smp.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/irqdomain.h>
  37. #include <linux/of.h>
  38. #include <linux/of_irq.h>
  39. #include <linux/atomic.h>
  40. #include <asm/cpu.h>
  41. #include <asm/processor.h>
  42. #include <asm/idle.h>
  43. #include <asm/r4k-timer.h>
  44. #include <asm/mips-cpc.h>
  45. #include <asm/mmu_context.h>
  46. #include <asm/time.h>
  47. #include <asm/setup.h>
  48. #include <asm/maar.h>
  49. cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  50. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  51. EXPORT_SYMBOL(__cpu_number_map);
  52. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  53. EXPORT_SYMBOL(__cpu_logical_map);
  54. /* Number of TCs (or siblings in Intel speak) per CPU core */
  55. int smp_num_siblings = 1;
  56. EXPORT_SYMBOL(smp_num_siblings);
  57. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  58. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  59. EXPORT_SYMBOL(cpu_sibling_map);
  60. /* representing the core map of multi-core chips of each logical CPU */
  61. cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  62. EXPORT_SYMBOL(cpu_core_map);
  63. /*
  64. * A logcal cpu mask containing only one VPE per core to
  65. * reduce the number of IPIs on large MT systems.
  66. */
  67. cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
  68. EXPORT_SYMBOL(cpu_foreign_map);
  69. /* representing cpus for which sibling maps can be computed */
  70. static cpumask_t cpu_sibling_setup_map;
  71. /* representing cpus for which core maps can be computed */
  72. static cpumask_t cpu_core_setup_map;
  73. cpumask_t cpu_coherent_mask;
  74. #ifdef CONFIG_GENERIC_IRQ_IPI
  75. static struct irq_desc *call_desc;
  76. static struct irq_desc *sched_desc;
  77. #endif
  78. static inline void set_cpu_sibling_map(int cpu)
  79. {
  80. int i;
  81. cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  82. if (smp_num_siblings > 1) {
  83. for_each_cpu(i, &cpu_sibling_setup_map) {
  84. if (cpu_data[cpu].package == cpu_data[i].package &&
  85. cpu_data[cpu].core == cpu_data[i].core) {
  86. cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  87. cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  88. }
  89. }
  90. } else
  91. cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  92. }
  93. static inline void set_cpu_core_map(int cpu)
  94. {
  95. int i;
  96. cpumask_set_cpu(cpu, &cpu_core_setup_map);
  97. for_each_cpu(i, &cpu_core_setup_map) {
  98. if (cpu_data[cpu].package == cpu_data[i].package) {
  99. cpumask_set_cpu(i, &cpu_core_map[cpu]);
  100. cpumask_set_cpu(cpu, &cpu_core_map[i]);
  101. }
  102. }
  103. }
  104. /*
  105. * Calculate a new cpu_foreign_map mask whenever a
  106. * new cpu appears or disappears.
  107. */
  108. void calculate_cpu_foreign_map(void)
  109. {
  110. int i, k, core_present;
  111. cpumask_t temp_foreign_map;
  112. /* Re-calculate the mask */
  113. cpumask_clear(&temp_foreign_map);
  114. for_each_online_cpu(i) {
  115. core_present = 0;
  116. for_each_cpu(k, &temp_foreign_map)
  117. if (cpu_data[i].package == cpu_data[k].package &&
  118. cpu_data[i].core == cpu_data[k].core)
  119. core_present = 1;
  120. if (!core_present)
  121. cpumask_set_cpu(i, &temp_foreign_map);
  122. }
  123. for_each_online_cpu(i)
  124. cpumask_andnot(&cpu_foreign_map[i],
  125. &temp_foreign_map, &cpu_sibling_map[i]);
  126. }
  127. struct plat_smp_ops *mp_ops;
  128. EXPORT_SYMBOL(mp_ops);
  129. void register_smp_ops(struct plat_smp_ops *ops)
  130. {
  131. if (mp_ops)
  132. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  133. mp_ops = ops;
  134. }
  135. #ifdef CONFIG_GENERIC_IRQ_IPI
  136. void mips_smp_send_ipi_single(int cpu, unsigned int action)
  137. {
  138. mips_smp_send_ipi_mask(cpumask_of(cpu), action);
  139. }
  140. void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
  141. {
  142. unsigned long flags;
  143. unsigned int core;
  144. int cpu;
  145. local_irq_save(flags);
  146. switch (action) {
  147. case SMP_CALL_FUNCTION:
  148. __ipi_send_mask(call_desc, mask);
  149. break;
  150. case SMP_RESCHEDULE_YOURSELF:
  151. __ipi_send_mask(sched_desc, mask);
  152. break;
  153. default:
