amdgpu_amdkfd_gfx_v7.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  91. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  92. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  93. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  94. uint32_t queue_id, uint32_t __user *wptr,
  95. uint32_t wptr_shift, uint32_t wptr_mask,
  96. struct mm_struct *mm);
  97. static int kgd_hqd_dump(struct kgd_dev *kgd,
  98. uint32_t pipe_id, uint32_t queue_id,
  99. uint32_t (**dump)[2], uint32_t *n_regs);
  100. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  101. uint32_t __user *wptr, struct mm_struct *mm);
  102. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  103. uint32_t engine_id, uint32_t queue_id,
  104. uint32_t (**dump)[2], uint32_t *n_regs);
  105. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  106. uint32_t pipe_id, uint32_t queue_id);
  107. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  108. enum kfd_preempt_type reset_type,
  109. unsigned int utimeout, uint32_t pipe_id,
  110. uint32_t queue_id);
  111. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  112. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  113. unsigned int utimeout);
  114. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  115. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  116. unsigned int watch_point_id,
  117. uint32_t cntl_val,
  118. uint32_t addr_hi,
  119. uint32_t addr_lo);
  120. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  121. uint32_t gfx_index_val,
  122. uint32_t sq_cmd);
  123. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  124. unsigned int watch_point_id,
  125. unsigned int reg_offset);
  126. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  127. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  128. uint8_t vmid);
  129. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  130. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  131. static void set_scratch_backing_va(struct kgd_dev *kgd,
  132. uint64_t va, uint32_t vmid);
  133. /* Because of REG_GET_FIELD() being used, we put this function in the
  134. * asic specific file.
  135. */
  136. static int get_tile_config(struct kgd_dev *kgd,
  137. struct tile_config *config)
  138. {
  139. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  140. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  141. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  142. MC_ARB_RAMCFG, NOOFBANK);
  143. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  144. MC_ARB_RAMCFG, NOOFRANKS);
  145. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  146. config->num_tile_configs =
  147. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  148. config->macro_tile_config_ptr =
  149. adev->gfx.config.macrotile_mode_array;
  150. config->num_macro_tile_configs =
  151. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  152. return 0;
  153. }
  154. static const struct kfd2kgd_calls kfd2kgd = {
  155. .init_gtt_mem_allocation = alloc_gtt_mem,
  156. .free_gtt_mem = free_gtt_mem,
  157. .get_local_mem_info = get_local_mem_info,
  158. .get_gpu_clock_counter = get_gpu_clock_counter,
  159. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  160. .alloc_pasid = amdgpu_pasid_alloc,
  161. .free_pasid = amdgpu_pasid_free,
  162. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  163. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  164. .init_pipeline = kgd_init_pipeline,
  165. .init_interrupts = kgd_init_interrupts,
  166. .hqd_load = kgd_hqd_load,
  167. .hqd_sdma_load = kgd_hqd_sdma_load,
  168. .hqd_dump = kgd_hqd_dump,
  169. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  170. .hqd_is_occupied = kgd_hqd_is_occupied,
  171. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  172. .hqd_destroy = kgd_hqd_destroy,
  173. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  174. .address_watch_disable = kgd_address_watch_disable,
  175. .address_watch_execute = kgd_address_watch_execute,
  176. .wave_control_execute = kgd_wave_control_execute,
  177. .address_watch_get_offset = kgd_address_watch_get_offset,
  178. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  179. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  180. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  181. .get_fw_version = get_fw_version,
  182. .set_scratch_backing_va = set_scratch_backing_va,
  183. .get_tile_config = get_tile_config,
  184. .get_cu_info = get_cu_info,
  185. .get_vram_usage = amdgpu_amdkfd_get_vram_usage
  186. };
  187. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  188. {
  189. return (struct kfd2kgd_calls *)&kfd2kgd;
  190. }
  191. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  192. {
  193. return (struct amdgpu_device *)kgd;
  194. }
  195. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  196. uint32_t queue, uint32_t vmid)
  197. {
  198. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  199. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  200. mutex_lock(&adev->srbm_mutex);
  201. WREG32(mmSRBM_GFX_CNTL, value);
  202. }
  203. static void unlock_srbm(struct kgd_dev *kgd)
  204. {
  205. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  206. WREG32(mmSRBM_GFX_CNTL, 0);
  207. mutex_unlock(&adev->srbm_mutex);
  208. }
  209. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  210. uint32_t queue_id)
  211. {
  212. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  213. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  214. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  215. lock_srbm(kgd, mec, pipe, queue_id, 0);
  216. }
  217. static void release_queue(struct kgd_dev *kgd)
  218. {
  219. unlock_srbm(kgd);
  220. }
  221. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  222. uint32_t sh_mem_config,
  223. uint32_t sh_mem_ape1_base,
  224. uint32_t sh_mem_ape1_limit,
  225. uint32_t sh_mem_bases)
  226. {
  227. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  228. lock_srbm(kgd, 0, 0, 0, vmid);
  229. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  230. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  231. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  232. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  233. unlock_srbm(kgd);
  234. }
  235. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  236. unsigned int vmid)
  237. {
  238. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  239. /*
  240. * We have to assume that there is no outstanding mapping.
