disk-io.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  64. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66. struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  69. struct extent_io_tree *dirty_pages,
  70. int mark);
  71. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *pinned_extents);
  73. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  74. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  75. /*
  76. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  77. * is complete. This is used during reads to verify checksums, and it is used
  78. * by writes to insert metadata for new file extents after IO is complete.
  79. */
  80. struct btrfs_end_io_wq {
  81. struct bio *bio;
  82. bio_end_io_t *end_io;
  83. void *private;
  84. struct btrfs_fs_info *info;
  85. int error;
  86. enum btrfs_wq_endio_type metadata;
  87. struct list_head list;
  88. struct btrfs_work work;
  89. };
  90. static struct kmem_cache *btrfs_end_io_wq_cache;
  91. int __init btrfs_end_io_wq_init(void)
  92. {
  93. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  94. sizeof(struct btrfs_end_io_wq),
  95. 0,
  96. SLAB_MEM_SPREAD,
  97. NULL);
  98. if (!btrfs_end_io_wq_cache)
  99. return -ENOMEM;
  100. return 0;
  101. }
  102. void btrfs_end_io_wq_exit(void)
  103. {
  104. kmem_cache_destroy(btrfs_end_io_wq_cache);
  105. }
  106. /*
  107. * async submit bios are used to offload expensive checksumming
  108. * onto the worker threads. They checksum file and metadata bios
  109. * just before they are sent down the IO stack.
  110. */
  111. struct async_submit_bio {
  112. struct inode *inode;
  113. struct bio *bio;
  114. struct list_head list;
  115. extent_submit_bio_hook_t *submit_bio_start;
  116. extent_submit_bio_hook_t *submit_bio_done;
  117. int mirror_num;
  118. unsigned long bio_flags;
  119. /*
  120. * bio_offset is optional, can be used if the pages in the bio
  121. * can't tell us where in the file the bio should go
  122. */
  123. u64 bio_offset;
  124. struct btrfs_work work;
  125. int error;
  126. };
  127. /*
  128. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  129. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  130. * the level the eb occupies in the tree.
  131. *
  132. * Different roots are used for different purposes and may nest inside each
  133. * other and they require separate keysets. As lockdep keys should be
  134. * static, assign keysets according to the purpose of the root as indicated
  135. * by btrfs_root->objectid. This ensures that all special purpose roots
  136. * have separate keysets.
  137. *
  138. * Lock-nesting across peer nodes is always done with the immediate parent
  139. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  140. * subclass to avoid triggering lockdep warning in such cases.
  141. *
  142. * The key is set by the readpage_end_io_hook after the buffer has passed
  143. * csum validation but before the pages are unlocked. It is also set by
  144. * btrfs_init_new_buffer on freshly allocated blocks.
  145. *
  146. * We also add a check to make sure the highest level of the tree is the
  147. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  148. * needs update as well.
  149. */
  150. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  151. # if BTRFS_MAX_LEVEL != 8
  152. # error
  153. # endif
  154. static struct btrfs_lockdep_keyset {
  155. u64 id; /* root objectid */
  156. const char *name_stem; /* lock name stem */
  157. char names[BTRFS_MAX_LEVEL + 1][20];
  158. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  159. } btrfs_lockdep_keysets[] = {
  160. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  161. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  162. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  163. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  164. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  165. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  166. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  167. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  168. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  169. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  170. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  171. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  172. { .id = 0, .name_stem = "tree" },
  173. };
  174. void __init btrfs_init_lockdep(void)
  175. {
  176. int i, j;
  177. /* initialize lockdep class names */
  178. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  179. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  180. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  181. snprintf(ks->names[j], sizeof(ks->names[j]),
  182. "btrfs-%s-%02d", ks->name_stem, j);
  183. }
  184. }
  185. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  186. int level)
  187. {
  188. struct btrfs_lockdep_keyset *ks;
  189. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  190. /* find the matching keyset, id 0 is the default entry */
  191. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  192. if (ks->id == objectid)
  193. break;
  194. lockdep_set_class_and_name(&eb->lock,
  195. &ks->keys[level], ks->names[level]);
  196. }
  197. #endif
  198. /*
  199. * extents on the btree inode are pretty simple, there's one extent
  200. * that covers the entire device
  201. */
  202. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  203. struct page *page, size_t pg_offset, u64 start, u64 len,
  204. int create)
  205. {
  206. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  207. struct extent_map_tree *em_tree = &inode->extent_tree;
  208. struct extent_map *em;
  209. int ret;
  210. read_lock(&em_tree->lock);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (em) {
  213. em->bdev = fs_info->fs_devices->latest_bdev;
  214. read_unlock(&em_tree->lock);
  215. goto out;
  216. }
  217. read_unlock(&em_tree->lock);
  218. em = alloc_extent_map();
  219. if (!em) {
  220. em = ERR_PTR(-ENOMEM);
  221. goto out;
  222. }
  223. em->start = 0;
  224. em->len = (u64)-1;
  225. em->block_len = (u64)-1;
  226. em->block_start = 0;
  227. em->bdev = fs_info->fs_devices->latest_bdev;
  228. write_lock(&em_tree->lock);
  229. ret = add_extent_mapping(em_tree, em, 0);
  230. if (ret == -EEXIST) {
  231. free_extent_map(em);
  232. em = lookup_extent_mapping(em_tree, start, len);
  233. if (!em)
  234. em = ERR_PTR(-EIO);
  235. } else if (ret) {
  236. free_extent_map(em);
  237. em = ERR_PTR(ret);
  238. }
  239. write_unlock(&em_tree->lock);
  240. out:
  241. return em;
  242. }
  243. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  244. {
  245. return btrfs_crc32c(seed, data, len);
  246. }
  247. void btrfs_csum_final(u32 crc, u8 *result)
  248. {
  249. put_unaligned_le32(~crc, result);
  250. }
  251. /*
  252. * compute the csum for a btree block, and either verify it or write it
  253. * into the csum field of the block.
  254. */
  255. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  256. struct extent_buffer *buf,
  257. int verify)
  258. {
  259. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  260. char *result = NULL;
  261. unsigned long len;
  262. unsigned long cur_len;
  263. unsigned long offset = BTRFS_CSUM_SIZE;
  264. char *kaddr;
  265. unsigned long map_start;
  266. unsigned long map_len;
  267. int err;
  268. u32 crc = ~(u32)0;
  269. unsigned long inline_result;
  270. len = buf->len - offset;
  271. while (len > 0) {
  272. err = map_private_extent_buffer(buf, offset, 32,
  273. &kaddr, &map_start, &map_len);
  274. if (err)
  275. return err;
  276. cur_len = min(len, map_len - (offset - map_start));
  277. crc = btrfs_csum_data(kaddr + offset - map_start,
  278. crc, cur_len);
  279. len -= cur_len;
  280. offset += cur_len;
  281. }
  282. if (csum_size > sizeof(inline_result)) {
  283. result = kzalloc(csum_size, GFP_NOFS);
  284. if (!result)
  285. return -ENOMEM;
  286. } else {
  287. result = (char *)&inline_result;
  288. }
  289. btrfs_csum_final(crc, result);
  290. if (verify) {
  291. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  292. u32 val;
  293. u32 found = 0;
  294. memcpy(&found, result, csum_size);
  295. read_extent_buffer(buf, &val, 0, csum_size);
  296. btrfs_warn_rl(fs_info,
  297. "%s checksum verify failed on %llu wanted %X found %X level %d",
  298. fs_info->sb->s_id, buf->start,
  299. val, found, btrfs_header_level(buf));
  300. if (result != (char *)&inline_result)
  301. kfree(result);
  302. return -EUCLEAN;
  303. }
  304. } else {
  305. write_extent_buffer(buf, result, 0, csum_size);
  306. }
  307. if (result != (char *)&inline_result)
  308. kfree(result);
  309. return 0;
  310. }
  311. /*
  312. * we can't consider a given block up to date unless the transid of the
  313. * block matches the transid in the parent node's pointer. This is how we
  314. * detect blocks that either didn't get written at all or got written
  315. * in the wrong place.
  316. */
  317. static int verify_parent_transid(struct extent_io_tree *io_tree,
  318. struct extent_buffer *eb, u64 parent_transid,
  319. int atomic)
  320. {
  321. struct extent_state *cached_state = NULL;
  322. int ret;
  323. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  324. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  325. return 0;
  326. if (atomic)
  327. return -EAGAIN;
  328. if (need_lock) {
  329. btrfs_tree_read_lock(eb);
  330. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  331. }
  332. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  333. &cached_state);
  334. if (extent_buffer_uptodate(eb) &&
  335. btrfs_header_generation(eb) == parent_transid) {
  336. ret = 0;
  337. goto out;
  338. }
  339. btrfs_err_rl(eb->fs_info,
  340. "parent transid verify failed on %llu wanted %llu found %llu",
  341. eb->start,
  342. parent_transid, btrfs_header_generation(eb));
  343. ret = 1;
  344. /*
  345. * Things reading via commit roots that don't have normal protection,
  346. * like send, can have a really old block in cache that may point at a
  347. * block that has been freed and re-allocated. So don't clear uptodate
  348. * if we find an eb that is under IO (dirty/writeback) because we could
  349. * end up reading in the stale data and then writing it back out and
  350. * making everybody very sad.
  351. */
  352. if (!extent_buffer_under_io(eb))
  353. clear_extent_buffer_uptodate(eb);
  354. out:
  355. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  356. &cached_state, GFP_NOFS);
  357. if (need_lock)
  358. btrfs_tree_read_unlock_blocking(eb);
  359. return ret;
  360. }
  361. /*
  362. * Return 0 if the superblock checksum type matches the checksum value of that
  363. * algorithm. Pass the raw disk superblock data.
  364. */
  365. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  366. char *raw_disk_sb)
  367. {
  368. struct btrfs_super_block *disk_sb =
  369. (struct btrfs_super_block *)raw_disk_sb;
  370. u16 csum_type = btrfs_super_csum_type(disk_sb);
  371. int ret = 0;
  372. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  373. u32 crc = ~(u32)0;
  374. const int csum_size = sizeof(crc);
  375. char result[csum_size];
  376. /*
  377. * The super_block structure does not span the whole
  378. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  379. * is filled with zeros and is included in the checksum.
  380. */
  381. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  382. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  383. btrfs_csum_final(crc, result);
  384. if (memcmp(raw_disk_sb, result, csum_size))
  385. ret = 1;
  386. }
  387. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  388. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  389. csum_type);
  390. ret = 1;
  391. }
  392. return ret;
  393. }
  394. /*
  395. * helper to read a given tree block, doing retries as required when
  396. * the checksums don't match and we have alternate mirrors to try.
  397. */
  398. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  399. struct extent_buffer *eb,
  400. u64 parent_transid)
  401. {
  402. struct extent_io_tree *io_tree;
  403. int failed = 0;
  404. int ret;
  405. int num_copies = 0;
  406. int mirror_num = 0;
  407. int failed_mirror = 0;
  408. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  409. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  410. while (1) {
  411. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  412. btree_get_extent, mirror_num);
  413. if (!ret) {
  414. if (!verify_parent_transid(io_tree, eb,
  415. parent_transid, 0))
  416. break;
  417. else
  418. ret = -EIO;
  419. }
  420. /*
  421. * This buffer's crc is fine, but its contents are corrupted, so
  422. * there is no reason to read the other copies, they won't be
  423. * any less wrong.
  424. */
  425. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  426. break;
  427. num_copies = btrfs_num_copies(fs_info,
  428. eb->start, eb->len);
  429. if (num_copies == 1)
  430. break;
  431. if (!failed_mirror) {
  432. failed = 1;
  433. failed_mirror = eb->read_mirror;
  434. }
  435. mirror_num++;
  436. if (mirror_num == failed_mirror)
  437. mirror_num++;
  438. if (mirror_num > num_copies)
  439. break;
  440. }
  441. if (failed && !ret && failed_mirror)
  442. repair_eb_io_failure(fs_info, eb, failed_mirror);
  443. return ret;
  444. }
  445. /*
  446. * checksum a dirty tree block before IO. This has extra checks to make sure
  447. * we only fill in the checksum field in the first page of a multi-page block
  448. */
  449. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  450. {
  451. u64 start = page_offset(page);
  452. u64 found_start;
  453. struct extent_buffer *eb;
  454. eb = (struct extent_buffer *)page->private;
  455. if (page != eb->pages[0])
  456. return 0;
  457. found_start = btrfs_header_bytenr(eb);
  458. /*
  459. * Please do not consolidate these warnings into a single if.
  460. * It is useful to know what went wrong.
  461. */
  462. if (WARN_ON(found_start != start))
  463. return -EUCLEAN;
  464. if (WARN_ON(!PageUptodate(page)))
  465. return -EUCLEAN;
  466. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  467. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  468. return csum_tree_block(fs_info, eb, 0);
  469. }
  470. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  471. struct extent_buffer *eb)
  472. {
  473. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  474. u8 fsid[BTRFS_UUID_SIZE];
  475. int ret = 1;
  476. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  477. while (fs_devices) {
  478. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  479. ret = 0;
  480. break;
  481. }
  482. fs_devices = fs_devices->seed;
  483. }
  484. return ret;
  485. }
  486. #define CORRUPT(reason, eb, root, slot) \
  487. btrfs_crit(root->fs_info, \
  488. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  489. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  490. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  491. static noinline int check_leaf(struct btrfs_root *root,
  492. struct extent_buffer *leaf)
  493. {
  494. struct btrfs_fs_info *fs_info = root->fs_info;
  495. struct btrfs_key key;
  496. struct btrfs_key leaf_key;
  497. u32 nritems = btrfs_header_nritems(leaf);
  498. int slot;
  499. /*
  500. * Extent buffers from a relocation tree have a owner field that
  501. * corresponds to the subvolume tree they are based on. So just from an
  502. * extent buffer alone we can not find out what is the id of the
  503. * corresponding subvolume tree, so we can not figure out if the extent
  504. * buffer corresponds to the root of the relocation tree or not. So skip
  505. * this check for relocation trees.
  506. */
  507. if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
  508. struct btrfs_root *check_root;
  509. key.objectid = btrfs_header_owner(leaf);
  510. key.type = BTRFS_ROOT_ITEM_KEY;
  511. key.offset = (u64)-1;
  512. check_root = btrfs_get_fs_root(fs_info, &key, false);
  513. /*
  514. * The only reason we also check NULL here is that during
  515. * open_ctree() some roots has not yet been set up.
  516. */
  517. if (!IS_ERR_OR_NULL(check_root)) {
  518. struct extent_buffer *eb;
  519. eb = btrfs_root_node(check_root);
  520. /* if leaf is the root, then it's fine */
  521. if (leaf != eb) {
  522. CORRUPT("non-root leaf's nritems is 0",
  523. leaf, check_root, 0);
  524. free_extent_buffer(eb);
  525. return -EIO;
  526. }
  527. free_extent_buffer(eb);
  528. }
  529. return 0;
  530. }
  531. if (nritems == 0)
  532. return 0;
  533. /* Check the 0 item */
  534. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  535. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  536. CORRUPT("invalid item offset size pair", leaf, root, 0);
  537. return -EIO;
  538. }
  539. /*
  540. * Check to make sure each items keys are in the correct order and their
  541. * offsets make sense. We only have to loop through nritems-1 because
  542. * we check the current slot against the next slot, which verifies the
  543. * next slot's offset+size makes sense and that the current's slot
  544. * offset is correct.
  545. */
  546. for (slot = 0; slot < nritems - 1; slot++) {
  547. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  548. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  549. /* Make sure the keys are in the right order */
  550. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  551. CORRUPT("bad key order", leaf, root, slot);
  552. return -EIO;
  553. }
  554. /*
  555. * Make sure the offset and ends are right, remember that the
  556. * item data starts at the end of the leaf and grows towards the
  557. * front.
  558. */
  559. if (btrfs_item_offset_nr(leaf, slot) !=
  560. btrfs_item_end_nr(leaf, slot + 1)) {
  561. CORRUPT("slot offset bad", leaf, root, slot);
  562. return -EIO;
  563. }
  564. /*
  565. * Check to make sure that we don't point outside of the leaf,
  566. * just in case all the items are consistent to each other, but
  567. * all point outside of the leaf.
