sdma_v2_4.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_2_4_d.h"
  32. #include "oss/oss_2_4_sh_mask.h"
  33. #include "gmc/gmc_7_1_d.h"
  34. #include "gmc/gmc_7_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "iceland_sdma_pkt_open.h"
  41. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
  47. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  48. {
  49. SDMA0_REGISTER_OFFSET,
  50. SDMA1_REGISTER_OFFSET
  51. };
  52. static const u32 golden_settings_iceland_a11[] =
  53. {
  54. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  55. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  56. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  58. };
  59. static const u32 iceland_mgcg_cgcg_init[] =
  60. {
  61. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  62. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  63. };
  64. /*
  65. * sDMA - System DMA
  66. * Starting with CIK, the GPU has new asynchronous
  67. * DMA engines. These engines are used for compute
  68. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  69. * and each one supports 1 ring buffer used for gfx
  70. * and 2 queues used for compute.
  71. *
  72. * The programming model is very similar to the CP
  73. * (ring buffer, IBs, etc.), but sDMA has it's own
  74. * packet format that is different from the PM4 format
  75. * used by the CP. sDMA supports copying data, writing
  76. * embedded data, solid fills, and a number of other
  77. * things. It also has support for tiling/detiling of
  78. * buffers.
  79. */
  80. static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
  81. {
  82. switch (adev->asic_type) {
  83. case CHIP_TOPAZ:
  84. amdgpu_program_register_sequence(adev,
  85. iceland_mgcg_cgcg_init,
  86. (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
  87. amdgpu_program_register_sequence(adev,
  88. golden_settings_iceland_a11,
  89. (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
  90. break;
  91. default:
  92. break;
  93. }
  94. }
  95. static void sdma_v2_4_free_microcode(struct amdgpu_device *adev)
  96. {
  97. int i;
  98. for (i = 0; i < adev->sdma.num_instances; i++) {
  99. release_firmware(adev->sdma.instance[i].fw);
  100. adev->sdma.instance[i].fw = NULL;
  101. }
  102. }
  103. /**
  104. * sdma_v2_4_init_microcode - load ucode images from disk
  105. *
  106. * @adev: amdgpu_device pointer
  107. *
  108. * Use the firmware interface to load the ucode images into
  109. * the driver (not loaded into hw).
  110. * Returns 0 on success, error on failure.
  111. */
  112. static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
  113. {
  114. const char *chip_name;
  115. char fw_name[30];
  116. int err = 0, i;
  117. struct amdgpu_firmware_info *info = NULL;
  118. const struct common_firmware_header *header = NULL;
  119. const struct sdma_firmware_header_v1_0 *hdr;
  120. DRM_DEBUG("\n");
  121. switch (adev->asic_type) {
  122. case CHIP_TOPAZ:
  123. chip_name = "topaz";
  124. break;
  125. default: BUG();
  126. }
  127. for (i = 0; i < adev->sdma.num_instances; i++) {
  128. if (i == 0)
  129. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  130. else
  131. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  132. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  133. if (err)
  134. goto out;
  135. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  136. if (err)
  137. goto out;
  138. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  139. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  140. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  141. if (adev->sdma.instance[i].feature_version >= 20)
  142. adev->sdma.instance[i].burst_nop = true;
  143. if (adev->firmware.smu_load) {
  144. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  145. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  146. info->fw = adev->sdma.instance[i].fw;
  147. header = (const struct common_firmware_header *)info->fw->data;
  148. adev->firmware.fw_size +=
  149. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  150. }
  151. }
  152. out:
  153. if (err) {
  154. printk(KERN_ERR
  155. "sdma_v2_4: Failed to load firmware \"%s\"\n",
  156. fw_name);
  157. for (i = 0; i < adev->sdma.num_instances; i++) {
  158. release_firmware(adev->sdma.instance[i].fw);
  159. adev->sdma.instance[i].fw = NULL;
  160. }
  161. }
  162. return err;
  163. }
  164. /**
  165. * sdma_v2_4_ring_get_rptr - get the current read pointer
  166. *
  167. * @ring: amdgpu ring pointer
  168. *
  169. * Get the current rptr from the hardware (VI+).
  170. */
  171. static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
  172. {
  173. u32 rptr;
  174. /* XXX check if swapping is necessary on BE */
  175. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  176. return rptr;
  177. }
  178. /**
  179. * sdma_v2_4_ring_get_wptr - get the current write pointer
  180. *
  181. * @ring: amdgpu ring pointer
  182. *
  183. * Get the current wptr from the hardware (VI+).