  154. BUG();
  155. }
  156. if (mips_cpc_present()) {
  157. for_each_cpu(cpu, mask) {
  158. core = cpu_data[cpu].core;
  159. if (core == current_cpu_data.core)
  160. continue;
  161. while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
  162. mips_cm_lock_other(core, 0);
  163. mips_cpc_lock_other(core);
  164. write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
  165. mips_cpc_unlock_other();
  166. mips_cm_unlock_other();
  167. }
  168. }
  169. }
  170. local_irq_restore(flags);
  171. }
  172. static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
  173. {
  174. scheduler_ipi();
  175. return IRQ_HANDLED;
  176. }
  177. static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
  178. {
  179. generic_smp_call_function_interrupt();
  180. return IRQ_HANDLED;
  181. }
  182. static struct irqaction irq_resched = {
  183. .handler = ipi_resched_interrupt,
  184. .flags = IRQF_PERCPU,
  185. .name = "IPI resched"
  186. };
  187. static struct irqaction irq_call = {
  188. .handler = ipi_call_interrupt,
  189. .flags = IRQF_PERCPU,
  190. .name = "IPI call"
  191. };
  192. static __init void smp_ipi_init_one(unsigned int virq,
  193. struct irqaction *action)
  194. {
  195. int ret;
  196. irq_set_handler(virq, handle_percpu_irq);
  197. ret = setup_irq(virq, action);
  198. BUG_ON(ret);
  199. }
  200. static int __init mips_smp_ipi_init(void)
  201. {
  202. unsigned int call_virq, sched_virq;
  203. struct irq_domain *ipidomain;
  204. struct device_node *node;
  205. node = of_irq_find_parent(of_root);
  206. ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
  207. /*
  208. * Some platforms have half DT setup. So if we found irq node but
  209. * didn't find an ipidomain, try to search for one that is not in the
  210. * DT.
  211. */
  212. if (node && !ipidomain)
  213. ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
  214. /*
  215. * There are systems which only use IPI domains some of the time,
  216. * depending upon configuration we don't know until runtime. An
  217. * example is Malta where we may compile in support for GIC & the
  218. * MT ASE, but run on a system which has multiple VPEs in a single
  219. * core and doesn't include a GIC. Until all IPI implementations
  220. * have been converted to use IPI domains the best we can do here
  221. * is to return & hope some other code sets up the IPIs.
  222. */
  223. if (!ipidomain)
  224. return 0;
  225. call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
  226. BUG_ON(!call_virq);
  227. sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
  228. BUG_ON(!sched_virq);
  229. if (irq_domain_is_ipi_per_cpu(ipidomain)) {
  230. int cpu;
  231. for_each_cpu(cpu, cpu_possible_mask) {
  232. smp_ipi_init_one(call_virq + cpu, &irq_call);
  233. smp_ipi_init_one(sched_virq + cpu, &irq_resched);
  234. }
  235. } else {
  236. smp_ipi_init_one(call_virq, &irq_call);
  237. smp_ipi_init_one(sched_virq, &irq_resched);
  238. }
  239. call_desc = irq_to_desc(call_virq);
  240. sched_desc = irq_to_desc(sched_virq);
  241. return 0;
  242. }
  243. early_initcall(mips_smp_ipi_init);
  244. #endif
  245. /*
  246. * First C code run on the secondary CPUs after being started up by
  247. * the master.
  248. */
  249. asmlinkage void start_secondary(void)
  250. {
  251. unsigned int cpu;
  252. cpu_probe();
  253. per_cpu_trap_init(false);
  254. mips_clockevent_init();
  255. mp_ops->init_secondary();
  256. cpu_report();
  257. maar_init();
  258. /*
  259. * XXX parity protection should be folded in here when it's converted
  260. * to an option instead of something based on .cputype
  261. */
  262. calibrate_delay();
  263. preempt_disable();
  264. cpu = smp_processor_id();
  265. cpu_data[cpu].udelay_val = loops_per_jiffy;
  266. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  267. notify_cpu_starting(cpu);
  268. cpumask_set_cpu(cpu, &cpu_callin_map);
  269. synchronise_count_slave(cpu);
  270. set_cpu_online(cpu, true);
  271. set_cpu_sibling_map(cpu);
  272. set_cpu_core_map(cpu);
  273. calculate_cpu_foreign_map();
  274. /*
  275. * irq will be enabled in ->smp_finish(), enabling it too early
  276. * is dangerous.
