hrtimer.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/export.h>
  35. #include <linux/percpu.h>
  36. #include <linux/hrtimer.h>
  37. #include <linux/notifier.h>
  38. #include <linux/syscalls.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/tick.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/err.h>
  44. #include <linux/debugobjects.h>
  45. #include <linux/sched/signal.h>
  46. #include <linux/sched/sysctl.h>
  47. #include <linux/sched/rt.h>
  48. #include <linux/sched/deadline.h>
  49. #include <linux/sched/nohz.h>
  50. #include <linux/sched/debug.h>
  51. #include <linux/timer.h>
  52. #include <linux/freezer.h>
  53. #include <linux/compat.h>
  54. #include <linux/uaccess.h>
  55. #include <trace/events/timer.h>
  56. #include "tick-internal.h"
  57. /*
  58. * The timer bases:
  59. *
  60. * There are more clockids than hrtimer bases. Thus, we index
  61. * into the timer bases by the hrtimer_base_type enum. When trying
  62. * to reach a base using a clockid, hrtimer_clockid_to_base()
  63. * is used to convert from clockid to the proper hrtimer_base_type.
  64. */
  65. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  66. {
  67. .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  68. .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  69. .clock_base =
  70. {
  71. {
  72. .index = HRTIMER_BASE_MONOTONIC,
  73. .clockid = CLOCK_MONOTONIC,
  74. .get_time = &ktime_get,
  75. },
  76. {
  77. .index = HRTIMER_BASE_REALTIME,
  78. .clockid = CLOCK_REALTIME,
  79. .get_time = &ktime_get_real,
  80. },
  81. {
  82. .index = HRTIMER_BASE_BOOTTIME,
  83. .clockid = CLOCK_BOOTTIME,
  84. .get_time = &ktime_get_boottime,
  85. },
  86. {
  87. .index = HRTIMER_BASE_TAI,
  88. .clockid = CLOCK_TAI,
  89. .get_time = &ktime_get_clocktai,
  90. },
  91. }
  92. };
  93. static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  94. /* Make sure we catch unsupported clockids */
  95. [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
  96. [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
  97. [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
  98. [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
  99. [CLOCK_TAI] = HRTIMER_BASE_TAI,
  100. };
  101. /*
  102. * Functions and macros which are different for UP/SMP systems are kept in a
  103. * single place
  104. */
  105. #ifdef CONFIG_SMP
  106. /*
  107. * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
  108. * such that hrtimer_callback_running() can unconditionally dereference
  109. * timer->base->cpu_base
  110. */
  111. static struct hrtimer_cpu_base migration_cpu_base = {
  112. .seq = SEQCNT_ZERO(migration_cpu_base),
  113. .clock_base = { { .cpu_base = &migration_cpu_base, }, },
  114. };
  115. #define migration_base migration_cpu_base.clock_base[0]
  116. /*
  117. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  118. * means that all timers which are tied to this base via timer->base are
  119. * locked, and the base itself is locked too.
  120. *
  121. * So __run_timers/migrate_timers can safely modify all timers which could
  122. * be found on the lists/queues.
  123. *
  124. * When the timer's base is locked, and the timer removed from list, it is
  125. * possible to set timer->base = &migration_base and drop the lock: the timer
  126. * remains locked.
  127. */
  128. static
  129. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  130. unsigned long *flags)
  131. {
  132. struct hrtimer_clock_base *base;
  133. for (;;) {
  134. base = timer->base;
  135. if (likely(base != &migration_base)) {
  136. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  137. if (likely(base == timer->base))
  138. return base;
  139. /* The timer has migrated to another CPU: */
  140. raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  141. }
  142. cpu_relax();
  143. }
  144. }
  145. /*
  146. * With HIGHRES=y we do not migrate the timer when it is expiring
  147. * before the next event on the target cpu because we cannot reprogram
  148. * the target cpu hardware and we would cause it to fire late.
  149. *
  150. * Called with cpu_base->lock of target cpu held.
