process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3. #include <linux/errno.h>
  4. #include <linux/kernel.h>
  5. #include <linux/mm.h>
  6. #include <linux/smp.h>
  7. #include <linux/prctl.h>
  8. #include <linux/slab.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/idle.h>
  11. #include <linux/sched/debug.h>
  12. #include <linux/sched/task.h>
  13. #include <linux/sched/task_stack.h>
  14. #include <linux/init.h>
  15. #include <linux/export.h>
  16. #include <linux/pm.h>
  17. #include <linux/tick.h>
  18. #include <linux/random.h>
  19. #include <linux/user-return-notifier.h>
  20. #include <linux/dmi.h>
  21. #include <linux/utsname.h>
  22. #include <linux/stackprotector.h>
  23. #include <linux/cpuidle.h>
  24. #include <trace/events/power.h>
  25. #include <linux/hw_breakpoint.h>
  26. #include <asm/cpu.h>
  27. #include <asm/apic.h>
  28. #include <asm/syscalls.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/mwait.h>
  31. #include <asm/fpu/internal.h>
  32. #include <asm/debugreg.h>
  33. #include <asm/nmi.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/mce.h>
  36. #include <asm/vm86.h>
  37. #include <asm/switch_to.h>
  38. #include <asm/desc.h>
  39. #include <asm/prctl.h>
  40. #include <asm/spec-ctrl.h>
  41. #include "process.h"
  42. /*
  43. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  44. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  45. * so they are allowed to end up in the .data..cacheline_aligned
  46. * section. Since TSS's are completely CPU-local, we want them
  47. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  48. */
  49. __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  50. .x86_tss = {
  51. /*
  52. * .sp0 is only used when entering ring 0 from a lower
  53. * privilege level. Since the init task never runs anything
  54. * but ring 0 code, there is no need for a valid value here.
  55. * Poison it.
  56. */
  57. .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  58. /*
  59. * .sp1 is cpu_current_top_of_stack. The init task never
  60. * runs user code, but cpu_current_top_of_stack should still
  61. * be well defined before the first context switch.
  62. */
  63. .sp1 = TOP_OF_INIT_STACK,
  64. #ifdef CONFIG_X86_32
  65. .ss0 = __KERNEL_DS,
  66. .ss1 = __KERNEL_CS,
  67. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  68. #endif
  69. },
  70. #ifdef CONFIG_X86_32
  71. /*
  72. * Note that the .io_bitmap member must be extra-big. This is because
  73. * the CPU will access an additional byte beyond the end of the IO
  74. * permission bitmap. The extra byte must be all 1 bits, and must
  75. * be within the limit.
  76. */
  77. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  78. #endif
  79. };
  80. EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  81. DEFINE_PER_CPU(bool, __tss_limit_invalid);
  82. EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  83. /*
  84. * this gets called so that we can store lazy state into memory and copy the
  85. * current task into the new thread.
  86. */
  87. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  88. {
  89. memcpy(dst, src, arch_task_struct_size);
  90. #ifdef CONFIG_VM86
  91. dst->thread.vm86 = NULL;
  92. #endif
  93. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  94. }
  95. /*
  96. * Free current thread data structures etc..
  97. */
  98. void exit_thread(struct task_struct *tsk)
  99. {
  100. struct thread_struct *t = &tsk->thread;
  101. unsigned long *bp = t->io_bitmap_ptr;
  102. struct fpu *fpu = &t->fpu;
  103. if (bp) {
  104. struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
  105. t->io_bitmap_ptr = NULL;
  106. clear_thread_flag(TIF_IO_BITMAP);
  107. /*
  108. * Careful, clear this in the TSS too:
  109. */
  110. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  111. t->io_bitmap_max = 0;
  112. put_cpu();
  113. kfree(bp);
  114. }
  115. free_vm86(t);
  116. fpu__drop(fpu);
  117. }
  118. void flush_thread(void)
  119. {
  120. struct task_struct *tsk = current;
  121. flush_ptrace_hw_breakpoint(tsk);
  122. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  123. fpu__clear(&tsk->thread.fpu);
  124. }
  125. void disable_TSC(void)
  126. {
  127. preempt_disable();
  128. if (!test_and_set_thread_flag(TIF_NOTSC))
  129. /*
  130. * Must flip the CPU state synchronously with
  131. * TIF_NOTSC in the current running context.