  277. */
  278. WARN_ON_ONCE(!irqs_disabled());
  279. mp_ops->smp_finish();
  280. cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
  281. }
  282. static void stop_this_cpu(void *dummy)
  283. {
  284. /*
  285. * Remove this CPU:
  286. */
  287. set_cpu_online(smp_processor_id(), false);
  288. calculate_cpu_foreign_map();
  289. local_irq_disable();
  290. while (1);
  291. }
  292. void smp_send_stop(void)
  293. {
  294. smp_call_function(stop_this_cpu, NULL, 0);
  295. }
  296. void __init smp_cpus_done(unsigned int max_cpus)
  297. {
  298. }
  299. /* called from main before smp_init() */
  300. void __init smp_prepare_cpus(unsigned int max_cpus)
  301. {
  302. init_new_context(current, &init_mm);
  303. current_thread_info()->cpu = 0;
  304. mp_ops->prepare_cpus(max_cpus);
  305. set_cpu_sibling_map(0);
  306. set_cpu_core_map(0);
  307. calculate_cpu_foreign_map();
  308. #ifndef CONFIG_HOTPLUG_CPU
  309. init_cpu_present(cpu_possible_mask);
  310. #endif
  311. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  312. }
  313. /* preload SMP state for boot cpu */
  314. void smp_prepare_boot_cpu(void)
  315. {
  316. set_cpu_possible(0, true);
  317. set_cpu_online(0, true);
  318. cpumask_set_cpu(0, &cpu_callin_map);
  319. }
  320. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  321. {
  322. mp_ops->boot_secondary(cpu, tidle);
  323. /*
  324. * Trust is futile. We should really have timeouts ...
  325. */
  326. while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
  327. udelay(100);
  328. schedule();
  329. }
  330. synchronise_count_master(cpu);
  331. return 0;
  332. }
  333. /* Not really SMP stuff ... */
  334. int setup_profiling_timer(unsigned int multiplier)
  335. {
  336. return 0;
  337. }
  338. static void flush_tlb_all_ipi(void *info)
  339. {
  340. local_flush_tlb_all();
  341. }
  342. void flush_tlb_all(void)
  343. {
  344. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  345. }
  346. static void flush_tlb_mm_ipi(void *mm)
  347. {
  348. local_flush_tlb_mm((struct mm_struct *)mm);
  349. }
  350. /*
  351. * Special Variant of smp_call_function for use by TLB functions:
  352. *
  353. * o No return value
  354. * o collapses to normal function call on UP kernels
  355. * o collapses to normal function call on systems with a single shared
  356. * primary cache.
  357. */
  358. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  359. {
  360. smp_call_function(func, info, 1);
  361. }
  362. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  363. {
  364. preempt_disable();
  365. smp_on_other_tlbs(func, info);
  366. func(info);
  367. preempt_enable();
  368. }
  369. /*
  370. * The following tlb flush calls are invoked when old translations are
  371. * being torn down, or pte attributes are changing. For single threaded
  372. * address spaces, a new context is obtained on the current cpu, and tlb
  373. * context on other cpus are invalidated to force a new context allocation
  374. * at switch_mm time, should the mm ever be used on other cpus. For
  375. * multithreaded address spaces, intercpu interrupts have to be sent.
  376. * Another case where intercpu interrupts are required is when the target
  377. * mm might be active on another cpu (eg debuggers doing the flushes on
  378. * behalf of debugees, kswapd stealing pages from another process etc).
  379. * Kanoj 07/00.
