777. if (!ret)
  8778. ret = btrfs_update_inode(trans, root, old_inode);
  8779. }
  8780. if (ret) {
  8781. btrfs_abort_transaction(trans, ret);
  8782. goto out_fail;
  8783. }
  8784. if (new_inode) {
  8785. inode_inc_iversion(new_inode);
  8786. new_inode->i_ctime = current_time(new_inode);
  8787. if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
  8788. BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  8789. root_objectid = BTRFS_I(new_inode)->location.objectid;
  8790. ret = btrfs_unlink_subvol(trans, dest, new_dir,
  8791. root_objectid,
  8792. new_dentry->d_name.name,
  8793. new_dentry->d_name.len);
  8794. BUG_ON(new_inode->i_nlink == 0);
  8795. } else {
  8796. ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
  8797. BTRFS_I(d_inode(new_dentry)),
  8798. new_dentry->d_name.name,
  8799. new_dentry->d_name.len);
  8800. }
  8801. if (!ret && new_inode->i_nlink == 0)
  8802. ret = btrfs_orphan_add(trans,
  8803. BTRFS_I(d_inode(new_dentry)));
  8804. if (ret) {
  8805. btrfs_abort_transaction(trans, ret);
  8806. goto out_fail;
  8807. }
  8808. }
  8809. ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
  8810. new_dentry->d_name.name,
  8811. new_dentry->d_name.len, 0, index);
  8812. if (ret) {
  8813. btrfs_abort_transaction(trans, ret);
  8814. goto out_fail;
  8815. }
  8816. if (old_inode->i_nlink == 1)
  8817. BTRFS_I(old_inode)->dir_index = index;
  8818. if (log_pinned) {
  8819. struct dentry *parent = new_dentry->d_parent;
  8820. btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
  8821. parent);
  8822. btrfs_end_log_trans(root);
  8823. log_pinned = false;
  8824. }
  8825. if (flags & RENAME_WHITEOUT) {
  8826. ret = btrfs_whiteout_for_rename(trans, root, old_dir,
  8827. old_dentry);
  8828. if (ret) {
  8829. btrfs_abort_transaction(trans, ret);
  8830. goto out_fail;
  8831. }
  8832. }
  8833. out_fail:
  8834. /*
  8835. * If we have pinned the log and an error happened, we unpin tasks
  8836. * trying to sync the log and force them to fallback to a transaction
  8837. * commit if the log currently contains any of the inodes involved in
  8838. * this rename operation (to ensure we do not persist a log with an
  8839. * inconsistent state for any of these inodes or leading to any
  8840. * inconsistencies when replayed). If the transaction was aborted, the
  8841. * abortion reason is propagated to userspace when attempting to commit
  8842. * the transaction. If the log does not contain any of these inodes, we
  8843. * allow the tasks to sync it.
  8844. */
  8845. if (ret && log_pinned) {
  8846. if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
  8847. btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
  8848. btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
  8849. (new_inode &&
  8850. btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
  8851. btrfs_set_log_full_commit(fs_info, trans);
  8852. btrfs_end_log_trans(root);
  8853. log_pinned = false;
  8854. }
  8855. btrfs_end_transaction(trans);
  8856. out_notrans:
  8857. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  8858. up_read(&fs_info->subvol_sem);
  8859. return ret;
  8860. }
  8861. static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
  8862. struct inode *new_dir, struct dentry *new_dentry,
  8863. unsigned int flags)
  8864. {
  8865. if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
  8866. return -EINVAL;
  8867. if (flags & RENAME_EXCHANGE)
  8868. return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
  8869. new_dentry);
  8870. return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
  8871. }
  8872. static void btrfs_run_delalloc_work(struct btrfs_work *work)
  8873. {
  8874. struct btrfs_delalloc_work *delalloc_work;
  8875. struct inode *inode;
  8876. delalloc_work = container_of(work, struct btrfs_delalloc_work,
  8877. work);
  8878. inode = delalloc_work->inode;
  8879. filemap_flush(inode->i_mapping);
  8880. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  8881. &BTRFS_I(inode)->runtime_flags))
  8882. filemap_flush(inode->i_mapping);
  8883. if (delalloc_work->delay_iput)
  8884. btrfs_add_delayed_iput(inode);
  8885. else
  8886. iput(inode);
  8887. complete(&delalloc_work->completion);
  8888. }
  8889. struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
  8890. int delay_iput)
  8891. {
  8892. struct btrfs_delalloc_work *work;
  8893. work = kmalloc(sizeof(*work), GFP_NOFS);
  8894. if (!work)
  8895. return NULL;
  8896. init_completion(&work->completion);
  8897. INIT_LIST_HEAD(&work->list);
  8898. work->inode = inode;
  8899. work->delay_iput = delay_iput;
  8900. WARN_ON_ONCE(!inode);
  8901. btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
  8902. btrfs_run_delalloc_work, NULL, NULL);
  8903. return work;
  8904. }
  8905. void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
  8906. {
  8907. wait_for_completion(&work->completion);
  8908. kfree(work);
  8909. }
  8910. /*
  8911. * some fairly slow code that needs optimization. This walks the list
  8912. * of all the inodes with pending delalloc and forces them to disk.