  151. */
  152. static int
  153. hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
  154. {
  155. #ifdef CONFIG_HIGH_RES_TIMERS
  156. ktime_t expires;
  157. if (!new_base->cpu_base->hres_active)
  158. return 0;
  159. expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
  160. return expires <= new_base->cpu_base->expires_next;
  161. #else
  162. return 0;
  163. #endif
  164. }
  165. #ifdef CONFIG_NO_HZ_COMMON
  166. static inline
  167. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  168. int pinned)
  169. {
  170. if (pinned || !base->migration_enabled)
  171. return base;
  172. return &per_cpu(hrtimer_bases, get_nohz_timer_target());
  173. }
  174. #else
  175. static inline
  176. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  177. int pinned)
  178. {
  179. return base;
  180. }
  181. #endif
  182. /*
  183. * We switch the timer base to a power-optimized selected CPU target,
  184. * if:
  185. * - NO_HZ_COMMON is enabled
  186. * - timer migration is enabled
  187. * - the timer callback is not running
  188. * - the timer is not the first expiring timer on the new target
  189. *
  190. * If one of the above requirements is not fulfilled we move the timer
  191. * to the current CPU or leave it on the previously assigned CPU if
  192. * the timer callback is currently running.
  193. */
  194. static inline struct hrtimer_clock_base *
  195. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
  196. int pinned)
  197. {
  198. struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
  199. struct hrtimer_clock_base *new_base;
  200. int basenum = base->index;
  201. this_cpu_base = this_cpu_ptr(&hrtimer_bases);
  202. new_cpu_base = get_target_base(this_cpu_base, pinned);
  203. again:
  204. new_base = &new_cpu_base->clock_base[basenum];
  205. if (base != new_base) {
  206. /*
  207. * We are trying to move timer to new_base.
  208. * However we can't change timer's base while it is running,
  209. * so we keep it on the same CPU. No hassle vs. reprogramming
  210. * the event source in the high resolution case. The softirq
  211. * code will take care of this when the timer function has
  212. * completed. There is no conflict as we hold the lock until
  213. * the timer is enqueued.
  214. */
  215. if (unlikely(hrtimer_callback_running(timer)))
  216. return base;
  217. /* See the comment in lock_hrtimer_base() */
  218. timer->base = &migration_base;
  219. raw_spin_unlock(&base->cpu_base->lock);
  220. raw_spin_lock(&new_base->cpu_base->lock);
  221. if (new_cpu_base != this_cpu_base &&
  222. hrtimer_check_target(timer, new_base)) {
  223. raw_spin_unlock(&new_base->cpu_base->lock);
  224. raw_spin_lock(&base->cpu_base->lock);
  225. new_cpu_base = this_cpu_base;
  226. timer->base = base;
  227. goto again;
  228. }
  229. timer->base = new_base;
  230. } else {
  231. if (new_cpu_base != this_cpu_base &&
  232. hrtimer_check_target(timer, new_base)) {
  233. new_cpu_base = this_cpu_base;
  234. goto again;
  235. }
  236. }
  237. return new_base;
  238. }
  239. #else /* CONFIG_SMP */
  240. static inline struct hrtimer_clock_base *
  241. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  242. {
  243. struct hrtimer_clock_base *base = timer->base;
  244. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  245. return base;
  246. }
  247. # define switch_hrtimer_base(t, b, p) (b)
  248. #endif /* !CONFIG_SMP */
  249. /*
  250. * Functions for the union type storage format of ktime_t which are
  251. * too large for inlining:
  252. */
  253. #if BITS_PER_LONG < 64
  254. /*
  255. * Divide a ktime value by a nanosecond value
  256. */
  257. s64 __ktime_divns(const ktime_t kt, s64 div)
  258. {
  259. int sft = 0;
  260. s64 dclc;
  261. u64 tmp;
  262. dclc = ktime_to_ns(kt);
  263. tmp = dclc < 0 ? -dclc : dclc;
  264. /* Make sure the divisor is less than 2^32: */
  265. while (div >> 32) {
  266. sft++;
  267. div >>= 1;
  268. }
  269. tmp >>= sft;
  270. do_div(tmp, (unsigned long) div);
  271. return dclc < 0 ? -tmp : tmp;
  272. }
  273. EXPORT_SYMBOL_GPL(__ktime_divns);
  274. #endif /* BITS_PER_LONG >= 64 */
  275. /*
  276. * Add two ktime values and do a safety check for overflow:
  277. */
  278. ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
  279. {
  280. ktime_t res = ktime_add_unsafe(lhs, rhs);
  281. /*
  282. * We use KTIME_SEC_MAX here, the maximum timeout which we can
  283. * return to user space in a timespec:
  284. */
  285. if (res < 0 || res < lhs || res < rhs)
  286. res = ktime_set(KTIME_SEC_MAX, 0);
  287. return res;
  288. }
  289. EXPORT_SYMBOL_GPL(ktime_add_safe);
  290. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  291. static struct debug_obj_descr hrtimer_debug_descr;