  184. */
  185. static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
  186. {
  187. struct amdgpu_device *adev = ring->adev;
  188. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  189. u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  190. return wptr;
  191. }
  192. /**
  193. * sdma_v2_4_ring_set_wptr - commit the write pointer
  194. *
  195. * @ring: amdgpu ring pointer
  196. *
  197. * Write the wptr back to the hardware (VI+).
  198. */
  199. static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
  200. {
  201. struct amdgpu_device *adev = ring->adev;
  202. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  203. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  204. }
  205. static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  206. {
  207. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  208. int i;
  209. for (i = 0; i < count; i++)
  210. if (sdma && sdma->burst_nop && (i == 0))
  211. amdgpu_ring_write(ring, ring->nop |
  212. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  213. else
  214. amdgpu_ring_write(ring, ring->nop);
  215. }
  216. /**
  217. * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
  218. *
  219. * @ring: amdgpu ring pointer
  220. * @ib: IB object to schedule
  221. *
  222. * Schedule an IB in the DMA ring (VI).
  223. */
  224. static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
  225. struct amdgpu_ib *ib,
  226. unsigned vm_id, bool ctx_switch)
  227. {
  228. u32 vmid = vm_id & 0xf;
  229. u32 next_rptr = ring->wptr + 5;
  230. while ((next_rptr & 7) != 2)
  231. next_rptr++;
  232. next_rptr += 6;
  233. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  234. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  235. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  236. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  237. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  238. amdgpu_ring_write(ring, next_rptr);
  239. /* IB packet must end on a 8 DW boundary */
  240. sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  241. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  242. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  243. /* base must be 32 byte aligned */
  244. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  245. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  246. amdgpu_ring_write(ring, ib->length_dw);
  247. amdgpu_ring_write(ring, 0);
  248. amdgpu_ring_write(ring, 0);
  249. }
  250. /**
  251. * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
  252. *
  253. * @ring: amdgpu ring pointer
  254. *
  255. * Emit an hdp flush packet on the requested DMA ring.
  256. */
  257. static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  258. {
  259. u32 ref_and_mask = 0;
  260. if (ring == &ring->adev->sdma.instance[0].ring)
  261. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  262. else
  263. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  264. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  265. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  266. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  267. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  268. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  269. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  270. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  271. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  272. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  273. }
  274. static void sdma_v2_4_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  275. {
  276. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  277. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  278. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  279. amdgpu_ring_write(ring, 1);
  280. }
  281. /**
  282. * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
  283. *
  284. * @ring: amdgpu ring pointer
  285. * @fence: amdgpu fence object
  286. *
  287. * Add a DMA fence packet to the ring to write
  288. * the fence seq number and DMA trap packet to generate
  289. * an interrupt if needed (VI).
  290. */
  291. static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  292. unsigned flags)
  293. {
  294. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  295. /* write the fence */
  296. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  297. amdgpu_ring_write(ring, lower_32_bits(addr));
  298. amdgpu_ring_write(ring, upper_32_bits(addr));
  299. amdgpu_ring_write(ring, lower_32_bits(seq));
  300. /* optionally write high bits as well */
  301. if (write64bit) {
  302. addr += 4;
  303. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  304. amdgpu_ring_write(ring, lower_32_bits(addr));
  305. amdgpu_ring_write(ring, upper_32_bits(addr));
  306. amdgpu_ring_write(ring, upper_32_bits(seq));
  307. }
  308. /* generate an interrupt */
  309. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  310. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  311. }
  312. /**
  313. * sdma_v2_4_gfx_stop - stop the gfx async dma engines
  314. *
  315. * @adev: amdgpu_device pointer
  316. *
  317. * Stop the gfx async dma ring buffers (VI).
  318. */
  319. static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
  320. {
  321. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  322. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  323. u32 rb_cntl, ib_cntl;
  324. int i;
  325. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  326. (adev->mman.buffer_funcs_ring == sdma1))
  327. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  328. for (i = 0; i < adev->sdma.num_instances; i++) {
  329. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  330. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  331. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  332. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  333. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  334. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  335. }
  336. sdma0->ready = false;
  337. sdma1->ready = false;
  338. }
  339. /**
  340. * sdma_v2_4_rlc_stop - stop the compute async dma engines
  341. *
  342. * @adev: amdgpu_device pointer
  343. *
  344. * Stop the compute async dma queues (VI).