  8913. */
  8914. static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
  8915. int nr)
  8916. {
  8917. struct btrfs_inode *binode;
  8918. struct inode *inode;
  8919. struct btrfs_delalloc_work *work, *next;
  8920. struct list_head works;
  8921. struct list_head splice;
  8922. int ret = 0;
  8923. INIT_LIST_HEAD(&works);
  8924. INIT_LIST_HEAD(&splice);
  8925. mutex_lock(&root->delalloc_mutex);
  8926. spin_lock(&root->delalloc_lock);
  8927. list_splice_init(&root->delalloc_inodes, &splice);
  8928. while (!list_empty(&splice)) {
  8929. binode = list_entry(splice.next, struct btrfs_inode,
  8930. delalloc_inodes);
  8931. list_move_tail(&binode->delalloc_inodes,
  8932. &root->delalloc_inodes);
  8933. inode = igrab(&binode->vfs_inode);
  8934. if (!inode) {
  8935. cond_resched_lock(&root->delalloc_lock);
  8936. continue;
  8937. }
  8938. spin_unlock(&root->delalloc_lock);
  8939. work = btrfs_alloc_delalloc_work(inode, delay_iput);
  8940. if (!work) {
  8941. if (delay_iput)
  8942. btrfs_add_delayed_iput(inode);
  8943. else
  8944. iput(inode);
  8945. ret = -ENOMEM;
  8946. goto out;
  8947. }
  8948. list_add_tail(&work->list, &works);
  8949. btrfs_queue_work(root->fs_info->flush_workers,
  8950. &work->work);
  8951. ret++;
  8952. if (nr != -1 && ret >= nr)
  8953. goto out;
  8954. cond_resched();
  8955. spin_lock(&root->delalloc_lock);
  8956. }
  8957. spin_unlock(&root->delalloc_lock);
  8958. out:
  8959. list_for_each_entry_safe(work, next, &works, list) {
  8960. list_del_init(&work->list);
  8961. btrfs_wait_and_free_delalloc_work(work);
  8962. }
  8963. if (!list_empty_careful(&splice)) {
  8964. spin_lock(&root->delalloc_lock);
  8965. list_splice_tail(&splice, &root->delalloc_inodes);
  8966. spin_unlock(&root->delalloc_lock);
  8967. }
  8968. mutex_unlock(&root->delalloc_mutex);
  8969. return ret;
  8970. }
  8971. int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
  8972. {
  8973. struct btrfs_fs_info *fs_info = root->fs_info;
  8974. int ret;
  8975. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  8976. return -EROFS;
  8977. ret = __start_delalloc_inodes(root, delay_iput, -1);
  8978. if (ret > 0)
  8979. ret = 0;
  8980. /*
  8981. * the filemap_flush will queue IO into the worker threads, but
  8982. * we have to make sure the IO is actually started and that
  8983. * ordered extents get created before we return
  8984. */
  8985. atomic_inc(&fs_info->async_submit_draining);
  8986. while (atomic_read(&fs_info->nr_async_submits) ||
  8987. atomic_read(&fs_info->async_delalloc_pages)) {
  8988. wait_event(fs_info->async_submit_wait,
  8989. (atomic_read(&fs_info->nr_async_submits) == 0 &&
  8990. atomic_read(&fs_info->async_delalloc_pages) == 0));
  8991. }
  8992. atomic_dec(&fs_info->async_submit_draining);
  8993. return ret;
  8994. }
  8995. int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
  8996. int nr)
  8997. {
  8998. struct btrfs_root *root;
  8999. struct list_head splice;
  9000. int ret;
  9001. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  9002. return -EROFS;
  9003. INIT_LIST_HEAD(&splice);