  380. */
  381. void flush_tlb_mm(struct mm_struct *mm)
  382. {
  383. preempt_disable();
  384. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  385. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  386. } else {
  387. unsigned int cpu;
  388. for_each_online_cpu(cpu) {
  389. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  390. cpu_context(cpu, mm) = 0;
  391. }
  392. }
  393. local_flush_tlb_mm(mm);
  394. preempt_enable();
  395. }
  396. struct flush_tlb_data {
  397. struct vm_area_struct *vma;
  398. unsigned long addr1;
  399. unsigned long addr2;
  400. };
  401. static void flush_tlb_range_ipi(void *info)
  402. {
  403. struct flush_tlb_data *fd = info;
  404. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  405. }
  406. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  407. {
  408. struct mm_struct *mm = vma->vm_mm;
  409. preempt_disable();
  410. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  411. struct flush_tlb_data fd = {
  412. .vma = vma,
  413. .addr1 = start,
  414. .addr2 = end,
  415. };
  416. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  417. } else {
  418. unsigned int cpu;
  419. int exec = vma->vm_flags & VM_EXEC;
  420. for_each_online_cpu(cpu) {
  421. /*
  422. * flush_cache_range() will only fully flush icache if
  423. * the VMA is executable, otherwise we must invalidate
  424. * ASID without it appearing to has_valid_asid() as if
  425. * mm has been completely unused by that CPU.
  426. */
  427. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  428. cpu_context(cpu, mm) = !exec;
  429. }
  430. }
  431. local_flush_tlb_range(vma, start, end);
  432. preempt_enable();
  433. }
  434. static void flush_tlb_kernel_range_ipi(void *info)
  435. {
  436. struct flush_tlb_data *fd = info;
  437. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  438. }
  439. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  440. {
  441. struct flush_tlb_data fd = {
  442. .addr1 = start,
  443. .addr2 = end,
  444. };
  445. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  446. }
  447. static void flush_tlb_page_ipi(void *info)
  448. {
  449. struct flush_tlb_data *fd = info;
  450. local_flush_tlb_page(fd->vma, fd->addr1);
  451. }
  452. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  453. {
  454. preempt_disable();
  455. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  456. struct flush_tlb_data fd = {
  457. .vma = vma,
  458. .addr1 = page,
  459. };
  460. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  461. } else {
  462. unsigned int cpu;
  463. for_each_online_cpu(cpu) {
  464. /*
  465. * flush_cache_page() only does partial flushes, so
  466. * invalidate ASID without it appearing to
  467. * has_valid_asid() as if mm has been completely unused
  468. * by that CPU.
  469. */
  470. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  471. cpu_context(cpu, vma->vm_mm) = 1;
  472. }
  473. }
  474. local_flush_tlb_page(vma, page);
  475. preempt_enable();
  476. }
  477. static void flush_tlb_one_ipi(void *info)
  478. {
  479. unsigned long vaddr = (unsigned long) info;
  480. local_flush_tlb_one(vaddr);
  481. }
  482. void flush_tlb_one(unsigned long vaddr)
  483. {
  484. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  485. }
  486. EXPORT_SYMBOL(flush_tlb_page);
  487. EXPORT_SYMBOL(flush_tlb_one);
  488. #if defined(CONFIG_KEXEC)
  489. void (*dump_ipi_function_ptr)(void *) = NULL;
  490. void dump_send_ipi(void (*dump_ipi_callback)(void *))
  491. {
  492. int i;
  493. int cpu = smp_processor_id();
  494. dump_ipi_function_ptr = dump_ipi_callback;
  495. smp_mb();
  496. for_each_online_cpu(i)
  497. if (i != cpu)
  498. mp_ops->send_ipi_single(i, SMP_DUMP);
  499. }
  500. EXPORT_SYMBOL(dump_send_ipi);
  501. #endif
  502. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  503. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  504. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  505. void tick_broadcast(const struct cpumask *mask)
  506. {
  507. atomic_t *count;
  508. struct call_single_data *csd;
  509. int cpu;
  510. for_each_cpu(cpu, mask) {
  511. count = &per_cpu(tick_broadcast_count, cpu);
  512. csd = &per_cpu(tick_broadcast_csd, cpu);
  513. if (atomic_inc_return(count) == 1)
  514. smp_call_function_single_async(cpu, csd);
  515. }
  516. }
  517. static void tick_broadcast_callee(void *info)
  518. {
  519. int cpu = smp_processor_id();
  520. tick_receive_broadcast();
  521. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  522. }
  523. static int __init tick_broadcast_init(void)
  524. {
  525. struct call_single_data *csd;
  526. int cpu;
  527. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  528. csd = &per_cpu(tick_broadcast_csd, cpu);
  529. csd->func = tick_broadcast_callee;
  530. }
  531. return 0;
  532. }
  533. early_initcall(tick_broadcast_init);
  534. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */