disk-io.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  64. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66. struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  69. struct extent_io_tree *dirty_pages,
  70. int mark);
  71. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *pinned_extents);
  73. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  74. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  75. /*
  76. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  77. * is complete. This is used during reads to verify checksums, and it is used
  78. * by writes to insert metadata for new file extents after IO is complete.
  79. */
  80. struct btrfs_end_io_wq {
  81. struct bio *bio;
  82. bio_end_io_t *end_io;
  83. void *private;
  84. struct btrfs_fs_info *info;
  85. blk_status_t status;
  86. enum btrfs_wq_endio_type metadata;
  87. struct list_head list;
  88. struct btrfs_work work;
  89. };
  90. static struct kmem_cache *btrfs_end_io_wq_cache;
  91. int __init btrfs_end_io_wq_init(void)
  92. {
  93. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  94. sizeof(struct btrfs_end_io_wq),
  95. 0,
  96. SLAB_MEM_SPREAD,
  97. NULL);
  98. if (!btrfs_end_io_wq_cache)
  99. return -ENOMEM;
  100. return 0;
  101. }
  102. void btrfs_end_io_wq_exit(void)
  103. {
  104. kmem_cache_destroy(btrfs_end_io_wq_cache);
  105. }
  106. /*
  107. * async submit bios are used to offload expensive checksumming
  108. * onto the worker threads. They checksum file and metadata bios
  109. * just before they are sent down the IO stack.
  110. */
  111. struct async_submit_bio {
  112. struct inode *inode;
  113. struct bio *bio;
  114. struct list_head list;
  115. extent_submit_bio_hook_t *submit_bio_start;
  116. extent_submit_bio_hook_t *submit_bio_done;
  117. int mirror_num;
  118. unsigned long bio_flags;
  119. /*
  120. * bio_offset is optional, can be used if the pages in the bio
  121. * can't tell us where in the file the bio should go
  122. */
  123. u64 bio_offset;
  124. struct btrfs_work work;
  125. blk_status_t status;
  126. };
  127. /*
  128. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  129. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  130. * the level the eb occupies in the tree.
  131. *
  132. * Different roots are used for different purposes and may nest inside each
  133. * other and they require separate keysets. As lockdep keys should be
  134. * static, assign keysets according to the purpose of the root as indicated
  135. * by btrfs_root->objectid. This ensures that all special purpose roots
  136. * have separate keysets.
  137. *
  138. * Lock-nesting across peer nodes is always done with the immediate parent
  139. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  140. * subclass to avoid triggering lockdep warning in such cases.
  141. *
  142. * The key is set by the readpage_end_io_hook after the buffer has passed
  143. * csum validation but before the pages are unlocked. It is also set by
  144. * btrfs_init_new_buffer on freshly allocated blocks.
  145. *
  146. * We also add a check to make sure the highest level of the tree is the
  147. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  148. * needs update as well.
  149. */
  150. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  151. # if BTRFS_MAX_LEVEL != 8
  152. # error
  153. # endif
  154. static struct btrfs_lockdep_keyset {
  155. u64 id; /* root objectid */
  156. const char *name_stem; /* lock name stem */
  157. char names[BTRFS_MAX_LEVEL + 1][20];
  158. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  159. } btrfs_lockdep_keysets[] = {
  160. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  161. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  162. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  163. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  164. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  165. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  166. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  167. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  168. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  169. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  170. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  171. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  172. { .id = 0, .name_stem = "tree" },
  173. };
  174. void __init btrfs_init_lockdep(void)
  175. {
  176. int i, j;
  177. /* initialize lockdep class names */
  178. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  179. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  180. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  181. snprintf(ks->names[j], sizeof(ks->names[j]),
  182. "btrfs-%s-%02d", ks->name_stem, j);
  183. }
  184. }
  185. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  186. int level)
  187. {
  188. struct btrfs_lockdep_keyset *ks;
  189. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  190. /* find the matching keyset, id 0 is the default entry */
  191. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  192. if (ks->id == objectid)
  193. break;
  194. lockdep_set_class_and_name(&eb->lock,
  195. &ks->keys[level], ks->names[level]);
  196. }
  197. #endif
  198. /*
  199. * extents on the btree inode are pretty simple, there's one extent
  200. * that covers the entire device
  201. */
  202. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  203. struct page *page, size_t pg_offset, u64 start, u64 len,
  204. int create)
  205. {
  206. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  207. struct extent_map_tree *em_tree = &inode->extent_tree;
  208. struct extent_map *em;
  209. int ret;
  210. read_lock(&em_tree->lock);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (em) {
  213. em->bdev = fs_info->fs_devices->latest_bdev;
  214. read_unlock(&em_tree->lock);
  215. goto out;
  216. }
  217. read_unlock(&em_tree->lock);
  218. em = alloc_extent_map();
  219. if (!em) {
  220. em = ERR_PTR(-ENOMEM);
  221. goto out;
  222. }
  223. em->start = 0;
  224. em->len = (u64)-1;
  225. em->block_len = (u64)-1;
  226. em->block_start = 0;
  227. em->bdev = fs_info->fs_devices->latest_bdev;
  228. write_lock(&em_tree->lock);
  229. ret = add_extent_mapping(em_tree, em, 0);
  230. if (ret == -EEXIST) {
  231. free_extent_map(em);
  232. em = lookup_extent_mapping(em_tree, start, len);
  233. if (!em)
  234. em = ERR_PTR(-EIO);
  235. } else if (ret) {
  236. free_extent_map(em);
  237. em = ERR_PTR(ret);
  238. }
  239. write_unlock(&em_tree->lock);
  240. out:
  241. return em;
  242. }
  243. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  244. {
  245. return btrfs_crc32c(seed, data, len);
  246. }
  247. void btrfs_csum_final(u32 crc, u8 *result)
  248. {
  249. put_unaligned_le32(~crc, result);
  250. }
  251. /*
  252. * compute the csum for a btree block, and either verify it or write it
  253. * into the csum field of the block.
  254. */
  255. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  256. struct extent_buffer *buf,
  257. int verify)
  258. {
  259. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  260. char *result = NULL;
  261. unsigned long len;
  262. unsigned long cur_len;
  263. unsigned long offset = BTRFS_CSUM_SIZE;
  264. char *kaddr;
  265. unsigned long map_start;
  266. unsigned long map_len;
  267. int err;
  268. u32 crc = ~(u32)0;
  269. unsigned long inline_result;
  270. len = buf->len - offset;
  271. while (len > 0) {
  272. err = map_private_extent_buffer(buf, offset, 32,
  273. &kaddr, &map_start, &map_len);
  274. if (err)
  275. return err;
  276. cur_len = min(len, map_len - (offset - map_start));
  277. crc = btrfs_csum_data(kaddr + offset - map_start,
  278. crc, cur_len);
  279. len -= cur_len;
  280. offset += cur_len;
  281. }
  282. if (csum_size > sizeof(inline_result)) {
  283. result = kzalloc(csum_size, GFP_NOFS);
  284. if (!result)
  285. return -ENOMEM;
  286. } else {
  287. result = (char *)&inline_result;
  288. }
  289. btrfs_csum_final(crc, result);
  290. if (verify) {
  291. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  292. u32 val;
  293. u32 found = 0;
  294. memcpy(&found, result, csum_size);
  295. read_extent_buffer(buf, &val, 0, csum_size);
  296. btrfs_warn_rl(fs_info,
  297. "%s checksum verify failed on %llu wanted %X found %X level %d",
  298. fs_info->sb->s_id, buf->start,
  299. val, found, btrfs_header_level(buf));
  300. if (result != (char *)&inline_result)
  301. kfree(result);
  302. return -EUCLEAN;
  303. }
  304. } else {
  305. write_extent_buffer(buf, result, 0, csum_size);
  306. }
  307. if (result != (char *)&inline_result)
  308. kfree(result);
  309. return 0;
  310. }
  311. /*
  312. * we can't consider a given block up to date unless the transid of the
  313. * block matches the transid in the parent node's pointer. This is how we
  314. * detect blocks that either didn't get written at all or got written
  315. * in the wrong place.
  316. */
  317. static int verify_parent_transid(struct extent_io_tree *io_tree,
  318. struct extent_buffer *eb, u64 parent_transid,
  319. int atomic)
  320. {
  321. struct extent_state *cached_state = NULL;
  322. int ret;
  323. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  324. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  325. return 0;
  326. if (atomic)
  327. return -EAGAIN;
  328. if (need_lock) {
  329. btrfs_tree_read_lock(eb);
  330. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  331. }
  332. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  333. &cached_state);
  334. if (extent_buffer_uptodate(eb) &&
  335. btrfs_header_generation(eb) == parent_transid) {
  336. ret = 0;
  337. goto out;
  338. }
  339. btrfs_err_rl(eb->fs_info,
  340. "parent transid verify failed on %llu wanted %llu found %llu",
  341. eb->start,
  342. parent_transid, btrfs_header_generation(eb));
  343. ret = 1;
  344. /*
  345. * Things reading via commit roots that don't have normal protection,
  346. * like send, can have a really old block in cache that may point at a
  347. * block that has been freed and re-allocated. So don't clear uptodate
  348. * if we find an eb that is under IO (dirty/writeback) because we could
  349. * end up reading in the stale data and then writing it back out and
  350. * making everybody very sad.
  351. */
  352. if (!extent_buffer_under_io(eb))
  353. clear_extent_buffer_uptodate(eb);
  354. out:
  355. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  356. &cached_state, GFP_NOFS);
  357. if (need_lock)
  358. btrfs_tree_read_unlock_blocking(eb);
  359. return ret;
  360. }
  361. /*
  362. * Return 0 if the superblock checksum type matches the checksum value of that
  363. * algorithm. Pass the raw disk superblock data.
  364. */
  365. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  366. char *raw_disk_sb)
  367. {
  368. struct btrfs_super_block *disk_sb =
  369. (struct btrfs_super_block *)raw_disk_sb;
  370. u16 csum_type = btrfs_super_csum_type(disk_sb);
  371. int ret = 0;
  372. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  373. u32 crc = ~(u32)0;
  374. const int csum_size = sizeof(crc);
  375. char result[csum_size];
  376. /*
  377. * The super_block structure does not span the whole
  378. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  379. * is filled with zeros and is included in the checksum.
  380. */
  381. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  382. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  383. btrfs_csum_final(crc, result);
  384. if (memcmp(raw_disk_sb, result, csum_size))
  385. ret = 1;
  386. }
  387. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  388. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  389. csum_type);
  390. ret = 1;
  391. }
  392. return ret;
  393. }
  394. /*
  395. * helper to read a given tree block, doing retries as required when
  396. * the checksums don't match and we have alternate mirrors to try.
  397. */
  398. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  399. struct extent_buffer *eb,
  400. u64 parent_transid)
  401. {
  402. struct extent_io_tree *io_tree;
  403. int failed = 0;
  404. int ret;
  405. int num_copies = 0;
  406. int mirror_num = 0;
  407. int failed_mirror = 0;
  408. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  409. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  410. while (1) {
  411. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  412. btree_get_extent, mirror_num);
  413. if (!ret) {
  414. if (!verify_parent_transid(io_tree, eb,
  415. parent_transid, 0))
  416. break;
  417. else
  418. ret = -EIO;
  419. }
  420. /*
  421. * This buffer's crc is fine, but its contents are corrupted, so
  422. * there is no reason to read the other copies, they won't be
  423. * any less wrong.
  424. */
  425. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  426. break;
  427. num_copies = btrfs_num_copies(fs_info,
  428. eb->start, eb->len);
  429. if (num_copies == 1)
  430. break;
  431. if (!failed_mirror) {
  432. failed = 1;
  433. failed_mirror = eb->read_mirror;
  434. }
  435. mirror_num++;
  436. if (mirror_num == failed_mirror)
  437. mirror_num++;
  438. if (mirror_num > num_copies)
  439. break;
  440. }
  441. if (failed && !ret && failed_mirror)
  442. repair_eb_io_failure(fs_info, eb, failed_mirror);
  443. return ret;
  444. }
  445. /*
  446. * checksum a dirty tree block before IO. This has extra checks to make sure
  447. * we only fill in the checksum field in the first page of a multi-page block
  448. */
  449. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  450. {
  451. u64 start = page_offset(page);
  452. u64 found_start;
  453. struct extent_buffer *eb;
  454. eb = (struct extent_buffer *)page->private;
  455. if (page != eb->pages[0])
  456. return 0;
  457. found_start = btrfs_header_bytenr(eb);
  458. /*
  459. * Please do not consolidate these warnings into a single if.
  460. * It is useful to know what went wrong.
  461. */
  462. if (WARN_ON(found_start != start))
  463. return -EUCLEAN;
  464. if (WARN_ON(!PageUptodate(page)))
  465. return -EUCLEAN;
  466. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  467. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  468. return csum_tree_block(fs_info, eb, 0);
  469. }
  470. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  471. struct extent_buffer *eb)
  472. {
  473. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  474. u8 fsid[BTRFS_UUID_SIZE];
  475. int ret = 1;
  476. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  477. while (fs_devices) {
  478. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  479. ret = 0;
  480. break;
  481. }
  482. fs_devices = fs_devices->seed;
  483. }
  484. return ret;
  485. }
  486. #define CORRUPT(reason, eb, root, slot) \
  487. btrfs_crit(root->fs_info, \
  488. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  489. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  490. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  491. static noinline int check_leaf(struct btrfs_root *root,
  492. struct extent_buffer *leaf)
  493. {
  494. struct btrfs_fs_info *fs_info = root->fs_info;
  495. struct btrfs_key key;
  496. struct btrfs_key leaf_key;
  497. u32 nritems = btrfs_header_nritems(leaf);
  498. int slot;
  499. /*
  500. * Extent buffers from a relocation tree have a owner field that
  501. * corresponds to the subvolume tree they are based on. So just from an
  502. * extent buffer alone we can not find out what is the id of the
  503. * corresponding subvolume tree, so we can not figure out if the extent
  504. * buffer corresponds to the root of the relocation tree or not. So skip
  505. * this check for relocation trees.
  506. */
  507. if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
  508. struct btrfs_root *check_root;
  509. key.objectid = btrfs_header_owner(leaf);
  510. key.type = BTRFS_ROOT_ITEM_KEY;
  511. key.offset = (u64)-1;
  512. check_root = btrfs_get_fs_root(fs_info, &key, false);
  513. /*
  514. * The only reason we also check NULL here is that during
  515. * open_ctree() some roots has not yet been set up.
  516. */
  517. if (!IS_ERR_OR_NULL(check_root)) {
  518. struct extent_buffer *eb;
  519. eb = btrfs_root_node(check_root);
  520. /* if leaf is the root, then it's fine */
  521. if (leaf != eb) {
  522. CORRUPT("non-root leaf's nritems is 0",
  523. leaf, check_root, 0);
  524. free_extent_buffer(eb);
  525. return -EIO;
  526. }
  527. free_extent_buffer(eb);
  528. }
  529. return 0;
  530. }
  531. if (nritems == 0)
  532. return 0;
  533. /* Check the 0 item */
  534. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  535. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  536. CORRUPT("invalid item offset size pair", leaf, root, 0);
  537. return -EIO;
  538. }
  539. /*
  540. * Check to make sure each items keys are in the correct order and their
  541. * offsets make sense. We only have to loop through nritems-1 because
  542. * we check the current slot against the next slot, which verifies the
  543. * next slot's offset+size makes sense and that the current's slot
  544. * offset is correct.
  545. */
  546. for (slot = 0; slot < nritems - 1; slot++) {
  547. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  548. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  549. /* Make sure the keys are in the right order */
  550. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  551. CORRUPT("bad key order", leaf, root, slot);
  552. return -EIO;
  553. }
  554. /*
  555. * Make sure the offset and ends are right, remember that the
  556. * item data starts at the end of the leaf and grows towards the
  557. * front.
  558. */
  559. if (btrfs_item_offset_nr(leaf, slot) !=
  560. btrfs_item_end_nr(leaf, slot + 1)) {
  561. CORRUPT("slot offset bad", leaf, root, slot);
  562. return -EIO;
  563. }
  564. /*
  565. * Check to make sure that we don't point outside of the leaf,
  566. * just in case all the items are consistent to each other, but
  567. * all point outside of the leaf.