  9004. mutex_lock(&fs_info->delalloc_root_mutex);
  9005. spin_lock(&fs_info->delalloc_root_lock);
  9006. list_splice_init(&fs_info->delalloc_roots, &splice);
  9007. while (!list_empty(&splice) && nr) {
  9008. root = list_first_entry(&splice, struct btrfs_root,
  9009. delalloc_root);
  9010. root = btrfs_grab_fs_root(root);
  9011. BUG_ON(!root);
  9012. list_move_tail(&root->delalloc_root,
  9013. &fs_info->delalloc_roots);
  9014. spin_unlock(&fs_info->delalloc_root_lock);
  9015. ret = __start_delalloc_inodes(root, delay_iput, nr);
  9016. btrfs_put_fs_root(root);
  9017. if (ret < 0)
  9018. goto out;
  9019. if (nr != -1) {
  9020. nr -= ret;
  9021. WARN_ON(nr < 0);
  9022. }
  9023. spin_lock(&fs_info->delalloc_root_lock);
  9024. }
  9025. spin_unlock(&fs_info->delalloc_root_lock);
  9026. ret = 0;
  9027. atomic_inc(&fs_info->async_submit_draining);
  9028. while (atomic_read(&fs_info->nr_async_submits) ||
  9029. atomic_read(&fs_info->async_delalloc_pages)) {
  9030. wait_event(fs_info->async_submit_wait,
  9031. (atomic_read(&fs_info->nr_async_submits) == 0 &&
  9032. atomic_read(&fs_info->async_delalloc_pages) == 0));
  9033. }
  9034. atomic_dec(&fs_info->async_submit_draining);
  9035. out:
  9036. if (!list_empty_careful(&splice)) {
  9037. spin_lock(&fs_info->delalloc_root_lock);
  9038. list_splice_tail(&splice, &fs_info->delalloc_roots);
  9039. spin_unlock(&fs_info->delalloc_root_lock);
  9040. }
  9041. mutex_unlock(&fs_info->delalloc_root_mutex);
  9042. return ret;
  9043. }
  9044. static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
  9045. const char *symname)
  9046. {
  9047. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  9048. struct btrfs_trans_handle *trans;
  9049. struct btrfs_root *root = BTRFS_I(dir)->root;
  9050. struct btrfs_path *path;
  9051. struct btrfs_key key;
  9052. struct inode *inode = NULL;
  9053. int err;
  9054. int drop_inode = 0;
  9055. u64 objectid;
  9056. u64 index = 0;
  9057. int name_len;
  9058. int datasize;
  9059. unsigned long ptr;
  9060. struct btrfs_file_extent_item *ei;
  9061. struct extent_buffer *leaf;
  9062. name_len = strlen(symname);
  9063. if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
  9064. return -ENAMETOOLONG;
  9065. /*
  9066. * 2 items for inode item and ref
  9067. * 2 items for dir items
  9068. * 1 item for updating parent inode item
  9069. * 1 item for the inline extent item
  9070. * 1 item for xattr if selinux is on
  9071. */
  9072. trans = btrfs_start_transaction(root, 7);
  9073. if (IS_ERR(trans))
  9074. return PTR_ERR(trans);
  9075. err = btrfs_find_free_ino(root, &objectid);
  9076. if (err)
  9077. goto out_unlock;
  9078. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  9079. dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
  9080. objectid, S_IFLNK|S_IRWXUGO, &index);
  9081. if (IS_ERR(inode)) {
  9082. err = PTR_ERR(inode);
  9083. goto out_unlock;
  9084. }
  9085. /*
  9086. * If the active LSM wants to access the inode during
  9087. * d_instantiate it needs these. Smack checks to see
  9088. * if the filesystem supports xattrs by looking at the
  9089. * ops vector.