  241. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  242. * a mapping is in progress or because a mapping finished and the
  243. * SW cleared it. So the protocol is to always wait & clear.
  244. */
  245. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  246. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  247. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  248. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  249. cpu_relax();
  250. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  251. /* Mapping vmid to pasid also for IH block */
  252. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  253. return 0;
  254. }
  255. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  256. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  257. {
  258. /* amdgpu owns the per-pipe state */
  259. return 0;
  260. }
  261. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  262. {
  263. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  264. uint32_t mec;
  265. uint32_t pipe;
  266. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  267. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  268. lock_srbm(kgd, mec, pipe, 0, 0);
  269. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  270. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  271. unlock_srbm(kgd);
  272. return 0;
  273. }
  274. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  275. {
  276. uint32_t retval;
  277. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  278. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  279. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  280. return retval;
  281. }
  282. static inline struct cik_mqd *get_mqd(void *mqd)
  283. {
  284. return (struct cik_mqd *)mqd;
  285. }
  286. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  287. {
  288. return (struct cik_sdma_rlc_registers *)mqd;
  289. }
  290. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  291. uint32_t queue_id, uint32_t __user *wptr,
  292. uint32_t wptr_shift, uint32_t wptr_mask,
  293. struct mm_struct *mm)
  294. {
  295. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  296. struct cik_mqd *m;
  297. uint32_t *mqd_hqd;
  298. uint32_t reg, wptr_val, data;
  299. bool valid_wptr = false;
  300. m = get_mqd(mqd);
  301. acquire_queue(kgd, pipe_id, queue_id);
  302. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  303. mqd_hqd = &m->cp_mqd_base_addr_lo;
  304. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  305. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  306. /* Copy userspace write pointer value to register.
  307. * Activate doorbell logic to monitor subsequent changes.
  308. */
  309. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  310. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  311. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  312. /* read_user_ptr may take the mm->mmap_sem.
  313. * release srbm_mutex to avoid circular dependency between
  314. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  315. */
  316. release_queue(kgd);
  317. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  318. acquire_queue(kgd, pipe_id, queue_id);
  319. if (valid_wptr)
  320. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  321. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  322. WREG32(mmCP_HQD_ACTIVE, data);
  323. release_queue(kgd);
  324. return 0;
  325. }
  326. static int kgd_hqd_dump(struct kgd_dev *kgd,
  327. uint32_t pipe_id, uint32_t queue_id,
  328. uint32_t (**dump)[2], uint32_t *n_regs)
  329. {
  330. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  331. uint32_t i = 0, reg;
  332. #define HQD_N_REGS (35+4)
  333. #define DUMP_REG(addr) do { \
  334. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  335. break; \
  336. (*dump)[i][0] = (addr) << 2; \
  337. (*dump)[i++][1] = RREG32(addr); \
  338. } while (0)
  339. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  340. if (*dump == NULL)
  341. return -ENOMEM;
  342. acquire_queue(kgd, pipe_id, queue_id);
  343. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  344. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  345. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  346. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  347. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  348. DUMP_REG(reg);
  349. release_queue(kgd);
  350. WARN_ON_ONCE(i != HQD_N_REGS);
  351. *n_regs = i;
  352. return 0;
  353. }
  354. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  355. uint32_t __user *wptr, struct mm_struct *mm)
  356. {
  357. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  358. struct cik_sdma_rlc_registers *m;
  359. unsigned long end_jiffies;
  360. uint32_t sdma_base_addr;
  361. uint32_t data;
  362. m = get_sdma_mqd(mqd);
  363. sdma_base_addr = get_sdma_base_addr(m);
  364. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  365. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  366. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  367. while (true) {
  368. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  369. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  370. break;
  371. if (time_after(jiffies, end_jiffies))
  372. return -ETIME;
  373. usleep_range(500, 1000);
  374. }
  375. if (m->sdma_engine_id) {
  376. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  377. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  378. RESUME_CTX, 0);
  379. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  380. } else {
  381. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  382. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  383. RESUME_CTX, 0);
  384. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  385. }
  386. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  387. ENABLE, 1);
  388. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  389. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  390. if (read_user_wptr(mm, wptr, data))
  391. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  392. else
  393. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  394. m->sdma_rlc_rb_rptr);
  395. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  396. m->sdma_rlc_virtual_addr);
  397. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  398. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  399. m->sdma_rlc_rb_base_hi);
  400. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  401. m->sdma_rlc_rb_rptr_addr_lo);
  402. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  403. m->sdma_rlc_rb_rptr_addr_hi);
  404. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  405. RB_ENABLE, 1);
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  407. return 0;
  408. }
  409. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  410. uint32_t engine_id, uint32_t queue_id,
  411. uint32_t (**dump)[2], uint32_t *n_regs)
  412. {
  413. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  414. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  415. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  416. uint32_t i = 0, reg;
  417. #undef HQD_N_REGS
  418. #define HQD_N_REGS (19+4)
  419. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  420. if (*dump == NULL)
  421. return -ENOMEM;
  422. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  423. DUMP_REG(sdma_offset + reg);
  424. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  425. reg++)
  426. DUMP_REG(sdma_offset + reg);
  427. WARN_ON_ONCE(i != HQD_N_REGS);
  428. *n_regs = i;
  429. return 0;
  430. }
  431. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  432. uint32_t pipe_id, uint32_t queue_id)
  433. {
  434. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  435. uint32_t act;
  436. bool retval = false;
  437. uint32_t low, high;
  438. acquire_queue(kgd, pipe_id, queue_id);
  439. act = RREG32(mmCP_HQD_ACTIVE);
  440. if (act) {
  441. low = lower_32_bits(queue_address >> 8);
  442. high = upper_32_bits(queue_address >> 8);
  443. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  444. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  445. retval = true;
  446. }
  447. release_queue(kgd);
  448. return retval;
  449. }
  450. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  451. {
  452. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  453. struct cik_sdma_rlc_registers *m;
  454. uint32_t sdma_base_addr;
  455. uint32_t sdma_rlc_rb_cntl;
  456. m = get_sdma_mqd(mqd);
  457. sdma_base_addr = get_sdma_base_addr(m);
  458. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  459. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  460. return true;
  461. return false;
  462. }
  463. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  464. enum kfd_preempt_type reset_type,
  465. unsigned int utimeout, uint32_t pipe_id,
  466. uint32_t queue_id)
  467. {
  468. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  469. uint32_t temp;
  470. enum hqd_dequeue_request_type type;
  471. unsigned long flags, end_jiffies;
  472. int retry;
  473. acquire_queue(kgd, pipe_id, queue_id);
  474. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  475. switch (reset_type) {
  476. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  477. type = DRAIN_PIPE;
  478. break;
  479. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  480. type = RESET_WAVES;
  481. break;
  482. default:
  483. type = DRAIN_PIPE;
  484. break;
  485. }
  486. /* Workaround: If IQ timer is active and the wait time is close to or
  487. * equal to 0, dequeueing is not safe. Wait until either the wait time
  488. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  489. * cleared before continuing. Also, ensure wait times are set to at
  490. * least 0x3.
  491. */
  492. local_irq_save(flags);
  493. preempt_disable();
  494. retry = 5000; /* wait for 500 usecs at maximum */
  495. while (true) {
  496. temp = RREG32(mmCP_HQD_IQ_TIMER);
  497. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  498. pr_debug("HW is processing IQ\n");
  499. goto loop;
  500. }
  501. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  502. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  503. == 3) /* SEM-rearm is safe */
  504. break;
  505. /* Wait time 3 is safe for CP, but our MMIO read/write
  506. * time is close to 1 microsecond, so check for 10 to
  507. * leave more buffer room
  508. */
  509. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  510. >= 10)
  511. break;
  512. pr_debug("IQ timer is active\n");
  513. } else
  514. break;
  515. loop:
  516. if (!retry) {
  517. pr_err("CP HQD IQ timer status time out\n");
  518. break;
  519. }
  520. ndelay(100);
  521. --retry;
  522. }
  523. retry = 1000;
  524. while (true) {
  525. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  526. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  527. break;
  528. pr_debug("Dequeue request is pending\n");
  529. if (!retry) {
  530. pr_err("CP HQD dequeue request time out\n");
  531. break;
  532. }
  533. ndelay(100);
  534. --retry;
  535. }
  536. local_irq_restore(flags);
  537. preempt_enable();
  538. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  539. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  540. while (true) {
  541. temp = RREG32(mmCP_HQD_ACTIVE);
  542. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  543. break;
  544. if (time_after(jiffies, end_jiffies)) {
  545. pr_err("cp queue preemption time out\n");
  546. release_queue(kgd);
  547. return -ETIME;
  548. }
  549. usleep_range(500, 1000);
  550. }
  551. release_queue(kgd);
  552. return 0;
  553. }
  554. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  555. unsigned int utimeout)
  556. {
  557. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  558. struct cik_sdma_rlc_registers *m;