  568. */
  569. if (btrfs_item_end_nr(leaf, slot) >
  570. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  571. CORRUPT("slot end outside of leaf", leaf, root, slot);
  572. return -EIO;
  573. }
  574. }
  575. return 0;
  576. }
  577. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  578. {
  579. unsigned long nr = btrfs_header_nritems(node);
  580. struct btrfs_key key, next_key;
  581. int slot;
  582. u64 bytenr;
  583. int ret = 0;
  584. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  585. btrfs_crit(root->fs_info,
  586. "corrupt node: block %llu root %llu nritems %lu",
  587. node->start, root->objectid, nr);
  588. return -EIO;
  589. }
  590. for (slot = 0; slot < nr - 1; slot++) {
  591. bytenr = btrfs_node_blockptr(node, slot);
  592. btrfs_node_key_to_cpu(node, &key, slot);
  593. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  594. if (!bytenr) {
  595. CORRUPT("invalid item slot", node, root, slot);
  596. ret = -EIO;
  597. goto out;
  598. }
  599. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  600. CORRUPT("bad key order", node, root, slot);
  601. ret = -EIO;
  602. goto out;
  603. }
  604. }
  605. out:
  606. return ret;
  607. }
  608. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  609. u64 phy_offset, struct page *page,
  610. u64 start, u64 end, int mirror)
  611. {
  612. u64 found_start;
  613. int found_level;
  614. struct extent_buffer *eb;
  615. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  616. struct btrfs_fs_info *fs_info = root->fs_info;
  617. int ret = 0;
  618. int reads_done;
  619. if (!page->private)
  620. goto out;
  621. eb = (struct extent_buffer *)page->private;
  622. /* the pending IO might have been the only thing that kept this buffer
  623. * in memory. Make sure we have a ref for all this other checks
  624. */
  625. extent_buffer_get(eb);
  626. reads_done = atomic_dec_and_test(&eb->io_pages);
  627. if (!reads_done)
  628. goto err;
  629. eb->read_mirror = mirror;
  630. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  631. ret = -EIO;
  632. goto err;
  633. }
  634. found_start = btrfs_header_bytenr(eb);
  635. if (found_start != eb->start) {
  636. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  637. found_start, eb->start);
  638. ret = -EIO;
  639. goto err;
  640. }
  641. if (check_tree_block_fsid(fs_info, eb)) {
  642. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  643. eb->start);
  644. ret = -EIO;
  645. goto err;
  646. }
  647. found_level = btrfs_header_level(eb);
  648. if (found_level >= BTRFS_MAX_LEVEL) {
  649. btrfs_err(fs_info, "bad tree block level %d",
  650. (int)btrfs_header_level(eb));
  651. ret = -EIO;
  652. goto err;
  653. }
  654. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  655. eb, found_level);
  656. ret = csum_tree_block(fs_info, eb, 1);
  657. if (ret)
  658. goto err;
  659. /*
  660. * If this is a leaf block and it is corrupt, set the corrupt bit so
  661. * that we don't try and read the other copies of this block, just
  662. * return -EIO.
  663. */
  664. if (found_level == 0 && check_leaf(root, eb)) {
  665. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  666. ret = -EIO;
  667. }
  668. if (found_level > 0 && check_node(root, eb))
  669. ret = -EIO;
  670. if (!ret)
  671. set_extent_buffer_uptodate(eb);
  672. err:
  673. if (reads_done &&
  674. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  675. btree_readahead_hook(fs_info, eb, ret);
  676. if (ret) {
  677. /*
  678. * our io error hook is going to dec the io pages
  679. * again, we have to make sure it has something
  680. * to decrement
  681. */
  682. atomic_inc(&eb->io_pages);
  683. clear_extent_buffer_uptodate(eb);
  684. }
  685. free_extent_buffer(eb);
  686. out:
  687. return ret;
  688. }
  689. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  690. {
  691. struct extent_buffer *eb;
  692. eb = (struct extent_buffer *)page->private;
  693. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  694. eb->read_mirror = failed_mirror;
  695. atomic_dec(&eb->io_pages);
  696. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  697. btree_readahead_hook(eb->fs_info, eb, -EIO);
  698. return -EIO; /* we fixed nothing */
  699. }
  700. static void end_workqueue_bio(struct bio *bio)
  701. {
  702. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  703. struct btrfs_fs_info *fs_info;
  704. struct btrfs_workqueue *wq;
  705. btrfs_work_func_t func;
  706. fs_info = end_io_wq->info;
  707. end_io_wq->error = bio->bi_error;
  708. if (bio_op(bio) == REQ_OP_WRITE) {
  709. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  710. wq = fs_info->endio_meta_write_workers;
  711. func = btrfs_endio_meta_write_helper;
  712. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  713. wq = fs_info->endio_freespace_worker;
  714. func = btrfs_freespace_write_helper;
  715. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  716. wq = fs_info->endio_raid56_workers;
  717. func = btrfs_endio_raid56_helper;
  718. } else {
  719. wq = fs_info->endio_write_workers;
  720. func = btrfs_endio_write_helper;
  721. }
  722. } else {
  723. if (unlikely(end_io_wq->metadata ==
  724. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  725. wq = fs_info->endio_repair_workers;
  726. func = btrfs_endio_repair_helper;
  727. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  728. wq = fs_info->endio_raid56_workers;
  729. func = btrfs_endio_raid56_helper;
  730. } else if (end_io_wq->metadata) {
  731. wq = fs_info->endio_meta_workers;
  732. func = btrfs_endio_meta_helper;
  733. } else {
  734. wq = fs_info->endio_workers;
  735. func = btrfs_endio_helper;
  736. }
  737. }
  738. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  739. btrfs_queue_work(wq, &end_io_wq->work);
  740. }
  741. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  742. enum btrfs_wq_endio_type metadata)
  743. {
  744. struct btrfs_end_io_wq *end_io_wq;
  745. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  746. if (!end_io_wq)
  747. return -ENOMEM;
  748. end_io_wq->private = bio->bi_private;
  749. end_io_wq->end_io = bio->bi_end_io;
  750. end_io_wq->info = info;
  751. end_io_wq->error = 0;
  752. end_io_wq->bio = bio;
  753. end_io_wq->metadata = metadata;
  754. bio->bi_private = end_io_wq;
  755. bio->bi_end_io = end_workqueue_bio;
  756. return 0;
  757. }
  758. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  759. {
  760. unsigned long limit = min_t(unsigned long,
  761. info->thread_pool_size,
  762. info->fs_devices->open_devices);
  763. return 256 * limit;
  764. }
  765. static void run_one_async_start(struct btrfs_work *work)
  766. {
  767. struct async_submit_bio *async;
  768. int ret;
  769. async = container_of(work, struct async_submit_bio, work);
  770. ret = async->submit_bio_start(async->inode, async->bio,
  771. async->mirror_num, async->bio_flags,
  772. async->bio_offset);
  773. if (ret)
  774. async->error = ret;
  775. }
  776. static void run_one_async_done(struct btrfs_work *work)
  777. {
  778. struct btrfs_fs_info *fs_info;
  779. struct async_submit_bio *async;
  780. int limit;
  781. async = container_of(work, struct async_submit_bio, work);
  782. fs_info = BTRFS_I(async->inode)->root->fs_info;
  783. limit = btrfs_async_submit_limit(fs_info);
  784. limit = limit * 2 / 3;
  785. /*
  786. * atomic_dec_return implies a barrier for waitqueue_active
  787. */
  788. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  789. waitqueue_active(&fs_info->async_submit_wait))
  790. wake_up(&fs_info->async_submit_wait);
  791. /* If an error occurred we just want to clean up the bio and move on */
  792. if (async->error) {
  793. async->bio->bi_error = async->error;
  794. bio_endio(async->bio);
  795. return;
  796. }
  797. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  798. async->bio_flags, async->bio_offset);
  799. }
  800. static void run_one_async_free(struct btrfs_work *work)
  801. {
  802. struct async_submit_bio *async;
  803. async = container_of(work, struct async_submit_bio, work);
  804. kfree(async);
  805. }
  806. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  807. struct bio *bio, int mirror_num,
  808. unsigned long bio_flags,
  809. u64 bio_offset,
  810. extent_submit_bio_hook_t *submit_bio_start,
  811. extent_submit_bio_hook_t *submit_bio_done)
  812. {
  813. struct async_submit_bio *async;
  814. async = kmalloc(sizeof(*async), GFP_NOFS);
  815. if (!async)
  816. return -ENOMEM;
  817. async->inode = inode;
  818. async->bio = bio;
  819. async->mirror_num = mirror_num;
  820. async->submit_bio_start = submit_bio_start;
  821. async->submit_bio_done = submit_bio_done;
  822. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  823. run_one_async_done, run_one_async_free);
  824. async->bio_flags = bio_flags;
  825. async->bio_offset = bio_offset;
  826. async->error = 0;
  827. atomic_inc(&fs_info->nr_async_submits);
  828. if (op_is_sync(bio->bi_opf))
  829. btrfs_set_work_high_priority(&async->work);
  830. btrfs_queue_work(fs_info->workers, &async->work);
  831. while (atomic_read(&fs_info->async_submit_draining) &&
  832. atomic_read(&fs_info->nr_async_submits)) {
  833. wait_event(fs_info->async_submit_wait,
  834. (atomic_read(&fs_info->nr_async_submits) == 0));
  835. }
  836. return 0;
  837. }
  838. static int btree_csum_one_bio(struct bio *bio)
  839. {
  840. struct bio_vec *bvec;
  841. struct btrfs_root *root;
  842. int i, ret = 0;
  843. bio_for_each_segment_all(bvec, bio, i) {
  844. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  845. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  846. if (ret)
  847. break;
  848. }
  849. return ret;
  850. }
  851. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  852. int mirror_num, unsigned long bio_flags,
  853. u64 bio_offset)
  854. {
  855. /*
  856. * when we're called for a write, we're already in the async
  857. * submission context. Just jump into btrfs_map_bio
  858. */
  859. return btree_csum_one_bio(bio);
  860. }
  861. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  862. int mirror_num, unsigned long bio_flags,
  863. u64 bio_offset)
  864. {
  865. int ret;
  866. /*
  867. * when we're called for a write, we're already in the async
  868. * submission context. Just jump into btrfs_map_bio
  869. */
  870. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  871. if (ret) {
  872. bio->bi_error = ret;
  873. bio_endio(bio);
  874. }
  875. return ret;
  876. }
  877. static int check_async_write(unsigned long bio_flags)
  878. {
  879. if (bio_flags & EXTENT_BIO_TREE_LOG)
  880. return 0;
  881. #ifdef CONFIG_X86
  882. if (static_cpu_has(X86_FEATURE_XMM4_2))
  883. return 0;
  884. #endif
  885. return 1;
  886. }
  887. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  888. int mirror_num, unsigned long bio_flags,
  889. u64 bio_offset)
  890. {
  891. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  892. int async = check_async_write(bio_flags);
  893. int ret;
  894. if (bio_op(bio) != REQ_OP_WRITE) {
  895. /*
  896. * called for a read, do the setup so that checksum validation
  897. * can happen in the async kernel threads
  898. */
  899. ret = btrfs_bio_wq_end_io(fs_info, bio,
  900. BTRFS_WQ_ENDIO_METADATA);
  901. if (ret)
  902. goto out_w_error;
  903. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  904. } else if (!async) {
  905. ret = btree_csum_one_bio(bio);
  906. if (ret)
  907. goto out_w_error;
  908. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  909. } else {
  910. /*
  911. * kthread helpers are used to submit writes so that
  912. * checksumming can happen in parallel across all CPUs
  913. */
  914. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
  915. bio_offset,
  916. __btree_submit_bio_start,
  917. __btree_submit_bio_done);
  918. }
  919. if (ret)
  920. goto out_w_error;
  921. return 0;
  922. out_w_error:
  923. bio->bi_error = ret;
  924. bio_endio(bio);
  925. return ret;
  926. }
  927. #ifdef CONFIG_MIGRATION
  928. static int btree_migratepage(struct address_space *mapping,
  929. struct page *newpage, struct page *page,
  930. enum migrate_mode mode)
  931. {
  932. /*
  933. * we can't safely write a btree page from here,
  934. * we haven't done the locking hook
  935. */
  936. if (PageDirty(page))
  937. return -EAGAIN;
  938. /*
  939. * Buffers may be managed in a filesystem specific way.
  940. * We must have no buffers or drop them.
  941. */
  942. if (page_has_private(page) &&
  943. !try_to_release_page(page, GFP_KERNEL))
  944. return -EAGAIN;
  945. return migrate_page(mapping, newpage, page, mode);
  946. }
  947. #endif
  948. static int btree_writepages(struct address_space *mapping,
  949. struct writeback_control *wbc)
  950. {
  951. struct btrfs_fs_info *fs_info;
  952. int ret;
  953. if (wbc->sync_mode == WB_SYNC_NONE) {
  954. if (wbc->for_kupdate)
  955. return 0;
  956. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  957. /* this is a bit racy, but that's ok */
  958. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  959. BTRFS_DIRTY_METADATA_THRESH);
  960. if (ret < 0)
  961. return 0;
  962. }
  963. return btree_write_cache_pages(mapping, wbc);
  964. }
  965. static int btree_readpage(struct file *file, struct page *page)
  966. {
  967. struct extent_io_tree *tree;
  968. tree = &BTRFS_I(page->mapping->host)->io_tree;
  969. return extent_read_full_page(tree, page, btree_get_extent, 0);
  970. }
  971. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  972. {
  973. if (PageWriteback(page) || PageDirty(page))
  974. return 0;
  975. return try_release_extent_buffer(page);
  976. }
  977. static void btree_invalidatepage(struct page *page, unsigned int offset,
  978. unsigned int length)
  979. {
  980. struct extent_io_tree *tree;
  981. tree = &BTRFS_I(page->mapping->host)->io_tree;
  982. extent_invalidatepage(tree, page, offset);
  983. btree_releasepage(page, GFP_NOFS);
  984. if (PagePrivate(page)) {
  985. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  986. "page private not zero on page %llu",
  987. (unsigned long long)page_offset(page));
  988. ClearPagePrivate(page);
  989. set_page_private(page, 0);
  990. put_page(page);
  991. }
  992. }
  993. static int btree_set_page_dirty(struct page *page)
  994. {
  995. #ifdef DEBUG
  996. struct extent_buffer *eb;
  997. BUG_ON(!PagePrivate(page));
  998. eb = (struct extent_buffer *)page->private;
  999. BUG_ON(!eb);
  1000. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  1001. BUG_ON(!atomic_read(&eb->refs));
  1002. btrfs_assert_tree_locked(eb);
  1003. #endif
  1004. return __set_page_dirty_nobuffers(page);
  1005. }
  1006. static const struct address_space_operations btree_aops = {
  1007. .readpage = btree_readpage,
  1008. .writepages = btree_writepages,
  1009. .releasepage = btree_releasepage,
  1010. .invalidatepage = btree_invalidatepage,
  1011. #ifdef CONFIG_MIGRATION
  1012. .migratepage = btree_migratepage,
  1013. #endif
  1014. .set_page_dirty = btree_set_page_dirty,
  1015. };
  1016. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1017. {
  1018. struct extent_buffer *buf = NULL;
  1019. struct inode *btree_inode = fs_info->btree_inode;
  1020. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1021. if (IS_ERR(buf))
  1022. return;
  1023. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1024. buf, WAIT_NONE, btree_get_extent, 0);
  1025. free_extent_buffer(buf);
  1026. }
  1027. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1028. int mirror_num, struct extent_buffer **eb)
  1029. {
  1030. struct extent_buffer *buf = NULL;
  1031. struct inode *btree_inode = fs_info->btree_inode;
  1032. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1033. int ret;
  1034. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1035. if (IS_ERR(buf))
  1036. return 0;
  1037. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1038. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1039. btree_get_extent, mirror_num);
  1040. if (ret) {
  1041. free_extent_buffer(buf);
  1042. return ret;
  1043. }
  1044. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1045. free_extent_buffer(buf);
  1046. return -EIO;
  1047. } else if (extent_buffer_uptodate(buf)) {
  1048. *eb = buf;
  1049. } else {
  1050. free_extent_buffer(buf);
  1051. }
  1052. return 0;
  1053. }
  1054. struct extent_buffer *btrfs_find_create_tree_block(
  1055. struct btrfs_fs_info *fs_info,
  1056. u64 bytenr)
  1057. {
  1058. if (btrfs_is_testing(fs_info))
  1059. return alloc_test_extent_buffer(fs_info, bytenr);
  1060. return alloc_extent_buffer(fs_info, bytenr);
  1061. }
  1062. int btrfs_write_tree_block(struct extent_buffer *buf)
  1063. {
  1064. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1065. buf->start + buf->len - 1);
  1066. }
  1067. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1068. {
  1069. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1070. buf->start, buf->start + buf->len - 1);
  1071. }
  1072. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1073. u64 parent_transid)
  1074. {
  1075. struct extent_buffer *buf = NULL;
  1076. int ret;
  1077. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1078. if (IS_ERR(buf))
  1079. return buf;
  1080. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1081. if (ret) {
  1082. free_extent_buffer(buf);
  1083. return ERR_PTR(ret);
  1084. }
  1085. return buf;
  1086. }
  1087. void clean_tree_block(struct btrfs_fs_info *fs_info,
  1088. struct extent_buffer *buf)
  1089. {
  1090. if (btrfs_header_generation(buf) ==
  1091. fs_info->running_transaction->transid) {
  1092. btrfs_assert_tree_locked(buf);
  1093. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1094. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1095. -buf->len,
  1096. fs_info->dirty_metadata_batch);
  1097. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1098. btrfs_set_lock_blocking(buf);
  1099. clear_extent_buffer_dirty(buf);
  1100. }
  1101. }
  1102. }
  1103. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1104. {
  1105. struct btrfs_subvolume_writers *writers;
  1106. int ret;