  9090. */
  9091. inode->i_fop = &btrfs_file_operations;
  9092. inode->i_op = &btrfs_file_inode_operations;
  9093. inode->i_mapping->a_ops = &btrfs_aops;
  9094. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  9095. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  9096. if (err)
  9097. goto out_unlock_inode;
  9098. path = btrfs_alloc_path();
  9099. if (!path) {
  9100. err = -ENOMEM;
  9101. goto out_unlock_inode;
  9102. }
  9103. key.objectid = btrfs_ino(BTRFS_I(inode));
  9104. key.offset = 0;
  9105. key.type = BTRFS_EXTENT_DATA_KEY;
  9106. datasize = btrfs_file_extent_calc_inline_size(name_len);
  9107. err = btrfs_insert_empty_item(trans, root, path, &key,
  9108. datasize);
  9109. if (err) {
  9110. btrfs_free_path(path);
  9111. goto out_unlock_inode;
  9112. }
  9113. leaf = path->nodes[0];
  9114. ei = btrfs_item_ptr(leaf, path->slots[0],
  9115. struct btrfs_file_extent_item);
  9116. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  9117. btrfs_set_file_extent_type(leaf, ei,
  9118. BTRFS_FILE_EXTENT_INLINE);
  9119. btrfs_set_file_extent_encryption(leaf, ei, 0);
  9120. btrfs_set_file_extent_compression(leaf, ei, 0);
  9121. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  9122. btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
  9123. ptr = btrfs_file_extent_inline_start(ei);
  9124. write_extent_buffer(leaf, symname, ptr, name_len);
  9125. btrfs_mark_buffer_dirty(leaf);
  9126. btrfs_free_path(path);
  9127. inode->i_op = &btrfs_symlink_inode_operations;
  9128. inode_nohighmem(inode);
  9129. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  9130. inode_set_bytes(inode, name_len);
  9131. btrfs_i_size_write(BTRFS_I(inode), name_len);
  9132. err = btrfs_update_inode(trans, root, inode);
  9133. /*
  9134. * Last step, add directory indexes for our symlink inode. This is the
  9135. * last step to avoid extra cleanup of these indexes if an error happens
  9136. * elsewhere above.
  9137. */
  9138. if (!err)
  9139. err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
  9140. BTRFS_I(inode), 0, index);
  9141. if (err) {
  9142. drop_inode = 1;
  9143. goto out_unlock_inode;
  9144. }
  9145. unlock_new_inode(inode);
  9146. d_instantiate(dentry, inode);
  9147. out_unlock:
  9148. btrfs_end_transaction(trans);
  9149. if (drop_inode) {
  9150. inode_dec_link_count(inode);
  9151. iput(inode);
  9152. }
  9153. btrfs_btree_balance_dirty(fs_info);
  9154. return err;
  9155. out_unlock_inode:
  9156. drop_inode = 1;
  9157. unlock_new_inode(inode);
  9158. goto out_unlock;
  9159. }
  9160. static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
  9161. u64 start, u64 num_bytes, u64 min_size,
  9162. loff_t actual_len, u64 *alloc_hint,
  9163. struct btrfs_trans_handle *trans)
  9164. {
  9165. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  9166. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  9167. struct extent_map *em;
  9168. struct btrfs_root *root = BTRFS_I(inode)->root;
  9169. struct btrfs_key ins;
  9170. u64 cur_offset = start;
  9171. u64 i_size;
  9172. u64 cur_bytes;
  9173. u64 last_alloc = (u64)-1;
  9174. int ret = 0;
  9175. bool own_trans = true;
  9176. u64 end = start + num_bytes - 1;
  9177. if (trans)
  9178. own_trans = false;
  9179. while (num_bytes > 0) {
  9180. if (own_trans) {
  9181. trans = btrfs_start_transaction(root, 3);
  9182. if (IS_ERR(trans)) {
  9183. ret = PTR_ERR(trans);
  9184. break;
  9185. }
  9186. }
  9187. cur_bytes = min_t(u64, num_bytes, SZ_256M);
  9188. cur_bytes = max(cur_bytes, min_size);
  9189. /*
  9190. * If we are severely fragmented we could end up with really
  9191. * small allocations, so if the allocator is returning small
  9192. * chunks lets make its job easier by only searching for those
  9193. * sized chunks.