  292. static void *hrtimer_debug_hint(void *addr)
  293. {
  294. return ((struct hrtimer *) addr)->function;
  295. }
  296. /*
  297. * fixup_init is called when:
  298. * - an active object is initialized
  299. */
  300. static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
  301. {
  302. struct hrtimer *timer = addr;
  303. switch (state) {
  304. case ODEBUG_STATE_ACTIVE:
  305. hrtimer_cancel(timer);
  306. debug_object_init(timer, &hrtimer_debug_descr);
  307. return true;
  308. default:
  309. return false;
  310. }
  311. }
  312. /*
  313. * fixup_activate is called when:
  314. * - an active object is activated
  315. * - an unknown non-static object is activated
  316. */
  317. static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
  318. {
  319. switch (state) {
  320. case ODEBUG_STATE_ACTIVE:
  321. WARN_ON(1);
  322. default:
  323. return false;
  324. }
  325. }
  326. /*
  327. * fixup_free is called when:
  328. * - an active object is freed
  329. */
  330. static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
  331. {
  332. struct hrtimer *timer = addr;
  333. switch (state) {
  334. case ODEBUG_STATE_ACTIVE:
  335. hrtimer_cancel(timer);
  336. debug_object_free(timer, &hrtimer_debug_descr);
  337. return true;
  338. default:
  339. return false;
  340. }
  341. }
  342. static struct debug_obj_descr hrtimer_debug_descr = {
  343. .name = "hrtimer",
  344. .debug_hint = hrtimer_debug_hint,
  345. .fixup_init = hrtimer_fixup_init,
  346. .fixup_activate = hrtimer_fixup_activate,
  347. .fixup_free = hrtimer_fixup_free,
  348. };
  349. static inline void debug_hrtimer_init(struct hrtimer *timer)
  350. {
  351. debug_object_init(timer, &hrtimer_debug_descr);
  352. }
  353. static inline void debug_hrtimer_activate(struct hrtimer *timer)
  354. {
  355. debug_object_activate(timer, &hrtimer_debug_descr);
  356. }
  357. static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
  358. {
  359. debug_object_deactivate(timer, &hrtimer_debug_descr);
  360. }
  361. static inline void debug_hrtimer_free(struct hrtimer *timer)
  362. {
  363. debug_object_free(timer, &hrtimer_debug_descr);
  364. }
  365. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  366. enum hrtimer_mode mode);
  367. void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
  368. enum hrtimer_mode mode)
  369. {
  370. debug_object_init_on_stack(timer, &hrtimer_debug_descr);
  371. __hrtimer_init(timer, clock_id, mode);
  372. }
  373. EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
  374. void destroy_hrtimer_on_stack(struct hrtimer *timer)
  375. {
  376. debug_object_free(timer, &hrtimer_debug_descr);
  377. }
  378. EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
  379. #else
  380. static inline void debug_hrtimer_init(struct hrtimer *timer) { }
  381. static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
  382. static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
  383. #endif
  384. static inline void
  385. debug_init(struct hrtimer *timer, clockid_t clockid,
  386. enum hrtimer_mode mode)
  387. {
  388. debug_hrtimer_init(timer);
  389. trace_hrtimer_init(timer, clockid, mode);
  390. }
  391. static inline void debug_activate(struct hrtimer *timer)
  392. {
  393. debug_hrtimer_activate(timer);
  394. trace_hrtimer_start(timer);
  395. }
  396. static inline void debug_deactivate(struct hrtimer *timer)
  397. {
  398. debug_hrtimer_deactivate(timer);
  399. trace_hrtimer_cancel(timer);
  400. }
  401. #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  402. static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
  403. struct hrtimer *timer)
  404. {
  405. #ifdef CONFIG_HIGH_RES_TIMERS
  406. cpu_base->next_timer = timer;
  407. #endif
  408. }
  409. static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
  410. {
  411. struct hrtimer_clock_base *base = cpu_base->clock_base;
  412. unsigned int active = cpu_base->active_bases;
  413. ktime_t expires, expires_next = KTIME_MAX;
  414. hrtimer_update_next_timer(cpu_base, NULL);
  415. for (; active; base++, active >>= 1) {
  416. struct timerqueue_node *next;
  417. struct hrtimer *timer;
  418. if (!(active & 0x01))
  419. continue;
  420. next = timerqueue_getnext(&base->active);
  421. timer = container_of(next, struct hrtimer, node);
  422. expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  423. if (expires < expires_next) {
  424. expires_next = expires;
  425. hrtimer_update_next_timer(cpu_base, timer);
  426. }
  427. }
  428. /*
  429. * clock_was_set() might have changed base->offset of any of
  430. * the clock bases so the result might be negative. Fix it up
  431. * to prevent a false positive in clockevents_program_event().