  568. */
  569. if (btrfs_item_end_nr(leaf, slot) >
  570. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  571. CORRUPT("slot end outside of leaf", leaf, root, slot);
  572. return -EIO;
  573. }
  574. }
  575. return 0;
  576. }
  577. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  578. {
  579. unsigned long nr = btrfs_header_nritems(node);
  580. struct btrfs_key key, next_key;
  581. int slot;
  582. u64 bytenr;
  583. int ret = 0;
  584. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  585. btrfs_crit(root->fs_info,
  586. "corrupt node: block %llu root %llu nritems %lu",
  587. node->start, root->objectid, nr);
  588. return -EIO;
  589. }
  590. for (slot = 0; slot < nr - 1; slot++) {
  591. bytenr = btrfs_node_blockptr(node, slot);
  592. btrfs_node_key_to_cpu(node, &key, slot);
  593. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  594. if (!bytenr) {
  595. CORRUPT("invalid item slot", node, root, slot);
  596. ret = -EIO;
  597. goto out;
  598. }
  599. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  600. CORRUPT("bad key order", node, root, slot);
  601. ret = -EIO;
  602. goto out;
  603. }
  604. }
  605. out:
  606. return ret;
  607. }
  608. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  609. u64 phy_offset, struct page *page,
  610. u64 start, u64 end, int mirror)
  611. {
  612. u64 found_start;
  613. int found_level;
  614. struct extent_buffer *eb;
  615. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  616. struct btrfs_fs_info *fs_info = root->fs_info;
  617. int ret = 0;
  618. int reads_done;
  619. if (!page->private)
  620. goto out;
  621. eb = (struct extent_buffer *)page->private;
  622. /* the pending IO might have been the only thing that kept this buffer
  623. * in memory. Make sure we have a ref for all this other checks
  624. */
  625. extent_buffer_get(eb);
  626. reads_done = atomic_dec_and_test(&eb->io_pages);
  627. if (!reads_done)
  628. goto err;
  629. eb->read_mirror = mirror;
  630. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  631. ret = -EIO;
  632. goto err;
  633. }
  634. found_start = btrfs_header_bytenr(eb);
  635. if (found_start != eb->start) {
  636. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  637. found_start, eb->start);
  638. ret = -EIO;
  639. goto err;
  640. }
  641. if (check_tree_block_fsid(fs_info, eb)) {
  642. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  643. eb->start);
  644. ret = -EIO;
  645. goto err;
  646. }
  647. found_level = btrfs_header_level(eb);
  648. if (found_level >= BTRFS_MAX_LEVEL) {
  649. btrfs_err(fs_info, "bad tree block level %d",
  650. (int)btrfs_header_level(eb));
  651. ret = -EIO;
  652. goto err;
  653. }
  654. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  655. eb, found_level);
  656. ret = csum_tree_block(fs_info, eb, 1);
  657. if (ret)
  658. goto err;
  659. /*
  660. * If this is a leaf block and it is corrupt, set the corrupt bit so
  661. * that we don't try and read the other copies of this block, just
  662. * return -EIO.
  663. */
  664. if (found_level == 0 && check_leaf(root, eb)) {
  665. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  666. ret = -EIO;
  667. }
  668. if (found_level > 0 && check_node(root, eb))
  669. ret = -EIO;
  670. if (!ret)
  671. set_extent_buffer_uptodate(eb);
  672. err:
  673. if (reads_done &&
  674. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  675. btree_readahead_hook(eb, ret);
  676. if (ret) {
  677. /*
  678. * our io error hook is going to dec the io pages
  679. * again, we have to make sure it has something
  680. * to decrement
  681. */
  682. atomic_inc(&eb->io_pages);
  683. clear_extent_buffer_uptodate(eb);
  684. }
  685. free_extent_buffer(eb);
  686. out:
  687. return ret;
  688. }
  689. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  690. {
  691. struct extent_buffer *eb;
  692. eb = (struct extent_buffer *)page->private;
  693. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  694. eb->read_mirror = failed_mirror;
  695. atomic_dec(&eb->io_pages);
  696. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  697. btree_readahead_hook(eb, -EIO);
  698. return -EIO; /* we fixed nothing */
  699. }
  700. static void end_workqueue_bio(struct bio *bio)
  701. {
  702. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  703. struct btrfs_fs_info *fs_info;
  704. struct btrfs_workqueue *wq;
  705. btrfs_work_func_t func;
  706. fs_info = end_io_wq->info;
  707. end_io_wq->status = bio->bi_status;
  708. if (bio_op(bio) == REQ_OP_WRITE) {
  709. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  710. wq = fs_info->endio_meta_write_workers;
  711. func = btrfs_endio_meta_write_helper;
  712. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  713. wq = fs_info->endio_freespace_worker;
  714. func = btrfs_freespace_write_helper;
  715. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  716. wq = fs_info->endio_raid56_workers;
  717. func = btrfs_endio_raid56_helper;
  718. } else {
  719. wq = fs_info->endio_write_workers;
  720. func = btrfs_endio_write_helper;
  721. }
  722. } else {
  723. if (unlikely(end_io_wq->metadata ==
  724. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  725. wq = fs_info->endio_repair_workers;
  726. func = btrfs_endio_repair_helper;
  727. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  728. wq = fs_info->endio_raid56_workers;
  729. func = btrfs_endio_raid56_helper;
  730. } else if (end_io_wq->metadata) {
  731. wq = fs_info->endio_meta_workers;
  732. func = btrfs_endio_meta_helper;
  733. } else {
  734. wq = fs_info->endio_workers;
  735. func = btrfs_endio_helper;
  736. }
  737. }
  738. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  739. btrfs_queue_work(wq, &end_io_wq->work);
  740. }
  741. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  742. enum btrfs_wq_endio_type metadata)
  743. {
  744. struct btrfs_end_io_wq *end_io_wq;
  745. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  746. if (!end_io_wq)
  747. return BLK_STS_RESOURCE;
  748. end_io_wq->private = bio->bi_private;
  749. end_io_wq->end_io = bio->bi_end_io;
  750. end_io_wq->info = info;
  751. end_io_wq->status = 0;
  752. end_io_wq->bio = bio;
  753. end_io_wq->metadata = metadata;
  754. bio->bi_private = end_io_wq;
  755. bio->bi_end_io = end_workqueue_bio;
  756. return 0;
  757. }
  758. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  759. {
  760. unsigned long limit = min_t(unsigned long,
  761. info->thread_pool_size,
  762. info->fs_devices->open_devices);
  763. return 256 * limit;
  764. }
  765. static void run_one_async_start(struct btrfs_work *work)
  766. {
  767. struct async_submit_bio *async;
  768. blk_status_t ret;
  769. async = container_of(work, struct async_submit_bio, work);
  770. ret = async->submit_bio_start(async->inode, async->bio,
  771. async->mirror_num, async->bio_flags,
  772. async->bio_offset);
  773. if (ret)
  774. async->status = ret;
  775. }
  776. static void run_one_async_done(struct btrfs_work *work)
  777. {
  778. struct btrfs_fs_info *fs_info;
  779. struct async_submit_bio *async;
  780. int limit;
  781. async = container_of(work, struct async_submit_bio, work);
  782. fs_info = BTRFS_I(async->inode)->root->fs_info;
  783. limit = btrfs_async_submit_limit(fs_info);
  784. limit = limit * 2 / 3;
  785. /*
  786. * atomic_dec_return implies a barrier for waitqueue_active
  787. */
  788. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  789. waitqueue_active(&fs_info->async_submit_wait))
  790. wake_up(&fs_info->async_submit_wait);
  791. /* If an error occurred we just want to clean up the bio and move on */
  792. if (async->status) {
  793. async->bio->bi_status = async->status;
  794. bio_endio(async->bio);
  795. return;
  796. }
  797. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  798. async->bio_flags, async->bio_offset);
  799. }
  800. static void run_one_async_free(struct btrfs_work *work)
  801. {
  802. struct async_submit_bio *async;
  803. async = container_of(work, struct async_submit_bio, work);
  804. kfree(async);
  805. }
  806. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info,
  807. struct inode *inode, struct bio *bio, int mirror_num,
  808. unsigned long bio_flags, u64 bio_offset,
  809. extent_submit_bio_hook_t *submit_bio_start,
  810. extent_submit_bio_hook_t *submit_bio_done)
  811. {
  812. struct async_submit_bio *async;
  813. async = kmalloc(sizeof(*async), GFP_NOFS);
  814. if (!async)
  815. return BLK_STS_RESOURCE;
  816. async->inode = inode;
  817. async->bio = bio;
  818. async->mirror_num = mirror_num;
  819. async->submit_bio_start = submit_bio_start;
  820. async->submit_bio_done = submit_bio_done;
  821. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  822. run_one_async_done, run_one_async_free);
  823. async->bio_flags = bio_flags;
  824. async->bio_offset = bio_offset;
  825. async->status = 0;
  826. atomic_inc(&fs_info->nr_async_submits);
  827. if (op_is_sync(bio->bi_opf))
  828. btrfs_set_work_high_priority(&async->work);
  829. btrfs_queue_work(fs_info->workers, &async->work);
  830. while (atomic_read(&fs_info->async_submit_draining) &&
  831. atomic_read(&fs_info->nr_async_submits)) {
  832. wait_event(fs_info->async_submit_wait,
  833. (atomic_read(&fs_info->nr_async_submits) == 0));
  834. }
  835. return 0;
  836. }
  837. static blk_status_t btree_csum_one_bio(struct bio *bio)
  838. {
  839. struct bio_vec *bvec;
  840. struct btrfs_root *root;
  841. int i, ret = 0;
  842. bio_for_each_segment_all(bvec, bio, i) {
  843. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  844. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  845. if (ret)
  846. break;
  847. }
  848. return errno_to_blk_status(ret);
  849. }
  850. static blk_status_t __btree_submit_bio_start(struct inode *inode,
  851. struct bio *bio, int mirror_num, unsigned long bio_flags,
  852. u64 bio_offset)
  853. {
  854. /*
  855. * when we're called for a write, we're already in the async
  856. * submission context. Just jump into btrfs_map_bio
  857. */
  858. return btree_csum_one_bio(bio);
  859. }
  860. static blk_status_t __btree_submit_bio_done(struct inode *inode,
  861. struct bio *bio, int mirror_num, unsigned long bio_flags,
  862. u64 bio_offset)
  863. {
  864. blk_status_t ret;
  865. /*
  866. * when we're called for a write, we're already in the async
  867. * submission context. Just jump into btrfs_map_bio
  868. */
  869. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  870. if (ret) {
  871. bio->bi_status = ret;
  872. bio_endio(bio);
  873. }
  874. return ret;
  875. }
  876. static int check_async_write(unsigned long bio_flags)
  877. {
  878. if (bio_flags & EXTENT_BIO_TREE_LOG)
  879. return 0;
  880. #ifdef CONFIG_X86
  881. if (static_cpu_has(X86_FEATURE_XMM4_2))
  882. return 0;
  883. #endif
  884. return 1;
  885. }
  886. static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  887. int mirror_num, unsigned long bio_flags,
  888. u64 bio_offset)
  889. {
  890. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  891. int async = check_async_write(bio_flags);
  892. blk_status_t ret;
  893. if (bio_op(bio) != REQ_OP_WRITE) {
  894. /*
  895. * called for a read, do the setup so that checksum validation
  896. * can happen in the async kernel threads
  897. */
  898. ret = btrfs_bio_wq_end_io(fs_info, bio,
  899. BTRFS_WQ_ENDIO_METADATA);
  900. if (ret)
  901. goto out_w_error;
  902. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  903. } else if (!async) {
  904. ret = btree_csum_one_bio(bio);
  905. if (ret)
  906. goto out_w_error;
  907. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  908. } else {
  909. /*
  910. * kthread helpers are used to submit writes so that
  911. * checksumming can happen in parallel across all CPUs
  912. */
  913. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
  914. bio_offset,
  915. __btree_submit_bio_start,
  916. __btree_submit_bio_done);
  917. }
  918. if (ret)
  919. goto out_w_error;
  920. return 0;
  921. out_w_error:
  922. bio->bi_status = ret;
  923. bio_endio(bio);
  924. return ret;
  925. }
  926. #ifdef CONFIG_MIGRATION
  927. static int btree_migratepage(struct address_space *mapping,
  928. struct page *newpage, struct page *page,
  929. enum migrate_mode mode)
  930. {
  931. /*
  932. * we can't safely write a btree page from here,
  933. * we haven't done the locking hook
  934. */
  935. if (PageDirty(page))
  936. return -EAGAIN;
  937. /*
  938. * Buffers may be managed in a filesystem specific way.
  939. * We must have no buffers or drop them.
  940. */
  941. if (page_has_private(page) &&
  942. !try_to_release_page(page, GFP_KERNEL))
  943. return -EAGAIN;
  944. return migrate_page(mapping, newpage, page, mode);
  945. }
  946. #endif
  947. static int btree_writepages(struct address_space *mapping,
  948. struct writeback_control *wbc)
  949. {
  950. struct btrfs_fs_info *fs_info;
  951. int ret;
  952. if (wbc->sync_mode == WB_SYNC_NONE) {
  953. if (wbc->for_kupdate)
  954. return 0;
  955. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  956. /* this is a bit racy, but that's ok */
  957. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  958. BTRFS_DIRTY_METADATA_THRESH);
  959. if (ret < 0)
  960. return 0;
  961. }
  962. return btree_write_cache_pages(mapping, wbc);
  963. }
  964. static int btree_readpage(struct file *file, struct page *page)
  965. {
  966. struct extent_io_tree *tree;
  967. tree = &BTRFS_I(page->mapping->host)->io_tree;
  968. return extent_read_full_page(tree, page, btree_get_extent, 0);
  969. }
  970. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  971. {
  972. if (PageWriteback(page) || PageDirty(page))
  973. return 0;
  974. return try_release_extent_buffer(page);
  975. }
  976. static void btree_invalidatepage(struct page *page, unsigned int offset,
  977. unsigned int length)
  978. {
  979. struct extent_io_tree *tree;
  980. tree = &BTRFS_I(page->mapping->host)->io_tree;
  981. extent_invalidatepage(tree, page, offset);
  982. btree_releasepage(page, GFP_NOFS);
  983. if (PagePrivate(page)) {
  984. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  985. "page private not zero on page %llu",
  986. (unsigned long long)page_offset(page));
  987. ClearPagePrivate(page);
  988. set_page_private(page, 0);
  989. put_page(page);
  990. }
  991. }
  992. static int btree_set_page_dirty(struct page *page)
  993. {
  994. #ifdef DEBUG
  995. struct extent_buffer *eb;
  996. BUG_ON(!PagePrivate(page));
  997. eb = (struct extent_buffer *)page->private;
  998. BUG_ON(!eb);
  999. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  1000. BUG_ON(!atomic_read(&eb->refs));
  1001. btrfs_assert_tree_locked(eb);
  1002. #endif
  1003. return __set_page_dirty_nobuffers(page);
  1004. }
  1005. static const struct address_space_operations btree_aops = {
  1006. .readpage = btree_readpage,
  1007. .writepages = btree_writepages,
  1008. .releasepage = btree_releasepage,
  1009. .invalidatepage = btree_invalidatepage,
  1010. #ifdef CONFIG_MIGRATION
  1011. .migratepage = btree_migratepage,
  1012. #endif
  1013. .set_page_dirty = btree_set_page_dirty,
  1014. };
  1015. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1016. {
  1017. struct extent_buffer *buf = NULL;
  1018. struct inode *btree_inode = fs_info->btree_inode;
  1019. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1020. if (IS_ERR(buf))
  1021. return;
  1022. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1023. buf, WAIT_NONE, btree_get_extent, 0);
  1024. free_extent_buffer(buf);
  1025. }
  1026. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1027. int mirror_num, struct extent_buffer **eb)
  1028. {
  1029. struct extent_buffer *buf = NULL;
  1030. struct inode *btree_inode = fs_info->btree_inode;
  1031. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1032. int ret;
  1033. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1034. if (IS_ERR(buf))
  1035. return 0;
  1036. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1037. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1038. btree_get_extent, mirror_num);
  1039. if (ret) {
  1040. free_extent_buffer(buf);
  1041. return ret;
  1042. }
  1043. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1044. free_extent_buffer(buf);
  1045. return -EIO;
  1046. } else if (extent_buffer_uptodate(buf)) {
  1047. *eb = buf;
  1048. } else {
  1049. free_extent_buffer(buf);
  1050. }
  1051. return 0;
  1052. }
  1053. struct extent_buffer *btrfs_find_create_tree_block(
  1054. struct btrfs_fs_info *fs_info,
  1055. u64 bytenr)
  1056. {
  1057. if (btrfs_is_testing(fs_info))
  1058. return alloc_test_extent_buffer(fs_info, bytenr);
  1059. return alloc_extent_buffer(fs_info, bytenr);
  1060. }
  1061. int btrfs_write_tree_block(struct extent_buffer *buf)
  1062. {
  1063. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1064. buf->start + buf->len - 1);
  1065. }
  1066. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1067. {
  1068. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1069. buf->start, buf->start + buf->len - 1);
  1070. }
  1071. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1072. u64 parent_transid)
  1073. {
  1074. struct extent_buffer *buf = NULL;
  1075. int ret;
  1076. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1077. if (IS_ERR(buf))
  1078. return buf;
  1079. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1080. if (ret) {
  1081. free_extent_buffer(buf);
  1082. return ERR_PTR(ret);
  1083. }
  1084. return buf;
  1085. }
  1086. void clean_tree_block(struct btrfs_fs_info *fs_info,
  1087. struct extent_buffer *buf)
  1088. {
  1089. if (btrfs_header_generation(buf) ==
  1090. fs_info->running_transaction->transid) {
  1091. btrfs_assert_tree_locked(buf);
  1092. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1093. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1094. -buf->len,
  1095. fs_info->dirty_metadata_batch);