  559. uint32_t sdma_base_addr;
  560. uint32_t temp;
  561. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  562. m = get_sdma_mqd(mqd);
  563. sdma_base_addr = get_sdma_base_addr(m);
  564. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  565. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  566. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  567. while (true) {
  568. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  569. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  570. break;
  571. if (time_after(jiffies, end_jiffies))
  572. return -ETIME;
  573. usleep_range(500, 1000);
  574. }
  575. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  576. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  577. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  578. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  579. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  580. return 0;
  581. }
  582. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  583. {
  584. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  585. union TCP_WATCH_CNTL_BITS cntl;
  586. unsigned int i;
  587. cntl.u32All = 0;
  588. cntl.bitfields.valid = 0;
  589. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  590. cntl.bitfields.atc = 1;
  591. /* Turning off this address until we set all the registers */
  592. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  593. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  594. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  595. return 0;
  596. }
  597. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  598. unsigned int watch_point_id,
  599. uint32_t cntl_val,
  600. uint32_t addr_hi,
  601. uint32_t addr_lo)
  602. {
  603. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  604. union TCP_WATCH_CNTL_BITS cntl;
  605. cntl.u32All = cntl_val;
  606. /* Turning off this watch point until we set all the registers */
  607. cntl.bitfields.valid = 0;
  608. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  609. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  610. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  611. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  612. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  613. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  614. /* Enable the watch point */
  615. cntl.bitfields.valid = 1;
  616. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  617. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  618. return 0;
  619. }
  620. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  621. uint32_t gfx_index_val,
  622. uint32_t sq_cmd)
  623. {
  624. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  625. uint32_t data;
  626. mutex_lock(&adev->grbm_idx_mutex);
  627. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  628. WREG32(mmSQ_CMD, sq_cmd);
  629. /* Restore the GRBM_GFX_INDEX register */
  630. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  631. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  632. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  633. WREG32(mmGRBM_GFX_INDEX, data);
  634. mutex_unlock(&adev->grbm_idx_mutex);
  635. return 0;
  636. }
  637. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  638. unsigned int watch_point_id,
  639. unsigned int reg_offset)
  640. {
  641. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  642. }
  643. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  644. uint8_t vmid)
  645. {
  646. uint32_t reg;
  647. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  648. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  649. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  650. }
  651. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  652. uint8_t vmid)
  653. {
  654. uint32_t reg;
  655. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  656. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  657. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  658. }
  659. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  660. {
  661. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  662. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  663. }
  664. static void set_scratch_backing_va(struct kgd_dev *kgd,
  665. uint64_t va, uint32_t vmid)
  666. {
  667. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  668. lock_srbm(kgd, 0, 0, 0, vmid);
  669. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  670. unlock_srbm(kgd);
  671. }
  672. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  673. {
  674. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  675. const union amdgpu_firmware_header *hdr;
  676. BUG_ON(kgd == NULL);
  677. switch (type) {
  678. case KGD_ENGINE_PFP:
  679. hdr = (const union amdgpu_firmware_header *)
  680. adev->gfx.pfp_fw->data;
  681. break;
  682. case KGD_ENGINE_ME:
  683. hdr = (const union amdgpu_firmware_header *)
  684. adev->gfx.me_fw->data;
  685. break;
  686. case KGD_ENGINE_CE:
  687. hdr = (const union amdgpu_firmware_header *)
  688. adev->gfx.ce_fw->data;
  689. break;
  690. case KGD_ENGINE_MEC1:
  691. hdr = (const union amdgpu_firmware_header *)
  692. adev->gfx.mec_fw->data;
  693. break;
  694. case KGD_ENGINE_MEC2:
  695. hdr = (const union amdgpu_firmware_header *)
  696. adev->gfx.mec2_fw->data;
  697. break;
  698. case KGD_ENGINE_RLC:
  699. hdr = (const union amdgpu_firmware_header *)
  700. adev->gfx.rlc_fw->data;
  701. break;
  702. case KGD_ENGINE_SDMA1:
  703. hdr = (const union amdgpu_firmware_header *)
  704. adev->sdma.instance[0].fw->data;
  705. break;
  706. case KGD_ENGINE_SDMA2:
  707. hdr = (const union amdgpu_firmware_header *)
  708. adev->sdma.instance[1].fw->data;
  709. break;
  710. default:
  711. return 0;
  712. }
  713. if (hdr == NULL)
  714. return 0;
  715. /* Only 12 bit in use*/
  716. return hdr->common.ucode_version;
  717. }