  9194. */
  9195. cur_bytes = min(cur_bytes, last_alloc);
  9196. ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
  9197. min_size, 0, *alloc_hint, &ins, 1, 0);
  9198. if (ret) {
  9199. if (own_trans)
  9200. btrfs_end_transaction(trans);
  9201. break;
  9202. }
  9203. btrfs_dec_block_group_reservations(fs_info, ins.objectid);
  9204. last_alloc = ins.offset;
  9205. ret = insert_reserved_file_extent(trans, inode,
  9206. cur_offset, ins.objectid,
  9207. ins.offset, ins.offset,
  9208. ins.offset, 0, 0, 0,
  9209. BTRFS_FILE_EXTENT_PREALLOC);
  9210. if (ret) {
  9211. btrfs_free_reserved_extent(fs_info, ins.objectid,
  9212. ins.offset, 0);
  9213. btrfs_abort_transaction(trans, ret);
  9214. if (own_trans)
  9215. btrfs_end_transaction(trans);
  9216. break;
  9217. }
  9218. btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
  9219. cur_offset + ins.offset -1, 0);
  9220. em = alloc_extent_map();
  9221. if (!em) {
  9222. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  9223. &BTRFS_I(inode)->runtime_flags);
  9224. goto next;
  9225. }
  9226. em->start = cur_offset;
  9227. em->orig_start = cur_offset;
  9228. em->len = ins.offset;
  9229. em->block_start = ins.objectid;
  9230. em->block_len = ins.offset;
  9231. em->orig_block_len = ins.offset;
  9232. em->ram_bytes = ins.offset;
  9233. em->bdev = fs_info->fs_devices->latest_bdev;
  9234. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  9235. em->generation = trans->transid;
  9236. while (1) {
  9237. write_lock(&em_tree->lock);
  9238. ret = add_extent_mapping(em_tree, em, 1);
  9239. write_unlock(&em_tree->lock);
  9240. if (ret != -EEXIST)
  9241. break;
  9242. btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
  9243. cur_offset + ins.offset - 1,
  9244. 0);
  9245. }
  9246. free_extent_map(em);
  9247. next:
  9248. num_bytes -= ins.offset;
  9249. cur_offset += ins.offset;
  9250. *alloc_hint = ins.objectid + ins.offset;
  9251. inode_inc_iversion(inode);
  9252. inode->i_ctime = current_time(inode);
  9253. BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
  9254. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  9255. (actual_len > inode->i_size) &&
  9256. (cur_offset > inode->i_size)) {
  9257. if (cur_offset > actual_len)
  9258. i_size = actual_len;
  9259. else
  9260. i_size = cur_offset;
  9261. i_size_write(inode, i_size);
  9262. btrfs_ordered_update_i_size(inode, i_size, NULL);
  9263. }
  9264. ret = btrfs_update_inode(trans, root, inode);
  9265. if (ret) {
  9266. btrfs_abort_transaction(trans, ret);
  9267. if (own_trans)
  9268. btrfs_end_transaction(trans);
  9269. break;
  9270. }
  9271. if (own_trans)
  9272. btrfs_end_transaction(trans);
  9273. }
  9274. if (cur_offset < end)
  9275. btrfs_free_reserved_data_space(inode, cur_offset,
  9276. end - cur_offset + 1);
  9277. return ret;
  9278. }
  9279. int btrfs_prealloc_file_range(struct inode *inode, int mode,
  9280. u64 start, u64 num_bytes, u64 min_size,
  9281. loff_t actual_len, u64 *alloc_hint)
  9282. {
  9283. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  9284. min_size, actual_len, alloc_hint,
  9285. NULL);
  9286. }
  9287. int btrfs_prealloc_file_range_trans(struct inode *inode,
  9288. struct btrfs_trans_handle *trans, int mode,
  9289. u64 start, u64 num_bytes, u64 min_size,
  9290. loff_t actual_len, u64 *alloc_hint)
  9291. {
  9292. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  9293. min_size, actual_len, alloc_hint, trans);
  9294. }
  9295. static int btrfs_set_page_dirty(struct page *page)
  9296. {