  132. */
  133. cr4_set_bits(X86_CR4_TSD);
  134. preempt_enable();
  135. }
  136. static void enable_TSC(void)
  137. {
  138. preempt_disable();
  139. if (test_and_clear_thread_flag(TIF_NOTSC))
  140. /*
  141. * Must flip the CPU state synchronously with
  142. * TIF_NOTSC in the current running context.
  143. */
  144. cr4_clear_bits(X86_CR4_TSD);
  145. preempt_enable();
  146. }
  147. int get_tsc_mode(unsigned long adr)
  148. {
  149. unsigned int val;
  150. if (test_thread_flag(TIF_NOTSC))
  151. val = PR_TSC_SIGSEGV;
  152. else
  153. val = PR_TSC_ENABLE;
  154. return put_user(val, (unsigned int __user *)adr);
  155. }
  156. int set_tsc_mode(unsigned int val)
  157. {
  158. if (val == PR_TSC_SIGSEGV)
  159. disable_TSC();
  160. else if (val == PR_TSC_ENABLE)
  161. enable_TSC();
  162. else
  163. return -EINVAL;
  164. return 0;
  165. }
  166. DEFINE_PER_CPU(u64, msr_misc_features_shadow);
  167. static void set_cpuid_faulting(bool on)
  168. {
  169. u64 msrval;
  170. msrval = this_cpu_read(msr_misc_features_shadow);
  171. msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
  172. msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
  173. this_cpu_write(msr_misc_features_shadow, msrval);
  174. wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
  175. }
  176. static void disable_cpuid(void)
  177. {
  178. preempt_disable();
  179. if (!test_and_set_thread_flag(TIF_NOCPUID)) {
  180. /*
  181. * Must flip the CPU state synchronously with
  182. * TIF_NOCPUID in the current running context.
  183. */
  184. set_cpuid_faulting(true);
  185. }
  186. preempt_enable();
  187. }
  188. static void enable_cpuid(void)
  189. {
  190. preempt_disable();
  191. if (test_and_clear_thread_flag(TIF_NOCPUID)) {
  192. /*
  193. * Must flip the CPU state synchronously with
  194. * TIF_NOCPUID in the current running context.
  195. */
  196. set_cpuid_faulting(false);
  197. }
  198. preempt_enable();
  199. }
  200. static int get_cpuid_mode(void)
  201. {
  202. return !test_thread_flag(TIF_NOCPUID);
  203. }
  204. static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
  205. {
  206. if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
  207. return -ENODEV;
  208. if (cpuid_enabled)
  209. enable_cpuid();
  210. else
  211. disable_cpuid();
  212. return 0;
  213. }
  214. /*
  215. * Called immediately after a successful exec.
  216. */
  217. void arch_setup_new_exec(void)
  218. {
  219. /* If cpuid was previously disabled for this task, re-enable it. */
  220. if (test_thread_flag(TIF_NOCPUID))
  221. enable_cpuid();
  222. }
  223. static inline void switch_to_bitmap(struct thread_struct *prev,
  224. struct thread_struct *next,
  225. unsigned long tifp, unsigned long tifn)
  226. {
  227. struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
  228. if (tifn & _TIF_IO_BITMAP) {
  229. /*
  230. * Copy the relevant range of the IO bitmap.
  231. * Normally this is 128 bytes or less:
  232. */
  233. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  234. max(prev->io_bitmap_max, next->io_bitmap_max));
  235. /*
  236. * Make sure that the TSS limit is correct for the CPU
  237. * to notice the IO bitmap.