  1096. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1097. btrfs_set_lock_blocking(buf);
  1098. clear_extent_buffer_dirty(buf);
  1099. }
  1100. }
  1101. }
  1102. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1103. {
  1104. struct btrfs_subvolume_writers *writers;
  1105. int ret;
  1106. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1107. if (!writers)
  1108. return ERR_PTR(-ENOMEM);
  1109. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1110. if (ret < 0) {
  1111. kfree(writers);
  1112. return ERR_PTR(ret);
  1113. }
  1114. init_waitqueue_head(&writers->wait);
  1115. return writers;
  1116. }
  1117. static void
  1118. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1119. {
  1120. percpu_counter_destroy(&writers->counter);
  1121. kfree(writers);
  1122. }
  1123. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1124. u64 objectid)
  1125. {
  1126. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1127. root->node = NULL;
  1128. root->commit_root = NULL;
  1129. root->state = 0;
  1130. root->orphan_cleanup_state = 0;
  1131. root->objectid = objectid;
  1132. root->last_trans = 0;
  1133. root->highest_objectid = 0;
  1134. root->nr_delalloc_inodes = 0;
  1135. root->nr_ordered_extents = 0;
  1136. root->name = NULL;
  1137. root->inode_tree = RB_ROOT;
  1138. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1139. root->block_rsv = NULL;
  1140. root->orphan_block_rsv = NULL;
  1141. INIT_LIST_HEAD(&root->dirty_list);
  1142. INIT_LIST_HEAD(&root->root_list);
  1143. INIT_LIST_HEAD(&root->delalloc_inodes);
  1144. INIT_LIST_HEAD(&root->delalloc_root);
  1145. INIT_LIST_HEAD(&root->ordered_extents);
  1146. INIT_LIST_HEAD(&root->ordered_root);
  1147. INIT_LIST_HEAD(&root->logged_list[0]);
  1148. INIT_LIST_HEAD(&root->logged_list[1]);
  1149. spin_lock_init(&root->orphan_lock);
  1150. spin_lock_init(&root->inode_lock);
  1151. spin_lock_init(&root->delalloc_lock);
  1152. spin_lock_init(&root->ordered_extent_lock);
  1153. spin_lock_init(&root->accounting_lock);
  1154. spin_lock_init(&root->log_extents_lock[0]);
  1155. spin_lock_init(&root->log_extents_lock[1]);
  1156. mutex_init(&root->objectid_mutex);
  1157. mutex_init(&root->log_mutex);
  1158. mutex_init(&root->ordered_extent_mutex);
  1159. mutex_init(&root->delalloc_mutex);
  1160. init_waitqueue_head(&root->log_writer_wait);
  1161. init_waitqueue_head(&root->log_commit_wait[0]);
  1162. init_waitqueue_head(&root->log_commit_wait[1]);
  1163. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1164. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1165. atomic_set(&root->log_commit[0], 0);
  1166. atomic_set(&root->log_commit[1], 0);
  1167. atomic_set(&root->log_writers, 0);
  1168. atomic_set(&root->log_batch, 0);
  1169. atomic_set(&root->orphan_inodes, 0);
  1170. refcount_set(&root->refs, 1);
  1171. atomic_set(&root->will_be_snapshoted, 0);
  1172. atomic64_set(&root->qgroup_meta_rsv, 0);
  1173. root->log_transid = 0;
  1174. root->log_transid_committed = -1;
  1175. root->last_log_commit = 0;
  1176. if (!dummy)
  1177. extent_io_tree_init(&root->dirty_log_pages,
  1178. fs_info->btree_inode->i_mapping);
  1179. memset(&root->root_key, 0, sizeof(root->root_key));
  1180. memset(&root->root_item, 0, sizeof(root->root_item));
  1181. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1182. if (!dummy)
  1183. root->defrag_trans_start = fs_info->generation;
  1184. else
  1185. root->defrag_trans_start = 0;
  1186. root->root_key.objectid = objectid;
  1187. root->anon_dev = 0;
  1188. spin_lock_init(&root->root_item_lock);
  1189. }
  1190. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1191. gfp_t flags)
  1192. {
  1193. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1194. if (root)
  1195. root->fs_info = fs_info;
  1196. return root;
  1197. }
  1198. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1199. /* Should only be used by the testing infrastructure */
  1200. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1201. {
  1202. struct btrfs_root *root;
  1203. if (!fs_info)
  1204. return ERR_PTR(-EINVAL);
  1205. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1206. if (!root)
  1207. return ERR_PTR(-ENOMEM);
  1208. /* We don't use the stripesize in selftest, set it as sectorsize */
  1209. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1210. root->alloc_bytenr = 0;
  1211. return root;
  1212. }
  1213. #endif
  1214. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info,
  1216. u64 objectid)
  1217. {
  1218. struct extent_buffer *leaf;
  1219. struct btrfs_root *tree_root = fs_info->tree_root;
  1220. struct btrfs_root *root;
  1221. struct btrfs_key key;
  1222. int ret = 0;
  1223. uuid_le uuid;
  1224. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1225. if (!root)
  1226. return ERR_PTR(-ENOMEM);
  1227. __setup_root(root, fs_info, objectid);
  1228. root->root_key.objectid = objectid;
  1229. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1230. root->root_key.offset = 0;
  1231. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1232. if (IS_ERR(leaf)) {
  1233. ret = PTR_ERR(leaf);
  1234. leaf = NULL;
  1235. goto fail;
  1236. }
  1237. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1238. btrfs_set_header_bytenr(leaf, leaf->start);
  1239. btrfs_set_header_generation(leaf, trans->transid);
  1240. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1241. btrfs_set_header_owner(leaf, objectid);
  1242. root->node = leaf;
  1243. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1244. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1245. btrfs_mark_buffer_dirty(leaf);
  1246. root->commit_root = btrfs_root_node(root);
  1247. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1248. root->root_item.flags = 0;
  1249. root->root_item.byte_limit = 0;
  1250. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1251. btrfs_set_root_generation(&root->root_item, trans->transid);
  1252. btrfs_set_root_level(&root->root_item, 0);
  1253. btrfs_set_root_refs(&root->root_item, 1);
  1254. btrfs_set_root_used(&root->root_item, leaf->len);
  1255. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1256. btrfs_set_root_dirid(&root->root_item, 0);
  1257. uuid_le_gen(&uuid);
  1258. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1259. root->root_item.drop_level = 0;
  1260. key.objectid = objectid;
  1261. key.type = BTRFS_ROOT_ITEM_KEY;
  1262. key.offset = 0;
  1263. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1264. if (ret)
  1265. goto fail;
  1266. btrfs_tree_unlock(leaf);
  1267. return root;
  1268. fail:
  1269. if (leaf) {
  1270. btrfs_tree_unlock(leaf);
  1271. free_extent_buffer(root->commit_root);
  1272. free_extent_buffer(leaf);
  1273. }
  1274. kfree(root);
  1275. return ERR_PTR(ret);
  1276. }
  1277. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1278. struct btrfs_fs_info *fs_info)
  1279. {
  1280. struct btrfs_root *root;
  1281. struct extent_buffer *leaf;
  1282. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1283. if (!root)
  1284. return ERR_PTR(-ENOMEM);
  1285. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1286. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1287. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1288. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1289. /*
  1290. * DON'T set REF_COWS for log trees
  1291. *
  1292. * log trees do not get reference counted because they go away
  1293. * before a real commit is actually done. They do store pointers
  1294. * to file data extents, and those reference counts still get
  1295. * updated (along with back refs to the log tree).
  1296. */
  1297. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1298. NULL, 0, 0, 0);
  1299. if (IS_ERR(leaf)) {
  1300. kfree(root);
  1301. return ERR_CAST(leaf);
  1302. }
  1303. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1304. btrfs_set_header_bytenr(leaf, leaf->start);
  1305. btrfs_set_header_generation(leaf, trans->transid);
  1306. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1307. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1308. root->node = leaf;
  1309. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1310. btrfs_mark_buffer_dirty(root->node);
  1311. btrfs_tree_unlock(root->node);
  1312. return root;
  1313. }
  1314. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1315. struct btrfs_fs_info *fs_info)
  1316. {
  1317. struct btrfs_root *log_root;
  1318. log_root = alloc_log_tree(trans, fs_info);
  1319. if (IS_ERR(log_root))
  1320. return PTR_ERR(log_root);
  1321. WARN_ON(fs_info->log_root_tree);
  1322. fs_info->log_root_tree = log_root;
  1323. return 0;
  1324. }
  1325. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1326. struct btrfs_root *root)
  1327. {
  1328. struct btrfs_fs_info *fs_info = root->fs_info;
  1329. struct btrfs_root *log_root;
  1330. struct btrfs_inode_item *inode_item;
  1331. log_root = alloc_log_tree(trans, fs_info);
  1332. if (IS_ERR(log_root))
  1333. return PTR_ERR(log_root);
  1334. log_root->last_trans = trans->transid;
  1335. log_root->root_key.offset = root->root_key.objectid;
  1336. inode_item = &log_root->root_item.inode;
  1337. btrfs_set_stack_inode_generation(inode_item, 1);
  1338. btrfs_set_stack_inode_size(inode_item, 3);
  1339. btrfs_set_stack_inode_nlink(inode_item, 1);
  1340. btrfs_set_stack_inode_nbytes(inode_item,
  1341. fs_info->nodesize);
  1342. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1343. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1344. WARN_ON(root->log_root);
  1345. root->log_root = log_root;
  1346. root->log_transid = 0;
  1347. root->log_transid_committed = -1;
  1348. root->last_log_commit = 0;
  1349. return 0;
  1350. }
  1351. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1352. struct btrfs_key *key)
  1353. {
  1354. struct btrfs_root *root;
  1355. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1356. struct btrfs_path *path;
  1357. u64 generation;
  1358. int ret;
  1359. path = btrfs_alloc_path();
  1360. if (!path)
  1361. return ERR_PTR(-ENOMEM);
  1362. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1363. if (!root) {
  1364. ret = -ENOMEM;
  1365. goto alloc_fail;
  1366. }
  1367. __setup_root(root, fs_info, key->objectid);
  1368. ret = btrfs_find_root(tree_root, key, path,
  1369. &root->root_item, &root->root_key);
  1370. if (ret) {
  1371. if (ret > 0)
  1372. ret = -ENOENT;
  1373. goto find_fail;
  1374. }
  1375. generation = btrfs_root_generation(&root->root_item);
  1376. root->node = read_tree_block(fs_info,
  1377. btrfs_root_bytenr(&root->root_item),
  1378. generation);
  1379. if (IS_ERR(root->node)) {
  1380. ret = PTR_ERR(root->node);
  1381. goto find_fail;
  1382. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1383. ret = -EIO;
  1384. free_extent_buffer(root->node);
  1385. goto find_fail;
  1386. }
  1387. root->commit_root = btrfs_root_node(root);
  1388. out:
  1389. btrfs_free_path(path);
  1390. return root;
  1391. find_fail:
  1392. kfree(root);
  1393. alloc_fail:
  1394. root = ERR_PTR(ret);
  1395. goto out;
  1396. }
  1397. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1398. struct btrfs_key *location)
  1399. {
  1400. struct btrfs_root *root;
  1401. root = btrfs_read_tree_root(tree_root, location);
  1402. if (IS_ERR(root))
  1403. return root;
  1404. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1405. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1406. btrfs_check_and_init_root_item(&root->root_item);
  1407. }
  1408. return root;
  1409. }
  1410. int btrfs_init_fs_root(struct btrfs_root *root)
  1411. {
  1412. int ret;
  1413. struct btrfs_subvolume_writers *writers;
  1414. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1415. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1416. GFP_NOFS);
  1417. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1418. ret = -ENOMEM;
  1419. goto fail;
  1420. }
  1421. writers = btrfs_alloc_subvolume_writers();
  1422. if (IS_ERR(writers)) {
  1423. ret = PTR_ERR(writers);
  1424. goto fail;
  1425. }
  1426. root->subv_writers = writers;
  1427. btrfs_init_free_ino_ctl(root);
  1428. spin_lock_init(&root->ino_cache_lock);
  1429. init_waitqueue_head(&root->ino_cache_wait);
  1430. ret = get_anon_bdev(&root->anon_dev);
  1431. if (ret)
  1432. goto fail;
  1433. mutex_lock(&root->objectid_mutex);
  1434. ret = btrfs_find_highest_objectid(root,
  1435. &root->highest_objectid);
  1436. if (ret) {
  1437. mutex_unlock(&root->objectid_mutex);
  1438. goto fail;
  1439. }
  1440. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1441. mutex_unlock(&root->objectid_mutex);
  1442. return 0;
  1443. fail:
  1444. /* the caller is responsible to call free_fs_root */
  1445. return ret;
  1446. }
  1447. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1448. u64 root_id)
  1449. {
  1450. struct btrfs_root *root;
  1451. spin_lock(&fs_info->fs_roots_radix_lock);
  1452. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1453. (unsigned long)root_id);
  1454. spin_unlock(&fs_info->fs_roots_radix_lock);
  1455. return root;
  1456. }
  1457. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1458. struct btrfs_root *root)
  1459. {
  1460. int ret;
  1461. ret = radix_tree_preload(GFP_NOFS);
  1462. if (ret)
  1463. return ret;
  1464. spin_lock(&fs_info->fs_roots_radix_lock);
  1465. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1466. (unsigned long)root->root_key.objectid,
  1467. root);
  1468. if (ret == 0)
  1469. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1470. spin_unlock(&fs_info->fs_roots_radix_lock);
  1471. radix_tree_preload_end();
  1472. return ret;
  1473. }
  1474. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1475. struct btrfs_key *location,
  1476. bool check_ref)
  1477. {
  1478. struct btrfs_root *root;
  1479. struct btrfs_path *path;
  1480. struct btrfs_key key;
  1481. int ret;
  1482. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1483. return fs_info->tree_root;
  1484. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1485. return fs_info->extent_root;
  1486. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1487. return fs_info->chunk_root;
  1488. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1489. return fs_info->dev_root;
  1490. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1491. return fs_info->csum_root;
  1492. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1493. return fs_info->quota_root ? fs_info->quota_root :
  1494. ERR_PTR(-ENOENT);
  1495. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1496. return fs_info->uuid_root ? fs_info->uuid_root :
  1497. ERR_PTR(-ENOENT);
  1498. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1499. return fs_info->free_space_root ? fs_info->free_space_root :
  1500. ERR_PTR(-ENOENT);
  1501. again:
  1502. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1503. if (root) {
  1504. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1505. return ERR_PTR(-ENOENT);
  1506. return root;
  1507. }
  1508. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1509. if (IS_ERR(root))
  1510. return root;
  1511. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1512. ret = -ENOENT;
  1513. goto fail;
  1514. }
  1515. ret = btrfs_init_fs_root(root);
  1516. if (ret)
  1517. goto fail;
  1518. path = btrfs_alloc_path();
  1519. if (!path) {
  1520. ret = -ENOMEM;
  1521. goto fail;
  1522. }
  1523. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1524. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1525. key.offset = location->objectid;
  1526. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1527. btrfs_free_path(path);
  1528. if (ret < 0)
  1529. goto fail;
  1530. if (ret == 0)
  1531. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1532. ret = btrfs_insert_fs_root(fs_info, root);
  1533. if (ret) {
  1534. if (ret == -EEXIST) {
  1535. free_fs_root(root);
  1536. goto again;
  1537. }
  1538. goto fail;
  1539. }
  1540. return root;
  1541. fail:
  1542. free_fs_root(root);
  1543. return ERR_PTR(ret);
  1544. }
  1545. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1546. {
  1547. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1548. int ret = 0;
  1549. struct btrfs_device *device;
  1550. struct backing_dev_info *bdi;
  1551. rcu_read_lock();
  1552. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1553. if (!device->bdev)
  1554. continue;
  1555. bdi = device->bdev->bd_bdi;
  1556. if (bdi_congested(bdi, bdi_bits)) {
  1557. ret = 1;
  1558. break;
  1559. }
  1560. }
  1561. rcu_read_unlock();
  1562. return ret;
  1563. }
  1564. /*
  1565. * called by the kthread helper functions to finally call the bio end_io
  1566. * functions. This is where read checksum verification actually happens
  1567. */
  1568. static void end_workqueue_fn(struct btrfs_work *work)
  1569. {
  1570. struct bio *bio;
  1571. struct btrfs_end_io_wq *end_io_wq;
  1572. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1573. bio = end_io_wq->bio;
  1574. bio->bi_status = end_io_wq->status;
  1575. bio->bi_private = end_io_wq->private;
  1576. bio->bi_end_io = end_io_wq->end_io;
  1577. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1578. bio_endio(bio);
  1579. }
  1580. static int cleaner_kthread(void *arg)
  1581. {
  1582. struct btrfs_root *root = arg;
  1583. struct btrfs_fs_info *fs_info = root->fs_info;
  1584. int again;
  1585. struct btrfs_trans_handle *trans;
  1586. do {
  1587. again = 0;
  1588. /* Make the cleaner go to sleep early. */
  1589. if (btrfs_need_cleaner_sleep(fs_info))
  1590. goto sleep;
  1591. /*
  1592. * Do not do anything if we might cause open_ctree() to block
  1593. * before we have finished mounting the filesystem.
  1594. */
  1595. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1596. goto sleep;
  1597. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1598. goto sleep;
  1599. /*
  1600. * Avoid the problem that we change the status of the fs
  1601. * during the above check and trylock.