  9297. return __set_page_dirty_nobuffers(page);
  9298. }
  9299. static int btrfs_permission(struct inode *inode, int mask)
  9300. {
  9301. struct btrfs_root *root = BTRFS_I(inode)->root;
  9302. umode_t mode = inode->i_mode;
  9303. if (mask & MAY_WRITE &&
  9304. (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
  9305. if (btrfs_root_readonly(root))
  9306. return -EROFS;
  9307. if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
  9308. return -EACCES;
  9309. }
  9310. return generic_permission(inode, mask);
  9311. }
  9312. static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
  9313. {
  9314. struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
  9315. struct btrfs_trans_handle *trans;
  9316. struct btrfs_root *root = BTRFS_I(dir)->root;
  9317. struct inode *inode = NULL;
  9318. u64 objectid;
  9319. u64 index;
  9320. int ret = 0;
  9321. /*
  9322. * 5 units required for adding orphan entry
  9323. */
  9324. trans = btrfs_start_transaction(root, 5);
  9325. if (IS_ERR(trans))
  9326. return PTR_ERR(trans);
  9327. ret = btrfs_find_free_ino(root, &objectid);
  9328. if (ret)
  9329. goto out;
  9330. inode = btrfs_new_inode(trans, root, dir, NULL, 0,
  9331. btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
  9332. if (IS_ERR(inode)) {
  9333. ret = PTR_ERR(inode);
  9334. inode = NULL;
  9335. goto out;
  9336. }
  9337. inode->i_fop = &btrfs_file_operations;
  9338. inode->i_op = &btrfs_file_inode_operations;
  9339. inode->i_mapping->a_ops = &btrfs_aops;
  9340. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  9341. ret = btrfs_init_inode_security(trans, inode, dir, NULL);
  9342. if (ret)
  9343. goto out_inode;
  9344. ret = btrfs_update_inode(trans, root, inode);
  9345. if (ret)
  9346. goto out_inode;
  9347. ret = btrfs_orphan_add(trans, BTRFS_I(inode));
  9348. if (ret)
  9349. goto out_inode;
  9350. /*
  9351. * We set number of links to 0 in btrfs_new_inode(), and here we set
  9352. * it to 1 because d_tmpfile() will issue a warning if the count is 0,
  9353. * through:
  9354. *
  9355. * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
  9356. */
  9357. set_nlink(inode, 1);
  9358. unlock_new_inode(inode);
  9359. d_tmpfile(dentry, inode);
  9360. mark_inode_dirty(inode);
  9361. out:
  9362. btrfs_end_transaction(trans);
  9363. if (ret)
  9364. iput(inode);
  9365. btrfs_balance_delayed_items(fs_info);
  9366. btrfs_btree_balance_dirty(fs_info);
  9367. return ret;
  9368. out_inode:
  9369. unlock_new_inode(inode);
  9370. goto out;
  9371. }
  9372. __attribute__((const))
  9373. static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
  9374. {
  9375. return -EAGAIN;
  9376. }
  9377. static const struct inode_operations btrfs_dir_inode_operations = {
  9378. .getattr = btrfs_getattr,
  9379. .lookup = btrfs_lookup,
  9380. .create = btrfs_create,
  9381. .unlink = btrfs_unlink,
  9382. .link = btrfs_link,
  9383. .mkdir = btrfs_mkdir,
  9384. .rmdir = btrfs_rmdir,
  9385. .rename = btrfs_rename2,
  9386. .symlink = btrfs_symlink,
  9387. .setattr = btrfs_setattr,
  9388. .mknod = btrfs_mknod,
  9389. .listxattr = btrfs_listxattr,
  9390. .permission = btrfs_permission,
  9391. .get_acl = btrfs_get_acl,
  9392. .set_acl = btrfs_set_acl,
  9393. .update_time = btrfs_update_time,
  9394. .tmpfile = btrfs_tmpfile,
  9395. };
  9396. static const struct inode_operations btrfs_dir_ro_inode_operations = {
  9397. .lookup = btrfs_lookup,
  9398. .permission = btrfs_permission,
  9399. .update_time = btrfs_update_time,
  9400. };
  9401. static const struct file_operations btrfs_dir_file_operations = {