  238. */
  239. refresh_tss_limit();
  240. } else if (tifp & _TIF_IO_BITMAP) {
  241. /*
  242. * Clear any possible leftover bits:
  243. */
  244. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  245. }
  246. }
  247. #ifdef CONFIG_SMP
  248. struct ssb_state {
  249. struct ssb_state *shared_state;
  250. raw_spinlock_t lock;
  251. unsigned int disable_state;
  252. unsigned long local_state;
  253. };
  254. #define LSTATE_SSB 0
  255. static DEFINE_PER_CPU(struct ssb_state, ssb_state);
  256. void speculative_store_bypass_ht_init(void)
  257. {
  258. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  259. unsigned int this_cpu = smp_processor_id();
  260. unsigned int cpu;
  261. st->local_state = 0;
  262. /*
  263. * Shared state setup happens once on the first bringup
  264. * of the CPU. It's not destroyed on CPU hotunplug.
  265. */
  266. if (st->shared_state)
  267. return;
  268. raw_spin_lock_init(&st->lock);
  269. /*
  270. * Go over HT siblings and check whether one of them has set up the
  271. * shared state pointer already.
  272. */
  273. for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
  274. if (cpu == this_cpu)
  275. continue;
  276. if (!per_cpu(ssb_state, cpu).shared_state)
  277. continue;
  278. /* Link it to the state of the sibling: */
  279. st->shared_state = per_cpu(ssb_state, cpu).shared_state;
  280. return;
  281. }
  282. /*
  283. * First HT sibling to come up on the core. Link shared state of
  284. * the first HT sibling to itself. The siblings on the same core
  285. * which come up later will see the shared state pointer and link
  286. * themself to the state of this CPU.
  287. */
  288. st->shared_state = st;
  289. }
  290. /*
  291. * Logic is: First HT sibling enables SSBD for both siblings in the core
  292. * and last sibling to disable it, disables it for the whole core. This how
  293. * MSR_SPEC_CTRL works in "hardware":
  294. *
  295. * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
  296. */
  297. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  298. {
  299. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  300. u64 msr = x86_amd_ls_cfg_base;
  301. if (!static_cpu_has(X86_FEATURE_ZEN)) {
  302. msr |= ssbd_tif_to_amd_ls_cfg(tifn);
  303. wrmsrl(MSR_AMD64_LS_CFG, msr);
  304. return;
  305. }
  306. if (tifn & _TIF_SSBD) {
  307. /*
  308. * Since this can race with prctl(), block reentry on the
  309. * same CPU.
  310. */
  311. if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
  312. return;
  313. msr |= x86_amd_ls_cfg_ssbd_mask;
  314. raw_spin_lock(&st->shared_state->lock);
  315. /* First sibling enables SSBD: */
  316. if (!st->shared_state->disable_state)
  317. wrmsrl(MSR_AMD64_LS_CFG, msr);
  318. st->shared_state->disable_state++;
  319. raw_spin_unlock(&st->shared_state->lock);
  320. } else {
  321. if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
  322. return;
  323. raw_spin_lock(&st->shared_state->lock);
  324. st->shared_state->disable_state--;
  325. if (!st->shared_state->disable_state)
  326. wrmsrl(MSR_AMD64_LS_CFG, msr);
  327. raw_spin_unlock(&st->shared_state->lock);
  328. }
  329. }
  330. #else
  331. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  332. {
  333. u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
  334. wrmsrl(MSR_AMD64_LS_CFG, msr);
  335. }
  336. #endif
  337. static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
  338. {
  339. /*
  340. * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
  341. * so ssbd_tif_to_spec_ctrl() just works.
  342. */
  343. wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
  344. }
  345. /*
  346. * Update the MSRs managing speculation control, during context switch.
  347. *
  348. * tifp: Previous task's thread flags
  349. * tifn: Next task's thread flags
  350. */
  351. static __always_inline void __speculation_ctrl_update(unsigned long tifp,
  352. unsigned long tifn)
  353. {
  354. unsigned long tif_diff = tifp ^ tifn;
  355. u64 msr = x86_spec_ctrl_base;
  356. bool updmsr = false;
  357. /*
  358. * If TIF_SSBD is different, select the proper mitigation
  359. * method. Note that if SSBD mitigation is disabled or permanentely
  360. * enabled this branch can't be taken because nothing can set
  361. * TIF_SSBD.