  345. */
  346. static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
  347. {
  348. /* XXX todo */
  349. }
  350. /**
  351. * sdma_v2_4_enable - stop the async dma engines
  352. *
  353. * @adev: amdgpu_device pointer
  354. * @enable: enable/disable the DMA MEs.
  355. *
  356. * Halt or unhalt the async dma engines (VI).
  357. */
  358. static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
  359. {
  360. u32 f32_cntl;
  361. int i;
  362. if (enable == false) {
  363. sdma_v2_4_gfx_stop(adev);
  364. sdma_v2_4_rlc_stop(adev);
  365. }
  366. for (i = 0; i < adev->sdma.num_instances; i++) {
  367. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  368. if (enable)
  369. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  370. else
  371. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  372. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  373. }
  374. }
  375. /**
  376. * sdma_v2_4_gfx_resume - setup and start the async dma engines
  377. *
  378. * @adev: amdgpu_device pointer
  379. *
  380. * Set up the gfx DMA ring buffers and enable them (VI).
  381. * Returns 0 for success, error for failure.
  382. */
  383. static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
  384. {
  385. struct amdgpu_ring *ring;
  386. u32 rb_cntl, ib_cntl;
  387. u32 rb_bufsz;
  388. u32 wb_offset;
  389. int i, j, r;
  390. for (i = 0; i < adev->sdma.num_instances; i++) {
  391. ring = &adev->sdma.instance[i].ring;
  392. wb_offset = (ring->rptr_offs * 4);
  393. mutex_lock(&adev->srbm_mutex);
  394. for (j = 0; j < 16; j++) {
  395. vi_srbm_select(adev, 0, 0, 0, j);
  396. /* SDMA GFX */
  397. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  398. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  399. }
  400. vi_srbm_select(adev, 0, 0, 0, 0);
  401. mutex_unlock(&adev->srbm_mutex);
  402. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  403. adev->gfx.config.gb_addr_config & 0x70);
  404. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  405. /* Set ring buffer size in dwords */
  406. rb_bufsz = order_base_2(ring->ring_size / 4);
  407. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  408. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  409. #ifdef __BIG_ENDIAN
  410. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  411. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  412. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  413. #endif
  414. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  415. /* Initialize the ring buffer's read and write pointers */
  416. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  417. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  418. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  419. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  420. /* set the wb address whether it's enabled or not */
  421. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  422. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  423. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  424. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  425. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  426. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  427. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  428. ring->wptr = 0;
  429. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  430. /* enable DMA RB */
  431. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  432. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  433. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  434. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  435. #ifdef __BIG_ENDIAN
  436. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  437. #endif
  438. /* enable DMA IBs */
  439. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  440. ring->ready = true;
  441. }
  442. sdma_v2_4_enable(adev, true);
  443. for (i = 0; i < adev->sdma.num_instances; i++) {
  444. ring = &adev->sdma.instance[i].ring;
  445. r = amdgpu_ring_test_ring(ring);
  446. if (r) {
  447. ring->ready = false;
  448. return r;
  449. }
  450. if (adev->mman.buffer_funcs_ring == ring)
  451. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  452. }
  453. return 0;
  454. }
  455. /**
  456. * sdma_v2_4_rlc_resume - setup and start the async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Set up the compute DMA queues and enable them (VI).
  461. * Returns 0 for success, error for failure.
  462. */
  463. static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
  464. {
  465. /* XXX todo */
  466. return 0;
  467. }
  468. /**
  469. * sdma_v2_4_load_microcode - load the sDMA ME ucode
  470. *
  471. * @adev: amdgpu_device pointer
  472. *
  473. * Loads the sDMA0/1 ucode.
  474. * Returns 0 for success, -EINVAL if the ucode is not available.
  475. */
  476. static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
  477. {
  478. const struct sdma_firmware_header_v1_0 *hdr;
  479. const __le32 *fw_data;
  480. u32 fw_size;
  481. int i, j;
  482. /* halt the MEs */
  483. sdma_v2_4_enable(adev, false);
  484. for (i = 0; i < adev->sdma.num_instances; i++) {
  485. if (!adev->sdma.instance[i].fw)
  486. return -EINVAL;
  487. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  488. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  489. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  490. fw_data = (const __le32 *)
  491. (adev->sdma.instance[i].fw->data +
  492. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  493. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  494. for (j = 0; j < fw_size; j++)
  495. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  496. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  497. }
  498. return 0;
  499. }
  500. /**
  501. * sdma_v2_4_start - setup and start the async dma engines
  502. *
  503. * @adev: amdgpu_device pointer
  504. *
  505. * Set up the DMA engines and enable them (VI).