  1602. */
  1603. if (btrfs_need_cleaner_sleep(fs_info)) {
  1604. mutex_unlock(&fs_info->cleaner_mutex);
  1605. goto sleep;
  1606. }
  1607. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1608. btrfs_run_delayed_iputs(fs_info);
  1609. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1610. again = btrfs_clean_one_deleted_snapshot(root);
  1611. mutex_unlock(&fs_info->cleaner_mutex);
  1612. /*
  1613. * The defragger has dealt with the R/O remount and umount,
  1614. * needn't do anything special here.
  1615. */
  1616. btrfs_run_defrag_inodes(fs_info);
  1617. /*
  1618. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1619. * with relocation (btrfs_relocate_chunk) and relocation
  1620. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1621. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1622. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1623. * unused block groups.
  1624. */
  1625. btrfs_delete_unused_bgs(fs_info);
  1626. sleep:
  1627. if (!again) {
  1628. set_current_state(TASK_INTERRUPTIBLE);
  1629. if (!kthread_should_stop())
  1630. schedule();
  1631. __set_current_state(TASK_RUNNING);
  1632. }
  1633. } while (!kthread_should_stop());
  1634. /*
  1635. * Transaction kthread is stopped before us and wakes us up.
  1636. * However we might have started a new transaction and COWed some
  1637. * tree blocks when deleting unused block groups for example. So
  1638. * make sure we commit the transaction we started to have a clean
  1639. * shutdown when evicting the btree inode - if it has dirty pages
  1640. * when we do the final iput() on it, eviction will trigger a
  1641. * writeback for it which will fail with null pointer dereferences
  1642. * since work queues and other resources were already released and
  1643. * destroyed by the time the iput/eviction/writeback is made.
  1644. */
  1645. trans = btrfs_attach_transaction(root);
  1646. if (IS_ERR(trans)) {
  1647. if (PTR_ERR(trans) != -ENOENT)
  1648. btrfs_err(fs_info,
  1649. "cleaner transaction attach returned %ld",
  1650. PTR_ERR(trans));
  1651. } else {
  1652. int ret;
  1653. ret = btrfs_commit_transaction(trans);
  1654. if (ret)
  1655. btrfs_err(fs_info,
  1656. "cleaner open transaction commit returned %d",
  1657. ret);
  1658. }
  1659. return 0;
  1660. }
  1661. static int transaction_kthread(void *arg)
  1662. {
  1663. struct btrfs_root *root = arg;
  1664. struct btrfs_fs_info *fs_info = root->fs_info;
  1665. struct btrfs_trans_handle *trans;
  1666. struct btrfs_transaction *cur;
  1667. u64 transid;
  1668. unsigned long now;
  1669. unsigned long delay;
  1670. bool cannot_commit;
  1671. do {
  1672. cannot_commit = false;
  1673. delay = HZ * fs_info->commit_interval;
  1674. mutex_lock(&fs_info->transaction_kthread_mutex);
  1675. spin_lock(&fs_info->trans_lock);
  1676. cur = fs_info->running_transaction;
  1677. if (!cur) {
  1678. spin_unlock(&fs_info->trans_lock);
  1679. goto sleep;
  1680. }
  1681. now = get_seconds();
  1682. if (cur->state < TRANS_STATE_BLOCKED &&
  1683. (now < cur->start_time ||
  1684. now - cur->start_time < fs_info->commit_interval)) {
  1685. spin_unlock(&fs_info->trans_lock);
  1686. delay = HZ * 5;
  1687. goto sleep;
  1688. }
  1689. transid = cur->transid;
  1690. spin_unlock(&fs_info->trans_lock);
  1691. /* If the file system is aborted, this will always fail. */
  1692. trans = btrfs_attach_transaction(root);
  1693. if (IS_ERR(trans)) {
  1694. if (PTR_ERR(trans) != -ENOENT)
  1695. cannot_commit = true;
  1696. goto sleep;
  1697. }
  1698. if (transid == trans->transid) {
  1699. btrfs_commit_transaction(trans);
  1700. } else {
  1701. btrfs_end_transaction(trans);
  1702. }
  1703. sleep:
  1704. wake_up_process(fs_info->cleaner_kthread);
  1705. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1706. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1707. &fs_info->fs_state)))
  1708. btrfs_cleanup_transaction(fs_info);
  1709. set_current_state(TASK_INTERRUPTIBLE);
  1710. if (!kthread_should_stop() &&
  1711. (!btrfs_transaction_blocked(fs_info) ||
  1712. cannot_commit))
  1713. schedule_timeout(delay);
  1714. __set_current_state(TASK_RUNNING);
  1715. } while (!kthread_should_stop());
  1716. return 0;
  1717. }
  1718. /*
  1719. * this will find the highest generation in the array of
  1720. * root backups. The index of the highest array is returned,
  1721. * or -1 if we can't find anything.
  1722. *
  1723. * We check to make sure the array is valid by comparing the
  1724. * generation of the latest root in the array with the generation
  1725. * in the super block. If they don't match we pitch it.
  1726. */
  1727. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1728. {
  1729. u64 cur;
  1730. int newest_index = -1;
  1731. struct btrfs_root_backup *root_backup;
  1732. int i;
  1733. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1734. root_backup = info->super_copy->super_roots + i;
  1735. cur = btrfs_backup_tree_root_gen(root_backup);
  1736. if (cur == newest_gen)
  1737. newest_index = i;
  1738. }
  1739. /* check to see if we actually wrapped around */
  1740. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1741. root_backup = info->super_copy->super_roots;
  1742. cur = btrfs_backup_tree_root_gen(root_backup);
  1743. if (cur == newest_gen)
  1744. newest_index = 0;
  1745. }
  1746. return newest_index;
  1747. }
  1748. /*
  1749. * find the oldest backup so we know where to store new entries
  1750. * in the backup array. This will set the backup_root_index
  1751. * field in the fs_info struct
  1752. */
  1753. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1754. u64 newest_gen)
  1755. {
  1756. int newest_index = -1;
  1757. newest_index = find_newest_super_backup(info, newest_gen);
  1758. /* if there was garbage in there, just move along */
  1759. if (newest_index == -1) {
  1760. info->backup_root_index = 0;
  1761. } else {
  1762. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1763. }
  1764. }
  1765. /*
  1766. * copy all the root pointers into the super backup array.
  1767. * this will bump the backup pointer by one when it is
  1768. * done
  1769. */
  1770. static void backup_super_roots(struct btrfs_fs_info *info)
  1771. {
  1772. int next_backup;
  1773. struct btrfs_root_backup *root_backup;
  1774. int last_backup;
  1775. next_backup = info->backup_root_index;
  1776. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1777. BTRFS_NUM_BACKUP_ROOTS;
  1778. /*
  1779. * just overwrite the last backup if we're at the same generation
  1780. * this happens only at umount
  1781. */
  1782. root_backup = info->super_for_commit->super_roots + last_backup;
  1783. if (btrfs_backup_tree_root_gen(root_backup) ==
  1784. btrfs_header_generation(info->tree_root->node))
  1785. next_backup = last_backup;
  1786. root_backup = info->super_for_commit->super_roots + next_backup;
  1787. /*
  1788. * make sure all of our padding and empty slots get zero filled
  1789. * regardless of which ones we use today
  1790. */
  1791. memset(root_backup, 0, sizeof(*root_backup));
  1792. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1793. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1794. btrfs_set_backup_tree_root_gen(root_backup,
  1795. btrfs_header_generation(info->tree_root->node));
  1796. btrfs_set_backup_tree_root_level(root_backup,
  1797. btrfs_header_level(info->tree_root->node));
  1798. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1799. btrfs_set_backup_chunk_root_gen(root_backup,
  1800. btrfs_header_generation(info->chunk_root->node));
  1801. btrfs_set_backup_chunk_root_level(root_backup,
  1802. btrfs_header_level(info->chunk_root->node));
  1803. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1804. btrfs_set_backup_extent_root_gen(root_backup,
  1805. btrfs_header_generation(info->extent_root->node));
  1806. btrfs_set_backup_extent_root_level(root_backup,
  1807. btrfs_header_level(info->extent_root->node));
  1808. /*
  1809. * we might commit during log recovery, which happens before we set
  1810. * the fs_root. Make sure it is valid before we fill it in.
  1811. */
  1812. if (info->fs_root && info->fs_root->node) {
  1813. btrfs_set_backup_fs_root(root_backup,
  1814. info->fs_root->node->start);
  1815. btrfs_set_backup_fs_root_gen(root_backup,
  1816. btrfs_header_generation(info->fs_root->node));
  1817. btrfs_set_backup_fs_root_level(root_backup,
  1818. btrfs_header_level(info->fs_root->node));
  1819. }
  1820. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1821. btrfs_set_backup_dev_root_gen(root_backup,
  1822. btrfs_header_generation(info->dev_root->node));
  1823. btrfs_set_backup_dev_root_level(root_backup,
  1824. btrfs_header_level(info->dev_root->node));
  1825. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1826. btrfs_set_backup_csum_root_gen(root_backup,
  1827. btrfs_header_generation(info->csum_root->node));
  1828. btrfs_set_backup_csum_root_level(root_backup,
  1829. btrfs_header_level(info->csum_root->node));
  1830. btrfs_set_backup_total_bytes(root_backup,
  1831. btrfs_super_total_bytes(info->super_copy));
  1832. btrfs_set_backup_bytes_used(root_backup,
  1833. btrfs_super_bytes_used(info->super_copy));
  1834. btrfs_set_backup_num_devices(root_backup,
  1835. btrfs_super_num_devices(info->super_copy));
  1836. /*
  1837. * if we don't copy this out to the super_copy, it won't get remembered
  1838. * for the next commit
  1839. */
  1840. memcpy(&info->super_copy->super_roots,
  1841. &info->super_for_commit->super_roots,
  1842. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1843. }
  1844. /*
  1845. * this copies info out of the root backup array and back into
  1846. * the in-memory super block. It is meant to help iterate through
  1847. * the array, so you send it the number of backups you've already
  1848. * tried and the last backup index you used.
  1849. *
  1850. * this returns -1 when it has tried all the backups
  1851. */
  1852. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1853. struct btrfs_super_block *super,
  1854. int *num_backups_tried, int *backup_index)
  1855. {
  1856. struct btrfs_root_backup *root_backup;
  1857. int newest = *backup_index;
  1858. if (*num_backups_tried == 0) {
  1859. u64 gen = btrfs_super_generation(super);
  1860. newest = find_newest_super_backup(info, gen);
  1861. if (newest == -1)
  1862. return -1;
  1863. *backup_index = newest;
  1864. *num_backups_tried = 1;
  1865. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1866. /* we've tried all the backups, all done */
  1867. return -1;
  1868. } else {
  1869. /* jump to the next oldest backup */
  1870. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1871. BTRFS_NUM_BACKUP_ROOTS;
  1872. *backup_index = newest;
  1873. *num_backups_tried += 1;
  1874. }
  1875. root_backup = super->super_roots + newest;
  1876. btrfs_set_super_generation(super,
  1877. btrfs_backup_tree_root_gen(root_backup));
  1878. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1879. btrfs_set_super_root_level(super,
  1880. btrfs_backup_tree_root_level(root_backup));
  1881. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1882. /*
  1883. * fixme: the total bytes and num_devices need to match or we should
  1884. * need a fsck
  1885. */
  1886. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1887. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1888. return 0;
  1889. }
  1890. /* helper to cleanup workers */
  1891. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1892. {
  1893. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1894. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1895. btrfs_destroy_workqueue(fs_info->workers);
  1896. btrfs_destroy_workqueue(fs_info->endio_workers);
  1897. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1899. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1900. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1901. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1902. btrfs_destroy_workqueue(fs_info->submit_workers);
  1903. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1904. btrfs_destroy_workqueue(fs_info->caching_workers);
  1905. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1906. btrfs_destroy_workqueue(fs_info->flush_workers);
  1907. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1908. btrfs_destroy_workqueue(fs_info->extent_workers);
  1909. /*
  1910. * Now that all other work queues are destroyed, we can safely destroy
  1911. * the queues used for metadata I/O, since tasks from those other work
  1912. * queues can do metadata I/O operations.
  1913. */
  1914. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1915. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1916. }
  1917. static void free_root_extent_buffers(struct btrfs_root *root)
  1918. {
  1919. if (root) {
  1920. free_extent_buffer(root->node);
  1921. free_extent_buffer(root->commit_root);
  1922. root->node = NULL;
  1923. root->commit_root = NULL;
  1924. }
  1925. }
  1926. /* helper to cleanup tree roots */
  1927. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1928. {
  1929. free_root_extent_buffers(info->tree_root);
  1930. free_root_extent_buffers(info->dev_root);
  1931. free_root_extent_buffers(info->extent_root);
  1932. free_root_extent_buffers(info->csum_root);
  1933. free_root_extent_buffers(info->quota_root);
  1934. free_root_extent_buffers(info->uuid_root);
  1935. if (chunk_root)
  1936. free_root_extent_buffers(info->chunk_root);
  1937. free_root_extent_buffers(info->free_space_root);
  1938. }
  1939. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1940. {
  1941. int ret;
  1942. struct btrfs_root *gang[8];
  1943. int i;
  1944. while (!list_empty(&fs_info->dead_roots)) {
  1945. gang[0] = list_entry(fs_info->dead_roots.next,
  1946. struct btrfs_root, root_list);
  1947. list_del(&gang[0]->root_list);
  1948. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1949. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1950. } else {
  1951. free_extent_buffer(gang[0]->node);
  1952. free_extent_buffer(gang[0]->commit_root);
  1953. btrfs_put_fs_root(gang[0]);
  1954. }
  1955. }
  1956. while (1) {
  1957. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1958. (void **)gang, 0,
  1959. ARRAY_SIZE(gang));
  1960. if (!ret)
  1961. break;
  1962. for (i = 0; i < ret; i++)
  1963. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1964. }
  1965. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1966. btrfs_free_log_root_tree(NULL, fs_info);
  1967. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1968. }
  1969. }
  1970. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1971. {
  1972. mutex_init(&fs_info->scrub_lock);
  1973. atomic_set(&fs_info->scrubs_running, 0);
  1974. atomic_set(&fs_info->scrub_pause_req, 0);
  1975. atomic_set(&fs_info->scrubs_paused, 0);
  1976. atomic_set(&fs_info->scrub_cancel_req, 0);
  1977. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1978. fs_info->scrub_workers_refcnt = 0;
  1979. }
  1980. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1981. {
  1982. spin_lock_init(&fs_info->balance_lock);
  1983. mutex_init(&fs_info->balance_mutex);
  1984. atomic_set(&fs_info->balance_running, 0);
  1985. atomic_set(&fs_info->balance_pause_req, 0);
  1986. atomic_set(&fs_info->balance_cancel_req, 0);
  1987. fs_info->balance_ctl = NULL;
  1988. init_waitqueue_head(&fs_info->balance_wait_q);
  1989. }
  1990. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1991. {
  1992. struct inode *inode = fs_info->btree_inode;
  1993. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1994. set_nlink(inode, 1);
  1995. /*
  1996. * we set the i_size on the btree inode to the max possible int.