  1107. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1108. if (!writers)
  1109. return ERR_PTR(-ENOMEM);
  1110. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1111. if (ret < 0) {
  1112. kfree(writers);
  1113. return ERR_PTR(ret);
  1114. }
  1115. init_waitqueue_head(&writers->wait);
  1116. return writers;
  1117. }
  1118. static void
  1119. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1120. {
  1121. percpu_counter_destroy(&writers->counter);
  1122. kfree(writers);
  1123. }
  1124. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1125. u64 objectid)
  1126. {
  1127. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1128. root->node = NULL;
  1129. root->commit_root = NULL;
  1130. root->state = 0;
  1131. root->orphan_cleanup_state = 0;
  1132. root->objectid = objectid;
  1133. root->last_trans = 0;
  1134. root->highest_objectid = 0;
  1135. root->nr_delalloc_inodes = 0;
  1136. root->nr_ordered_extents = 0;
  1137. root->name = NULL;
  1138. root->inode_tree = RB_ROOT;
  1139. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1140. root->block_rsv = NULL;
  1141. root->orphan_block_rsv = NULL;
  1142. INIT_LIST_HEAD(&root->dirty_list);
  1143. INIT_LIST_HEAD(&root->root_list);
  1144. INIT_LIST_HEAD(&root->delalloc_inodes);
  1145. INIT_LIST_HEAD(&root->delalloc_root);
  1146. INIT_LIST_HEAD(&root->ordered_extents);
  1147. INIT_LIST_HEAD(&root->ordered_root);
  1148. INIT_LIST_HEAD(&root->logged_list[0]);
  1149. INIT_LIST_HEAD(&root->logged_list[1]);
  1150. spin_lock_init(&root->orphan_lock);
  1151. spin_lock_init(&root->inode_lock);
  1152. spin_lock_init(&root->delalloc_lock);
  1153. spin_lock_init(&root->ordered_extent_lock);
  1154. spin_lock_init(&root->accounting_lock);
  1155. spin_lock_init(&root->log_extents_lock[0]);
  1156. spin_lock_init(&root->log_extents_lock[1]);
  1157. mutex_init(&root->objectid_mutex);
  1158. mutex_init(&root->log_mutex);
  1159. mutex_init(&root->ordered_extent_mutex);
  1160. mutex_init(&root->delalloc_mutex);
  1161. init_waitqueue_head(&root->log_writer_wait);
  1162. init_waitqueue_head(&root->log_commit_wait[0]);
  1163. init_waitqueue_head(&root->log_commit_wait[1]);
  1164. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1165. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1166. atomic_set(&root->log_commit[0], 0);
  1167. atomic_set(&root->log_commit[1], 0);
  1168. atomic_set(&root->log_writers, 0);
  1169. atomic_set(&root->log_batch, 0);
  1170. atomic_set(&root->orphan_inodes, 0);
  1171. atomic_set(&root->refs, 1);
  1172. atomic_set(&root->will_be_snapshoted, 0);
  1173. atomic_set(&root->qgroup_meta_rsv, 0);
  1174. root->log_transid = 0;
  1175. root->log_transid_committed = -1;
  1176. root->last_log_commit = 0;
  1177. if (!dummy)
  1178. extent_io_tree_init(&root->dirty_log_pages,
  1179. fs_info->btree_inode->i_mapping);
  1180. memset(&root->root_key, 0, sizeof(root->root_key));
  1181. memset(&root->root_item, 0, sizeof(root->root_item));
  1182. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1183. if (!dummy)
  1184. root->defrag_trans_start = fs_info->generation;
  1185. else
  1186. root->defrag_trans_start = 0;
  1187. root->root_key.objectid = objectid;
  1188. root->anon_dev = 0;
  1189. spin_lock_init(&root->root_item_lock);
  1190. }
  1191. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1192. gfp_t flags)
  1193. {
  1194. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1195. if (root)
  1196. root->fs_info = fs_info;
  1197. return root;
  1198. }
  1199. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1200. /* Should only be used by the testing infrastructure */
  1201. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1202. {
  1203. struct btrfs_root *root;
  1204. if (!fs_info)
  1205. return ERR_PTR(-EINVAL);
  1206. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1207. if (!root)
  1208. return ERR_PTR(-ENOMEM);
  1209. /* We don't use the stripesize in selftest, set it as sectorsize */
  1210. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1211. root->alloc_bytenr = 0;
  1212. return root;
  1213. }
  1214. #endif
  1215. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1216. struct btrfs_fs_info *fs_info,
  1217. u64 objectid)
  1218. {
  1219. struct extent_buffer *leaf;
  1220. struct btrfs_root *tree_root = fs_info->tree_root;
  1221. struct btrfs_root *root;
  1222. struct btrfs_key key;
  1223. int ret = 0;
  1224. uuid_le uuid;
  1225. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1226. if (!root)
  1227. return ERR_PTR(-ENOMEM);
  1228. __setup_root(root, fs_info, objectid);
  1229. root->root_key.objectid = objectid;
  1230. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1231. root->root_key.offset = 0;
  1232. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1233. if (IS_ERR(leaf)) {
  1234. ret = PTR_ERR(leaf);
  1235. leaf = NULL;
  1236. goto fail;
  1237. }
  1238. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1239. btrfs_set_header_bytenr(leaf, leaf->start);
  1240. btrfs_set_header_generation(leaf, trans->transid);
  1241. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1242. btrfs_set_header_owner(leaf, objectid);
  1243. root->node = leaf;
  1244. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1245. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1246. btrfs_mark_buffer_dirty(leaf);
  1247. root->commit_root = btrfs_root_node(root);
  1248. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1249. root->root_item.flags = 0;
  1250. root->root_item.byte_limit = 0;
  1251. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1252. btrfs_set_root_generation(&root->root_item, trans->transid);
  1253. btrfs_set_root_level(&root->root_item, 0);
  1254. btrfs_set_root_refs(&root->root_item, 1);
  1255. btrfs_set_root_used(&root->root_item, leaf->len);
  1256. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1257. btrfs_set_root_dirid(&root->root_item, 0);
  1258. uuid_le_gen(&uuid);
  1259. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1260. root->root_item.drop_level = 0;
  1261. key.objectid = objectid;
  1262. key.type = BTRFS_ROOT_ITEM_KEY;
  1263. key.offset = 0;
  1264. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1265. if (ret)
  1266. goto fail;
  1267. btrfs_tree_unlock(leaf);
  1268. return root;
  1269. fail:
  1270. if (leaf) {
  1271. btrfs_tree_unlock(leaf);
  1272. free_extent_buffer(root->commit_root);
  1273. free_extent_buffer(leaf);
  1274. }
  1275. kfree(root);
  1276. return ERR_PTR(ret);
  1277. }
  1278. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1279. struct btrfs_fs_info *fs_info)
  1280. {
  1281. struct btrfs_root *root;
  1282. struct extent_buffer *leaf;
  1283. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1284. if (!root)
  1285. return ERR_PTR(-ENOMEM);
  1286. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1287. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1288. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1289. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1290. /*
  1291. * DON'T set REF_COWS for log trees
  1292. *
  1293. * log trees do not get reference counted because they go away
  1294. * before a real commit is actually done. They do store pointers
  1295. * to file data extents, and those reference counts still get
  1296. * updated (along with back refs to the log tree).
  1297. */
  1298. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1299. NULL, 0, 0, 0);
  1300. if (IS_ERR(leaf)) {
  1301. kfree(root);
  1302. return ERR_CAST(leaf);
  1303. }
  1304. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1305. btrfs_set_header_bytenr(leaf, leaf->start);
  1306. btrfs_set_header_generation(leaf, trans->transid);
  1307. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1308. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1309. root->node = leaf;
  1310. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1311. btrfs_mark_buffer_dirty(root->node);
  1312. btrfs_tree_unlock(root->node);
  1313. return root;
  1314. }
  1315. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1316. struct btrfs_fs_info *fs_info)
  1317. {
  1318. struct btrfs_root *log_root;
  1319. log_root = alloc_log_tree(trans, fs_info);
  1320. if (IS_ERR(log_root))
  1321. return PTR_ERR(log_root);
  1322. WARN_ON(fs_info->log_root_tree);
  1323. fs_info->log_root_tree = log_root;
  1324. return 0;
  1325. }
  1326. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1327. struct btrfs_root *root)
  1328. {
  1329. struct btrfs_fs_info *fs_info = root->fs_info;
  1330. struct btrfs_root *log_root;
  1331. struct btrfs_inode_item *inode_item;
  1332. log_root = alloc_log_tree(trans, fs_info);
  1333. if (IS_ERR(log_root))
  1334. return PTR_ERR(log_root);
  1335. log_root->last_trans = trans->transid;
  1336. log_root->root_key.offset = root->root_key.objectid;
  1337. inode_item = &log_root->root_item.inode;
  1338. btrfs_set_stack_inode_generation(inode_item, 1);
  1339. btrfs_set_stack_inode_size(inode_item, 3);
  1340. btrfs_set_stack_inode_nlink(inode_item, 1);
  1341. btrfs_set_stack_inode_nbytes(inode_item,
  1342. fs_info->nodesize);
  1343. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1344. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1345. WARN_ON(root->log_root);
  1346. root->log_root = log_root;
  1347. root->log_transid = 0;
  1348. root->log_transid_committed = -1;
  1349. root->last_log_commit = 0;
  1350. return 0;
  1351. }
  1352. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1353. struct btrfs_key *key)
  1354. {
  1355. struct btrfs_root *root;
  1356. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1357. struct btrfs_path *path;
  1358. u64 generation;
  1359. int ret;
  1360. path = btrfs_alloc_path();
  1361. if (!path)
  1362. return ERR_PTR(-ENOMEM);
  1363. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1364. if (!root) {
  1365. ret = -ENOMEM;
  1366. goto alloc_fail;
  1367. }
  1368. __setup_root(root, fs_info, key->objectid);
  1369. ret = btrfs_find_root(tree_root, key, path,
  1370. &root->root_item, &root->root_key);
  1371. if (ret) {
  1372. if (ret > 0)
  1373. ret = -ENOENT;
  1374. goto find_fail;
  1375. }
  1376. generation = btrfs_root_generation(&root->root_item);
  1377. root->node = read_tree_block(fs_info,
  1378. btrfs_root_bytenr(&root->root_item),
  1379. generation);
  1380. if (IS_ERR(root->node)) {
  1381. ret = PTR_ERR(root->node);
  1382. goto find_fail;
  1383. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1384. ret = -EIO;
  1385. free_extent_buffer(root->node);
  1386. goto find_fail;
  1387. }
  1388. root->commit_root = btrfs_root_node(root);
  1389. out:
  1390. btrfs_free_path(path);
  1391. return root;
  1392. find_fail:
  1393. kfree(root);
  1394. alloc_fail:
  1395. root = ERR_PTR(ret);
  1396. goto out;
  1397. }
  1398. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1399. struct btrfs_key *location)
  1400. {
  1401. struct btrfs_root *root;
  1402. root = btrfs_read_tree_root(tree_root, location);
  1403. if (IS_ERR(root))
  1404. return root;
  1405. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1406. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1407. btrfs_check_and_init_root_item(&root->root_item);
  1408. }
  1409. return root;
  1410. }
  1411. int btrfs_init_fs_root(struct btrfs_root *root)
  1412. {
  1413. int ret;
  1414. struct btrfs_subvolume_writers *writers;
  1415. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1416. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1417. GFP_NOFS);
  1418. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1419. ret = -ENOMEM;
  1420. goto fail;
  1421. }
  1422. writers = btrfs_alloc_subvolume_writers();
  1423. if (IS_ERR(writers)) {
  1424. ret = PTR_ERR(writers);
  1425. goto fail;
  1426. }
  1427. root->subv_writers = writers;
  1428. btrfs_init_free_ino_ctl(root);
  1429. spin_lock_init(&root->ino_cache_lock);
  1430. init_waitqueue_head(&root->ino_cache_wait);
  1431. ret = get_anon_bdev(&root->anon_dev);
  1432. if (ret)
  1433. goto fail;
  1434. mutex_lock(&root->objectid_mutex);
  1435. ret = btrfs_find_highest_objectid(root,
  1436. &root->highest_objectid);
  1437. if (ret) {
  1438. mutex_unlock(&root->objectid_mutex);
  1439. goto fail;
  1440. }
  1441. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1442. mutex_unlock(&root->objectid_mutex);
  1443. return 0;
  1444. fail:
  1445. /* the caller is responsible to call free_fs_root */
  1446. return ret;
  1447. }
  1448. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1449. u64 root_id)
  1450. {
  1451. struct btrfs_root *root;
  1452. spin_lock(&fs_info->fs_roots_radix_lock);
  1453. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1454. (unsigned long)root_id);
  1455. spin_unlock(&fs_info->fs_roots_radix_lock);
  1456. return root;
  1457. }
  1458. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1459. struct btrfs_root *root)
  1460. {
  1461. int ret;
  1462. ret = radix_tree_preload(GFP_NOFS);
  1463. if (ret)
  1464. return ret;
  1465. spin_lock(&fs_info->fs_roots_radix_lock);
  1466. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1467. (unsigned long)root->root_key.objectid,
  1468. root);
  1469. if (ret == 0)
  1470. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1471. spin_unlock(&fs_info->fs_roots_radix_lock);
  1472. radix_tree_preload_end();
  1473. return ret;
  1474. }
  1475. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1476. struct btrfs_key *location,
  1477. bool check_ref)
  1478. {
  1479. struct btrfs_root *root;
  1480. struct btrfs_path *path;
  1481. struct btrfs_key key;
  1482. int ret;
  1483. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1484. return fs_info->tree_root;
  1485. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1486. return fs_info->extent_root;
  1487. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1488. return fs_info->chunk_root;
  1489. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1490. return fs_info->dev_root;
  1491. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1492. return fs_info->csum_root;
  1493. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1494. return fs_info->quota_root ? fs_info->quota_root :
  1495. ERR_PTR(-ENOENT);
  1496. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1497. return fs_info->uuid_root ? fs_info->uuid_root :
  1498. ERR_PTR(-ENOENT);
  1499. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1500. return fs_info->free_space_root ? fs_info->free_space_root :
  1501. ERR_PTR(-ENOENT);
  1502. again:
  1503. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1504. if (root) {
  1505. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1506. return ERR_PTR(-ENOENT);
  1507. return root;
  1508. }
  1509. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1510. if (IS_ERR(root))
  1511. return root;
  1512. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1513. ret = -ENOENT;
  1514. goto fail;
  1515. }
  1516. ret = btrfs_init_fs_root(root);
  1517. if (ret)
  1518. goto fail;
  1519. path = btrfs_alloc_path();
  1520. if (!path) {
  1521. ret = -ENOMEM;
  1522. goto fail;
  1523. }
  1524. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1525. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1526. key.offset = location->objectid;
  1527. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1528. btrfs_free_path(path);
  1529. if (ret < 0)
  1530. goto fail;
  1531. if (ret == 0)
  1532. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1533. ret = btrfs_insert_fs_root(fs_info, root);
  1534. if (ret) {
  1535. if (ret == -EEXIST) {
  1536. free_fs_root(root);
  1537. goto again;
  1538. }
  1539. goto fail;
  1540. }
  1541. return root;
  1542. fail:
  1543. free_fs_root(root);
  1544. return ERR_PTR(ret);
  1545. }
  1546. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1547. {
  1548. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1549. int ret = 0;
  1550. struct btrfs_device *device;
  1551. struct backing_dev_info *bdi;
  1552. rcu_read_lock();
  1553. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1554. if (!device->bdev)
  1555. continue;
  1556. bdi = blk_get_backing_dev_info(device->bdev);
  1557. if (bdi_congested(bdi, bdi_bits)) {
  1558. ret = 1;
  1559. break;
  1560. }
  1561. }
  1562. rcu_read_unlock();
  1563. return ret;
  1564. }
  1565. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1566. {
  1567. int err;
  1568. err = bdi_setup_and_register(bdi, "btrfs");
  1569. if (err)
  1570. return err;
  1571. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1572. bdi->congested_fn = btrfs_congested_fn;
  1573. bdi->congested_data = info;
  1574. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1575. return 0;
  1576. }
  1577. /*
  1578. * called by the kthread helper functions to finally call the bio end_io
  1579. * functions. This is where read checksum verification actually happens
  1580. */
  1581. static void end_workqueue_fn(struct btrfs_work *work)
  1582. {
  1583. struct bio *bio;
  1584. struct btrfs_end_io_wq *end_io_wq;
  1585. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1586. bio = end_io_wq->bio;
  1587. bio->bi_error = end_io_wq->error;
  1588. bio->bi_private = end_io_wq->private;
  1589. bio->bi_end_io = end_io_wq->end_io;
  1590. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1591. bio_endio(bio);
  1592. }
  1593. static int cleaner_kthread(void *arg)
  1594. {
  1595. struct btrfs_root *root = arg;
  1596. struct btrfs_fs_info *fs_info = root->fs_info;
  1597. int again;
  1598. struct btrfs_trans_handle *trans;
  1599. do {
  1600. again = 0;
  1601. /* Make the cleaner go to sleep early. */
  1602. if (btrfs_need_cleaner_sleep(fs_info))
  1603. goto sleep;
  1604. /*
  1605. * Do not do anything if we might cause open_ctree() to block
  1606. * before we have finished mounting the filesystem.
  1607. */
  1608. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1609. goto sleep;
  1610. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1611. goto sleep;
  1612. /*
  1613. * Avoid the problem that we change the status of the fs
  1614. * during the above check and trylock.