  9402. .llseek = generic_file_llseek,
  9403. .read = generic_read_dir,
  9404. .iterate_shared = btrfs_real_readdir,
  9405. .unlocked_ioctl = btrfs_ioctl,
  9406. #ifdef CONFIG_COMPAT
  9407. .compat_ioctl = btrfs_compat_ioctl,
  9408. #endif
  9409. .release = btrfs_release_file,
  9410. .fsync = btrfs_sync_file,
  9411. };
  9412. static const struct extent_io_ops btrfs_extent_io_ops = {
  9413. /* mandatory callbacks */
  9414. .submit_bio_hook = btrfs_submit_bio_hook,
  9415. .readpage_end_io_hook = btrfs_readpage_end_io_hook,
  9416. .merge_bio_hook = btrfs_merge_bio_hook,
  9417. .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
  9418. /* optional callbacks */
  9419. .fill_delalloc = run_delalloc_range,
  9420. .writepage_end_io_hook = btrfs_writepage_end_io_hook,
  9421. .writepage_start_hook = btrfs_writepage_start_hook,
  9422. .set_bit_hook = btrfs_set_bit_hook,
  9423. .clear_bit_hook = btrfs_clear_bit_hook,
  9424. .merge_extent_hook = btrfs_merge_extent_hook,
  9425. .split_extent_hook = btrfs_split_extent_hook,
  9426. };
  9427. /*
  9428. * btrfs doesn't support the bmap operation because swapfiles
  9429. * use bmap to make a mapping of extents in the file. They assume
  9430. * these extents won't change over the life of the file and they
  9431. * use the bmap result to do IO directly to the drive.
  9432. *
  9433. * the btrfs bmap call would return logical addresses that aren't
  9434. * suitable for IO and they also will change frequently as COW
  9435. * operations happen. So, swapfile + btrfs == corruption.
  9436. *
  9437. * For now we're avoiding this by dropping bmap.
  9438. */
  9439. static const struct address_space_operations btrfs_aops = {
  9440. .readpage = btrfs_readpage,
  9441. .writepage = btrfs_writepage,
  9442. .writepages = btrfs_writepages,
  9443. .readpages = btrfs_readpages,
  9444. .direct_IO = btrfs_direct_IO,
  9445. .invalidatepage = btrfs_invalidatepage,
  9446. .releasepage = btrfs_releasepage,
  9447. .set_page_dirty = btrfs_set_page_dirty,
  9448. .error_remove_page = generic_error_remove_page,
  9449. };
  9450. static const struct address_space_operations btrfs_symlink_aops = {
  9451. .readpage = btrfs_readpage,
  9452. .writepage = btrfs_writepage,
  9453. .invalidatepage = btrfs_invalidatepage,
  9454. .releasepage = btrfs_releasepage,
  9455. };
  9456. static const struct inode_operations btrfs_file_inode_operations = {
  9457. .getattr = btrfs_getattr,
  9458. .setattr = btrfs_setattr,
  9459. .listxattr = btrfs_listxattr,
  9460. .permission = btrfs_permission,
  9461. .fiemap = btrfs_fiemap,
  9462. .get_acl = btrfs_get_acl,
  9463. .set_acl = btrfs_set_acl,
  9464. .update_time = btrfs_update_time,
  9465. };
  9466. static const struct inode_operations btrfs_special_inode_operations = {
  9467. .getattr = btrfs_getattr,
  9468. .setattr = btrfs_setattr,
  9469. .permission = btrfs_permission,
  9470. .listxattr = btrfs_listxattr,
  9471. .get_acl = btrfs_get_acl,
  9472. .set_acl = btrfs_set_acl,
  9473. .update_time = btrfs_update_time,
  9474. };
  9475. static const struct inode_operations btrfs_symlink_inode_operations = {
  9476. .get_link = page_get_link,
  9477. .getattr = btrfs_getattr,
  9478. .setattr = btrfs_setattr,
  9479. .permission = btrfs_permission,
  9480. .listxattr = btrfs_listxattr,
  9481. .update_time = btrfs_update_time,
  9482. };
  9483. const struct dentry_operations btrfs_dentry_operations = {
  9484. .d_delete = btrfs_dentry_delete,
  9485. .d_release = btrfs_dentry_release,
  9486. };