  1997. * the real end of the address space is determined by all of
  1998. * the devices in the system
  1999. */
  2000. inode->i_size = OFFSET_MAX;
  2001. inode->i_mapping->a_ops = &btree_aops;
  2002. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2003. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
  2004. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2005. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2006. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2007. BTRFS_I(inode)->root = fs_info->tree_root;
  2008. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2009. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2010. btrfs_insert_inode_hash(inode);
  2011. }
  2012. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2013. {
  2014. fs_info->dev_replace.lock_owner = 0;
  2015. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2016. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2017. rwlock_init(&fs_info->dev_replace.lock);
  2018. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2019. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2020. init_waitqueue_head(&fs_info->replace_wait);
  2021. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2022. }
  2023. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2024. {
  2025. spin_lock_init(&fs_info->qgroup_lock);
  2026. mutex_init(&fs_info->qgroup_ioctl_lock);
  2027. fs_info->qgroup_tree = RB_ROOT;
  2028. fs_info->qgroup_op_tree = RB_ROOT;
  2029. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2030. fs_info->qgroup_seq = 1;
  2031. fs_info->qgroup_ulist = NULL;
  2032. fs_info->qgroup_rescan_running = false;
  2033. mutex_init(&fs_info->qgroup_rescan_lock);
  2034. }
  2035. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2036. struct btrfs_fs_devices *fs_devices)
  2037. {
  2038. int max_active = fs_info->thread_pool_size;
  2039. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2040. fs_info->workers =
  2041. btrfs_alloc_workqueue(fs_info, "worker",
  2042. flags | WQ_HIGHPRI, max_active, 16);
  2043. fs_info->delalloc_workers =
  2044. btrfs_alloc_workqueue(fs_info, "delalloc",
  2045. flags, max_active, 2);
  2046. fs_info->flush_workers =
  2047. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2048. flags, max_active, 0);
  2049. fs_info->caching_workers =
  2050. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2051. /*
  2052. * a higher idle thresh on the submit workers makes it much more
  2053. * likely that bios will be send down in a sane order to the
  2054. * devices
  2055. */
  2056. fs_info->submit_workers =
  2057. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2058. min_t(u64, fs_devices->num_devices,
  2059. max_active), 64);
  2060. fs_info->fixup_workers =
  2061. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2062. /*
  2063. * endios are largely parallel and should have a very
  2064. * low idle thresh
  2065. */
  2066. fs_info->endio_workers =
  2067. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2068. fs_info->endio_meta_workers =
  2069. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2070. max_active, 4);
  2071. fs_info->endio_meta_write_workers =
  2072. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2073. max_active, 2);
  2074. fs_info->endio_raid56_workers =
  2075. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2076. max_active, 4);
  2077. fs_info->endio_repair_workers =
  2078. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2079. fs_info->rmw_workers =
  2080. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2081. fs_info->endio_write_workers =
  2082. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2083. max_active, 2);
  2084. fs_info->endio_freespace_worker =
  2085. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2086. max_active, 0);
  2087. fs_info->delayed_workers =
  2088. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2089. max_active, 0);
  2090. fs_info->readahead_workers =
  2091. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2092. max_active, 2);
  2093. fs_info->qgroup_rescan_workers =
  2094. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2095. fs_info->extent_workers =
  2096. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2097. min_t(u64, fs_devices->num_devices,
  2098. max_active), 8);
  2099. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2100. fs_info->submit_workers && fs_info->flush_workers &&
  2101. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2102. fs_info->endio_meta_write_workers &&
  2103. fs_info->endio_repair_workers &&
  2104. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2105. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2106. fs_info->caching_workers && fs_info->readahead_workers &&
  2107. fs_info->fixup_workers && fs_info->delayed_workers &&
  2108. fs_info->extent_workers &&
  2109. fs_info->qgroup_rescan_workers)) {
  2110. return -ENOMEM;
  2111. }
  2112. return 0;
  2113. }
  2114. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2115. struct btrfs_fs_devices *fs_devices)
  2116. {
  2117. int ret;
  2118. struct btrfs_root *log_tree_root;
  2119. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2120. u64 bytenr = btrfs_super_log_root(disk_super);
  2121. if (fs_devices->rw_devices == 0) {
  2122. btrfs_warn(fs_info, "log replay required on RO media");
  2123. return -EIO;
  2124. }
  2125. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2126. if (!log_tree_root)
  2127. return -ENOMEM;
  2128. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2129. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2130. fs_info->generation + 1);
  2131. if (IS_ERR(log_tree_root->node)) {
  2132. btrfs_warn(fs_info, "failed to read log tree");
  2133. ret = PTR_ERR(log_tree_root->node);
  2134. kfree(log_tree_root);
  2135. return ret;
  2136. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2137. btrfs_err(fs_info, "failed to read log tree");
  2138. free_extent_buffer(log_tree_root->node);
  2139. kfree(log_tree_root);
  2140. return -EIO;
  2141. }
  2142. /* returns with log_tree_root freed on success */
  2143. ret = btrfs_recover_log_trees(log_tree_root);
  2144. if (ret) {
  2145. btrfs_handle_fs_error(fs_info, ret,
  2146. "Failed to recover log tree");
  2147. free_extent_buffer(log_tree_root->node);
  2148. kfree(log_tree_root);
  2149. return ret;
  2150. }
  2151. if (fs_info->sb->s_flags & MS_RDONLY) {
  2152. ret = btrfs_commit_super(fs_info);
  2153. if (ret)
  2154. return ret;
  2155. }
  2156. return 0;
  2157. }
  2158. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2159. {
  2160. struct btrfs_root *tree_root = fs_info->tree_root;
  2161. struct btrfs_root *root;
  2162. struct btrfs_key location;
  2163. int ret;
  2164. BUG_ON(!fs_info->tree_root);
  2165. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2166. location.type = BTRFS_ROOT_ITEM_KEY;
  2167. location.offset = 0;
  2168. root = btrfs_read_tree_root(tree_root, &location);
  2169. if (IS_ERR(root))
  2170. return PTR_ERR(root);
  2171. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2172. fs_info->extent_root = root;
  2173. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2174. root = btrfs_read_tree_root(tree_root, &location);
  2175. if (IS_ERR(root))
  2176. return PTR_ERR(root);
  2177. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2178. fs_info->dev_root = root;
  2179. btrfs_init_devices_late(fs_info);
  2180. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2181. root = btrfs_read_tree_root(tree_root, &location);
  2182. if (IS_ERR(root))
  2183. return PTR_ERR(root);
  2184. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2185. fs_info->csum_root = root;
  2186. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2187. root = btrfs_read_tree_root(tree_root, &location);
  2188. if (!IS_ERR(root)) {
  2189. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2190. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2191. fs_info->quota_root = root;
  2192. }
  2193. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2194. root = btrfs_read_tree_root(tree_root, &location);
  2195. if (IS_ERR(root)) {
  2196. ret = PTR_ERR(root);
  2197. if (ret != -ENOENT)
  2198. return ret;
  2199. } else {
  2200. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2201. fs_info->uuid_root = root;
  2202. }
  2203. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2204. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2205. root = btrfs_read_tree_root(tree_root, &location);
  2206. if (IS_ERR(root))
  2207. return PTR_ERR(root);
  2208. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2209. fs_info->free_space_root = root;
  2210. }
  2211. return 0;
  2212. }
  2213. int open_ctree(struct super_block *sb,
  2214. struct btrfs_fs_devices *fs_devices,
  2215. char *options)
  2216. {
  2217. u32 sectorsize;
  2218. u32 nodesize;
  2219. u32 stripesize;
  2220. u64 generation;
  2221. u64 features;
  2222. struct btrfs_key location;
  2223. struct buffer_head *bh;
  2224. struct btrfs_super_block *disk_super;
  2225. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2226. struct btrfs_root *tree_root;
  2227. struct btrfs_root *chunk_root;
  2228. int ret;
  2229. int err = -EINVAL;
  2230. int num_backups_tried = 0;
  2231. int backup_index = 0;
  2232. int max_active;
  2233. int clear_free_space_tree = 0;
  2234. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2235. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2236. if (!tree_root || !chunk_root) {
  2237. err = -ENOMEM;
  2238. goto fail;
  2239. }
  2240. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2241. if (ret) {
  2242. err = ret;
  2243. goto fail;
  2244. }
  2245. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2246. if (ret) {
  2247. err = ret;
  2248. goto fail_srcu;
  2249. }
  2250. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2251. (1 + ilog2(nr_cpu_ids));
  2252. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2253. if (ret) {
  2254. err = ret;
  2255. goto fail_dirty_metadata_bytes;
  2256. }
  2257. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2258. if (ret) {
  2259. err = ret;
  2260. goto fail_delalloc_bytes;
  2261. }
  2262. fs_info->btree_inode = new_inode(sb);
  2263. if (!fs_info->btree_inode) {
  2264. err = -ENOMEM;
  2265. goto fail_bio_counter;
  2266. }
  2267. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2268. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2269. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2270. INIT_LIST_HEAD(&fs_info->trans_list);
  2271. INIT_LIST_HEAD(&fs_info->dead_roots);
  2272. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2273. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2274. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2275. spin_lock_init(&fs_info->delalloc_root_lock);
  2276. spin_lock_init(&fs_info->trans_lock);
  2277. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2278. spin_lock_init(&fs_info->delayed_iput_lock);
  2279. spin_lock_init(&fs_info->defrag_inodes_lock);
  2280. spin_lock_init(&fs_info->free_chunk_lock);
  2281. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2282. spin_lock_init(&fs_info->super_lock);
  2283. spin_lock_init(&fs_info->qgroup_op_lock);
  2284. spin_lock_init(&fs_info->buffer_lock);
  2285. spin_lock_init(&fs_info->unused_bgs_lock);
  2286. rwlock_init(&fs_info->tree_mod_log_lock);
  2287. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2288. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2289. mutex_init(&fs_info->reloc_mutex);
  2290. mutex_init(&fs_info->delalloc_root_mutex);
  2291. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2292. seqlock_init(&fs_info->profiles_lock);
  2293. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2294. INIT_LIST_HEAD(&fs_info->space_info);
  2295. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2296. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2297. btrfs_mapping_init(&fs_info->mapping_tree);
  2298. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2299. BTRFS_BLOCK_RSV_GLOBAL);
  2300. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2301. BTRFS_BLOCK_RSV_DELALLOC);
  2302. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2303. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2304. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2305. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2306. BTRFS_BLOCK_RSV_DELOPS);
  2307. atomic_set(&fs_info->nr_async_submits, 0);
  2308. atomic_set(&fs_info->async_delalloc_pages, 0);
  2309. atomic_set(&fs_info->async_submit_draining, 0);
  2310. atomic_set(&fs_info->nr_async_bios, 0);
  2311. atomic_set(&fs_info->defrag_running, 0);
  2312. atomic_set(&fs_info->qgroup_op_seq, 0);
  2313. atomic_set(&fs_info->reada_works_cnt, 0);
  2314. atomic64_set(&fs_info->tree_mod_seq, 0);
  2315. fs_info->fs_frozen = 0;
  2316. fs_info->sb = sb;
  2317. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2318. fs_info->metadata_ratio = 0;
  2319. fs_info->defrag_inodes = RB_ROOT;
  2320. fs_info->free_chunk_space = 0;
  2321. fs_info->tree_mod_log = RB_ROOT;
  2322. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2323. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2324. /* readahead state */
  2325. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2326. spin_lock_init(&fs_info->reada_lock);
  2327. fs_info->thread_pool_size = min_t(unsigned long,
  2328. num_online_cpus() + 2, 8);
  2329. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2330. spin_lock_init(&fs_info->ordered_root_lock);
  2331. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2332. GFP_KERNEL);
  2333. if (!fs_info->delayed_root) {
  2334. err = -ENOMEM;
  2335. goto fail_iput;
  2336. }
  2337. btrfs_init_delayed_root(fs_info->delayed_root);
  2338. btrfs_init_scrub(fs_info);
  2339. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2340. fs_info->check_integrity_print_mask = 0;
  2341. #endif
  2342. btrfs_init_balance(fs_info);
  2343. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2344. sb->s_blocksize = 4096;
  2345. sb->s_blocksize_bits = blksize_bits(4096);
  2346. btrfs_init_btree_inode(fs_info);
  2347. spin_lock_init(&fs_info->block_group_cache_lock);
  2348. fs_info->block_group_cache_tree = RB_ROOT;
  2349. fs_info->first_logical_byte = (u64)-1;
  2350. extent_io_tree_init(&fs_info->freed_extents[0],
  2351. fs_info->btree_inode->i_mapping);
  2352. extent_io_tree_init(&fs_info->freed_extents[1],
  2353. fs_info->btree_inode->i_mapping);
  2354. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2355. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2356. mutex_init(&fs_info->ordered_operations_mutex);
  2357. mutex_init(&fs_info->tree_log_mutex);
  2358. mutex_init(&fs_info->chunk_mutex);
  2359. mutex_init(&fs_info->transaction_kthread_mutex);
  2360. mutex_init(&fs_info->cleaner_mutex);
  2361. mutex_init(&fs_info->volume_mutex);
  2362. mutex_init(&fs_info->ro_block_group_mutex);
  2363. init_rwsem(&fs_info->commit_root_sem);
  2364. init_rwsem(&fs_info->cleanup_work_sem);
  2365. init_rwsem(&fs_info->subvol_sem);
  2366. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2367. btrfs_init_dev_replace_locks(fs_info);
  2368. btrfs_init_qgroup(fs_info);
  2369. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2370. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2371. init_waitqueue_head(&fs_info->transaction_throttle);
  2372. init_waitqueue_head(&fs_info->transaction_wait);
  2373. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2374. init_waitqueue_head(&fs_info->async_submit_wait);
  2375. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2376. /* Usable values until the real ones are cached from the superblock */
  2377. fs_info->nodesize = 4096;
  2378. fs_info->sectorsize = 4096;
  2379. fs_info->stripesize = 4096;
  2380. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2381. if (ret) {
  2382. err = ret;
  2383. goto fail_alloc;
  2384. }
  2385. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2386. invalidate_bdev(fs_devices->latest_bdev);
  2387. /*
  2388. * Read super block and check the signature bytes only
  2389. */
  2390. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2391. if (IS_ERR(bh)) {
  2392. err = PTR_ERR(bh);
  2393. goto fail_alloc;
  2394. }
  2395. /*
  2396. * We want to check superblock checksum, the type is stored inside.
  2397. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2398. */
  2399. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2400. btrfs_err(fs_info, "superblock checksum mismatch");
  2401. err = -EINVAL;
  2402. brelse(bh);
  2403. goto fail_alloc;
  2404. }
  2405. /*
  2406. * super_copy is zeroed at allocation time and we never touch the
  2407. * following bytes up to INFO_SIZE, the checksum is calculated from
  2408. * the whole block of INFO_SIZE
  2409. */
  2410. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2411. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2412. sizeof(*fs_info->super_for_commit));
  2413. brelse(bh);
  2414. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2415. ret = btrfs_check_super_valid(fs_info);
  2416. if (ret) {
  2417. btrfs_err(fs_info, "superblock contains fatal errors");
  2418. err = -EINVAL;
  2419. goto fail_alloc;
  2420. }
  2421. disk_super = fs_info->super_copy;
  2422. if (!btrfs_super_root(disk_super))
  2423. goto fail_alloc;
  2424. /* check FS state, whether FS is broken. */
  2425. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2426. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2427. /*
  2428. * run through our array of backup supers and setup
  2429. * our ring pointer to the oldest one
  2430. */
  2431. generation = btrfs_super_generation(disk_super);
  2432. find_oldest_super_backup(fs_info, generation);
  2433. /*
  2434. * In the long term, we'll store the compression type in the super
  2435. * block, and it'll be used for per file compression control.
  2436. */
  2437. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2438. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2439. if (ret) {
  2440. err = ret;
  2441. goto fail_alloc;
  2442. }
  2443. features = btrfs_super_incompat_flags(disk_super) &
  2444. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2445. if (features) {
  2446. btrfs_err(fs_info,
  2447. "cannot mount because of unsupported optional features (%llx)",
  2448. features);
  2449. err = -EINVAL;
  2450. goto fail_alloc;
  2451. }
  2452. features = btrfs_super_incompat_flags(disk_super);
  2453. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2454. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2455. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2456. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2457. btrfs_info(fs_info, "has skinny extents");
  2458. /*
  2459. * flag our filesystem as having big metadata blocks if
  2460. * they are bigger than the page size
  2461. */
  2462. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2463. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2464. btrfs_info(fs_info,
  2465. "flagging fs with big metadata feature");
  2466. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2467. }
  2468. nodesize = btrfs_super_nodesize(disk_super);
  2469. sectorsize = btrfs_super_sectorsize(disk_super);
  2470. stripesize = sectorsize;
  2471. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2472. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2473. /* Cache block sizes */
  2474. fs_info->nodesize = nodesize;
  2475. fs_info->sectorsize = sectorsize;
  2476. fs_info->stripesize = stripesize;
  2477. /*
  2478. * mixed block groups end up with duplicate but slightly offset
  2479. * extent buffers for the same range. It leads to corruptions
  2480. */
  2481. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2482. (sectorsize != nodesize)) {
  2483. btrfs_err(fs_info,
  2484. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2485. nodesize, sectorsize);
  2486. goto fail_alloc;
  2487. }
  2488. /*
  2489. * Needn't use the lock because there is no other task which will
  2490. * update the flag.