  432. */
  433. if (expires_next < 0)
  434. expires_next = 0;
  435. return expires_next;
  436. }
  437. #endif
  438. static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
  439. {
  440. ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
  441. ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
  442. ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
  443. return ktime_get_update_offsets_now(&base->clock_was_set_seq,
  444. offs_real, offs_boot, offs_tai);
  445. }
  446. /* High resolution timer related functions */
  447. #ifdef CONFIG_HIGH_RES_TIMERS
  448. /*
  449. * High resolution timer enabled ?
  450. */
  451. static bool hrtimer_hres_enabled __read_mostly = true;
  452. unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
  453. EXPORT_SYMBOL_GPL(hrtimer_resolution);
  454. /*
  455. * Enable / Disable high resolution mode
  456. */
  457. static int __init setup_hrtimer_hres(char *str)
  458. {
  459. return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
  460. }
  461. __setup("highres=", setup_hrtimer_hres);
  462. /*
  463. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  464. */
  465. static inline int hrtimer_is_hres_enabled(void)
  466. {
  467. return hrtimer_hres_enabled;
  468. }
  469. /*
  470. * Is the high resolution mode active ?
  471. */
  472. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
  473. {
  474. return cpu_base->hres_active;
  475. }
  476. static inline int hrtimer_hres_active(void)
  477. {
  478. return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
  479. }
  480. /*
  481. * Reprogram the event source with checking both queues for the
  482. * next event
  483. * Called with interrupts disabled and base->lock held
  484. */
  485. static void
  486. hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
  487. {
  488. ktime_t expires_next;
  489. if (!cpu_base->hres_active)
  490. return;
  491. expires_next = __hrtimer_get_next_event(cpu_base);
  492. if (skip_equal && expires_next == cpu_base->expires_next)
  493. return;
  494. cpu_base->expires_next = expires_next;
  495. /*
  496. * If a hang was detected in the last timer interrupt then we
  497. * leave the hang delay active in the hardware. We want the
  498. * system to make progress. That also prevents the following
  499. * scenario:
  500. * T1 expires 50ms from now
  501. * T2 expires 5s from now
  502. *
  503. * T1 is removed, so this code is called and would reprogram
  504. * the hardware to 5s from now. Any hrtimer_start after that
  505. * will not reprogram the hardware due to hang_detected being
  506. * set. So we'd effectivly block all timers until the T2 event
  507. * fires.
  508. */
  509. if (cpu_base->hang_detected)
  510. return;
  511. tick_program_event(cpu_base->expires_next, 1);
  512. }
  513. /*
  514. * When a timer is enqueued and expires earlier than the already enqueued
  515. * timers, we have to check, whether it expires earlier than the timer for
  516. * which the clock event device was armed.
  517. *
  518. * Called with interrupts disabled and base->cpu_base.lock held
  519. */
  520. static void hrtimer_reprogram(struct hrtimer *timer,
  521. struct hrtimer_clock_base *base)
  522. {
  523. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  524. ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  525. WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
  526. /*
  527. * If the timer is not on the current cpu, we cannot reprogram
  528. * the other cpus clock event device.
  529. */
  530. if (base->cpu_base != cpu_base)
  531. return;
  532. /*
  533. * If the hrtimer interrupt is running, then it will
  534. * reevaluate the clock bases and reprogram the clock event
  535. * device. The callbacks are always executed in hard interrupt
  536. * context so we don't need an extra check for a running
  537. * callback.
  538. */
  539. if (cpu_base->in_hrtirq)
  540. return;
  541. /*
  542. * CLOCK_REALTIME timer might be requested with an absolute
  543. * expiry time which is less than base->offset. Set it to 0.