  362. */
  363. if (tif_diff & _TIF_SSBD) {
  364. if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
  365. amd_set_ssb_virt_state(tifn);
  366. } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
  367. amd_set_core_ssb_state(tifn);
  368. } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
  369. static_cpu_has(X86_FEATURE_AMD_SSBD)) {
  370. msr |= ssbd_tif_to_spec_ctrl(tifn);
  371. updmsr = true;
  372. }
  373. }
  374. /*
  375. * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
  376. * otherwise avoid the MSR write.
  377. */
  378. if (IS_ENABLED(CONFIG_SMP) &&
  379. static_branch_unlikely(&switch_to_cond_stibp)) {
  380. updmsr |= !!(tif_diff & _TIF_SPEC_IB);
  381. msr |= stibp_tif_to_spec_ctrl(tifn);
  382. }
  383. if (updmsr)
  384. wrmsrl(MSR_IA32_SPEC_CTRL, msr);
  385. }
  386. static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
  387. {
  388. if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
  389. if (task_spec_ssb_disable(tsk))
  390. set_tsk_thread_flag(tsk, TIF_SSBD);
  391. else
  392. clear_tsk_thread_flag(tsk, TIF_SSBD);
  393. if (task_spec_ib_disable(tsk))
  394. set_tsk_thread_flag(tsk, TIF_SPEC_IB);
  395. else
  396. clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
  397. }
  398. /* Return the updated threadinfo flags*/
  399. return task_thread_info(tsk)->flags;
  400. }
  401. void speculation_ctrl_update(unsigned long tif)
  402. {
  403. /* Forced update. Make sure all relevant TIF flags are different */
  404. preempt_disable();
  405. __speculation_ctrl_update(~tif, tif);
  406. preempt_enable();
  407. }
  408. /* Called from seccomp/prctl update */
  409. void speculation_ctrl_update_current(void)
  410. {
  411. preempt_disable();
  412. speculation_ctrl_update(speculation_ctrl_update_tif(current));
  413. preempt_enable();
  414. }
  415. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
  416. {
  417. struct thread_struct *prev, *next;
  418. unsigned long tifp, tifn;
  419. prev = &prev_p->thread;
  420. next = &next_p->thread;
  421. tifn = READ_ONCE(task_thread_info(next_p)->flags);
  422. tifp = READ_ONCE(task_thread_info(prev_p)->flags);
  423. switch_to_bitmap(prev, next, tifp, tifn);
  424. propagate_user_return_notify(prev_p, next_p);
  425. if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
  426. arch_has_block_step()) {
  427. unsigned long debugctl, msk;
  428. rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  429. debugctl &= ~DEBUGCTLMSR_BTF;
  430. msk = tifn & _TIF_BLOCKSTEP;
  431. debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
  432. wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  433. }
  434. if ((tifp ^ tifn) & _TIF_NOTSC)
  435. cr4_toggle_bits_irqsoff(X86_CR4_TSD);
  436. if ((tifp ^ tifn) & _TIF_NOCPUID)
  437. set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
  438. if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
  439. __speculation_ctrl_update(tifp, tifn);
  440. } else {
  441. speculation_ctrl_update_tif(prev_p);
  442. tifn = speculation_ctrl_update_tif(next_p);
  443. /* Enforce MSR update to ensure consistent state */
  444. __speculation_ctrl_update(~tifn, tifn);
  445. }
  446. }
  447. /*
  448. * Idle related variables and functions
  449. */
  450. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  451. EXPORT_SYMBOL(boot_option_idle_override);
  452. static void (*x86_idle)(void);
  453. #ifndef CONFIG_SMP
  454. static inline void play_dead(void)
  455. {
  456. BUG();
  457. }
  458. #endif
  459. void arch_cpu_idle_enter(void)
  460. {
  461. tsc_verify_tsc_adjust(false);
  462. local_touch_nmi();
  463. }
  464. void arch_cpu_idle_dead(void)
  465. {
  466. play_dead();
  467. }
  468. /*
  469. * Called from the generic idle code.
  470. */
  471. void arch_cpu_idle(void)
  472. {
  473. x86_idle();
  474. }
  475. /*
  476. * We use this if we don't have any better idle routine..