  1615. */
  1616. if (btrfs_need_cleaner_sleep(fs_info)) {
  1617. mutex_unlock(&fs_info->cleaner_mutex);
  1618. goto sleep;
  1619. }
  1620. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1621. btrfs_run_delayed_iputs(fs_info);
  1622. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1623. again = btrfs_clean_one_deleted_snapshot(root);
  1624. mutex_unlock(&fs_info->cleaner_mutex);
  1625. /*
  1626. * The defragger has dealt with the R/O remount and umount,
  1627. * needn't do anything special here.
  1628. */
  1629. btrfs_run_defrag_inodes(fs_info);
  1630. /*
  1631. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1632. * with relocation (btrfs_relocate_chunk) and relocation
  1633. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1634. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1635. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1636. * unused block groups.
  1637. */
  1638. btrfs_delete_unused_bgs(fs_info);
  1639. sleep:
  1640. if (!again) {
  1641. set_current_state(TASK_INTERRUPTIBLE);
  1642. if (!kthread_should_stop())
  1643. schedule();
  1644. __set_current_state(TASK_RUNNING);
  1645. }
  1646. } while (!kthread_should_stop());
  1647. /*
  1648. * Transaction kthread is stopped before us and wakes us up.
  1649. * However we might have started a new transaction and COWed some
  1650. * tree blocks when deleting unused block groups for example. So
  1651. * make sure we commit the transaction we started to have a clean
  1652. * shutdown when evicting the btree inode - if it has dirty pages
  1653. * when we do the final iput() on it, eviction will trigger a
  1654. * writeback for it which will fail with null pointer dereferences
  1655. * since work queues and other resources were already released and
  1656. * destroyed by the time the iput/eviction/writeback is made.
  1657. */
  1658. trans = btrfs_attach_transaction(root);
  1659. if (IS_ERR(trans)) {
  1660. if (PTR_ERR(trans) != -ENOENT)
  1661. btrfs_err(fs_info,
  1662. "cleaner transaction attach returned %ld",
  1663. PTR_ERR(trans));
  1664. } else {
  1665. int ret;
  1666. ret = btrfs_commit_transaction(trans);
  1667. if (ret)
  1668. btrfs_err(fs_info,
  1669. "cleaner open transaction commit returned %d",
  1670. ret);
  1671. }
  1672. return 0;
  1673. }
  1674. static int transaction_kthread(void *arg)
  1675. {
  1676. struct btrfs_root *root = arg;
  1677. struct btrfs_fs_info *fs_info = root->fs_info;
  1678. struct btrfs_trans_handle *trans;
  1679. struct btrfs_transaction *cur;
  1680. u64 transid;
  1681. unsigned long now;
  1682. unsigned long delay;
  1683. bool cannot_commit;
  1684. do {
  1685. cannot_commit = false;
  1686. delay = HZ * fs_info->commit_interval;
  1687. mutex_lock(&fs_info->transaction_kthread_mutex);
  1688. spin_lock(&fs_info->trans_lock);
  1689. cur = fs_info->running_transaction;
  1690. if (!cur) {
  1691. spin_unlock(&fs_info->trans_lock);
  1692. goto sleep;
  1693. }
  1694. now = get_seconds();
  1695. if (cur->state < TRANS_STATE_BLOCKED &&
  1696. (now < cur->start_time ||
  1697. now - cur->start_time < fs_info->commit_interval)) {
  1698. spin_unlock(&fs_info->trans_lock);
  1699. delay = HZ * 5;
  1700. goto sleep;
  1701. }
  1702. transid = cur->transid;
  1703. spin_unlock(&fs_info->trans_lock);
  1704. /* If the file system is aborted, this will always fail. */
  1705. trans = btrfs_attach_transaction(root);
  1706. if (IS_ERR(trans)) {
  1707. if (PTR_ERR(trans) != -ENOENT)
  1708. cannot_commit = true;
  1709. goto sleep;
  1710. }
  1711. if (transid == trans->transid) {
  1712. btrfs_commit_transaction(trans);
  1713. } else {
  1714. btrfs_end_transaction(trans);
  1715. }
  1716. sleep:
  1717. wake_up_process(fs_info->cleaner_kthread);
  1718. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1719. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1720. &fs_info->fs_state)))
  1721. btrfs_cleanup_transaction(fs_info);
  1722. set_current_state(TASK_INTERRUPTIBLE);
  1723. if (!kthread_should_stop() &&
  1724. (!btrfs_transaction_blocked(fs_info) ||
  1725. cannot_commit))
  1726. schedule_timeout(delay);
  1727. __set_current_state(TASK_RUNNING);
  1728. } while (!kthread_should_stop());
  1729. return 0;
  1730. }
  1731. /*
  1732. * this will find the highest generation in the array of
  1733. * root backups. The index of the highest array is returned,
  1734. * or -1 if we can't find anything.
  1735. *
  1736. * We check to make sure the array is valid by comparing the
  1737. * generation of the latest root in the array with the generation
  1738. * in the super block. If they don't match we pitch it.
  1739. */
  1740. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1741. {
  1742. u64 cur;
  1743. int newest_index = -1;
  1744. struct btrfs_root_backup *root_backup;
  1745. int i;
  1746. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1747. root_backup = info->super_copy->super_roots + i;
  1748. cur = btrfs_backup_tree_root_gen(root_backup);
  1749. if (cur == newest_gen)
  1750. newest_index = i;
  1751. }
  1752. /* check to see if we actually wrapped around */
  1753. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1754. root_backup = info->super_copy->super_roots;
  1755. cur = btrfs_backup_tree_root_gen(root_backup);
  1756. if (cur == newest_gen)
  1757. newest_index = 0;
  1758. }
  1759. return newest_index;
  1760. }
  1761. /*
  1762. * find the oldest backup so we know where to store new entries
  1763. * in the backup array. This will set the backup_root_index
  1764. * field in the fs_info struct
  1765. */
  1766. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1767. u64 newest_gen)
  1768. {
  1769. int newest_index = -1;
  1770. newest_index = find_newest_super_backup(info, newest_gen);
  1771. /* if there was garbage in there, just move along */
  1772. if (newest_index == -1) {
  1773. info->backup_root_index = 0;
  1774. } else {
  1775. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1776. }
  1777. }
  1778. /*
  1779. * copy all the root pointers into the super backup array.
  1780. * this will bump the backup pointer by one when it is
  1781. * done
  1782. */
  1783. static void backup_super_roots(struct btrfs_fs_info *info)
  1784. {
  1785. int next_backup;
  1786. struct btrfs_root_backup *root_backup;
  1787. int last_backup;
  1788. next_backup = info->backup_root_index;
  1789. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1790. BTRFS_NUM_BACKUP_ROOTS;
  1791. /*
  1792. * just overwrite the last backup if we're at the same generation
  1793. * this happens only at umount
  1794. */
  1795. root_backup = info->super_for_commit->super_roots + last_backup;
  1796. if (btrfs_backup_tree_root_gen(root_backup) ==
  1797. btrfs_header_generation(info->tree_root->node))
  1798. next_backup = last_backup;
  1799. root_backup = info->super_for_commit->super_roots + next_backup;
  1800. /*
  1801. * make sure all of our padding and empty slots get zero filled
  1802. * regardless of which ones we use today
  1803. */
  1804. memset(root_backup, 0, sizeof(*root_backup));
  1805. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1806. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1807. btrfs_set_backup_tree_root_gen(root_backup,
  1808. btrfs_header_generation(info->tree_root->node));
  1809. btrfs_set_backup_tree_root_level(root_backup,
  1810. btrfs_header_level(info->tree_root->node));
  1811. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1812. btrfs_set_backup_chunk_root_gen(root_backup,
  1813. btrfs_header_generation(info->chunk_root->node));
  1814. btrfs_set_backup_chunk_root_level(root_backup,
  1815. btrfs_header_level(info->chunk_root->node));
  1816. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1817. btrfs_set_backup_extent_root_gen(root_backup,
  1818. btrfs_header_generation(info->extent_root->node));
  1819. btrfs_set_backup_extent_root_level(root_backup,
  1820. btrfs_header_level(info->extent_root->node));
  1821. /*
  1822. * we might commit during log recovery, which happens before we set
  1823. * the fs_root. Make sure it is valid before we fill it in.
  1824. */
  1825. if (info->fs_root && info->fs_root->node) {
  1826. btrfs_set_backup_fs_root(root_backup,
  1827. info->fs_root->node->start);
  1828. btrfs_set_backup_fs_root_gen(root_backup,
  1829. btrfs_header_generation(info->fs_root->node));
  1830. btrfs_set_backup_fs_root_level(root_backup,
  1831. btrfs_header_level(info->fs_root->node));
  1832. }
  1833. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1834. btrfs_set_backup_dev_root_gen(root_backup,
  1835. btrfs_header_generation(info->dev_root->node));
  1836. btrfs_set_backup_dev_root_level(root_backup,
  1837. btrfs_header_level(info->dev_root->node));
  1838. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1839. btrfs_set_backup_csum_root_gen(root_backup,
  1840. btrfs_header_generation(info->csum_root->node));
  1841. btrfs_set_backup_csum_root_level(root_backup,
  1842. btrfs_header_level(info->csum_root->node));
  1843. btrfs_set_backup_total_bytes(root_backup,
  1844. btrfs_super_total_bytes(info->super_copy));
  1845. btrfs_set_backup_bytes_used(root_backup,
  1846. btrfs_super_bytes_used(info->super_copy));
  1847. btrfs_set_backup_num_devices(root_backup,
  1848. btrfs_super_num_devices(info->super_copy));
  1849. /*
  1850. * if we don't copy this out to the super_copy, it won't get remembered
  1851. * for the next commit
  1852. */
  1853. memcpy(&info->super_copy->super_roots,
  1854. &info->super_for_commit->super_roots,
  1855. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1856. }
  1857. /*
  1858. * this copies info out of the root backup array and back into
  1859. * the in-memory super block. It is meant to help iterate through
  1860. * the array, so you send it the number of backups you've already
  1861. * tried and the last backup index you used.
  1862. *
  1863. * this returns -1 when it has tried all the backups
  1864. */
  1865. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1866. struct btrfs_super_block *super,
  1867. int *num_backups_tried, int *backup_index)
  1868. {
  1869. struct btrfs_root_backup *root_backup;
  1870. int newest = *backup_index;
  1871. if (*num_backups_tried == 0) {
  1872. u64 gen = btrfs_super_generation(super);
  1873. newest = find_newest_super_backup(info, gen);
  1874. if (newest == -1)
  1875. return -1;
  1876. *backup_index = newest;
  1877. *num_backups_tried = 1;
  1878. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1879. /* we've tried all the backups, all done */
  1880. return -1;
  1881. } else {
  1882. /* jump to the next oldest backup */
  1883. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1884. BTRFS_NUM_BACKUP_ROOTS;
  1885. *backup_index = newest;
  1886. *num_backups_tried += 1;
  1887. }
  1888. root_backup = super->super_roots + newest;
  1889. btrfs_set_super_generation(super,
  1890. btrfs_backup_tree_root_gen(root_backup));
  1891. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1892. btrfs_set_super_root_level(super,
  1893. btrfs_backup_tree_root_level(root_backup));
  1894. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1895. /*
  1896. * fixme: the total bytes and num_devices need to match or we should
  1897. * need a fsck
  1898. */
  1899. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1900. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1901. return 0;
  1902. }
  1903. /* helper to cleanup workers */
  1904. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1905. {
  1906. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1907. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1908. btrfs_destroy_workqueue(fs_info->workers);
  1909. btrfs_destroy_workqueue(fs_info->endio_workers);
  1910. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1911. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1912. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1913. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1914. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1915. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1916. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1917. btrfs_destroy_workqueue(fs_info->submit_workers);
  1918. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1919. btrfs_destroy_workqueue(fs_info->caching_workers);
  1920. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1921. btrfs_destroy_workqueue(fs_info->flush_workers);
  1922. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1923. btrfs_destroy_workqueue(fs_info->extent_workers);
  1924. }
  1925. static void free_root_extent_buffers(struct btrfs_root *root)
  1926. {
  1927. if (root) {
  1928. free_extent_buffer(root->node);
  1929. free_extent_buffer(root->commit_root);
  1930. root->node = NULL;
  1931. root->commit_root = NULL;
  1932. }
  1933. }
  1934. /* helper to cleanup tree roots */
  1935. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1936. {
  1937. free_root_extent_buffers(info->tree_root);
  1938. free_root_extent_buffers(info->dev_root);
  1939. free_root_extent_buffers(info->extent_root);
  1940. free_root_extent_buffers(info->csum_root);
  1941. free_root_extent_buffers(info->quota_root);
  1942. free_root_extent_buffers(info->uuid_root);
  1943. if (chunk_root)
  1944. free_root_extent_buffers(info->chunk_root);
  1945. free_root_extent_buffers(info->free_space_root);
  1946. }
  1947. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1948. {
  1949. int ret;
  1950. struct btrfs_root *gang[8];
  1951. int i;
  1952. while (!list_empty(&fs_info->dead_roots)) {
  1953. gang[0] = list_entry(fs_info->dead_roots.next,
  1954. struct btrfs_root, root_list);
  1955. list_del(&gang[0]->root_list);
  1956. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1957. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1958. } else {
  1959. free_extent_buffer(gang[0]->node);
  1960. free_extent_buffer(gang[0]->commit_root);
  1961. btrfs_put_fs_root(gang[0]);
  1962. }
  1963. }
  1964. while (1) {
  1965. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1966. (void **)gang, 0,
  1967. ARRAY_SIZE(gang));
  1968. if (!ret)
  1969. break;
  1970. for (i = 0; i < ret; i++)
  1971. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1972. }
  1973. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1974. btrfs_free_log_root_tree(NULL, fs_info);
  1975. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1976. }
  1977. }
  1978. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1979. {
  1980. mutex_init(&fs_info->scrub_lock);
  1981. atomic_set(&fs_info->scrubs_running, 0);
  1982. atomic_set(&fs_info->scrub_pause_req, 0);
  1983. atomic_set(&fs_info->scrubs_paused, 0);
  1984. atomic_set(&fs_info->scrub_cancel_req, 0);
  1985. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1986. fs_info->scrub_workers_refcnt = 0;
  1987. }
  1988. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1989. {
  1990. spin_lock_init(&fs_info->balance_lock);
  1991. mutex_init(&fs_info->balance_mutex);
  1992. atomic_set(&fs_info->balance_running, 0);
  1993. atomic_set(&fs_info->balance_pause_req, 0);
  1994. atomic_set(&fs_info->balance_cancel_req, 0);
  1995. fs_info->balance_ctl = NULL;
  1996. init_waitqueue_head(&fs_info->balance_wait_q);
  1997. }
  1998. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1999. {
  2000. struct inode *inode = fs_info->btree_inode;
  2001. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2002. set_nlink(inode, 1);
  2003. /*
  2004. * we set the i_size on the btree inode to the max possible int.