  2491. */
  2492. btrfs_set_super_incompat_flags(disk_super, features);
  2493. features = btrfs_super_compat_ro_flags(disk_super) &
  2494. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2495. if (!(sb->s_flags & MS_RDONLY) && features) {
  2496. btrfs_err(fs_info,
  2497. "cannot mount read-write because of unsupported optional features (%llx)",
  2498. features);
  2499. err = -EINVAL;
  2500. goto fail_alloc;
  2501. }
  2502. max_active = fs_info->thread_pool_size;
  2503. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2504. if (ret) {
  2505. err = ret;
  2506. goto fail_sb_buffer;
  2507. }
  2508. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2509. sb->s_bdi->congested_data = fs_info;
  2510. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2511. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  2512. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2513. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2514. sb->s_blocksize = sectorsize;
  2515. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2516. mutex_lock(&fs_info->chunk_mutex);
  2517. ret = btrfs_read_sys_array(fs_info);
  2518. mutex_unlock(&fs_info->chunk_mutex);
  2519. if (ret) {
  2520. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2521. goto fail_sb_buffer;
  2522. }
  2523. generation = btrfs_super_chunk_root_generation(disk_super);
  2524. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2525. chunk_root->node = read_tree_block(fs_info,
  2526. btrfs_super_chunk_root(disk_super),
  2527. generation);
  2528. if (IS_ERR(chunk_root->node) ||
  2529. !extent_buffer_uptodate(chunk_root->node)) {
  2530. btrfs_err(fs_info, "failed to read chunk root");
  2531. if (!IS_ERR(chunk_root->node))
  2532. free_extent_buffer(chunk_root->node);
  2533. chunk_root->node = NULL;
  2534. goto fail_tree_roots;
  2535. }
  2536. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2537. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2538. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2539. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2540. ret = btrfs_read_chunk_tree(fs_info);
  2541. if (ret) {
  2542. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2543. goto fail_tree_roots;
  2544. }
  2545. /*
  2546. * keep the device that is marked to be the target device for the
  2547. * dev_replace procedure
  2548. */
  2549. btrfs_close_extra_devices(fs_devices, 0);
  2550. if (!fs_devices->latest_bdev) {
  2551. btrfs_err(fs_info, "failed to read devices");
  2552. goto fail_tree_roots;
  2553. }
  2554. retry_root_backup:
  2555. generation = btrfs_super_generation(disk_super);
  2556. tree_root->node = read_tree_block(fs_info,
  2557. btrfs_super_root(disk_super),
  2558. generation);
  2559. if (IS_ERR(tree_root->node) ||
  2560. !extent_buffer_uptodate(tree_root->node)) {
  2561. btrfs_warn(fs_info, "failed to read tree root");
  2562. if (!IS_ERR(tree_root->node))
  2563. free_extent_buffer(tree_root->node);
  2564. tree_root->node = NULL;
  2565. goto recovery_tree_root;
  2566. }
  2567. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2568. tree_root->commit_root = btrfs_root_node(tree_root);
  2569. btrfs_set_root_refs(&tree_root->root_item, 1);
  2570. mutex_lock(&tree_root->objectid_mutex);
  2571. ret = btrfs_find_highest_objectid(tree_root,
  2572. &tree_root->highest_objectid);
  2573. if (ret) {
  2574. mutex_unlock(&tree_root->objectid_mutex);
  2575. goto recovery_tree_root;
  2576. }
  2577. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2578. mutex_unlock(&tree_root->objectid_mutex);
  2579. ret = btrfs_read_roots(fs_info);
  2580. if (ret)
  2581. goto recovery_tree_root;
  2582. fs_info->generation = generation;
  2583. fs_info->last_trans_committed = generation;
  2584. ret = btrfs_recover_balance(fs_info);
  2585. if (ret) {
  2586. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2587. goto fail_block_groups;
  2588. }
  2589. ret = btrfs_init_dev_stats(fs_info);
  2590. if (ret) {
  2591. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2592. goto fail_block_groups;
  2593. }
  2594. ret = btrfs_init_dev_replace(fs_info);
  2595. if (ret) {
  2596. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2597. goto fail_block_groups;
  2598. }
  2599. btrfs_close_extra_devices(fs_devices, 1);
  2600. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2601. if (ret) {
  2602. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2603. ret);
  2604. goto fail_block_groups;
  2605. }
  2606. ret = btrfs_sysfs_add_device(fs_devices);
  2607. if (ret) {
  2608. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2609. ret);
  2610. goto fail_fsdev_sysfs;
  2611. }
  2612. ret = btrfs_sysfs_add_mounted(fs_info);
  2613. if (ret) {
  2614. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2615. goto fail_fsdev_sysfs;
  2616. }
  2617. ret = btrfs_init_space_info(fs_info);
  2618. if (ret) {
  2619. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2620. goto fail_sysfs;
  2621. }
  2622. ret = btrfs_read_block_groups(fs_info);
  2623. if (ret) {
  2624. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2625. goto fail_sysfs;
  2626. }
  2627. fs_info->num_tolerated_disk_barrier_failures =
  2628. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2629. if (fs_info->fs_devices->missing_devices >
  2630. fs_info->num_tolerated_disk_barrier_failures &&
  2631. !(sb->s_flags & MS_RDONLY)) {
  2632. btrfs_warn(fs_info,
  2633. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2634. fs_info->fs_devices->missing_devices,
  2635. fs_info->num_tolerated_disk_barrier_failures);
  2636. goto fail_sysfs;
  2637. }
  2638. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2639. "btrfs-cleaner");
  2640. if (IS_ERR(fs_info->cleaner_kthread))
  2641. goto fail_sysfs;
  2642. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2643. tree_root,
  2644. "btrfs-transaction");
  2645. if (IS_ERR(fs_info->transaction_kthread))
  2646. goto fail_cleaner;
  2647. if (!btrfs_test_opt(fs_info, SSD) &&
  2648. !btrfs_test_opt(fs_info, NOSSD) &&
  2649. !fs_info->fs_devices->rotating) {
  2650. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2651. btrfs_set_opt(fs_info->mount_opt, SSD);
  2652. }
  2653. /*
  2654. * Mount does not set all options immediately, we can do it now and do
  2655. * not have to wait for transaction commit
  2656. */
  2657. btrfs_apply_pending_changes(fs_info);
  2658. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2659. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2660. ret = btrfsic_mount(fs_info, fs_devices,
  2661. btrfs_test_opt(fs_info,
  2662. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2663. 1 : 0,
  2664. fs_info->check_integrity_print_mask);
  2665. if (ret)
  2666. btrfs_warn(fs_info,
  2667. "failed to initialize integrity check module: %d",
  2668. ret);
  2669. }
  2670. #endif
  2671. ret = btrfs_read_qgroup_config(fs_info);
  2672. if (ret)
  2673. goto fail_trans_kthread;
  2674. /* do not make disk changes in broken FS or nologreplay is given */
  2675. if (btrfs_super_log_root(disk_super) != 0 &&
  2676. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2677. ret = btrfs_replay_log(fs_info, fs_devices);
  2678. if (ret) {
  2679. err = ret;
  2680. goto fail_qgroup;
  2681. }
  2682. }
  2683. ret = btrfs_find_orphan_roots(fs_info);
  2684. if (ret)
  2685. goto fail_qgroup;
  2686. if (!(sb->s_flags & MS_RDONLY)) {
  2687. ret = btrfs_cleanup_fs_roots(fs_info);
  2688. if (ret)
  2689. goto fail_qgroup;
  2690. mutex_lock(&fs_info->cleaner_mutex);
  2691. ret = btrfs_recover_relocation(tree_root);
  2692. mutex_unlock(&fs_info->cleaner_mutex);
  2693. if (ret < 0) {
  2694. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2695. ret);
  2696. err = -EINVAL;
  2697. goto fail_qgroup;
  2698. }
  2699. }
  2700. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2701. location.type = BTRFS_ROOT_ITEM_KEY;
  2702. location.offset = 0;
  2703. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2704. if (IS_ERR(fs_info->fs_root)) {
  2705. err = PTR_ERR(fs_info->fs_root);
  2706. goto fail_qgroup;
  2707. }
  2708. if (sb->s_flags & MS_RDONLY)
  2709. return 0;
  2710. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2711. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2712. clear_free_space_tree = 1;
  2713. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2714. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2715. btrfs_warn(fs_info, "free space tree is invalid");
  2716. clear_free_space_tree = 1;
  2717. }
  2718. if (clear_free_space_tree) {
  2719. btrfs_info(fs_info, "clearing free space tree");
  2720. ret = btrfs_clear_free_space_tree(fs_info);
  2721. if (ret) {
  2722. btrfs_warn(fs_info,
  2723. "failed to clear free space tree: %d", ret);
  2724. close_ctree(fs_info);
  2725. return ret;
  2726. }
  2727. }
  2728. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2729. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2730. btrfs_info(fs_info, "creating free space tree");
  2731. ret = btrfs_create_free_space_tree(fs_info);
  2732. if (ret) {
  2733. btrfs_warn(fs_info,
  2734. "failed to create free space tree: %d", ret);
  2735. close_ctree(fs_info);
  2736. return ret;
  2737. }
  2738. }
  2739. down_read(&fs_info->cleanup_work_sem);
  2740. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2741. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2742. up_read(&fs_info->cleanup_work_sem);
  2743. close_ctree(fs_info);
  2744. return ret;
  2745. }
  2746. up_read(&fs_info->cleanup_work_sem);
  2747. ret = btrfs_resume_balance_async(fs_info);
  2748. if (ret) {
  2749. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2750. close_ctree(fs_info);
  2751. return ret;
  2752. }
  2753. ret = btrfs_resume_dev_replace_async(fs_info);
  2754. if (ret) {
  2755. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2756. close_ctree(fs_info);
  2757. return ret;
  2758. }
  2759. btrfs_qgroup_rescan_resume(fs_info);
  2760. if (!fs_info->uuid_root) {
  2761. btrfs_info(fs_info, "creating UUID tree");
  2762. ret = btrfs_create_uuid_tree(fs_info);
  2763. if (ret) {
  2764. btrfs_warn(fs_info,
  2765. "failed to create the UUID tree: %d", ret);
  2766. close_ctree(fs_info);
  2767. return ret;
  2768. }
  2769. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2770. fs_info->generation !=
  2771. btrfs_super_uuid_tree_generation(disk_super)) {
  2772. btrfs_info(fs_info, "checking UUID tree");
  2773. ret = btrfs_check_uuid_tree(fs_info);
  2774. if (ret) {
  2775. btrfs_warn(fs_info,
  2776. "failed to check the UUID tree: %d", ret);
  2777. close_ctree(fs_info);
  2778. return ret;
  2779. }
  2780. } else {
  2781. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2782. }
  2783. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2784. /*
  2785. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2786. * no need to keep the flag
  2787. */
  2788. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2789. return 0;
  2790. fail_qgroup:
  2791. btrfs_free_qgroup_config(fs_info);
  2792. fail_trans_kthread:
  2793. kthread_stop(fs_info->transaction_kthread);
  2794. btrfs_cleanup_transaction(fs_info);
  2795. btrfs_free_fs_roots(fs_info);
  2796. fail_cleaner:
  2797. kthread_stop(fs_info->cleaner_kthread);
  2798. /*
  2799. * make sure we're done with the btree inode before we stop our
  2800. * kthreads
  2801. */
  2802. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2803. fail_sysfs:
  2804. btrfs_sysfs_remove_mounted(fs_info);
  2805. fail_fsdev_sysfs:
  2806. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2807. fail_block_groups:
  2808. btrfs_put_block_group_cache(fs_info);
  2809. fail_tree_roots:
  2810. free_root_pointers(fs_info, 1);
  2811. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2812. fail_sb_buffer:
  2813. btrfs_stop_all_workers(fs_info);
  2814. btrfs_free_block_groups(fs_info);
  2815. fail_alloc:
  2816. fail_iput:
  2817. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2818. iput(fs_info->btree_inode);
  2819. fail_bio_counter:
  2820. percpu_counter_destroy(&fs_info->bio_counter);
  2821. fail_delalloc_bytes:
  2822. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2823. fail_dirty_metadata_bytes:
  2824. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2825. fail_srcu:
  2826. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2827. fail:
  2828. btrfs_free_stripe_hash_table(fs_info);
  2829. btrfs_close_devices(fs_info->fs_devices);
  2830. return err;
  2831. recovery_tree_root:
  2832. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2833. goto fail_tree_roots;
  2834. free_root_pointers(fs_info, 0);
  2835. /* don't use the log in recovery mode, it won't be valid */
  2836. btrfs_set_super_log_root(disk_super, 0);
  2837. /* we can't trust the free space cache either */
  2838. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2839. ret = next_root_backup(fs_info, fs_info->super_copy,
  2840. &num_backups_tried, &backup_index);
  2841. if (ret == -1)
  2842. goto fail_block_groups;
  2843. goto retry_root_backup;
  2844. }
  2845. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2846. {
  2847. if (uptodate) {
  2848. set_buffer_uptodate(bh);
  2849. } else {
  2850. struct btrfs_device *device = (struct btrfs_device *)
  2851. bh->b_private;
  2852. btrfs_warn_rl_in_rcu(device->fs_info,
  2853. "lost page write due to IO error on %s",
  2854. rcu_str_deref(device->name));
  2855. /* note, we don't set_buffer_write_io_error because we have
  2856. * our own ways of dealing with the IO errors
  2857. */
  2858. clear_buffer_uptodate(bh);
  2859. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2860. }
  2861. unlock_buffer(bh);
  2862. put_bh(bh);
  2863. }
  2864. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2865. struct buffer_head **bh_ret)
  2866. {
  2867. struct buffer_head *bh;
  2868. struct btrfs_super_block *super;
  2869. u64 bytenr;
  2870. bytenr = btrfs_sb_offset(copy_num);
  2871. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2872. return -EINVAL;
  2873. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2874. /*
  2875. * If we fail to read from the underlying devices, as of now
  2876. * the best option we have is to mark it EIO.
  2877. */
  2878. if (!bh)
  2879. return -EIO;
  2880. super = (struct btrfs_super_block *)bh->b_data;
  2881. if (btrfs_super_bytenr(super) != bytenr ||
  2882. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2883. brelse(bh);
  2884. return -EINVAL;
  2885. }
  2886. *bh_ret = bh;
  2887. return 0;
  2888. }
  2889. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2890. {
  2891. struct buffer_head *bh;
  2892. struct buffer_head *latest = NULL;
  2893. struct btrfs_super_block *super;
  2894. int i;
  2895. u64 transid = 0;
  2896. int ret = -EINVAL;
  2897. /* we would like to check all the supers, but that would make
  2898. * a btrfs mount succeed after a mkfs from a different FS.
  2899. * So, we need to add a special mount option to scan for
  2900. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2901. */
  2902. for (i = 0; i < 1; i++) {
  2903. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2904. if (ret)
  2905. continue;
  2906. super = (struct btrfs_super_block *)bh->b_data;
  2907. if (!latest || btrfs_super_generation(super) > transid) {
  2908. brelse(latest);
  2909. latest = bh;
  2910. transid = btrfs_super_generation(super);
  2911. } else {
  2912. brelse(bh);
  2913. }
  2914. }
  2915. if (!latest)
  2916. return ERR_PTR(ret);
  2917. return latest;
  2918. }
  2919. /*
  2920. * this should be called twice, once with wait == 0 and
  2921. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2922. * we write are pinned.
  2923. *
  2924. * They are released when wait == 1 is done.
  2925. * max_mirrors must be the same for both runs, and it indicates how
  2926. * many supers on this one device should be written.
  2927. *
  2928. * max_mirrors == 0 means to write them all.
  2929. */
  2930. static int write_dev_supers(struct btrfs_device *device,
  2931. struct btrfs_super_block *sb,
  2932. int wait, int max_mirrors)
  2933. {
  2934. struct buffer_head *bh;
  2935. int i;
  2936. int ret;
  2937. int errors = 0;
  2938. u32 crc;
  2939. u64 bytenr;
  2940. if (max_mirrors == 0)
  2941. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2942. for (i = 0; i < max_mirrors; i++) {
  2943. bytenr = btrfs_sb_offset(i);
  2944. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2945. device->commit_total_bytes)
  2946. break;
  2947. if (wait) {
  2948. bh = __find_get_block(device->bdev, bytenr / 4096,
  2949. BTRFS_SUPER_INFO_SIZE);
  2950. if (!bh) {
  2951. errors++;
  2952. continue;
  2953. }
  2954. wait_on_buffer(bh);
  2955. if (!buffer_uptodate(bh))
  2956. errors++;
  2957. /* drop our reference */
  2958. brelse(bh);
  2959. /* drop the reference from the wait == 0 run */
  2960. brelse(bh);
  2961. continue;
  2962. } else {
  2963. btrfs_set_super_bytenr(sb, bytenr);
  2964. crc = ~(u32)0;
  2965. crc = btrfs_csum_data((const char *)sb +
  2966. BTRFS_CSUM_SIZE, crc,
  2967. BTRFS_SUPER_INFO_SIZE -
  2968. BTRFS_CSUM_SIZE);
  2969. btrfs_csum_final(crc, sb->csum);
  2970. /*
  2971. * one reference for us, and we leave it for the
  2972. * caller
  2973. */
  2974. bh = __getblk(device->bdev, bytenr / 4096,
  2975. BTRFS_SUPER_INFO_SIZE);
  2976. if (!bh) {
  2977. btrfs_err(device->fs_info,
  2978. "couldn't get super buffer head for bytenr %llu",
  2979. bytenr);
  2980. errors++;
  2981. continue;
  2982. }
  2983. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2984. /* one reference for submit_bh */
  2985. get_bh(bh);
  2986. set_buffer_uptodate(bh);
  2987. lock_buffer(bh);
  2988. bh->b_end_io = btrfs_end_buffer_write_sync;
  2989. bh->b_private = device;
  2990. }
  2991. /*
  2992. * we fua the first super. The others we allow
  2993. * to go down lazy.
  2994. */
  2995. if (i == 0)
  2996. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
  2997. else
  2998. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
  2999. if (ret)
  3000. errors++;
  3001. }
  3002. return errors < i ? 0 : -1;
  3003. }
  3004. /*
  3005. * endio for the write_dev_flush, this will wake anyone waiting
  3006. * for the barrier when it is done
  3007. */
  3008. static void btrfs_end_empty_barrier(struct bio *bio)
  3009. {
  3010. if (bio->bi_private)
  3011. complete(bio->bi_private);
  3012. bio_put(bio);
  3013. }
  3014. /*
  3015. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3016. * sent down. With wait == 1, it waits for the previous flush.