  477. */
  478. void __cpuidle default_idle(void)
  479. {
  480. trace_cpu_idle_rcuidle(1, smp_processor_id());
  481. safe_halt();
  482. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  483. }
  484. #ifdef CONFIG_APM_MODULE
  485. EXPORT_SYMBOL(default_idle);
  486. #endif
  487. #ifdef CONFIG_XEN
  488. bool xen_set_default_idle(void)
  489. {
  490. bool ret = !!x86_idle;
  491. x86_idle = default_idle;
  492. return ret;
  493. }
  494. #endif
  495. void stop_this_cpu(void *dummy)
  496. {
  497. local_irq_disable();
  498. /*
  499. * Remove this CPU:
  500. */
  501. set_cpu_online(smp_processor_id(), false);
  502. disable_local_APIC();
  503. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  504. /*
  505. * Use wbinvd on processors that support SME. This provides support
  506. * for performing a successful kexec when going from SME inactive
  507. * to SME active (or vice-versa). The cache must be cleared so that
  508. * if there are entries with the same physical address, both with and
  509. * without the encryption bit, they don't race each other when flushed
  510. * and potentially end up with the wrong entry being committed to
  511. * memory.
  512. */
  513. if (boot_cpu_has(X86_FEATURE_SME))
  514. native_wbinvd();
  515. for (;;) {
  516. /*
  517. * Use native_halt() so that memory contents don't change
  518. * (stack usage and variables) after possibly issuing the
  519. * native_wbinvd() above.
  520. */
  521. native_halt();
  522. }
  523. }
  524. /*
  525. * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
  526. * states (local apic timer and TSC stop).
  527. */
  528. static void amd_e400_idle(void)
  529. {
  530. /*
  531. * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
  532. * gets set after static_cpu_has() places have been converted via
  533. * alternatives.
  534. */
  535. if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  536. default_idle();
  537. return;
  538. }
  539. tick_broadcast_enter();
  540. default_idle();
  541. /*
  542. * The switch back from broadcast mode needs to be called with
  543. * interrupts disabled.
  544. */
  545. local_irq_disable();
  546. tick_broadcast_exit();
  547. local_irq_enable();
  548. }
  549. /*
  550. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  551. * We can't rely on cpuidle installing MWAIT, because it will not load
  552. * on systems that support only C1 -- so the boot default must be MWAIT.
  553. *
  554. * Some AMD machines are the opposite, they depend on using HALT.
  555. *
  556. * So for default C1, which is used during boot until cpuidle loads,
  557. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  558. */
  559. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  560. {
  561. if (c->x86_vendor != X86_VENDOR_INTEL)
  562. return 0;
  563. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  564. return 0;
  565. return 1;
  566. }
  567. /*
  568. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  569. * with interrupts enabled and no flags, which is backwards compatible with the
  570. * original MWAIT implementation.
  571. */
  572. static __cpuidle void mwait_idle(void)
  573. {
  574. if (!current_set_polling_and_test()) {
  575. trace_cpu_idle_rcuidle(1, smp_processor_id());
  576. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  577. mb(); /* quirk */
  578. clflush((void *)&current_thread_info()->flags);
  579. mb(); /* quirk */
  580. }
  581. __monitor((void *)&current_thread_info()->flags, 0, 0);
  582. if (!need_resched())
  583. __sti_mwait(0, 0);
  584. else
  585. local_irq_enable();
  586. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  587. } else {
  588. local_irq_enable();
  589. }
  590. __current_clr_polling();
  591. }
  592. void select_idle_routine(const struct cpuinfo_x86 *c)
  593. {
  594. #ifdef CONFIG_SMP
  595. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  596. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  597. #endif
  598. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  599. return;
  600. if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
  601. pr_info("using AMD E400 aware idle routine\n");
  602. x86_idle = amd_e400_idle;
  603. } else if (prefer_mwait_c1_over_halt(c)) {
  604. pr_info("using mwait in idle threads\n");
  605. x86_idle = mwait_idle;
  606. } else
  607. x86_idle = default_idle;
  608. }
  609. void amd_e400_c1e_apic_setup(void)
  610. {
  611. if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
  612. pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
  613. local_irq_disable();
  614. tick_broadcast_force();
  615. local_irq_enable();
  616. }
  617. }
  618. void __init arch_post_acpi_subsys_init(void)
  619. {
  620. u32 lo, hi;
  621. if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
  622. return;
  623. /*
  624. * AMD E400 detection needs to happen after ACPI has been enabled. If
  625. * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
  626. * MSR_K8_INT_PENDING_MSG.