  2005. * the real end of the address space is determined by all of
  2006. * the devices in the system
  2007. */
  2008. inode->i_size = OFFSET_MAX;
  2009. inode->i_mapping->a_ops = &btree_aops;
  2010. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2011. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
  2012. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2013. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2014. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2015. BTRFS_I(inode)->root = fs_info->tree_root;
  2016. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2017. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2018. btrfs_insert_inode_hash(inode);
  2019. }
  2020. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2021. {
  2022. fs_info->dev_replace.lock_owner = 0;
  2023. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2024. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2025. rwlock_init(&fs_info->dev_replace.lock);
  2026. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2027. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2028. init_waitqueue_head(&fs_info->replace_wait);
  2029. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2030. }
  2031. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2032. {
  2033. spin_lock_init(&fs_info->qgroup_lock);
  2034. mutex_init(&fs_info->qgroup_ioctl_lock);
  2035. fs_info->qgroup_tree = RB_ROOT;
  2036. fs_info->qgroup_op_tree = RB_ROOT;
  2037. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2038. fs_info->qgroup_seq = 1;
  2039. fs_info->qgroup_ulist = NULL;
  2040. fs_info->qgroup_rescan_running = false;
  2041. mutex_init(&fs_info->qgroup_rescan_lock);
  2042. }
  2043. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2044. struct btrfs_fs_devices *fs_devices)
  2045. {
  2046. int max_active = fs_info->thread_pool_size;
  2047. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2048. fs_info->workers =
  2049. btrfs_alloc_workqueue(fs_info, "worker",
  2050. flags | WQ_HIGHPRI, max_active, 16);
  2051. fs_info->delalloc_workers =
  2052. btrfs_alloc_workqueue(fs_info, "delalloc",
  2053. flags, max_active, 2);
  2054. fs_info->flush_workers =
  2055. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2056. flags, max_active, 0);
  2057. fs_info->caching_workers =
  2058. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2059. /*
  2060. * a higher idle thresh on the submit workers makes it much more
  2061. * likely that bios will be send down in a sane order to the
  2062. * devices
  2063. */
  2064. fs_info->submit_workers =
  2065. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2066. min_t(u64, fs_devices->num_devices,
  2067. max_active), 64);
  2068. fs_info->fixup_workers =
  2069. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2070. /*
  2071. * endios are largely parallel and should have a very
  2072. * low idle thresh
  2073. */
  2074. fs_info->endio_workers =
  2075. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2076. fs_info->endio_meta_workers =
  2077. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2078. max_active, 4);
  2079. fs_info->endio_meta_write_workers =
  2080. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2081. max_active, 2);
  2082. fs_info->endio_raid56_workers =
  2083. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2084. max_active, 4);
  2085. fs_info->endio_repair_workers =
  2086. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2087. fs_info->rmw_workers =
  2088. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2089. fs_info->endio_write_workers =
  2090. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2091. max_active, 2);
  2092. fs_info->endio_freespace_worker =
  2093. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2094. max_active, 0);
  2095. fs_info->delayed_workers =
  2096. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2097. max_active, 0);
  2098. fs_info->readahead_workers =
  2099. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2100. max_active, 2);
  2101. fs_info->qgroup_rescan_workers =
  2102. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2103. fs_info->extent_workers =
  2104. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2105. min_t(u64, fs_devices->num_devices,
  2106. max_active), 8);
  2107. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2108. fs_info->submit_workers && fs_info->flush_workers &&
  2109. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2110. fs_info->endio_meta_write_workers &&
  2111. fs_info->endio_repair_workers &&
  2112. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2113. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2114. fs_info->caching_workers && fs_info->readahead_workers &&
  2115. fs_info->fixup_workers && fs_info->delayed_workers &&
  2116. fs_info->extent_workers &&
  2117. fs_info->qgroup_rescan_workers)) {
  2118. return -ENOMEM;
  2119. }
  2120. return 0;
  2121. }
  2122. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2123. struct btrfs_fs_devices *fs_devices)
  2124. {
  2125. int ret;
  2126. struct btrfs_root *log_tree_root;
  2127. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2128. u64 bytenr = btrfs_super_log_root(disk_super);
  2129. if (fs_devices->rw_devices == 0) {
  2130. btrfs_warn(fs_info, "log replay required on RO media");
  2131. return -EIO;
  2132. }
  2133. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2134. if (!log_tree_root)
  2135. return -ENOMEM;
  2136. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2137. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2138. fs_info->generation + 1);
  2139. if (IS_ERR(log_tree_root->node)) {
  2140. btrfs_warn(fs_info, "failed to read log tree");
  2141. ret = PTR_ERR(log_tree_root->node);
  2142. kfree(log_tree_root);
  2143. return ret;
  2144. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2145. btrfs_err(fs_info, "failed to read log tree");
  2146. free_extent_buffer(log_tree_root->node);
  2147. kfree(log_tree_root);
  2148. return -EIO;
  2149. }
  2150. /* returns with log_tree_root freed on success */
  2151. ret = btrfs_recover_log_trees(log_tree_root);
  2152. if (ret) {
  2153. btrfs_handle_fs_error(fs_info, ret,
  2154. "Failed to recover log tree");
  2155. free_extent_buffer(log_tree_root->node);
  2156. kfree(log_tree_root);
  2157. return ret;
  2158. }
  2159. if (fs_info->sb->s_flags & MS_RDONLY) {
  2160. ret = btrfs_commit_super(fs_info);
  2161. if (ret)
  2162. return ret;
  2163. }
  2164. return 0;
  2165. }
  2166. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2167. {
  2168. struct btrfs_root *tree_root = fs_info->tree_root;
  2169. struct btrfs_root *root;
  2170. struct btrfs_key location;
  2171. int ret;
  2172. BUG_ON(!fs_info->tree_root);
  2173. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2174. location.type = BTRFS_ROOT_ITEM_KEY;
  2175. location.offset = 0;
  2176. root = btrfs_read_tree_root(tree_root, &location);
  2177. if (IS_ERR(root))
  2178. return PTR_ERR(root);
  2179. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2180. fs_info->extent_root = root;
  2181. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2182. root = btrfs_read_tree_root(tree_root, &location);
  2183. if (IS_ERR(root))
  2184. return PTR_ERR(root);
  2185. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2186. fs_info->dev_root = root;
  2187. btrfs_init_devices_late(fs_info);
  2188. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2189. root = btrfs_read_tree_root(tree_root, &location);
  2190. if (IS_ERR(root))
  2191. return PTR_ERR(root);
  2192. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2193. fs_info->csum_root = root;
  2194. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2195. root = btrfs_read_tree_root(tree_root, &location);
  2196. if (!IS_ERR(root)) {
  2197. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2198. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2199. fs_info->quota_root = root;
  2200. }
  2201. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2202. root = btrfs_read_tree_root(tree_root, &location);
  2203. if (IS_ERR(root)) {
  2204. ret = PTR_ERR(root);
  2205. if (ret != -ENOENT)
  2206. return ret;
  2207. } else {
  2208. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2209. fs_info->uuid_root = root;
  2210. }
  2211. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2212. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2213. root = btrfs_read_tree_root(tree_root, &location);
  2214. if (IS_ERR(root))
  2215. return PTR_ERR(root);
  2216. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2217. fs_info->free_space_root = root;
  2218. }
  2219. return 0;
  2220. }
  2221. int open_ctree(struct super_block *sb,
  2222. struct btrfs_fs_devices *fs_devices,
  2223. char *options)
  2224. {
  2225. u32 sectorsize;
  2226. u32 nodesize;
  2227. u32 stripesize;
  2228. u64 generation;
  2229. u64 features;
  2230. struct btrfs_key location;
  2231. struct buffer_head *bh;
  2232. struct btrfs_super_block *disk_super;
  2233. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2234. struct btrfs_root *tree_root;
  2235. struct btrfs_root *chunk_root;
  2236. int ret;
  2237. int err = -EINVAL;
  2238. int num_backups_tried = 0;
  2239. int backup_index = 0;
  2240. int max_active;
  2241. int clear_free_space_tree = 0;
  2242. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2243. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2244. if (!tree_root || !chunk_root) {
  2245. err = -ENOMEM;
  2246. goto fail;
  2247. }
  2248. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2249. if (ret) {
  2250. err = ret;
  2251. goto fail;
  2252. }
  2253. ret = setup_bdi(fs_info, &fs_info->bdi);
  2254. if (ret) {
  2255. err = ret;
  2256. goto fail_srcu;
  2257. }
  2258. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2259. if (ret) {
  2260. err = ret;
  2261. goto fail_bdi;
  2262. }
  2263. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2264. (1 + ilog2(nr_cpu_ids));
  2265. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2266. if (ret) {
  2267. err = ret;
  2268. goto fail_dirty_metadata_bytes;
  2269. }
  2270. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2271. if (ret) {
  2272. err = ret;
  2273. goto fail_delalloc_bytes;
  2274. }
  2275. fs_info->btree_inode = new_inode(sb);
  2276. if (!fs_info->btree_inode) {
  2277. err = -ENOMEM;
  2278. goto fail_bio_counter;
  2279. }
  2280. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2281. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2282. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2283. INIT_LIST_HEAD(&fs_info->trans_list);
  2284. INIT_LIST_HEAD(&fs_info->dead_roots);
  2285. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2286. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2287. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2288. spin_lock_init(&fs_info->delalloc_root_lock);
  2289. spin_lock_init(&fs_info->trans_lock);
  2290. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2291. spin_lock_init(&fs_info->delayed_iput_lock);
  2292. spin_lock_init(&fs_info->defrag_inodes_lock);
  2293. spin_lock_init(&fs_info->free_chunk_lock);
  2294. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2295. spin_lock_init(&fs_info->super_lock);
  2296. spin_lock_init(&fs_info->qgroup_op_lock);
  2297. spin_lock_init(&fs_info->buffer_lock);
  2298. spin_lock_init(&fs_info->unused_bgs_lock);
  2299. rwlock_init(&fs_info->tree_mod_log_lock);
  2300. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2301. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2302. mutex_init(&fs_info->reloc_mutex);
  2303. mutex_init(&fs_info->delalloc_root_mutex);
  2304. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2305. seqlock_init(&fs_info->profiles_lock);
  2306. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2307. INIT_LIST_HEAD(&fs_info->space_info);
  2308. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2309. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2310. btrfs_mapping_init(&fs_info->mapping_tree);
  2311. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2312. BTRFS_BLOCK_RSV_GLOBAL);
  2313. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2314. BTRFS_BLOCK_RSV_DELALLOC);
  2315. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2316. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2317. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2318. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2319. BTRFS_BLOCK_RSV_DELOPS);
  2320. atomic_set(&fs_info->nr_async_submits, 0);
  2321. atomic_set(&fs_info->async_delalloc_pages, 0);
  2322. atomic_set(&fs_info->async_submit_draining, 0);
  2323. atomic_set(&fs_info->nr_async_bios, 0);
  2324. atomic_set(&fs_info->defrag_running, 0);
  2325. atomic_set(&fs_info->qgroup_op_seq, 0);
  2326. atomic_set(&fs_info->reada_works_cnt, 0);
  2327. atomic64_set(&fs_info->tree_mod_seq, 0);
  2328. fs_info->fs_frozen = 0;
  2329. fs_info->sb = sb;
  2330. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2331. fs_info->metadata_ratio = 0;
  2332. fs_info->defrag_inodes = RB_ROOT;
  2333. fs_info->free_chunk_space = 0;
  2334. fs_info->tree_mod_log = RB_ROOT;
  2335. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2336. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2337. /* readahead state */
  2338. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2339. spin_lock_init(&fs_info->reada_lock);
  2340. fs_info->thread_pool_size = min_t(unsigned long,
  2341. num_online_cpus() + 2, 8);
  2342. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2343. spin_lock_init(&fs_info->ordered_root_lock);
  2344. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2345. GFP_KERNEL);
  2346. if (!fs_info->delayed_root) {
  2347. err = -ENOMEM;
  2348. goto fail_iput;
  2349. }
  2350. btrfs_init_delayed_root(fs_info->delayed_root);
  2351. btrfs_init_scrub(fs_info);
  2352. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2353. fs_info->check_integrity_print_mask = 0;
  2354. #endif
  2355. btrfs_init_balance(fs_info);
  2356. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2357. sb->s_blocksize = 4096;
  2358. sb->s_blocksize_bits = blksize_bits(4096);
  2359. sb->s_bdi = &fs_info->bdi;
  2360. btrfs_init_btree_inode(fs_info);
  2361. spin_lock_init(&fs_info->block_group_cache_lock);
  2362. fs_info->block_group_cache_tree = RB_ROOT;
  2363. fs_info->first_logical_byte = (u64)-1;
  2364. extent_io_tree_init(&fs_info->freed_extents[0],
  2365. fs_info->btree_inode->i_mapping);
  2366. extent_io_tree_init(&fs_info->freed_extents[1],
  2367. fs_info->btree_inode->i_mapping);
  2368. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2369. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2370. mutex_init(&fs_info->ordered_operations_mutex);
  2371. mutex_init(&fs_info->tree_log_mutex);
  2372. mutex_init(&fs_info->chunk_mutex);
  2373. mutex_init(&fs_info->transaction_kthread_mutex);
  2374. mutex_init(&fs_info->cleaner_mutex);
  2375. mutex_init(&fs_info->volume_mutex);
  2376. mutex_init(&fs_info->ro_block_group_mutex);
  2377. init_rwsem(&fs_info->commit_root_sem);
  2378. init_rwsem(&fs_info->cleanup_work_sem);
  2379. init_rwsem(&fs_info->subvol_sem);
  2380. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2381. btrfs_init_dev_replace_locks(fs_info);
  2382. btrfs_init_qgroup(fs_info);
  2383. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2384. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2385. init_waitqueue_head(&fs_info->transaction_throttle);
  2386. init_waitqueue_head(&fs_info->transaction_wait);
  2387. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2388. init_waitqueue_head(&fs_info->async_submit_wait);
  2389. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2390. /* Usable values until the real ones are cached from the superblock */
  2391. fs_info->nodesize = 4096;
  2392. fs_info->sectorsize = 4096;
  2393. fs_info->stripesize = 4096;
  2394. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2395. if (ret) {
  2396. err = ret;
  2397. goto fail_alloc;
  2398. }
  2399. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2400. invalidate_bdev(fs_devices->latest_bdev);
  2401. /*
  2402. * Read super block and check the signature bytes only
  2403. */
  2404. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2405. if (IS_ERR(bh)) {
  2406. err = PTR_ERR(bh);
  2407. goto fail_alloc;
  2408. }
  2409. /*
  2410. * We want to check superblock checksum, the type is stored inside.
  2411. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2412. */
  2413. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2414. btrfs_err(fs_info, "superblock checksum mismatch");
  2415. err = -EINVAL;
  2416. brelse(bh);
  2417. goto fail_alloc;
  2418. }
  2419. /*
  2420. * super_copy is zeroed at allocation time and we never touch the
  2421. * following bytes up to INFO_SIZE, the checksum is calculated from
  2422. * the whole block of INFO_SIZE
  2423. */
  2424. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2425. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2426. sizeof(*fs_info->super_for_commit));
  2427. brelse(bh);
  2428. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2429. ret = btrfs_check_super_valid(fs_info);
  2430. if (ret) {
  2431. btrfs_err(fs_info, "superblock contains fatal errors");
  2432. err = -EINVAL;
  2433. goto fail_alloc;
  2434. }
  2435. disk_super = fs_info->super_copy;
  2436. if (!btrfs_super_root(disk_super))
  2437. goto fail_alloc;
  2438. /* check FS state, whether FS is broken. */
  2439. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2440. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2441. /*
  2442. * run through our array of backup supers and setup
  2443. * our ring pointer to the oldest one
  2444. */
  2445. generation = btrfs_super_generation(disk_super);
  2446. find_oldest_super_backup(fs_info, generation);
  2447. /*
  2448. * In the long term, we'll store the compression type in the super
  2449. * block, and it'll be used for per file compression control.
  2450. */
  2451. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2452. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2453. if (ret) {
  2454. err = ret;
  2455. goto fail_alloc;
  2456. }
  2457. features = btrfs_super_incompat_flags(disk_super) &
  2458. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2459. if (features) {
  2460. btrfs_err(fs_info,
  2461. "cannot mount because of unsupported optional features (%llx)",
  2462. features);
  2463. err = -EINVAL;
  2464. goto fail_alloc;
  2465. }
  2466. features = btrfs_super_incompat_flags(disk_super);
  2467. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2468. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2469. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2470. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2471. btrfs_info(fs_info, "has skinny extents");
  2472. /*
  2473. * flag our filesystem as having big metadata blocks if
  2474. * they are bigger than the page size
  2475. */
  2476. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2477. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2478. btrfs_info(fs_info,
  2479. "flagging fs with big metadata feature");
  2480. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2481. }
  2482. nodesize = btrfs_super_nodesize(disk_super);
  2483. sectorsize = btrfs_super_sectorsize(disk_super);
  2484. stripesize = sectorsize;
  2485. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2486. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2487. /* Cache block sizes */
  2488. fs_info->nodesize = nodesize;
  2489. fs_info->sectorsize = sectorsize;
  2490. fs_info->stripesize = stripesize;
  2491. /*
  2492. * mixed block groups end up with duplicate but slightly offset
  2493. * extent buffers for the same range. It leads to corruptions
  2494. */
  2495. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2496. (sectorsize != nodesize)) {
  2497. btrfs_err(fs_info,
  2498. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2499. nodesize, sectorsize);
  2500. goto fail_alloc;
  2501. }
  2502. /*
  2503. * Needn't use the lock because there is no other task which will
  2504. * update the flag.