  506. * Returns 0 for success, error for failure.
  507. */
  508. static int sdma_v2_4_start(struct amdgpu_device *adev)
  509. {
  510. int r;
  511. if (!adev->firmware.smu_load) {
  512. r = sdma_v2_4_load_microcode(adev);
  513. if (r)
  514. return r;
  515. } else {
  516. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  517. AMDGPU_UCODE_ID_SDMA0);
  518. if (r)
  519. return -EINVAL;
  520. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  521. AMDGPU_UCODE_ID_SDMA1);
  522. if (r)
  523. return -EINVAL;
  524. }
  525. /* halt the engine before programing */
  526. sdma_v2_4_enable(adev, false);
  527. /* start the gfx rings and rlc compute queues */
  528. r = sdma_v2_4_gfx_resume(adev);
  529. if (r)
  530. return r;
  531. r = sdma_v2_4_rlc_resume(adev);
  532. if (r)
  533. return r;
  534. return 0;
  535. }
  536. /**
  537. * sdma_v2_4_ring_test_ring - simple async dma engine test
  538. *
  539. * @ring: amdgpu_ring structure holding ring information
  540. *
  541. * Test the DMA engine by writing using it to write an
  542. * value to memory. (VI).
  543. * Returns 0 for success, error for failure.
  544. */
  545. static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
  546. {
  547. struct amdgpu_device *adev = ring->adev;
  548. unsigned i;
  549. unsigned index;
  550. int r;
  551. u32 tmp;
  552. u64 gpu_addr;
  553. r = amdgpu_wb_get(adev, &index);
  554. if (r) {
  555. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  556. return r;
  557. }
  558. gpu_addr = adev->wb.gpu_addr + (index * 4);
  559. tmp = 0xCAFEDEAD;
  560. adev->wb.wb[index] = cpu_to_le32(tmp);
  561. r = amdgpu_ring_alloc(ring, 5);
  562. if (r) {
  563. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  564. amdgpu_wb_free(adev, index);
  565. return r;
  566. }
  567. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  568. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  569. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  570. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  571. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  572. amdgpu_ring_write(ring, 0xDEADBEEF);
  573. amdgpu_ring_commit(ring);
  574. for (i = 0; i < adev->usec_timeout; i++) {
  575. tmp = le32_to_cpu(adev->wb.wb[index]);
  576. if (tmp == 0xDEADBEEF)
  577. break;
  578. DRM_UDELAY(1);
  579. }
  580. if (i < adev->usec_timeout) {
  581. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  582. } else {
  583. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  584. ring->idx, tmp);
  585. r = -EINVAL;
  586. }
  587. amdgpu_wb_free(adev, index);
  588. return r;
  589. }
  590. /**
  591. * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
  592. *
  593. * @ring: amdgpu_ring structure holding ring information
  594. *
  595. * Test a simple IB in the DMA ring (VI).
  596. * Returns 0 on success, error on failure.
  597. */
  598. static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
  599. {
  600. struct amdgpu_device *adev = ring->adev;
  601. struct amdgpu_ib ib;
  602. struct fence *f = NULL;
  603. unsigned i;
  604. unsigned index;
  605. int r;
  606. u32 tmp = 0;
  607. u64 gpu_addr;
  608. r = amdgpu_wb_get(adev, &index);
  609. if (r) {
  610. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  611. return r;
  612. }
  613. gpu_addr = adev->wb.gpu_addr + (index * 4);
  614. tmp = 0xCAFEDEAD;
  615. adev->wb.wb[index] = cpu_to_le32(tmp);
  616. memset(&ib, 0, sizeof(ib));
  617. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  618. if (r) {
  619. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  620. goto err0;
  621. }
  622. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  623. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  624. ib.ptr[1] = lower_32_bits(gpu_addr);
  625. ib.ptr[2] = upper_32_bits(gpu_addr);
  626. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  627. ib.ptr[4] = 0xDEADBEEF;
  628. ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  629. ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  630. ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  631. ib.length_dw = 8;
  632. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  633. if (r)
  634. goto err1;
  635. r = fence_wait(f, false);
  636. if (r) {
  637. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  638. goto err1;
  639. }
  640. for (i = 0; i < adev->usec_timeout; i++) {
  641. tmp = le32_to_cpu(adev->wb.wb[index]);
  642. if (tmp == 0xDEADBEEF)
  643. break;
  644. DRM_UDELAY(1);
  645. }
  646. if (i < adev->usec_timeout) {
  647. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  648. ring->idx, i);
  649. goto err1;
  650. } else {
  651. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  652. r = -EINVAL;
  653. }
  654. err1:
  655. fence_put(f);
  656. amdgpu_ib_free(adev, &ib, NULL);
  657. fence_put(f);
  658. err0:
  659. amdgpu_wb_free(adev, index);
  660. return r;
  661. }
  662. /**
  663. * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
  664. *
  665. * @ib: indirect buffer to fill with commands
  666. * @pe: addr of the page entry
  667. * @src: src addr to copy from
  668. * @count: number of page entries to update
  669. *
  670. * Update PTEs by copying them from the GART using sDMA (CIK).