  627. */
  628. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  629. if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
  630. return;
  631. boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
  632. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  633. mark_tsc_unstable("TSC halt in AMD C1E");
  634. pr_info("System has AMD C1E enabled\n");
  635. }
  636. static int __init idle_setup(char *str)
  637. {
  638. if (!str)
  639. return -EINVAL;
  640. if (!strcmp(str, "poll")) {
  641. pr_info("using polling idle threads\n");
  642. boot_option_idle_override = IDLE_POLL;
  643. cpu_idle_poll_ctrl(true);
  644. } else if (!strcmp(str, "halt")) {
  645. /*
  646. * When the boot option of idle=halt is added, halt is
  647. * forced to be used for CPU idle. In such case CPU C2/C3
  648. * won't be used again.
  649. * To continue to load the CPU idle driver, don't touch
  650. * the boot_option_idle_override.
  651. */
  652. x86_idle = default_idle;
  653. boot_option_idle_override = IDLE_HALT;
  654. } else if (!strcmp(str, "nomwait")) {
  655. /*
  656. * If the boot option of "idle=nomwait" is added,
  657. * it means that mwait will be disabled for CPU C2/C3
  658. * states. In such case it won't touch the variable
  659. * of boot_option_idle_override.
  660. */
  661. boot_option_idle_override = IDLE_NOMWAIT;
  662. } else
  663. return -1;
  664. return 0;
  665. }
  666. early_param("idle", idle_setup);
  667. unsigned long arch_align_stack(unsigned long sp)
  668. {
  669. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  670. sp -= get_random_int() % 8192;
  671. return sp & ~0xf;
  672. }
  673. unsigned long arch_randomize_brk(struct mm_struct *mm)
  674. {
  675. return randomize_page(mm->brk, 0x02000000);
  676. }
  677. /*
  678. * Called from fs/proc with a reference on @p to find the function
  679. * which called into schedule(). This needs to be done carefully
  680. * because the task might wake up and we might look at a stack
  681. * changing under us.
  682. */
  683. unsigned long get_wchan(struct task_struct *p)
  684. {
  685. unsigned long start, bottom, top, sp, fp, ip, ret = 0;
  686. int count = 0;
  687. if (!p || p == current || p->state == TASK_RUNNING)
  688. return 0;
  689. if (!try_get_task_stack(p))
  690. return 0;
  691. start = (unsigned long)task_stack_page(p);
  692. if (!start)
  693. goto out;
  694. /*
  695. * Layout of the stack page:
  696. *
  697. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  698. * PADDING
  699. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  700. * stack
  701. * ----------- bottom = start
  702. *
  703. * The tasks stack pointer points at the location where the
  704. * framepointer is stored. The data on the stack is:
  705. * ... IP FP ... IP FP
  706. *
  707. * We need to read FP and IP, so we need to adjust the upper
  708. * bound by another unsigned long.
  709. */
  710. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  711. top -= 2 * sizeof(unsigned long);
  712. bottom = start;
  713. sp = READ_ONCE(p->thread.sp);
  714. if (sp < bottom || sp > top)
  715. goto out;
  716. fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
  717. do {
  718. if (fp < bottom || fp > top)
  719. goto out;
  720. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  721. if (!in_sched_functions(ip)) {
  722. ret = ip;
  723. goto out;
  724. }
  725. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  726. } while (count++ < 16 && p->state != TASK_RUNNING);
  727. out:
  728. put_task_stack(p);
  729. return ret;
  730. }
  731. long do_arch_prctl_common(struct task_struct *task, int option,
  732. unsigned long cpuid_enabled)
  733. {
  734. switch (option) {
  735. case ARCH_GET_CPUID:
  736. return get_cpuid_mode();
  737. case ARCH_SET_CPUID:
  738. return set_cpuid_mode(task, cpuid_enabled);
  739. }
  740. return -EINVAL;
  741. }