  2505. */
  2506. btrfs_set_super_incompat_flags(disk_super, features);
  2507. features = btrfs_super_compat_ro_flags(disk_super) &
  2508. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2509. if (!(sb->s_flags & MS_RDONLY) && features) {
  2510. btrfs_err(fs_info,
  2511. "cannot mount read-write because of unsupported optional features (%llx)",
  2512. features);
  2513. err = -EINVAL;
  2514. goto fail_alloc;
  2515. }
  2516. max_active = fs_info->thread_pool_size;
  2517. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2518. if (ret) {
  2519. err = ret;
  2520. goto fail_sb_buffer;
  2521. }
  2522. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2523. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2524. SZ_4M / PAGE_SIZE);
  2525. sb->s_blocksize = sectorsize;
  2526. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2527. mutex_lock(&fs_info->chunk_mutex);
  2528. ret = btrfs_read_sys_array(fs_info);
  2529. mutex_unlock(&fs_info->chunk_mutex);
  2530. if (ret) {
  2531. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2532. goto fail_sb_buffer;
  2533. }
  2534. generation = btrfs_super_chunk_root_generation(disk_super);
  2535. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2536. chunk_root->node = read_tree_block(fs_info,
  2537. btrfs_super_chunk_root(disk_super),
  2538. generation);
  2539. if (IS_ERR(chunk_root->node) ||
  2540. !extent_buffer_uptodate(chunk_root->node)) {
  2541. btrfs_err(fs_info, "failed to read chunk root");
  2542. if (!IS_ERR(chunk_root->node))
  2543. free_extent_buffer(chunk_root->node);
  2544. chunk_root->node = NULL;
  2545. goto fail_tree_roots;
  2546. }
  2547. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2548. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2549. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2550. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2551. ret = btrfs_read_chunk_tree(fs_info);
  2552. if (ret) {
  2553. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2554. goto fail_tree_roots;
  2555. }
  2556. /*
  2557. * keep the device that is marked to be the target device for the
  2558. * dev_replace procedure
  2559. */
  2560. btrfs_close_extra_devices(fs_devices, 0);
  2561. if (!fs_devices->latest_bdev) {
  2562. btrfs_err(fs_info, "failed to read devices");
  2563. goto fail_tree_roots;
  2564. }
  2565. retry_root_backup:
  2566. generation = btrfs_super_generation(disk_super);
  2567. tree_root->node = read_tree_block(fs_info,
  2568. btrfs_super_root(disk_super),
  2569. generation);
  2570. if (IS_ERR(tree_root->node) ||
  2571. !extent_buffer_uptodate(tree_root->node)) {
  2572. btrfs_warn(fs_info, "failed to read tree root");
  2573. if (!IS_ERR(tree_root->node))
  2574. free_extent_buffer(tree_root->node);
  2575. tree_root->node = NULL;
  2576. goto recovery_tree_root;
  2577. }
  2578. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2579. tree_root->commit_root = btrfs_root_node(tree_root);
  2580. btrfs_set_root_refs(&tree_root->root_item, 1);
  2581. mutex_lock(&tree_root->objectid_mutex);
  2582. ret = btrfs_find_highest_objectid(tree_root,
  2583. &tree_root->highest_objectid);
  2584. if (ret) {
  2585. mutex_unlock(&tree_root->objectid_mutex);
  2586. goto recovery_tree_root;
  2587. }
  2588. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2589. mutex_unlock(&tree_root->objectid_mutex);
  2590. ret = btrfs_read_roots(fs_info);
  2591. if (ret)
  2592. goto recovery_tree_root;
  2593. fs_info->generation = generation;
  2594. fs_info->last_trans_committed = generation;
  2595. ret = btrfs_recover_balance(fs_info);
  2596. if (ret) {
  2597. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2598. goto fail_block_groups;
  2599. }
  2600. ret = btrfs_init_dev_stats(fs_info);
  2601. if (ret) {
  2602. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2603. goto fail_block_groups;
  2604. }
  2605. ret = btrfs_init_dev_replace(fs_info);
  2606. if (ret) {
  2607. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2608. goto fail_block_groups;
  2609. }
  2610. btrfs_close_extra_devices(fs_devices, 1);
  2611. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2612. if (ret) {
  2613. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2614. ret);
  2615. goto fail_block_groups;
  2616. }
  2617. ret = btrfs_sysfs_add_device(fs_devices);
  2618. if (ret) {
  2619. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2620. ret);
  2621. goto fail_fsdev_sysfs;
  2622. }
  2623. ret = btrfs_sysfs_add_mounted(fs_info);
  2624. if (ret) {
  2625. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2626. goto fail_fsdev_sysfs;
  2627. }
  2628. ret = btrfs_init_space_info(fs_info);
  2629. if (ret) {
  2630. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2631. goto fail_sysfs;
  2632. }
  2633. ret = btrfs_read_block_groups(fs_info);
  2634. if (ret) {
  2635. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2636. goto fail_sysfs;
  2637. }
  2638. fs_info->num_tolerated_disk_barrier_failures =
  2639. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2640. if (fs_info->fs_devices->missing_devices >
  2641. fs_info->num_tolerated_disk_barrier_failures &&
  2642. !(sb->s_flags & MS_RDONLY)) {
  2643. btrfs_warn(fs_info,
  2644. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2645. fs_info->fs_devices->missing_devices,
  2646. fs_info->num_tolerated_disk_barrier_failures);
  2647. goto fail_sysfs;
  2648. }
  2649. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2650. "btrfs-cleaner");
  2651. if (IS_ERR(fs_info->cleaner_kthread))
  2652. goto fail_sysfs;
  2653. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2654. tree_root,
  2655. "btrfs-transaction");
  2656. if (IS_ERR(fs_info->transaction_kthread))
  2657. goto fail_cleaner;
  2658. if (!btrfs_test_opt(fs_info, SSD) &&
  2659. !btrfs_test_opt(fs_info, NOSSD) &&
  2660. !fs_info->fs_devices->rotating) {
  2661. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2662. btrfs_set_opt(fs_info->mount_opt, SSD);
  2663. }
  2664. /*
  2665. * Mount does not set all options immediately, we can do it now and do
  2666. * not have to wait for transaction commit
  2667. */
  2668. btrfs_apply_pending_changes(fs_info);
  2669. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2670. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2671. ret = btrfsic_mount(fs_info, fs_devices,
  2672. btrfs_test_opt(fs_info,
  2673. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2674. 1 : 0,
  2675. fs_info->check_integrity_print_mask);
  2676. if (ret)
  2677. btrfs_warn(fs_info,
  2678. "failed to initialize integrity check module: %d",
  2679. ret);
  2680. }
  2681. #endif
  2682. ret = btrfs_read_qgroup_config(fs_info);
  2683. if (ret)
  2684. goto fail_trans_kthread;
  2685. /* do not make disk changes in broken FS or nologreplay is given */
  2686. if (btrfs_super_log_root(disk_super) != 0 &&
  2687. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2688. ret = btrfs_replay_log(fs_info, fs_devices);
  2689. if (ret) {
  2690. err = ret;
  2691. goto fail_qgroup;
  2692. }
  2693. }
  2694. ret = btrfs_find_orphan_roots(fs_info);
  2695. if (ret)
  2696. goto fail_qgroup;
  2697. if (!(sb->s_flags & MS_RDONLY)) {
  2698. ret = btrfs_cleanup_fs_roots(fs_info);
  2699. if (ret)
  2700. goto fail_qgroup;
  2701. mutex_lock(&fs_info->cleaner_mutex);
  2702. ret = btrfs_recover_relocation(tree_root);
  2703. mutex_unlock(&fs_info->cleaner_mutex);
  2704. if (ret < 0) {
  2705. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2706. ret);
  2707. err = -EINVAL;
  2708. goto fail_qgroup;
  2709. }
  2710. }
  2711. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2712. location.type = BTRFS_ROOT_ITEM_KEY;
  2713. location.offset = 0;
  2714. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2715. if (IS_ERR(fs_info->fs_root)) {
  2716. err = PTR_ERR(fs_info->fs_root);
  2717. goto fail_qgroup;
  2718. }
  2719. if (sb->s_flags & MS_RDONLY)
  2720. return 0;
  2721. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2722. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2723. clear_free_space_tree = 1;
  2724. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2725. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2726. btrfs_warn(fs_info, "free space tree is invalid");
  2727. clear_free_space_tree = 1;
  2728. }
  2729. if (clear_free_space_tree) {
  2730. btrfs_info(fs_info, "clearing free space tree");
  2731. ret = btrfs_clear_free_space_tree(fs_info);
  2732. if (ret) {
  2733. btrfs_warn(fs_info,
  2734. "failed to clear free space tree: %d", ret);
  2735. close_ctree(fs_info);
  2736. return ret;
  2737. }
  2738. }
  2739. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2740. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2741. btrfs_info(fs_info, "creating free space tree");
  2742. ret = btrfs_create_free_space_tree(fs_info);
  2743. if (ret) {
  2744. btrfs_warn(fs_info,
  2745. "failed to create free space tree: %d", ret);
  2746. close_ctree(fs_info);
  2747. return ret;
  2748. }
  2749. }
  2750. down_read(&fs_info->cleanup_work_sem);
  2751. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2752. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2753. up_read(&fs_info->cleanup_work_sem);
  2754. close_ctree(fs_info);
  2755. return ret;
  2756. }
  2757. up_read(&fs_info->cleanup_work_sem);
  2758. ret = btrfs_resume_balance_async(fs_info);
  2759. if (ret) {
  2760. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2761. close_ctree(fs_info);
  2762. return ret;
  2763. }
  2764. ret = btrfs_resume_dev_replace_async(fs_info);
  2765. if (ret) {
  2766. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2767. close_ctree(fs_info);
  2768. return ret;
  2769. }
  2770. btrfs_qgroup_rescan_resume(fs_info);
  2771. if (!fs_info->uuid_root) {
  2772. btrfs_info(fs_info, "creating UUID tree");
  2773. ret = btrfs_create_uuid_tree(fs_info);
  2774. if (ret) {
  2775. btrfs_warn(fs_info,
  2776. "failed to create the UUID tree: %d", ret);
  2777. close_ctree(fs_info);
  2778. return ret;
  2779. }
  2780. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2781. fs_info->generation !=
  2782. btrfs_super_uuid_tree_generation(disk_super)) {
  2783. btrfs_info(fs_info, "checking UUID tree");
  2784. ret = btrfs_check_uuid_tree(fs_info);
  2785. if (ret) {
  2786. btrfs_warn(fs_info,
  2787. "failed to check the UUID tree: %d", ret);
  2788. close_ctree(fs_info);
  2789. return ret;
  2790. }
  2791. } else {
  2792. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2793. }
  2794. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2795. /*
  2796. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2797. * no need to keep the flag
  2798. */
  2799. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2800. return 0;
  2801. fail_qgroup:
  2802. btrfs_free_qgroup_config(fs_info);
  2803. fail_trans_kthread:
  2804. kthread_stop(fs_info->transaction_kthread);
  2805. btrfs_cleanup_transaction(fs_info);
  2806. btrfs_free_fs_roots(fs_info);
  2807. fail_cleaner:
  2808. kthread_stop(fs_info->cleaner_kthread);
  2809. /*
  2810. * make sure we're done with the btree inode before we stop our
  2811. * kthreads
  2812. */
  2813. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2814. fail_sysfs:
  2815. btrfs_sysfs_remove_mounted(fs_info);
  2816. fail_fsdev_sysfs:
  2817. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2818. fail_block_groups:
  2819. btrfs_put_block_group_cache(fs_info);
  2820. btrfs_free_block_groups(fs_info);
  2821. fail_tree_roots:
  2822. free_root_pointers(fs_info, 1);
  2823. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2824. fail_sb_buffer:
  2825. btrfs_stop_all_workers(fs_info);
  2826. fail_alloc:
  2827. fail_iput:
  2828. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2829. iput(fs_info->btree_inode);
  2830. fail_bio_counter:
  2831. percpu_counter_destroy(&fs_info->bio_counter);
  2832. fail_delalloc_bytes:
  2833. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2834. fail_dirty_metadata_bytes:
  2835. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2836. fail_bdi:
  2837. bdi_destroy(&fs_info->bdi);
  2838. fail_srcu:
  2839. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2840. fail:
  2841. btrfs_free_stripe_hash_table(fs_info);
  2842. btrfs_close_devices(fs_info->fs_devices);
  2843. return err;
  2844. recovery_tree_root:
  2845. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2846. goto fail_tree_roots;
  2847. free_root_pointers(fs_info, 0);
  2848. /* don't use the log in recovery mode, it won't be valid */
  2849. btrfs_set_super_log_root(disk_super, 0);
  2850. /* we can't trust the free space cache either */
  2851. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2852. ret = next_root_backup(fs_info, fs_info->super_copy,
  2853. &num_backups_tried, &backup_index);
  2854. if (ret == -1)
  2855. goto fail_block_groups;
  2856. goto retry_root_backup;
  2857. }
  2858. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2859. {
  2860. if (uptodate) {
  2861. set_buffer_uptodate(bh);
  2862. } else {
  2863. struct btrfs_device *device = (struct btrfs_device *)
  2864. bh->b_private;
  2865. btrfs_warn_rl_in_rcu(device->fs_info,
  2866. "lost page write due to IO error on %s",
  2867. rcu_str_deref(device->name));
  2868. /* note, we don't set_buffer_write_io_error because we have
  2869. * our own ways of dealing with the IO errors
  2870. */
  2871. clear_buffer_uptodate(bh);
  2872. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2873. }
  2874. unlock_buffer(bh);
  2875. put_bh(bh);
  2876. }
  2877. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2878. struct buffer_head **bh_ret)
  2879. {
  2880. struct buffer_head *bh;
  2881. struct btrfs_super_block *super;
  2882. u64 bytenr;
  2883. bytenr = btrfs_sb_offset(copy_num);
  2884. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2885. return -EINVAL;
  2886. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2887. /*
  2888. * If we fail to read from the underlying devices, as of now
  2889. * the best option we have is to mark it EIO.
  2890. */
  2891. if (!bh)
  2892. return -EIO;
  2893. super = (struct btrfs_super_block *)bh->b_data;
  2894. if (btrfs_super_bytenr(super) != bytenr ||
  2895. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2896. brelse(bh);
  2897. return -EINVAL;
  2898. }
  2899. *bh_ret = bh;
  2900. return 0;
  2901. }
  2902. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2903. {
  2904. struct buffer_head *bh;
  2905. struct buffer_head *latest = NULL;
  2906. struct btrfs_super_block *super;
  2907. int i;
  2908. u64 transid = 0;
  2909. int ret = -EINVAL;
  2910. /* we would like to check all the supers, but that would make
  2911. * a btrfs mount succeed after a mkfs from a different FS.
  2912. * So, we need to add a special mount option to scan for
  2913. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2914. */
  2915. for (i = 0; i < 1; i++) {
  2916. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2917. if (ret)
  2918. continue;
  2919. super = (struct btrfs_super_block *)bh->b_data;
  2920. if (!latest || btrfs_super_generation(super) > transid) {
  2921. brelse(latest);
  2922. latest = bh;
  2923. transid = btrfs_super_generation(super);
  2924. } else {
  2925. brelse(bh);
  2926. }
  2927. }
  2928. if (!latest)
  2929. return ERR_PTR(ret);
  2930. return latest;
  2931. }
  2932. /*
  2933. * this should be called twice, once with wait == 0 and
  2934. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2935. * we write are pinned.
  2936. *
  2937. * They are released when wait == 1 is done.
  2938. * max_mirrors must be the same for both runs, and it indicates how
  2939. * many supers on this one device should be written.
  2940. *
  2941. * max_mirrors == 0 means to write them all.
  2942. */
  2943. static int write_dev_supers(struct btrfs_device *device,
  2944. struct btrfs_super_block *sb,
  2945. int wait, int max_mirrors)
  2946. {
  2947. struct buffer_head *bh;
  2948. int i;
  2949. int ret;
  2950. int errors = 0;
  2951. u32 crc;
  2952. u64 bytenr;
  2953. if (max_mirrors == 0)
  2954. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2955. for (i = 0; i < max_mirrors; i++) {
  2956. bytenr = btrfs_sb_offset(i);
  2957. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2958. device->commit_total_bytes)
  2959. break;
  2960. if (wait) {
  2961. bh = __find_get_block(device->bdev, bytenr / 4096,
  2962. BTRFS_SUPER_INFO_SIZE);
  2963. if (!bh) {
  2964. errors++;
  2965. continue;
  2966. }
  2967. wait_on_buffer(bh);
  2968. if (!buffer_uptodate(bh))
  2969. errors++;
  2970. /* drop our reference */
  2971. brelse(bh);
  2972. /* drop the reference from the wait == 0 run */
  2973. brelse(bh);
  2974. continue;
  2975. } else {
  2976. btrfs_set_super_bytenr(sb, bytenr);
  2977. crc = ~(u32)0;
  2978. crc = btrfs_csum_data((const char *)sb +
  2979. BTRFS_CSUM_SIZE, crc,
  2980. BTRFS_SUPER_INFO_SIZE -
  2981. BTRFS_CSUM_SIZE);
  2982. btrfs_csum_final(crc, sb->csum);
  2983. /*
  2984. * one reference for us, and we leave it for the
  2985. * caller
  2986. */
  2987. bh = __getblk(device->bdev, bytenr / 4096,
  2988. BTRFS_SUPER_INFO_SIZE);
  2989. if (!bh) {
  2990. btrfs_err(device->fs_info,
  2991. "couldn't get super buffer head for bytenr %llu",
  2992. bytenr);
  2993. errors++;
  2994. continue;
  2995. }
  2996. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2997. /* one reference for submit_bh */
  2998. get_bh(bh);
  2999. set_buffer_uptodate(bh);
  3000. lock_buffer(bh);
  3001. bh->b_end_io = btrfs_end_buffer_write_sync;
  3002. bh->b_private = device;
  3003. }
  3004. /*
  3005. * we fua the first super. The others we allow
  3006. * to go down lazy.
  3007. */
  3008. if (i == 0)
  3009. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
  3010. else
  3011. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
  3012. if (ret)
  3013. errors++;
  3014. }
  3015. return errors < i ? 0 : -1;
  3016. }
  3017. /*
  3018. * endio for the write_dev_flush, this will wake anyone waiting
  3019. * for the barrier when it is done
  3020. */
  3021. static void btrfs_end_empty_barrier(struct bio *bio)
  3022. {
  3023. if (bio->bi_private)
  3024. complete(bio->bi_private);
  3025. bio_put(bio);
  3026. }
  3027. /*
  3028. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3029. * sent down. With wait == 1, it waits for the previous flush.