  671. */
  672. static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
  673. uint64_t pe, uint64_t src,
  674. unsigned count)
  675. {
  676. while (count) {
  677. unsigned bytes = count * 8;
  678. if (bytes > 0x1FFFF8)
  679. bytes = 0x1FFFF8;
  680. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  681. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  682. ib->ptr[ib->length_dw++] = bytes;
  683. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  684. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  685. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  686. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  687. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  688. pe += bytes;
  689. src += bytes;
  690. count -= bytes / 8;
  691. }
  692. }
  693. /**
  694. * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
  695. *
  696. * @ib: indirect buffer to fill with commands
  697. * @pe: addr of the page entry
  698. * @addr: dst addr to write into pe
  699. * @count: number of page entries to update
  700. * @incr: increase next addr by incr bytes
  701. * @flags: access flags
  702. *
  703. * Update PTEs by writing them manually using sDMA (CIK).
  704. */
  705. static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
  706. const dma_addr_t *pages_addr, uint64_t pe,
  707. uint64_t addr, unsigned count,
  708. uint32_t incr, uint32_t flags)
  709. {
  710. uint64_t value;
  711. unsigned ndw;
  712. while (count) {
  713. ndw = count * 2;
  714. if (ndw > 0xFFFFE)
  715. ndw = 0xFFFFE;
  716. /* for non-physically contiguous pages (system) */
  717. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  718. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  719. ib->ptr[ib->length_dw++] = pe;
  720. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  721. ib->ptr[ib->length_dw++] = ndw;
  722. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  723. value = amdgpu_vm_map_gart(pages_addr, addr);
  724. addr += incr;
  725. value |= flags;
  726. ib->ptr[ib->length_dw++] = value;
  727. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  728. }
  729. }
  730. }
  731. /**
  732. * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
  733. *
  734. * @ib: indirect buffer to fill with commands
  735. * @pe: addr of the page entry
  736. * @addr: dst addr to write into pe
  737. * @count: number of page entries to update
  738. * @incr: increase next addr by incr bytes
  739. * @flags: access flags
  740. *
  741. * Update the page tables using sDMA (CIK).
  742. */
  743. static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
  744. uint64_t pe,
  745. uint64_t addr, unsigned count,
  746. uint32_t incr, uint32_t flags)
  747. {
  748. uint64_t value;
  749. unsigned ndw;
  750. while (count) {
  751. ndw = count;
  752. if (ndw > 0x7FFFF)
  753. ndw = 0x7FFFF;
  754. if (flags & AMDGPU_PTE_VALID)
  755. value = addr;
  756. else
  757. value = 0;
  758. /* for physically contiguous pages (vram) */
  759. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  760. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  761. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  762. ib->ptr[ib->length_dw++] = flags; /* mask */
  763. ib->ptr[ib->length_dw++] = 0;
  764. ib->ptr[ib->length_dw++] = value; /* value */
  765. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  766. ib->ptr[ib->length_dw++] = incr; /* increment size */
  767. ib->ptr[ib->length_dw++] = 0;
  768. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  769. pe += ndw * 8;
  770. addr += ndw * incr;
  771. count -= ndw;
  772. }
  773. }
  774. /**
  775. * sdma_v2_4_ring_pad_ib - pad the IB to the required number of dw
  776. *
  777. * @ib: indirect buffer to fill with padding
  778. *
  779. */
  780. static void sdma_v2_4_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  781. {
  782. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  783. u32 pad_count;
  784. int i;
  785. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  786. for (i = 0; i < pad_count; i++)
  787. if (sdma && sdma->burst_nop && (i == 0))
  788. ib->ptr[ib->length_dw++] =
  789. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  790. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  791. else
  792. ib->ptr[ib->length_dw++] =
  793. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  794. }
  795. /**
  796. * sdma_v2_4_ring_emit_pipeline_sync - sync the pipeline
  797. *
  798. * @ring: amdgpu_ring pointer
  799. *
  800. * Make sure all previous operations are completed (CIK).