  3017. *
  3018. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3019. * capable
  3020. */
  3021. static blk_status_t write_dev_flush(struct btrfs_device *device, int wait)
  3022. {
  3023. struct request_queue *q = bdev_get_queue(device->bdev);
  3024. struct bio *bio;
  3025. blk_status_t ret = 0;
  3026. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  3027. return 0;
  3028. if (wait) {
  3029. bio = device->flush_bio;
  3030. if (!bio)
  3031. return 0;
  3032. wait_for_completion(&device->flush_wait);
  3033. if (bio->bi_status) {
  3034. ret = bio->bi_status;
  3035. btrfs_dev_stat_inc_and_print(device,
  3036. BTRFS_DEV_STAT_FLUSH_ERRS);
  3037. }
  3038. /* drop the reference from the wait == 0 run */
  3039. bio_put(bio);
  3040. device->flush_bio = NULL;
  3041. return ret;
  3042. }
  3043. /*
  3044. * one reference for us, and we leave it for the
  3045. * caller
  3046. */
  3047. device->flush_bio = NULL;
  3048. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3049. if (!bio)
  3050. return BLK_STS_RESOURCE;
  3051. bio->bi_end_io = btrfs_end_empty_barrier;
  3052. bio->bi_bdev = device->bdev;
  3053. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  3054. init_completion(&device->flush_wait);
  3055. bio->bi_private = &device->flush_wait;
  3056. device->flush_bio = bio;
  3057. bio_get(bio);
  3058. btrfsic_submit_bio(bio);
  3059. return 0;
  3060. }
  3061. /*
  3062. * send an empty flush down to each device in parallel,
  3063. * then wait for them
  3064. */
  3065. static int barrier_all_devices(struct btrfs_fs_info *info)
  3066. {
  3067. struct list_head *head;
  3068. struct btrfs_device *dev;
  3069. int errors_send = 0;
  3070. int errors_wait = 0;
  3071. blk_status_t ret;
  3072. /* send down all the barriers */
  3073. head = &info->fs_devices->devices;
  3074. list_for_each_entry_rcu(dev, head, dev_list) {
  3075. if (dev->missing)
  3076. continue;
  3077. if (!dev->bdev) {
  3078. errors_send++;
  3079. continue;
  3080. }
  3081. if (!dev->in_fs_metadata || !dev->writeable)
  3082. continue;
  3083. ret = write_dev_flush(dev, 0);
  3084. if (ret)
  3085. errors_send++;
  3086. }
  3087. /* wait for all the barriers */
  3088. list_for_each_entry_rcu(dev, head, dev_list) {
  3089. if (dev->missing)
  3090. continue;
  3091. if (!dev->bdev) {
  3092. errors_wait++;
  3093. continue;
  3094. }
  3095. if (!dev->in_fs_metadata || !dev->writeable)
  3096. continue;
  3097. ret = write_dev_flush(dev, 1);
  3098. if (ret)
  3099. errors_wait++;
  3100. }
  3101. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3102. errors_wait > info->num_tolerated_disk_barrier_failures)
  3103. return -EIO;
  3104. return 0;
  3105. }
  3106. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3107. {
  3108. int raid_type;
  3109. int min_tolerated = INT_MAX;
  3110. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3111. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3112. min_tolerated = min(min_tolerated,
  3113. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3114. tolerated_failures);
  3115. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3116. if (raid_type == BTRFS_RAID_SINGLE)
  3117. continue;
  3118. if (!(flags & btrfs_raid_group[raid_type]))
  3119. continue;
  3120. min_tolerated = min(min_tolerated,
  3121. btrfs_raid_array[raid_type].
  3122. tolerated_failures);
  3123. }
  3124. if (min_tolerated == INT_MAX) {
  3125. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3126. min_tolerated = 0;
  3127. }
  3128. return min_tolerated;
  3129. }
  3130. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3131. struct btrfs_fs_info *fs_info)
  3132. {
  3133. struct btrfs_ioctl_space_info space;
  3134. struct btrfs_space_info *sinfo;
  3135. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3136. BTRFS_BLOCK_GROUP_SYSTEM,
  3137. BTRFS_BLOCK_GROUP_METADATA,
  3138. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3139. int i;
  3140. int c;
  3141. int num_tolerated_disk_barrier_failures =
  3142. (int)fs_info->fs_devices->num_devices;
  3143. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3144. struct btrfs_space_info *tmp;
  3145. sinfo = NULL;
  3146. rcu_read_lock();
  3147. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3148. if (tmp->flags == types[i]) {
  3149. sinfo = tmp;
  3150. break;
  3151. }
  3152. }
  3153. rcu_read_unlock();
  3154. if (!sinfo)
  3155. continue;
  3156. down_read(&sinfo->groups_sem);
  3157. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3158. u64 flags;
  3159. if (list_empty(&sinfo->block_groups[c]))
  3160. continue;
  3161. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3162. &space);
  3163. if (space.total_bytes == 0 || space.used_bytes == 0)
  3164. continue;
  3165. flags = space.flags;
  3166. num_tolerated_disk_barrier_failures = min(
  3167. num_tolerated_disk_barrier_failures,
  3168. btrfs_get_num_tolerated_disk_barrier_failures(
  3169. flags));
  3170. }
  3171. up_read(&sinfo->groups_sem);
  3172. }
  3173. return num_tolerated_disk_barrier_failures;
  3174. }
  3175. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3176. {
  3177. struct list_head *head;
  3178. struct btrfs_device *dev;
  3179. struct btrfs_super_block *sb;
  3180. struct btrfs_dev_item *dev_item;
  3181. int ret;
  3182. int do_barriers;
  3183. int max_errors;
  3184. int total_errors = 0;
  3185. u64 flags;
  3186. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3187. backup_super_roots(fs_info);
  3188. sb = fs_info->super_for_commit;
  3189. dev_item = &sb->dev_item;
  3190. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3191. head = &fs_info->fs_devices->devices;
  3192. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3193. if (do_barriers) {
  3194. ret = barrier_all_devices(fs_info);
  3195. if (ret) {
  3196. mutex_unlock(
  3197. &fs_info->fs_devices->device_list_mutex);
  3198. btrfs_handle_fs_error(fs_info, ret,
  3199. "errors while submitting device barriers.");
  3200. return ret;
  3201. }
  3202. }
  3203. list_for_each_entry_rcu(dev, head, dev_list) {
  3204. if (!dev->bdev) {
  3205. total_errors++;
  3206. continue;
  3207. }
  3208. if (!dev->in_fs_metadata || !dev->writeable)
  3209. continue;
  3210. btrfs_set_stack_device_generation(dev_item, 0);
  3211. btrfs_set_stack_device_type(dev_item, dev->type);
  3212. btrfs_set_stack_device_id(dev_item, dev->devid);
  3213. btrfs_set_stack_device_total_bytes(dev_item,
  3214. dev->commit_total_bytes);
  3215. btrfs_set_stack_device_bytes_used(dev_item,
  3216. dev->commit_bytes_used);
  3217. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3218. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3219. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3220. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3221. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3222. flags = btrfs_super_flags(sb);
  3223. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3224. ret = write_dev_supers(dev, sb, 0, max_mirrors);
  3225. if (ret)
  3226. total_errors++;
  3227. }
  3228. if (total_errors > max_errors) {
  3229. btrfs_err(fs_info, "%d errors while writing supers",
  3230. total_errors);
  3231. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3232. /* FUA is masked off if unsupported and can't be the reason */
  3233. btrfs_handle_fs_error(fs_info, -EIO,
  3234. "%d errors while writing supers",
  3235. total_errors);
  3236. return -EIO;
  3237. }
  3238. total_errors = 0;
  3239. list_for_each_entry_rcu(dev, head, dev_list) {
  3240. if (!dev->bdev)
  3241. continue;
  3242. if (!dev->in_fs_metadata || !dev->writeable)
  3243. continue;
  3244. ret = write_dev_supers(dev, sb, 1, max_mirrors);
  3245. if (ret)
  3246. total_errors++;
  3247. }
  3248. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3249. if (total_errors > max_errors) {
  3250. btrfs_handle_fs_error(fs_info, -EIO,
  3251. "%d errors while writing supers",
  3252. total_errors);
  3253. return -EIO;
  3254. }
  3255. return 0;
  3256. }
  3257. /* Drop a fs root from the radix tree and free it. */
  3258. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3259. struct btrfs_root *root)
  3260. {
  3261. spin_lock(&fs_info->fs_roots_radix_lock);
  3262. radix_tree_delete(&fs_info->fs_roots_radix,
  3263. (unsigned long)root->root_key.objectid);
  3264. spin_unlock(&fs_info->fs_roots_radix_lock);
  3265. if (btrfs_root_refs(&root->root_item) == 0)
  3266. synchronize_srcu(&fs_info->subvol_srcu);
  3267. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3268. btrfs_free_log(NULL, root);
  3269. if (root->reloc_root) {
  3270. free_extent_buffer(root->reloc_root->node);
  3271. free_extent_buffer(root->reloc_root->commit_root);
  3272. btrfs_put_fs_root(root->reloc_root);
  3273. root->reloc_root = NULL;
  3274. }
  3275. }
  3276. if (root->free_ino_pinned)
  3277. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3278. if (root->free_ino_ctl)
  3279. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3280. free_fs_root(root);
  3281. }
  3282. static void free_fs_root(struct btrfs_root *root)
  3283. {
  3284. iput(root->ino_cache_inode);
  3285. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3286. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3287. root->orphan_block_rsv = NULL;
  3288. if (root->anon_dev)
  3289. free_anon_bdev(root->anon_dev);
  3290. if (root->subv_writers)
  3291. btrfs_free_subvolume_writers(root->subv_writers);
  3292. free_extent_buffer(root->node);
  3293. free_extent_buffer(root->commit_root);
  3294. kfree(root->free_ino_ctl);
  3295. kfree(root->free_ino_pinned);
  3296. kfree(root->name);
  3297. btrfs_put_fs_root(root);
  3298. }
  3299. void btrfs_free_fs_root(struct btrfs_root *root)
  3300. {
  3301. free_fs_root(root);
  3302. }
  3303. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3304. {
  3305. u64 root_objectid = 0;
  3306. struct btrfs_root *gang[8];
  3307. int i = 0;
  3308. int err = 0;
  3309. unsigned int ret = 0;
  3310. int index;
  3311. while (1) {
  3312. index = srcu_read_lock(&fs_info->subvol_srcu);
  3313. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3314. (void **)gang, root_objectid,
  3315. ARRAY_SIZE(gang));
  3316. if (!ret) {
  3317. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3318. break;
  3319. }
  3320. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3321. for (i = 0; i < ret; i++) {
  3322. /* Avoid to grab roots in dead_roots */
  3323. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3324. gang[i] = NULL;
  3325. continue;
  3326. }
  3327. /* grab all the search result for later use */
  3328. gang[i] = btrfs_grab_fs_root(gang[i]);
  3329. }
  3330. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3331. for (i = 0; i < ret; i++) {
  3332. if (!gang[i])
  3333. continue;
  3334. root_objectid = gang[i]->root_key.objectid;
  3335. err = btrfs_orphan_cleanup(gang[i]);
  3336. if (err)
  3337. break;
  3338. btrfs_put_fs_root(gang[i]);
  3339. }
  3340. root_objectid++;
  3341. }
  3342. /* release the uncleaned roots due to error */
  3343. for (; i < ret; i++) {
  3344. if (gang[i])
  3345. btrfs_put_fs_root(gang[i]);
  3346. }
  3347. return err;
  3348. }
  3349. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3350. {
  3351. struct btrfs_root *root = fs_info->tree_root;
  3352. struct btrfs_trans_handle *trans;
  3353. mutex_lock(&fs_info->cleaner_mutex);
  3354. btrfs_run_delayed_iputs(fs_info);
  3355. mutex_unlock(&fs_info->cleaner_mutex);
  3356. wake_up_process(fs_info->cleaner_kthread);
  3357. /* wait until ongoing cleanup work done */
  3358. down_write(&fs_info->cleanup_work_sem);
  3359. up_write(&fs_info->cleanup_work_sem);
  3360. trans = btrfs_join_transaction(root);
  3361. if (IS_ERR(trans))
  3362. return PTR_ERR(trans);
  3363. return btrfs_commit_transaction(trans);
  3364. }
  3365. void close_ctree(struct btrfs_fs_info *fs_info)
  3366. {
  3367. struct btrfs_root *root = fs_info->tree_root;
  3368. int ret;
  3369. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3370. /* wait for the qgroup rescan worker to stop */
  3371. btrfs_qgroup_wait_for_completion(fs_info, false);
  3372. /* wait for the uuid_scan task to finish */
  3373. down(&fs_info->uuid_tree_rescan_sem);
  3374. /* avoid complains from lockdep et al., set sem back to initial state */
  3375. up(&fs_info->uuid_tree_rescan_sem);
  3376. /* pause restriper - we want to resume on mount */
  3377. btrfs_pause_balance(fs_info);
  3378. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3379. btrfs_scrub_cancel(fs_info);
  3380. /* wait for any defraggers to finish */
  3381. wait_event(fs_info->transaction_wait,
  3382. (atomic_read(&fs_info->defrag_running) == 0));
  3383. /* clear out the rbtree of defraggable inodes */
  3384. btrfs_cleanup_defrag_inodes(fs_info);
  3385. cancel_work_sync(&fs_info->async_reclaim_work);
  3386. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3387. /*
  3388. * If the cleaner thread is stopped and there are
  3389. * block groups queued for removal, the deletion will be
  3390. * skipped when we quit the cleaner thread.
  3391. */
  3392. btrfs_delete_unused_bgs(fs_info);
  3393. ret = btrfs_commit_super(fs_info);
  3394. if (ret)
  3395. btrfs_err(fs_info, "commit super ret %d", ret);
  3396. }
  3397. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3398. btrfs_error_commit_super(fs_info);
  3399. kthread_stop(fs_info->transaction_kthread);
  3400. kthread_stop(fs_info->cleaner_kthread);
  3401. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3402. btrfs_free_qgroup_config(fs_info);
  3403. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3404. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3405. percpu_counter_sum(&fs_info->delalloc_bytes));
  3406. }
  3407. btrfs_sysfs_remove_mounted(fs_info);
  3408. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3409. btrfs_free_fs_roots(fs_info);
  3410. btrfs_put_block_group_cache(fs_info);
  3411. /*
  3412. * we must make sure there is not any read request to
  3413. * submit after we stopping all workers.
  3414. */
  3415. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3416. btrfs_stop_all_workers(fs_info);
  3417. btrfs_free_block_groups(fs_info);
  3418. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3419. free_root_pointers(fs_info, 1);
  3420. iput(fs_info->btree_inode);
  3421. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3422. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3423. btrfsic_unmount(fs_info->fs_devices);
  3424. #endif
  3425. btrfs_close_devices(fs_info->fs_devices);
  3426. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3427. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3428. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3429. percpu_counter_destroy(&fs_info->bio_counter);
  3430. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3431. btrfs_free_stripe_hash_table(fs_info);
  3432. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3433. root->orphan_block_rsv = NULL;
  3434. mutex_lock(&fs_info->chunk_mutex);
  3435. while (!list_empty(&fs_info->pinned_chunks)) {
  3436. struct extent_map *em;
  3437. em = list_first_entry(&fs_info->pinned_chunks,
  3438. struct extent_map, list);
  3439. list_del_init(&em->list);
  3440. free_extent_map(em);
  3441. }
  3442. mutex_unlock(&fs_info->chunk_mutex);
  3443. }
  3444. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3445. int atomic)
  3446. {
  3447. int ret;
  3448. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3449. ret = extent_buffer_uptodate(buf);
  3450. if (!ret)
  3451. return ret;
  3452. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3453. parent_transid, atomic);
  3454. if (ret == -EAGAIN)
  3455. return ret;
  3456. return !ret;
  3457. }
  3458. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3459. {
  3460. struct btrfs_fs_info *fs_info;
  3461. struct btrfs_root *root;
  3462. u64 transid = btrfs_header_generation(buf);
  3463. int was_dirty;
  3464. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3465. /*
  3466. * This is a fast path so only do this check if we have sanity tests
  3467. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3468. * outside of the sanity tests.
  3469. */
  3470. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3471. return;
  3472. #endif
  3473. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3474. fs_info = root->fs_info;
  3475. btrfs_assert_tree_locked(buf);
  3476. if (transid != fs_info->generation)
  3477. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3478. buf->start, transid, fs_info->generation);
  3479. was_dirty = set_extent_buffer_dirty(buf);
  3480. if (!was_dirty)
  3481. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  3482. buf->len,
  3483. fs_info->dirty_metadata_batch);
  3484. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3485. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3486. btrfs_print_leaf(fs_info, buf);
  3487. ASSERT(0);
  3488. }
  3489. #endif
  3490. }
  3491. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3492. int flush_delayed)
  3493. {
  3494. /*
  3495. * looks as though older kernels can get into trouble with
  3496. * this code, they end up stuck in balance_dirty_pages forever
  3497. */
  3498. int ret;
  3499. if (current->flags & PF_MEMALLOC)
  3500. return;
  3501. if (flush_delayed)
  3502. btrfs_balance_delayed_items(fs_info);
  3503. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3504. BTRFS_DIRTY_METADATA_THRESH);
  3505. if (ret > 0) {
  3506. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3507. }
  3508. }
  3509. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3510. {
  3511. __btrfs_btree_balance_dirty(fs_info, 1);
  3512. }
  3513. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3514. {
  3515. __btrfs_btree_balance_dirty(fs_info, 0);
  3516. }
  3517. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3518. {
  3519. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3520. struct btrfs_fs_info *fs_info = root->fs_info;
  3521. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3522. }
  3523. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3524. {
  3525. struct btrfs_super_block *sb = fs_info->super_copy;
  3526. u64 nodesize = btrfs_super_nodesize(sb);
  3527. u64 sectorsize = btrfs_super_sectorsize(sb);
  3528. int ret = 0;
  3529. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3530. btrfs_err(fs_info, "no valid FS found");
  3531. ret = -EINVAL;
  3532. }
  3533. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3534. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3535. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3536. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3537. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3538. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3539. ret = -EINVAL;
  3540. }
  3541. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3542. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3543. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3544. ret = -EINVAL;
  3545. }
  3546. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3547. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3548. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3549. ret = -EINVAL;
  3550. }
  3551. /*
  3552. * Check sectorsize and nodesize first, other check will need it.