  3030. *
  3031. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3032. * capable
  3033. */
  3034. static int write_dev_flush(struct btrfs_device *device, int wait)
  3035. {
  3036. struct bio *bio;
  3037. int ret = 0;
  3038. if (device->nobarriers)
  3039. return 0;
  3040. if (wait) {
  3041. bio = device->flush_bio;
  3042. if (!bio)
  3043. return 0;
  3044. wait_for_completion(&device->flush_wait);
  3045. if (bio->bi_error) {
  3046. ret = bio->bi_error;
  3047. btrfs_dev_stat_inc_and_print(device,
  3048. BTRFS_DEV_STAT_FLUSH_ERRS);
  3049. }
  3050. /* drop the reference from the wait == 0 run */
  3051. bio_put(bio);
  3052. device->flush_bio = NULL;
  3053. return ret;
  3054. }
  3055. /*
  3056. * one reference for us, and we leave it for the
  3057. * caller
  3058. */
  3059. device->flush_bio = NULL;
  3060. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3061. if (!bio)
  3062. return -ENOMEM;
  3063. bio->bi_end_io = btrfs_end_empty_barrier;
  3064. bio->bi_bdev = device->bdev;
  3065. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  3066. init_completion(&device->flush_wait);
  3067. bio->bi_private = &device->flush_wait;
  3068. device->flush_bio = bio;
  3069. bio_get(bio);
  3070. btrfsic_submit_bio(bio);
  3071. return 0;
  3072. }
  3073. /*
  3074. * send an empty flush down to each device in parallel,
  3075. * then wait for them
  3076. */
  3077. static int barrier_all_devices(struct btrfs_fs_info *info)
  3078. {
  3079. struct list_head *head;
  3080. struct btrfs_device *dev;
  3081. int errors_send = 0;
  3082. int errors_wait = 0;
  3083. int ret;
  3084. /* send down all the barriers */
  3085. head = &info->fs_devices->devices;
  3086. list_for_each_entry_rcu(dev, head, dev_list) {
  3087. if (dev->missing)
  3088. continue;
  3089. if (!dev->bdev) {
  3090. errors_send++;
  3091. continue;
  3092. }
  3093. if (!dev->in_fs_metadata || !dev->writeable)
  3094. continue;
  3095. ret = write_dev_flush(dev, 0);
  3096. if (ret)
  3097. errors_send++;
  3098. }
  3099. /* wait for all the barriers */
  3100. list_for_each_entry_rcu(dev, head, dev_list) {
  3101. if (dev->missing)
  3102. continue;
  3103. if (!dev->bdev) {
  3104. errors_wait++;
  3105. continue;
  3106. }
  3107. if (!dev->in_fs_metadata || !dev->writeable)
  3108. continue;
  3109. ret = write_dev_flush(dev, 1);
  3110. if (ret)
  3111. errors_wait++;
  3112. }
  3113. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3114. errors_wait > info->num_tolerated_disk_barrier_failures)
  3115. return -EIO;
  3116. return 0;
  3117. }
  3118. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3119. {
  3120. int raid_type;
  3121. int min_tolerated = INT_MAX;
  3122. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3123. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3124. min_tolerated = min(min_tolerated,
  3125. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3126. tolerated_failures);
  3127. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3128. if (raid_type == BTRFS_RAID_SINGLE)
  3129. continue;
  3130. if (!(flags & btrfs_raid_group[raid_type]))
  3131. continue;
  3132. min_tolerated = min(min_tolerated,
  3133. btrfs_raid_array[raid_type].
  3134. tolerated_failures);
  3135. }
  3136. if (min_tolerated == INT_MAX) {
  3137. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3138. min_tolerated = 0;
  3139. }
  3140. return min_tolerated;
  3141. }
  3142. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3143. struct btrfs_fs_info *fs_info)
  3144. {
  3145. struct btrfs_ioctl_space_info space;
  3146. struct btrfs_space_info *sinfo;
  3147. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3148. BTRFS_BLOCK_GROUP_SYSTEM,
  3149. BTRFS_BLOCK_GROUP_METADATA,
  3150. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3151. int i;
  3152. int c;
  3153. int num_tolerated_disk_barrier_failures =
  3154. (int)fs_info->fs_devices->num_devices;
  3155. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3156. struct btrfs_space_info *tmp;
  3157. sinfo = NULL;
  3158. rcu_read_lock();
  3159. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3160. if (tmp->flags == types[i]) {
  3161. sinfo = tmp;
  3162. break;
  3163. }
  3164. }
  3165. rcu_read_unlock();
  3166. if (!sinfo)
  3167. continue;
  3168. down_read(&sinfo->groups_sem);
  3169. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3170. u64 flags;
  3171. if (list_empty(&sinfo->block_groups[c]))
  3172. continue;
  3173. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3174. &space);
  3175. if (space.total_bytes == 0 || space.used_bytes == 0)
  3176. continue;
  3177. flags = space.flags;
  3178. num_tolerated_disk_barrier_failures = min(
  3179. num_tolerated_disk_barrier_failures,
  3180. btrfs_get_num_tolerated_disk_barrier_failures(
  3181. flags));
  3182. }
  3183. up_read(&sinfo->groups_sem);
  3184. }
  3185. return num_tolerated_disk_barrier_failures;
  3186. }
  3187. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3188. {
  3189. struct list_head *head;
  3190. struct btrfs_device *dev;
  3191. struct btrfs_super_block *sb;
  3192. struct btrfs_dev_item *dev_item;
  3193. int ret;
  3194. int do_barriers;
  3195. int max_errors;
  3196. int total_errors = 0;
  3197. u64 flags;
  3198. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3199. backup_super_roots(fs_info);
  3200. sb = fs_info->super_for_commit;
  3201. dev_item = &sb->dev_item;
  3202. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3203. head = &fs_info->fs_devices->devices;
  3204. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3205. if (do_barriers) {
  3206. ret = barrier_all_devices(fs_info);
  3207. if (ret) {
  3208. mutex_unlock(
  3209. &fs_info->fs_devices->device_list_mutex);
  3210. btrfs_handle_fs_error(fs_info, ret,
  3211. "errors while submitting device barriers.");
  3212. return ret;
  3213. }
  3214. }
  3215. list_for_each_entry_rcu(dev, head, dev_list) {
  3216. if (!dev->bdev) {
  3217. total_errors++;
  3218. continue;
  3219. }
  3220. if (!dev->in_fs_metadata || !dev->writeable)
  3221. continue;
  3222. btrfs_set_stack_device_generation(dev_item, 0);
  3223. btrfs_set_stack_device_type(dev_item, dev->type);
  3224. btrfs_set_stack_device_id(dev_item, dev->devid);
  3225. btrfs_set_stack_device_total_bytes(dev_item,
  3226. dev->commit_total_bytes);
  3227. btrfs_set_stack_device_bytes_used(dev_item,
  3228. dev->commit_bytes_used);
  3229. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3230. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3231. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3232. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3233. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3234. flags = btrfs_super_flags(sb);
  3235. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3236. ret = write_dev_supers(dev, sb, 0, max_mirrors);
  3237. if (ret)
  3238. total_errors++;
  3239. }
  3240. if (total_errors > max_errors) {
  3241. btrfs_err(fs_info, "%d errors while writing supers",
  3242. total_errors);
  3243. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3244. /* FUA is masked off if unsupported and can't be the reason */
  3245. btrfs_handle_fs_error(fs_info, -EIO,
  3246. "%d errors while writing supers",
  3247. total_errors);
  3248. return -EIO;
  3249. }
  3250. total_errors = 0;
  3251. list_for_each_entry_rcu(dev, head, dev_list) {
  3252. if (!dev->bdev)
  3253. continue;
  3254. if (!dev->in_fs_metadata || !dev->writeable)
  3255. continue;
  3256. ret = write_dev_supers(dev, sb, 1, max_mirrors);
  3257. if (ret)
  3258. total_errors++;
  3259. }
  3260. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3261. if (total_errors > max_errors) {
  3262. btrfs_handle_fs_error(fs_info, -EIO,
  3263. "%d errors while writing supers",
  3264. total_errors);
  3265. return -EIO;
  3266. }
  3267. return 0;
  3268. }
  3269. /* Drop a fs root from the radix tree and free it. */
  3270. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3271. struct btrfs_root *root)
  3272. {
  3273. spin_lock(&fs_info->fs_roots_radix_lock);
  3274. radix_tree_delete(&fs_info->fs_roots_radix,
  3275. (unsigned long)root->root_key.objectid);
  3276. spin_unlock(&fs_info->fs_roots_radix_lock);
  3277. if (btrfs_root_refs(&root->root_item) == 0)
  3278. synchronize_srcu(&fs_info->subvol_srcu);
  3279. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3280. btrfs_free_log(NULL, root);
  3281. if (root->reloc_root) {
  3282. free_extent_buffer(root->reloc_root->node);
  3283. free_extent_buffer(root->reloc_root->commit_root);
  3284. btrfs_put_fs_root(root->reloc_root);
  3285. root->reloc_root = NULL;
  3286. }
  3287. }
  3288. if (root->free_ino_pinned)
  3289. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3290. if (root->free_ino_ctl)
  3291. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3292. free_fs_root(root);
  3293. }
  3294. static void free_fs_root(struct btrfs_root *root)
  3295. {
  3296. iput(root->ino_cache_inode);
  3297. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3298. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3299. root->orphan_block_rsv = NULL;
  3300. if (root->anon_dev)
  3301. free_anon_bdev(root->anon_dev);
  3302. if (root->subv_writers)
  3303. btrfs_free_subvolume_writers(root->subv_writers);
  3304. free_extent_buffer(root->node);
  3305. free_extent_buffer(root->commit_root);
  3306. kfree(root->free_ino_ctl);
  3307. kfree(root->free_ino_pinned);
  3308. kfree(root->name);
  3309. btrfs_put_fs_root(root);
  3310. }
  3311. void btrfs_free_fs_root(struct btrfs_root *root)
  3312. {
  3313. free_fs_root(root);
  3314. }
  3315. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3316. {
  3317. u64 root_objectid = 0;
  3318. struct btrfs_root *gang[8];
  3319. int i = 0;
  3320. int err = 0;
  3321. unsigned int ret = 0;
  3322. int index;
  3323. while (1) {
  3324. index = srcu_read_lock(&fs_info->subvol_srcu);
  3325. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3326. (void **)gang, root_objectid,
  3327. ARRAY_SIZE(gang));
  3328. if (!ret) {
  3329. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3330. break;
  3331. }
  3332. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3333. for (i = 0; i < ret; i++) {
  3334. /* Avoid to grab roots in dead_roots */
  3335. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3336. gang[i] = NULL;
  3337. continue;
  3338. }
  3339. /* grab all the search result for later use */
  3340. gang[i] = btrfs_grab_fs_root(gang[i]);
  3341. }
  3342. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3343. for (i = 0; i < ret; i++) {
  3344. if (!gang[i])
  3345. continue;
  3346. root_objectid = gang[i]->root_key.objectid;
  3347. err = btrfs_orphan_cleanup(gang[i]);
  3348. if (err)
  3349. break;
  3350. btrfs_put_fs_root(gang[i]);
  3351. }
  3352. root_objectid++;
  3353. }
  3354. /* release the uncleaned roots due to error */
  3355. for (; i < ret; i++) {
  3356. if (gang[i])
  3357. btrfs_put_fs_root(gang[i]);
  3358. }
  3359. return err;
  3360. }
  3361. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3362. {
  3363. struct btrfs_root *root = fs_info->tree_root;
  3364. struct btrfs_trans_handle *trans;
  3365. mutex_lock(&fs_info->cleaner_mutex);
  3366. btrfs_run_delayed_iputs(fs_info);
  3367. mutex_unlock(&fs_info->cleaner_mutex);
  3368. wake_up_process(fs_info->cleaner_kthread);
  3369. /* wait until ongoing cleanup work done */
  3370. down_write(&fs_info->cleanup_work_sem);
  3371. up_write(&fs_info->cleanup_work_sem);
  3372. trans = btrfs_join_transaction(root);
  3373. if (IS_ERR(trans))
  3374. return PTR_ERR(trans);
  3375. return btrfs_commit_transaction(trans);
  3376. }
  3377. void close_ctree(struct btrfs_fs_info *fs_info)
  3378. {
  3379. struct btrfs_root *root = fs_info->tree_root;
  3380. int ret;
  3381. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3382. /* wait for the qgroup rescan worker to stop */
  3383. btrfs_qgroup_wait_for_completion(fs_info, false);
  3384. /* wait for the uuid_scan task to finish */
  3385. down(&fs_info->uuid_tree_rescan_sem);
  3386. /* avoid complains from lockdep et al., set sem back to initial state */
  3387. up(&fs_info->uuid_tree_rescan_sem);
  3388. /* pause restriper - we want to resume on mount */
  3389. btrfs_pause_balance(fs_info);
  3390. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3391. btrfs_scrub_cancel(fs_info);
  3392. /* wait for any defraggers to finish */
  3393. wait_event(fs_info->transaction_wait,
  3394. (atomic_read(&fs_info->defrag_running) == 0));
  3395. /* clear out the rbtree of defraggable inodes */
  3396. btrfs_cleanup_defrag_inodes(fs_info);
  3397. cancel_work_sync(&fs_info->async_reclaim_work);
  3398. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3399. /*
  3400. * If the cleaner thread is stopped and there are
  3401. * block groups queued for removal, the deletion will be
  3402. * skipped when we quit the cleaner thread.
  3403. */
  3404. btrfs_delete_unused_bgs(fs_info);
  3405. ret = btrfs_commit_super(fs_info);
  3406. if (ret)
  3407. btrfs_err(fs_info, "commit super ret %d", ret);
  3408. }
  3409. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3410. btrfs_error_commit_super(fs_info);
  3411. kthread_stop(fs_info->transaction_kthread);
  3412. kthread_stop(fs_info->cleaner_kthread);
  3413. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3414. btrfs_free_qgroup_config(fs_info);
  3415. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3416. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3417. percpu_counter_sum(&fs_info->delalloc_bytes));
  3418. }
  3419. btrfs_sysfs_remove_mounted(fs_info);
  3420. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3421. btrfs_free_fs_roots(fs_info);
  3422. btrfs_put_block_group_cache(fs_info);
  3423. btrfs_free_block_groups(fs_info);
  3424. /*
  3425. * we must make sure there is not any read request to
  3426. * submit after we stopping all workers.
  3427. */
  3428. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3429. btrfs_stop_all_workers(fs_info);
  3430. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3431. free_root_pointers(fs_info, 1);
  3432. iput(fs_info->btree_inode);
  3433. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3434. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3435. btrfsic_unmount(fs_info->fs_devices);
  3436. #endif
  3437. btrfs_close_devices(fs_info->fs_devices);
  3438. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3439. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3440. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3441. percpu_counter_destroy(&fs_info->bio_counter);
  3442. bdi_destroy(&fs_info->bdi);
  3443. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3444. btrfs_free_stripe_hash_table(fs_info);
  3445. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3446. root->orphan_block_rsv = NULL;
  3447. mutex_lock(&fs_info->chunk_mutex);
  3448. while (!list_empty(&fs_info->pinned_chunks)) {
  3449. struct extent_map *em;
  3450. em = list_first_entry(&fs_info->pinned_chunks,
  3451. struct extent_map, list);
  3452. list_del_init(&em->list);
  3453. free_extent_map(em);
  3454. }
  3455. mutex_unlock(&fs_info->chunk_mutex);
  3456. }
  3457. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3458. int atomic)
  3459. {
  3460. int ret;
  3461. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3462. ret = extent_buffer_uptodate(buf);
  3463. if (!ret)
  3464. return ret;
  3465. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3466. parent_transid, atomic);
  3467. if (ret == -EAGAIN)
  3468. return ret;
  3469. return !ret;
  3470. }
  3471. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3472. {
  3473. struct btrfs_fs_info *fs_info;
  3474. struct btrfs_root *root;
  3475. u64 transid = btrfs_header_generation(buf);
  3476. int was_dirty;
  3477. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3478. /*
  3479. * This is a fast path so only do this check if we have sanity tests
  3480. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3481. * outside of the sanity tests.
  3482. */
  3483. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3484. return;
  3485. #endif
  3486. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3487. fs_info = root->fs_info;
  3488. btrfs_assert_tree_locked(buf);
  3489. if (transid != fs_info->generation)
  3490. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3491. buf->start, transid, fs_info->generation);
  3492. was_dirty = set_extent_buffer_dirty(buf);
  3493. if (!was_dirty)
  3494. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  3495. buf->len,
  3496. fs_info->dirty_metadata_batch);
  3497. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3498. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3499. btrfs_print_leaf(fs_info, buf);
  3500. ASSERT(0);
  3501. }
  3502. #endif
  3503. }
  3504. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3505. int flush_delayed)
  3506. {
  3507. /*
  3508. * looks as though older kernels can get into trouble with
  3509. * this code, they end up stuck in balance_dirty_pages forever
  3510. */
  3511. int ret;
  3512. if (current->flags & PF_MEMALLOC)
  3513. return;
  3514. if (flush_delayed)
  3515. btrfs_balance_delayed_items(fs_info);
  3516. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3517. BTRFS_DIRTY_METADATA_THRESH);
  3518. if (ret > 0) {
  3519. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3520. }
  3521. }
  3522. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3523. {
  3524. __btrfs_btree_balance_dirty(fs_info, 1);
  3525. }
  3526. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3527. {
  3528. __btrfs_btree_balance_dirty(fs_info, 0);
  3529. }
  3530. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3531. {
  3532. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3533. struct btrfs_fs_info *fs_info = root->fs_info;
  3534. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3535. }
  3536. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3537. {
  3538. struct btrfs_super_block *sb = fs_info->super_copy;
  3539. u64 nodesize = btrfs_super_nodesize(sb);
  3540. u64 sectorsize = btrfs_super_sectorsize(sb);
  3541. int ret = 0;
  3542. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3543. btrfs_err(fs_info, "no valid FS found");
  3544. ret = -EINVAL;
  3545. }
  3546. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3547. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3548. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3549. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3550. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3551. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3552. ret = -EINVAL;
  3553. }
  3554. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3555. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3556. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3557. ret = -EINVAL;
  3558. }
  3559. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3560. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3561. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3562. ret = -EINVAL;
  3563. }
  3564. /*
  3565. * Check sectorsize and nodesize first, other check will need it.