  801. */
  802. static void sdma_v2_4_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  803. {
  804. uint32_t seq = ring->fence_drv.sync_seq;
  805. uint64_t addr = ring->fence_drv.gpu_addr;
  806. /* wait for idle */
  807. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  808. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  809. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  810. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  811. amdgpu_ring_write(ring, addr & 0xfffffffc);
  812. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  813. amdgpu_ring_write(ring, seq); /* reference */
  814. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  815. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  816. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  817. }
  818. /**
  819. * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
  820. *
  821. * @ring: amdgpu_ring pointer
  822. * @vm: amdgpu_vm pointer
  823. *
  824. * Update the page table base and flush the VM TLB
  825. * using sDMA (VI).
  826. */
  827. static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
  828. unsigned vm_id, uint64_t pd_addr)
  829. {
  830. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  831. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  832. if (vm_id < 8) {
  833. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  834. } else {
  835. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  836. }
  837. amdgpu_ring_write(ring, pd_addr >> 12);
  838. /* flush TLB */
  839. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  840. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  841. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  842. amdgpu_ring_write(ring, 1 << vm_id);
  843. /* wait for flush */
  844. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  845. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  846. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  847. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  848. amdgpu_ring_write(ring, 0);
  849. amdgpu_ring_write(ring, 0); /* reference */
  850. amdgpu_ring_write(ring, 0); /* mask */
  851. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  852. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  853. }
  854. static int sdma_v2_4_early_init(void *handle)
  855. {
  856. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  857. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  858. sdma_v2_4_set_ring_funcs(adev);
  859. sdma_v2_4_set_buffer_funcs(adev);
  860. sdma_v2_4_set_vm_pte_funcs(adev);
  861. sdma_v2_4_set_irq_funcs(adev);
  862. return 0;
  863. }
  864. static int sdma_v2_4_sw_init(void *handle)
  865. {
  866. struct amdgpu_ring *ring;
  867. int r, i;
  868. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  869. /* SDMA trap event */
  870. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  871. if (r)
  872. return r;
  873. /* SDMA Privileged inst */
  874. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  875. if (r)
  876. return r;
  877. /* SDMA Privileged inst */
  878. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  879. if (r)
  880. return r;
  881. r = sdma_v2_4_init_microcode(adev);
  882. if (r) {
  883. DRM_ERROR("Failed to load sdma firmware!\n");
  884. return r;
  885. }
  886. for (i = 0; i < adev->sdma.num_instances; i++) {
  887. ring = &adev->sdma.instance[i].ring;
  888. ring->ring_obj = NULL;
  889. ring->use_doorbell = false;
  890. sprintf(ring->name, "sdma%d", i);
  891. r = amdgpu_ring_init(adev, ring, 1024,
  892. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  893. &adev->sdma.trap_irq,
  894. (i == 0) ?
  895. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  896. AMDGPU_RING_TYPE_SDMA);
  897. if (r)
  898. return r;
  899. }
  900. return r;
  901. }
  902. static int sdma_v2_4_sw_fini(void *handle)
  903. {
  904. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  905. int i;
  906. for (i = 0; i < adev->sdma.num_instances; i++)
  907. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  908. sdma_v2_4_free_microcode(adev);
  909. return 0;
  910. }
  911. static int sdma_v2_4_hw_init(void *handle)
  912. {
  913. int r;
  914. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  915. sdma_v2_4_init_golden_registers(adev);
  916. r = sdma_v2_4_start(adev);
  917. if (r)
  918. return r;
  919. return r;
  920. }
  921. static int sdma_v2_4_hw_fini(void *handle)
  922. {
  923. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  924. sdma_v2_4_enable(adev, false);
  925. return 0;
  926. }
  927. static int sdma_v2_4_suspend(void *handle)
  928. {
  929. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  930. return sdma_v2_4_hw_fini(adev);
  931. }
  932. static int sdma_v2_4_resume(void *handle)
  933. {
  934. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  935. return sdma_v2_4_hw_init(adev);
  936. }
  937. static bool sdma_v2_4_is_idle(void *handle)
  938. {
  939. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  940. u32 tmp = RREG32(mmSRBM_STATUS2);