  3553. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3554. */
  3555. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3556. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3557. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3558. ret = -EINVAL;
  3559. }
  3560. /* Only PAGE SIZE is supported yet */
  3561. if (sectorsize != PAGE_SIZE) {
  3562. btrfs_err(fs_info,
  3563. "sectorsize %llu not supported yet, only support %lu",
  3564. sectorsize, PAGE_SIZE);
  3565. ret = -EINVAL;
  3566. }
  3567. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3568. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3569. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3570. ret = -EINVAL;
  3571. }
  3572. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3573. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3574. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3575. ret = -EINVAL;
  3576. }
  3577. /* Root alignment check */
  3578. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3579. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3580. btrfs_super_root(sb));
  3581. ret = -EINVAL;
  3582. }
  3583. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3584. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3585. btrfs_super_chunk_root(sb));
  3586. ret = -EINVAL;
  3587. }
  3588. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3589. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3590. btrfs_super_log_root(sb));
  3591. ret = -EINVAL;
  3592. }
  3593. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3594. btrfs_err(fs_info,
  3595. "dev_item UUID does not match fsid: %pU != %pU",
  3596. fs_info->fsid, sb->dev_item.fsid);
  3597. ret = -EINVAL;
  3598. }
  3599. /*
  3600. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3601. * done later
  3602. */
  3603. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3604. btrfs_err(fs_info, "bytes_used is too small %llu",
  3605. btrfs_super_bytes_used(sb));
  3606. ret = -EINVAL;
  3607. }
  3608. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3609. btrfs_err(fs_info, "invalid stripesize %u",
  3610. btrfs_super_stripesize(sb));
  3611. ret = -EINVAL;
  3612. }
  3613. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3614. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3615. btrfs_super_num_devices(sb));
  3616. if (btrfs_super_num_devices(sb) == 0) {
  3617. btrfs_err(fs_info, "number of devices is 0");
  3618. ret = -EINVAL;
  3619. }
  3620. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3621. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3622. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3623. ret = -EINVAL;
  3624. }
  3625. /*
  3626. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3627. * and one chunk
  3628. */
  3629. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3630. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3631. btrfs_super_sys_array_size(sb),
  3632. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3633. ret = -EINVAL;
  3634. }
  3635. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3636. + sizeof(struct btrfs_chunk)) {
  3637. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3638. btrfs_super_sys_array_size(sb),
  3639. sizeof(struct btrfs_disk_key)
  3640. + sizeof(struct btrfs_chunk));
  3641. ret = -EINVAL;
  3642. }
  3643. /*
  3644. * The generation is a global counter, we'll trust it more than the others
  3645. * but it's still possible that it's the one that's wrong.
  3646. */
  3647. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3648. btrfs_warn(fs_info,
  3649. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3650. btrfs_super_generation(sb),
  3651. btrfs_super_chunk_root_generation(sb));
  3652. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3653. && btrfs_super_cache_generation(sb) != (u64)-1)
  3654. btrfs_warn(fs_info,
  3655. "suspicious: generation < cache_generation: %llu < %llu",
  3656. btrfs_super_generation(sb),
  3657. btrfs_super_cache_generation(sb));
  3658. return ret;
  3659. }
  3660. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3661. {
  3662. mutex_lock(&fs_info->cleaner_mutex);
  3663. btrfs_run_delayed_iputs(fs_info);
  3664. mutex_unlock(&fs_info->cleaner_mutex);
  3665. down_write(&fs_info->cleanup_work_sem);
  3666. up_write(&fs_info->cleanup_work_sem);
  3667. /* cleanup FS via transaction */
  3668. btrfs_cleanup_transaction(fs_info);
  3669. }
  3670. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3671. {
  3672. struct btrfs_ordered_extent *ordered;
  3673. spin_lock(&root->ordered_extent_lock);
  3674. /*
  3675. * This will just short circuit the ordered completion stuff which will
  3676. * make sure the ordered extent gets properly cleaned up.
  3677. */
  3678. list_for_each_entry(ordered, &root->ordered_extents,
  3679. root_extent_list)
  3680. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3681. spin_unlock(&root->ordered_extent_lock);
  3682. }
  3683. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3684. {
  3685. struct btrfs_root *root;
  3686. struct list_head splice;
  3687. INIT_LIST_HEAD(&splice);
  3688. spin_lock(&fs_info->ordered_root_lock);
  3689. list_splice_init(&fs_info->ordered_roots, &splice);
  3690. while (!list_empty(&splice)) {
  3691. root = list_first_entry(&splice, struct btrfs_root,
  3692. ordered_root);
  3693. list_move_tail(&root->ordered_root,
  3694. &fs_info->ordered_roots);
  3695. spin_unlock(&fs_info->ordered_root_lock);
  3696. btrfs_destroy_ordered_extents(root);
  3697. cond_resched();
  3698. spin_lock(&fs_info->ordered_root_lock);
  3699. }
  3700. spin_unlock(&fs_info->ordered_root_lock);
  3701. }
  3702. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3703. struct btrfs_fs_info *fs_info)
  3704. {
  3705. struct rb_node *node;
  3706. struct btrfs_delayed_ref_root *delayed_refs;
  3707. struct btrfs_delayed_ref_node *ref;
  3708. int ret = 0;
  3709. delayed_refs = &trans->delayed_refs;
  3710. spin_lock(&delayed_refs->lock);
  3711. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3712. spin_unlock(&delayed_refs->lock);
  3713. btrfs_info(fs_info, "delayed_refs has NO entry");
  3714. return ret;
  3715. }
  3716. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3717. struct btrfs_delayed_ref_head *head;
  3718. struct btrfs_delayed_ref_node *tmp;
  3719. bool pin_bytes = false;
  3720. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3721. href_node);
  3722. if (!mutex_trylock(&head->mutex)) {
  3723. refcount_inc(&head->node.refs);
  3724. spin_unlock(&delayed_refs->lock);
  3725. mutex_lock(&head->mutex);
  3726. mutex_unlock(&head->mutex);
  3727. btrfs_put_delayed_ref(&head->node);
  3728. spin_lock(&delayed_refs->lock);
  3729. continue;
  3730. }
  3731. spin_lock(&head->lock);
  3732. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3733. list) {
  3734. ref->in_tree = 0;
  3735. list_del(&ref->list);
  3736. if (!list_empty(&ref->add_list))
  3737. list_del(&ref->add_list);
  3738. atomic_dec(&delayed_refs->num_entries);
  3739. btrfs_put_delayed_ref(ref);
  3740. }
  3741. if (head->must_insert_reserved)
  3742. pin_bytes = true;
  3743. btrfs_free_delayed_extent_op(head->extent_op);
  3744. delayed_refs->num_heads--;
  3745. if (head->processing == 0)
  3746. delayed_refs->num_heads_ready--;
  3747. atomic_dec(&delayed_refs->num_entries);
  3748. head->node.in_tree = 0;
  3749. rb_erase(&head->href_node, &delayed_refs->href_root);
  3750. spin_unlock(&head->lock);
  3751. spin_unlock(&delayed_refs->lock);
  3752. mutex_unlock(&head->mutex);
  3753. if (pin_bytes)
  3754. btrfs_pin_extent(fs_info, head->node.bytenr,
  3755. head->node.num_bytes, 1);
  3756. btrfs_put_delayed_ref(&head->node);
  3757. cond_resched();
  3758. spin_lock(&delayed_refs->lock);
  3759. }
  3760. spin_unlock(&delayed_refs->lock);
  3761. return ret;
  3762. }
  3763. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3764. {
  3765. struct btrfs_inode *btrfs_inode;
  3766. struct list_head splice;
  3767. INIT_LIST_HEAD(&splice);
  3768. spin_lock(&root->delalloc_lock);
  3769. list_splice_init(&root->delalloc_inodes, &splice);
  3770. while (!list_empty(&splice)) {
  3771. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3772. delalloc_inodes);
  3773. list_del_init(&btrfs_inode->delalloc_inodes);
  3774. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3775. &btrfs_inode->runtime_flags);
  3776. spin_unlock(&root->delalloc_lock);
  3777. btrfs_invalidate_inodes(btrfs_inode->root);
  3778. spin_lock(&root->delalloc_lock);
  3779. }
  3780. spin_unlock(&root->delalloc_lock);
  3781. }
  3782. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3783. {
  3784. struct btrfs_root *root;
  3785. struct list_head splice;
  3786. INIT_LIST_HEAD(&splice);
  3787. spin_lock(&fs_info->delalloc_root_lock);
  3788. list_splice_init(&fs_info->delalloc_roots, &splice);
  3789. while (!list_empty(&splice)) {
  3790. root = list_first_entry(&splice, struct btrfs_root,
  3791. delalloc_root);
  3792. list_del_init(&root->delalloc_root);
  3793. root = btrfs_grab_fs_root(root);
  3794. BUG_ON(!root);
  3795. spin_unlock(&fs_info->delalloc_root_lock);
  3796. btrfs_destroy_delalloc_inodes(root);
  3797. btrfs_put_fs_root(root);
  3798. spin_lock(&fs_info->delalloc_root_lock);
  3799. }
  3800. spin_unlock(&fs_info->delalloc_root_lock);
  3801. }
  3802. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3803. struct extent_io_tree *dirty_pages,
  3804. int mark)
  3805. {
  3806. int ret;
  3807. struct extent_buffer *eb;
  3808. u64 start = 0;
  3809. u64 end;
  3810. while (1) {
  3811. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3812. mark, NULL);
  3813. if (ret)
  3814. break;
  3815. clear_extent_bits(dirty_pages, start, end, mark);
  3816. while (start <= end) {
  3817. eb = find_extent_buffer(fs_info, start);
  3818. start += fs_info->nodesize;
  3819. if (!eb)
  3820. continue;
  3821. wait_on_extent_buffer_writeback(eb);
  3822. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3823. &eb->bflags))
  3824. clear_extent_buffer_dirty(eb);
  3825. free_extent_buffer_stale(eb);
  3826. }
  3827. }
  3828. return ret;
  3829. }
  3830. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3831. struct extent_io_tree *pinned_extents)
  3832. {
  3833. struct extent_io_tree *unpin;
  3834. u64 start;
  3835. u64 end;
  3836. int ret;
  3837. bool loop = true;
  3838. unpin = pinned_extents;
  3839. again:
  3840. while (1) {
  3841. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3842. EXTENT_DIRTY, NULL);
  3843. if (ret)
  3844. break;
  3845. clear_extent_dirty(unpin, start, end);
  3846. btrfs_error_unpin_extent_range(fs_info, start, end);
  3847. cond_resched();
  3848. }
  3849. if (loop) {
  3850. if (unpin == &fs_info->freed_extents[0])
  3851. unpin = &fs_info->freed_extents[1];
  3852. else
  3853. unpin = &fs_info->freed_extents[0];
  3854. loop = false;
  3855. goto again;
  3856. }
  3857. return 0;
  3858. }
  3859. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3860. {
  3861. struct inode *inode;
  3862. inode = cache->io_ctl.inode;
  3863. if (inode) {
  3864. invalidate_inode_pages2(inode->i_mapping);
  3865. BTRFS_I(inode)->generation = 0;
  3866. cache->io_ctl.inode = NULL;
  3867. iput(inode);
  3868. }
  3869. btrfs_put_block_group(cache);
  3870. }
  3871. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3872. struct btrfs_fs_info *fs_info)
  3873. {
  3874. struct btrfs_block_group_cache *cache;
  3875. spin_lock(&cur_trans->dirty_bgs_lock);
  3876. while (!list_empty(&cur_trans->dirty_bgs)) {
  3877. cache = list_first_entry(&cur_trans->dirty_bgs,
  3878. struct btrfs_block_group_cache,
  3879. dirty_list);
  3880. if (!cache) {
  3881. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3882. spin_unlock(&cur_trans->dirty_bgs_lock);
  3883. return;
  3884. }
  3885. if (!list_empty(&cache->io_list)) {
  3886. spin_unlock(&cur_trans->dirty_bgs_lock);
  3887. list_del_init(&cache->io_list);
  3888. btrfs_cleanup_bg_io(cache);
  3889. spin_lock(&cur_trans->dirty_bgs_lock);
  3890. }
  3891. list_del_init(&cache->dirty_list);
  3892. spin_lock(&cache->lock);
  3893. cache->disk_cache_state = BTRFS_DC_ERROR;
  3894. spin_unlock(&cache->lock);
  3895. spin_unlock(&cur_trans->dirty_bgs_lock);
  3896. btrfs_put_block_group(cache);
  3897. spin_lock(&cur_trans->dirty_bgs_lock);
  3898. }
  3899. spin_unlock(&cur_trans->dirty_bgs_lock);
  3900. while (!list_empty(&cur_trans->io_bgs)) {
  3901. cache = list_first_entry(&cur_trans->io_bgs,
  3902. struct btrfs_block_group_cache,
  3903. io_list);
  3904. if (!cache) {
  3905. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3906. return;
  3907. }
  3908. list_del_init(&cache->io_list);
  3909. spin_lock(&cache->lock);
  3910. cache->disk_cache_state = BTRFS_DC_ERROR;
  3911. spin_unlock(&cache->lock);
  3912. btrfs_cleanup_bg_io(cache);
  3913. }
  3914. }
  3915. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3916. struct btrfs_fs_info *fs_info)
  3917. {
  3918. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3919. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3920. ASSERT(list_empty(&cur_trans->io_bgs));
  3921. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3922. cur_trans->state = TRANS_STATE_COMMIT_START;
  3923. wake_up(&fs_info->transaction_blocked_wait);
  3924. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3925. wake_up(&fs_info->transaction_wait);
  3926. btrfs_destroy_delayed_inodes(fs_info);
  3927. btrfs_assert_delayed_root_empty(fs_info);
  3928. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3929. EXTENT_DIRTY);
  3930. btrfs_destroy_pinned_extent(fs_info,
  3931. fs_info->pinned_extents);
  3932. cur_trans->state =TRANS_STATE_COMPLETED;
  3933. wake_up(&cur_trans->commit_wait);
  3934. /*
  3935. memset(cur_trans, 0, sizeof(*cur_trans));
  3936. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3937. */
  3938. }
  3939. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3940. {
  3941. struct btrfs_transaction *t;
  3942. mutex_lock(&fs_info->transaction_kthread_mutex);
  3943. spin_lock(&fs_info->trans_lock);
  3944. while (!list_empty(&fs_info->trans_list)) {
  3945. t = list_first_entry(&fs_info->trans_list,
  3946. struct btrfs_transaction, list);
  3947. if (t->state >= TRANS_STATE_COMMIT_START) {
  3948. refcount_inc(&t->use_count);
  3949. spin_unlock(&fs_info->trans_lock);
  3950. btrfs_wait_for_commit(fs_info, t->transid);
  3951. btrfs_put_transaction(t);
  3952. spin_lock(&fs_info->trans_lock);
  3953. continue;
  3954. }
  3955. if (t == fs_info->running_transaction) {
  3956. t->state = TRANS_STATE_COMMIT_DOING;
  3957. spin_unlock(&fs_info->trans_lock);
  3958. /*
  3959. * We wait for 0 num_writers since we don't hold a trans
  3960. * handle open currently for this transaction.
  3961. */
  3962. wait_event(t->writer_wait,
  3963. atomic_read(&t->num_writers) == 0);
  3964. } else {
  3965. spin_unlock(&fs_info->trans_lock);
  3966. }
  3967. btrfs_cleanup_one_transaction(t, fs_info);
  3968. spin_lock(&fs_info->trans_lock);
  3969. if (t == fs_info->running_transaction)
  3970. fs_info->running_transaction = NULL;
  3971. list_del_init(&t->list);
  3972. spin_unlock(&fs_info->trans_lock);
  3973. btrfs_put_transaction(t);
  3974. trace_btrfs_transaction_commit(fs_info->tree_root);
  3975. spin_lock(&fs_info->trans_lock);
  3976. }
  3977. spin_unlock(&fs_info->trans_lock);
  3978. btrfs_destroy_all_ordered_extents(fs_info);
  3979. btrfs_destroy_delayed_inodes(fs_info);
  3980. btrfs_assert_delayed_root_empty(fs_info);
  3981. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3982. btrfs_destroy_all_delalloc_inodes(fs_info);
  3983. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3984. return 0;
  3985. }
  3986. static const struct extent_io_ops btree_extent_io_ops = {
  3987. /* mandatory callbacks */
  3988. .submit_bio_hook = btree_submit_bio_hook,
  3989. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3990. /* note we're sharing with inode.c for the merge bio hook */
  3991. .merge_bio_hook = btrfs_merge_bio_hook,
  3992. .readpage_io_failed_hook = btree_io_failed_hook,
  3993. /* optional callbacks */
  3994. };