  3566. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3567. */
  3568. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3569. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3570. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3571. ret = -EINVAL;
  3572. }
  3573. /* Only PAGE SIZE is supported yet */
  3574. if (sectorsize != PAGE_SIZE) {
  3575. btrfs_err(fs_info,
  3576. "sectorsize %llu not supported yet, only support %lu",
  3577. sectorsize, PAGE_SIZE);
  3578. ret = -EINVAL;
  3579. }
  3580. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3581. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3582. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3583. ret = -EINVAL;
  3584. }
  3585. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3586. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3587. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3588. ret = -EINVAL;
  3589. }
  3590. /* Root alignment check */
  3591. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3592. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3593. btrfs_super_root(sb));
  3594. ret = -EINVAL;
  3595. }
  3596. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3597. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3598. btrfs_super_chunk_root(sb));
  3599. ret = -EINVAL;
  3600. }
  3601. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3602. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3603. btrfs_super_log_root(sb));
  3604. ret = -EINVAL;
  3605. }
  3606. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3607. btrfs_err(fs_info,
  3608. "dev_item UUID does not match fsid: %pU != %pU",
  3609. fs_info->fsid, sb->dev_item.fsid);
  3610. ret = -EINVAL;
  3611. }
  3612. /*
  3613. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3614. * done later
  3615. */
  3616. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3617. btrfs_err(fs_info, "bytes_used is too small %llu",
  3618. btrfs_super_bytes_used(sb));
  3619. ret = -EINVAL;
  3620. }
  3621. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3622. btrfs_err(fs_info, "invalid stripesize %u",
  3623. btrfs_super_stripesize(sb));
  3624. ret = -EINVAL;
  3625. }
  3626. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3627. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3628. btrfs_super_num_devices(sb));
  3629. if (btrfs_super_num_devices(sb) == 0) {
  3630. btrfs_err(fs_info, "number of devices is 0");
  3631. ret = -EINVAL;
  3632. }
  3633. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3634. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3635. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3636. ret = -EINVAL;
  3637. }
  3638. /*
  3639. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3640. * and one chunk
  3641. */
  3642. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3643. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3644. btrfs_super_sys_array_size(sb),
  3645. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3646. ret = -EINVAL;
  3647. }
  3648. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3649. + sizeof(struct btrfs_chunk)) {
  3650. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3651. btrfs_super_sys_array_size(sb),
  3652. sizeof(struct btrfs_disk_key)
  3653. + sizeof(struct btrfs_chunk));
  3654. ret = -EINVAL;
  3655. }
  3656. /*
  3657. * The generation is a global counter, we'll trust it more than the others
  3658. * but it's still possible that it's the one that's wrong.
  3659. */
  3660. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3661. btrfs_warn(fs_info,
  3662. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3663. btrfs_super_generation(sb),
  3664. btrfs_super_chunk_root_generation(sb));
  3665. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3666. && btrfs_super_cache_generation(sb) != (u64)-1)
  3667. btrfs_warn(fs_info,
  3668. "suspicious: generation < cache_generation: %llu < %llu",
  3669. btrfs_super_generation(sb),
  3670. btrfs_super_cache_generation(sb));
  3671. return ret;
  3672. }
  3673. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3674. {
  3675. mutex_lock(&fs_info->cleaner_mutex);
  3676. btrfs_run_delayed_iputs(fs_info);
  3677. mutex_unlock(&fs_info->cleaner_mutex);
  3678. down_write(&fs_info->cleanup_work_sem);
  3679. up_write(&fs_info->cleanup_work_sem);
  3680. /* cleanup FS via transaction */
  3681. btrfs_cleanup_transaction(fs_info);
  3682. }
  3683. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3684. {
  3685. struct btrfs_ordered_extent *ordered;
  3686. spin_lock(&root->ordered_extent_lock);
  3687. /*
  3688. * This will just short circuit the ordered completion stuff which will
  3689. * make sure the ordered extent gets properly cleaned up.
  3690. */
  3691. list_for_each_entry(ordered, &root->ordered_extents,
  3692. root_extent_list)
  3693. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3694. spin_unlock(&root->ordered_extent_lock);
  3695. }
  3696. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3697. {
  3698. struct btrfs_root *root;
  3699. struct list_head splice;
  3700. INIT_LIST_HEAD(&splice);
  3701. spin_lock(&fs_info->ordered_root_lock);
  3702. list_splice_init(&fs_info->ordered_roots, &splice);
  3703. while (!list_empty(&splice)) {
  3704. root = list_first_entry(&splice, struct btrfs_root,
  3705. ordered_root);
  3706. list_move_tail(&root->ordered_root,
  3707. &fs_info->ordered_roots);
  3708. spin_unlock(&fs_info->ordered_root_lock);
  3709. btrfs_destroy_ordered_extents(root);
  3710. cond_resched();
  3711. spin_lock(&fs_info->ordered_root_lock);
  3712. }
  3713. spin_unlock(&fs_info->ordered_root_lock);
  3714. }
  3715. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3716. struct btrfs_fs_info *fs_info)
  3717. {
  3718. struct rb_node *node;
  3719. struct btrfs_delayed_ref_root *delayed_refs;
  3720. struct btrfs_delayed_ref_node *ref;
  3721. int ret = 0;
  3722. delayed_refs = &trans->delayed_refs;
  3723. spin_lock(&delayed_refs->lock);
  3724. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3725. spin_unlock(&delayed_refs->lock);
  3726. btrfs_info(fs_info, "delayed_refs has NO entry");
  3727. return ret;
  3728. }
  3729. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3730. struct btrfs_delayed_ref_head *head;
  3731. struct btrfs_delayed_ref_node *tmp;
  3732. bool pin_bytes = false;
  3733. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3734. href_node);
  3735. if (!mutex_trylock(&head->mutex)) {
  3736. atomic_inc(&head->node.refs);
  3737. spin_unlock(&delayed_refs->lock);
  3738. mutex_lock(&head->mutex);
  3739. mutex_unlock(&head->mutex);
  3740. btrfs_put_delayed_ref(&head->node);
  3741. spin_lock(&delayed_refs->lock);
  3742. continue;
  3743. }
  3744. spin_lock(&head->lock);
  3745. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3746. list) {
  3747. ref->in_tree = 0;
  3748. list_del(&ref->list);
  3749. if (!list_empty(&ref->add_list))
  3750. list_del(&ref->add_list);
  3751. atomic_dec(&delayed_refs->num_entries);
  3752. btrfs_put_delayed_ref(ref);
  3753. }
  3754. if (head->must_insert_reserved)
  3755. pin_bytes = true;
  3756. btrfs_free_delayed_extent_op(head->extent_op);
  3757. delayed_refs->num_heads--;
  3758. if (head->processing == 0)
  3759. delayed_refs->num_heads_ready--;
  3760. atomic_dec(&delayed_refs->num_entries);
  3761. head->node.in_tree = 0;
  3762. rb_erase(&head->href_node, &delayed_refs->href_root);
  3763. spin_unlock(&head->lock);
  3764. spin_unlock(&delayed_refs->lock);
  3765. mutex_unlock(&head->mutex);
  3766. if (pin_bytes)
  3767. btrfs_pin_extent(fs_info, head->node.bytenr,
  3768. head->node.num_bytes, 1);
  3769. btrfs_put_delayed_ref(&head->node);
  3770. cond_resched();
  3771. spin_lock(&delayed_refs->lock);
  3772. }
  3773. spin_unlock(&delayed_refs->lock);
  3774. return ret;
  3775. }
  3776. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3777. {
  3778. struct btrfs_inode *btrfs_inode;
  3779. struct list_head splice;
  3780. INIT_LIST_HEAD(&splice);
  3781. spin_lock(&root->delalloc_lock);
  3782. list_splice_init(&root->delalloc_inodes, &splice);
  3783. while (!list_empty(&splice)) {
  3784. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3785. delalloc_inodes);
  3786. list_del_init(&btrfs_inode->delalloc_inodes);
  3787. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3788. &btrfs_inode->runtime_flags);
  3789. spin_unlock(&root->delalloc_lock);
  3790. btrfs_invalidate_inodes(btrfs_inode->root);
  3791. spin_lock(&root->delalloc_lock);
  3792. }
  3793. spin_unlock(&root->delalloc_lock);
  3794. }
  3795. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3796. {
  3797. struct btrfs_root *root;
  3798. struct list_head splice;
  3799. INIT_LIST_HEAD(&splice);
  3800. spin_lock(&fs_info->delalloc_root_lock);
  3801. list_splice_init(&fs_info->delalloc_roots, &splice);
  3802. while (!list_empty(&splice)) {
  3803. root = list_first_entry(&splice, struct btrfs_root,
  3804. delalloc_root);
  3805. list_del_init(&root->delalloc_root);
  3806. root = btrfs_grab_fs_root(root);
  3807. BUG_ON(!root);
  3808. spin_unlock(&fs_info->delalloc_root_lock);
  3809. btrfs_destroy_delalloc_inodes(root);
  3810. btrfs_put_fs_root(root);
  3811. spin_lock(&fs_info->delalloc_root_lock);
  3812. }
  3813. spin_unlock(&fs_info->delalloc_root_lock);
  3814. }
  3815. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3816. struct extent_io_tree *dirty_pages,
  3817. int mark)
  3818. {
  3819. int ret;
  3820. struct extent_buffer *eb;
  3821. u64 start = 0;
  3822. u64 end;
  3823. while (1) {
  3824. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3825. mark, NULL);
  3826. if (ret)
  3827. break;
  3828. clear_extent_bits(dirty_pages, start, end, mark);
  3829. while (start <= end) {
  3830. eb = find_extent_buffer(fs_info, start);
  3831. start += fs_info->nodesize;
  3832. if (!eb)
  3833. continue;
  3834. wait_on_extent_buffer_writeback(eb);
  3835. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3836. &eb->bflags))
  3837. clear_extent_buffer_dirty(eb);
  3838. free_extent_buffer_stale(eb);
  3839. }
  3840. }
  3841. return ret;
  3842. }
  3843. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3844. struct extent_io_tree *pinned_extents)
  3845. {
  3846. struct extent_io_tree *unpin;
  3847. u64 start;
  3848. u64 end;
  3849. int ret;
  3850. bool loop = true;
  3851. unpin = pinned_extents;
  3852. again:
  3853. while (1) {
  3854. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3855. EXTENT_DIRTY, NULL);
  3856. if (ret)
  3857. break;
  3858. clear_extent_dirty(unpin, start, end);
  3859. btrfs_error_unpin_extent_range(fs_info, start, end);
  3860. cond_resched();
  3861. }
  3862. if (loop) {
  3863. if (unpin == &fs_info->freed_extents[0])
  3864. unpin = &fs_info->freed_extents[1];
  3865. else
  3866. unpin = &fs_info->freed_extents[0];
  3867. loop = false;
  3868. goto again;
  3869. }
  3870. return 0;
  3871. }
  3872. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3873. {
  3874. struct inode *inode;
  3875. inode = cache->io_ctl.inode;
  3876. if (inode) {
  3877. invalidate_inode_pages2(inode->i_mapping);
  3878. BTRFS_I(inode)->generation = 0;
  3879. cache->io_ctl.inode = NULL;
  3880. iput(inode);
  3881. }
  3882. btrfs_put_block_group(cache);
  3883. }
  3884. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3885. struct btrfs_fs_info *fs_info)
  3886. {
  3887. struct btrfs_block_group_cache *cache;
  3888. spin_lock(&cur_trans->dirty_bgs_lock);
  3889. while (!list_empty(&cur_trans->dirty_bgs)) {
  3890. cache = list_first_entry(&cur_trans->dirty_bgs,
  3891. struct btrfs_block_group_cache,
  3892. dirty_list);
  3893. if (!cache) {
  3894. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3895. spin_unlock(&cur_trans->dirty_bgs_lock);
  3896. return;
  3897. }
  3898. if (!list_empty(&cache->io_list)) {
  3899. spin_unlock(&cur_trans->dirty_bgs_lock);
  3900. list_del_init(&cache->io_list);
  3901. btrfs_cleanup_bg_io(cache);
  3902. spin_lock(&cur_trans->dirty_bgs_lock);
  3903. }
  3904. list_del_init(&cache->dirty_list);
  3905. spin_lock(&cache->lock);
  3906. cache->disk_cache_state = BTRFS_DC_ERROR;
  3907. spin_unlock(&cache->lock);
  3908. spin_unlock(&cur_trans->dirty_bgs_lock);
  3909. btrfs_put_block_group(cache);
  3910. spin_lock(&cur_trans->dirty_bgs_lock);
  3911. }
  3912. spin_unlock(&cur_trans->dirty_bgs_lock);
  3913. while (!list_empty(&cur_trans->io_bgs)) {
  3914. cache = list_first_entry(&cur_trans->io_bgs,
  3915. struct btrfs_block_group_cache,
  3916. io_list);
  3917. if (!cache) {
  3918. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3919. return;
  3920. }
  3921. list_del_init(&cache->io_list);
  3922. spin_lock(&cache->lock);
  3923. cache->disk_cache_state = BTRFS_DC_ERROR;
  3924. spin_unlock(&cache->lock);
  3925. btrfs_cleanup_bg_io(cache);
  3926. }
  3927. }
  3928. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3929. struct btrfs_fs_info *fs_info)
  3930. {
  3931. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3932. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3933. ASSERT(list_empty(&cur_trans->io_bgs));
  3934. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3935. cur_trans->state = TRANS_STATE_COMMIT_START;
  3936. wake_up(&fs_info->transaction_blocked_wait);
  3937. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3938. wake_up(&fs_info->transaction_wait);
  3939. btrfs_destroy_delayed_inodes(fs_info);
  3940. btrfs_assert_delayed_root_empty(fs_info);
  3941. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3942. EXTENT_DIRTY);
  3943. btrfs_destroy_pinned_extent(fs_info,
  3944. fs_info->pinned_extents);
  3945. cur_trans->state =TRANS_STATE_COMPLETED;
  3946. wake_up(&cur_trans->commit_wait);
  3947. /*
  3948. memset(cur_trans, 0, sizeof(*cur_trans));
  3949. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3950. */
  3951. }
  3952. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3953. {
  3954. struct btrfs_transaction *t;
  3955. mutex_lock(&fs_info->transaction_kthread_mutex);
  3956. spin_lock(&fs_info->trans_lock);
  3957. while (!list_empty(&fs_info->trans_list)) {
  3958. t = list_first_entry(&fs_info->trans_list,
  3959. struct btrfs_transaction, list);
  3960. if (t->state >= TRANS_STATE_COMMIT_START) {
  3961. atomic_inc(&t->use_count);
  3962. spin_unlock(&fs_info->trans_lock);
  3963. btrfs_wait_for_commit(fs_info, t->transid);
  3964. btrfs_put_transaction(t);
  3965. spin_lock(&fs_info->trans_lock);
  3966. continue;
  3967. }
  3968. if (t == fs_info->running_transaction) {
  3969. t->state = TRANS_STATE_COMMIT_DOING;
  3970. spin_unlock(&fs_info->trans_lock);
  3971. /*
  3972. * We wait for 0 num_writers since we don't hold a trans
  3973. * handle open currently for this transaction.
  3974. */
  3975. wait_event(t->writer_wait,
  3976. atomic_read(&t->num_writers) == 0);
  3977. } else {
  3978. spin_unlock(&fs_info->trans_lock);
  3979. }
  3980. btrfs_cleanup_one_transaction(t, fs_info);
  3981. spin_lock(&fs_info->trans_lock);
  3982. if (t == fs_info->running_transaction)
  3983. fs_info->running_transaction = NULL;
  3984. list_del_init(&t->list);
  3985. spin_unlock(&fs_info->trans_lock);
  3986. btrfs_put_transaction(t);
  3987. trace_btrfs_transaction_commit(fs_info->tree_root);
  3988. spin_lock(&fs_info->trans_lock);
  3989. }
  3990. spin_unlock(&fs_info->trans_lock);
  3991. btrfs_destroy_all_ordered_extents(fs_info);
  3992. btrfs_destroy_delayed_inodes(fs_info);
  3993. btrfs_assert_delayed_root_empty(fs_info);
  3994. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3995. btrfs_destroy_all_delalloc_inodes(fs_info);
  3996. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3997. return 0;
  3998. }
  3999. static const struct extent_io_ops btree_extent_io_ops = {
  4000. /* mandatory callbacks */
  4001. .submit_bio_hook = btree_submit_bio_hook,
  4002. .readpage_end_io_hook = btree_readpage_end_io_hook,
  4003. /* note we're sharing with inode.c for the merge bio hook */
  4004. .merge_bio_hook = btrfs_merge_bio_hook,
  4005. /* optional callbacks */
  4006. .readpage_io_failed_hook = btree_io_failed_hook,
  4007. };