  941. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  942. SRBM_STATUS2__SDMA1_BUSY_MASK))
  943. return false;
  944. return true;
  945. }
  946. static int sdma_v2_4_wait_for_idle(void *handle)
  947. {
  948. unsigned i;
  949. u32 tmp;
  950. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  951. for (i = 0; i < adev->usec_timeout; i++) {
  952. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  953. SRBM_STATUS2__SDMA1_BUSY_MASK);
  954. if (!tmp)
  955. return 0;
  956. udelay(1);
  957. }
  958. return -ETIMEDOUT;
  959. }
  960. static int sdma_v2_4_soft_reset(void *handle)
  961. {
  962. u32 srbm_soft_reset = 0;
  963. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  964. u32 tmp = RREG32(mmSRBM_STATUS2);
  965. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  966. /* sdma0 */
  967. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  968. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  969. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  970. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  971. }
  972. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  973. /* sdma1 */
  974. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  975. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  976. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  977. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  978. }
  979. if (srbm_soft_reset) {
  980. tmp = RREG32(mmSRBM_SOFT_RESET);
  981. tmp |= srbm_soft_reset;
  982. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  983. WREG32(mmSRBM_SOFT_RESET, tmp);
  984. tmp = RREG32(mmSRBM_SOFT_RESET);
  985. udelay(50);
  986. tmp &= ~srbm_soft_reset;
  987. WREG32(mmSRBM_SOFT_RESET, tmp);
  988. tmp = RREG32(mmSRBM_SOFT_RESET);
  989. /* Wait a little for things to settle down */
  990. udelay(50);
  991. }
  992. return 0;
  993. }
  994. static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
  995. struct amdgpu_irq_src *src,
  996. unsigned type,
  997. enum amdgpu_interrupt_state state)
  998. {
  999. u32 sdma_cntl;
  1000. switch (type) {
  1001. case AMDGPU_SDMA_IRQ_TRAP0:
  1002. switch (state) {
  1003. case AMDGPU_IRQ_STATE_DISABLE:
  1004. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1005. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1006. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1007. break;
  1008. case AMDGPU_IRQ_STATE_ENABLE:
  1009. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1010. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1011. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1012. break;
  1013. default:
  1014. break;
  1015. }
  1016. break;
  1017. case AMDGPU_SDMA_IRQ_TRAP1:
  1018. switch (state) {
  1019. case AMDGPU_IRQ_STATE_DISABLE:
  1020. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1021. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1022. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1023. break;
  1024. case AMDGPU_IRQ_STATE_ENABLE:
  1025. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1026. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1027. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1028. break;
  1029. default:
  1030. break;
  1031. }
  1032. break;
  1033. default:
  1034. break;
  1035. }
  1036. return 0;
  1037. }
  1038. static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
  1039. struct amdgpu_irq_src *source,
  1040. struct amdgpu_iv_entry *entry)
  1041. {
  1042. u8 instance_id, queue_id;
  1043. instance_id = (entry->ring_id & 0x3) >> 0;
  1044. queue_id = (entry->ring_id & 0xc) >> 2;
  1045. DRM_DEBUG("IH: SDMA trap\n");
  1046. switch (instance_id) {
  1047. case 0:
  1048. switch (queue_id) {
  1049. case 0:
  1050. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1051. break;
  1052. case 1:
  1053. /* XXX compute */
  1054. break;
  1055. case 2:
  1056. /* XXX compute */
  1057. break;
  1058. }
  1059. break;
  1060. case 1:
  1061. switch (queue_id) {
  1062. case 0:
  1063. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1064. break;
  1065. case 1:
  1066. /* XXX compute */
  1067. break;
  1068. case 2:
  1069. /* XXX compute */
  1070. break;
  1071. }
  1072. break;
  1073. }
  1074. return 0;
  1075. }
  1076. static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
  1077. struct amdgpu_irq_src *source,
  1078. struct amdgpu_iv_entry *entry)
  1079. {
  1080. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1081. schedule_work(&adev->reset_work);
  1082. return 0;
  1083. }
  1084. static int sdma_v2_4_set_clockgating_state(void *handle,
  1085. enum amd_clockgating_state state)
  1086. {
  1087. /* XXX handled via the smc on VI */
  1088. return 0;
  1089. }
  1090. static int sdma_v2_4_set_powergating_state(void *handle,
  1091. enum amd_powergating_state state)
  1092. {
  1093. return 0;
  1094. }
  1095. const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
  1096. .name = "sdma_v2_4",
  1097. .early_init = sdma_v2_4_early_init,
  1098. .late_init = NULL,
  1099. .sw_init = sdma_v2_4_sw_init,
  1100. .sw_fini = sdma_v2_4_sw_fini,
  1101. .hw_init = sdma_v2_4_hw_init,
  1102. .hw_fini = sdma_v2_4_hw_fini,
  1103. .suspend = sdma_v2_4_suspend,
  1104. .resume = sdma_v2_4_resume,
  1105. .is_idle = sdma_v2_4_is_idle,
  1106. .wait_for_idle = sdma_v2_4_wait_for_idle,
  1107. .soft_reset = sdma_v2_4_soft_reset,
  1108. .set_clockgating_state = sdma_v2_4_set_clockgating_state,
  1109. .set_powergating_state = sdma_v2_4_set_powergating_state,
  1110. };
  1111. static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
  1112. .get_rptr = sdma_v2_4_ring_get_rptr,
  1113. .get_wptr = sdma_v2_4_ring_get_wptr,
  1114. .set_wptr = sdma_v2_4_ring_set_wptr,
  1115. .parse_cs = NULL,
  1116. .emit_ib = sdma_v2_4_ring_emit_ib,
  1117. .emit_fence = sdma_v2_4_ring_emit_fence,
  1118. .emit_pipeline_sync = sdma_v2_4_ring_emit_pipeline_sync,
  1119. .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
  1120. .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
  1121. .emit_hdp_invalidate = sdma_v2_4_ring_emit_hdp_invalidate,
  1122. .test_ring = sdma_v2_4_ring_test_ring,
  1123. .test_ib = sdma_v2_4_ring_test_ib,
  1124. .insert_nop = sdma_v2_4_ring_insert_nop,
  1125. .pad_ib = sdma_v2_4_ring_pad_ib,
  1126. };
  1127. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
  1128. {
  1129. int i;
  1130. for (i = 0; i < adev->sdma.num_instances; i++)
  1131. adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
  1132. }
  1133. static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
  1134. .set = sdma_v2_4_set_trap_irq_state,
  1135. .process = sdma_v2_4_process_trap_irq,
  1136. };
  1137. static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
  1138. .process = sdma_v2_4_process_illegal_inst_irq,
  1139. };
  1140. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
  1141. {
  1142. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1143. adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
  1144. adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
  1145. }
  1146. /**
  1147. * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
  1148. *
  1149. * @ring: amdgpu_ring structure holding ring information
  1150. * @src_offset: src GPU address
  1151. * @dst_offset: dst GPU address
  1152. * @byte_count: number of bytes to xfer
  1153. *
  1154. * Copy GPU buffers using the DMA engine (VI).
  1155. * Used by the amdgpu ttm implementation to move pages if
  1156. * registered as the asic copy callback.
  1157. */
  1158. static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
  1159. uint64_t src_offset,
  1160. uint64_t dst_offset,
  1161. uint32_t byte_count)
  1162. {
  1163. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1164. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1165. ib->ptr[ib->length_dw++] = byte_count;
  1166. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1167. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1168. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1169. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1170. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1171. }
  1172. /**
  1173. * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
  1174. *
  1175. * @ring: amdgpu_ring structure holding ring information
  1176. * @src_data: value to write to buffer
  1177. * @dst_offset: dst GPU address
  1178. * @byte_count: number of bytes to xfer
  1179. *
  1180. * Fill GPU buffers using the DMA engine (VI).
  1181. */
  1182. static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
  1183. uint32_t src_data,
  1184. uint64_t dst_offset,
  1185. uint32_t byte_count)
  1186. {
  1187. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1188. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1189. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1190. ib->ptr[ib->length_dw++] = src_data;
  1191. ib->ptr[ib->length_dw++] = byte_count;
  1192. }
  1193. static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
  1194. .copy_max_bytes = 0x1fffff,
  1195. .copy_num_dw = 7,
  1196. .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
  1197. .fill_max_bytes = 0x1fffff,
  1198. .fill_num_dw = 7,
  1199. .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
  1200. };
  1201. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
  1202. {
  1203. if (adev->mman.buffer_funcs == NULL) {
  1204. adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
  1205. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1206. }
  1207. }
  1208. static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
  1209. .copy_pte = sdma_v2_4_vm_copy_pte,
  1210. .write_pte = sdma_v2_4_vm_write_pte,
  1211. .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
  1212. };
  1213. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
  1214. {
  1215. unsigned i;
  1216. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1217. adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
  1218. for (i = 0; i < adev->sdma.num_instances; i++)
  1219. adev->vm_manager.vm_pte_rings[i] =
  1220. &adev->sdma.instance[i].ring;
  1221. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1222. }
  1223. }