  544. */
  545. if (expires < 0)
  546. expires = 0;
  547. if (expires >= cpu_base->expires_next)
  548. return;
  549. /* Update the pointer to the next expiring timer */
  550. cpu_base->next_timer = timer;
  551. /*
  552. * If a hang was detected in the last timer interrupt then we
  553. * do not schedule a timer which is earlier than the expiry
  554. * which we enforced in the hang detection. We want the system
  555. * to make progress.
  556. */
  557. if (cpu_base->hang_detected)
  558. return;
  559. /*
  560. * Program the timer hardware. We enforce the expiry for
  561. * events which are already in the past.
  562. */
  563. cpu_base->expires_next = expires;
  564. tick_program_event(expires, 1);
  565. }
  566. /*
  567. * Initialize the high resolution related parts of cpu_base
  568. */
  569. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  570. {
  571. base->expires_next = KTIME_MAX;
  572. base->hres_active = 0;
  573. }
  574. /*
  575. * Retrigger next event is called after clock was set
  576. *
  577. * Called with interrupts disabled via on_each_cpu()
  578. */
  579. static void retrigger_next_event(void *arg)
  580. {
  581. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  582. if (!base->hres_active)
  583. return;
  584. raw_spin_lock(&base->lock);
  585. hrtimer_update_base(base);
  586. hrtimer_force_reprogram(base, 0);
  587. raw_spin_unlock(&base->lock);
  588. }
  589. /*
  590. * Switch to high resolution mode
  591. */
  592. static void hrtimer_switch_to_hres(void)
  593. {
  594. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  595. if (tick_init_highres()) {
  596. printk(KERN_WARNING "Could not switch to high resolution "
  597. "mode on CPU %d\n", base->cpu);
  598. return;
  599. }
  600. base->hres_active = 1;
  601. hrtimer_resolution = HIGH_RES_NSEC;
  602. tick_setup_sched_timer();
  603. /* "Retrigger" the interrupt to get things going */
  604. retrigger_next_event(NULL);
  605. }
  606. static void clock_was_set_work(struct work_struct *work)
  607. {
  608. clock_was_set();
  609. }
  610. static DECLARE_WORK(hrtimer_work, clock_was_set_work);
  611. /*
  612. * Called from timekeeping and resume code to reprogram the hrtimer
  613. * interrupt device on all cpus.
  614. */
  615. void clock_was_set_delayed(void)
  616. {
  617. schedule_work(&hrtimer_work);
  618. }
  619. #else
  620. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
  621. static inline int hrtimer_hres_active(void) { return 0; }
  622. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  623. static inline void hrtimer_switch_to_hres(void) { }
  624. static inline void
  625. hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
  626. static inline int hrtimer_reprogram(struct hrtimer *timer,
  627. struct hrtimer_clock_base *base)
  628. {
  629. return 0;
  630. }
  631. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  632. static inline void retrigger_next_event(void *arg) { }
  633. #endif /* CONFIG_HIGH_RES_TIMERS */
  634. /*
  635. * Clock realtime was set
  636. *
  637. * Change the offset of the realtime clock vs. the monotonic
  638. * clock.
  639. *
  640. * We might have to reprogram the high resolution timer interrupt. On
  641. * SMP we call the architecture specific code to retrigger _all_ high
  642. * resolution timer interrupts. On UP we just disable interrupts and
  643. * call the high resolution interrupt code.
  644. */
  645. void clock_was_set(void)
  646. {
  647. #ifdef CONFIG_HIGH_RES_TIMERS
  648. /* Retrigger the CPU local events everywhere */
  649. on_each_cpu(retrigger_next_event, NULL, 1);
  650. #endif
  651. timerfd_clock_was_set();
  652. }
  653. /*
  654. * During resume we might have to reprogram the high resolution timer
  655. * interrupt on all online CPUs. However, all other CPUs will be
  656. * stopped with IRQs interrupts disabled so the clock_was_set() call
  657. * must be deferred.
  658. */
  659. void hrtimers_resume(void)
  660. {
  661. lockdep_assert_irqs_disabled();
  662. /* Retrigger on the local CPU */
  663. retrigger_next_event(NULL);
  664. /* And schedule a retrigger for all others */
  665. clock_was_set_delayed();
  666. }
  667. /*
  668. * Counterpart to lock_hrtimer_base above:
  669. */
  670. static inline
  671. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  672. {
  673. raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  674. }
  675. /**
  676. * hrtimer_forward - forward the timer expiry
  677. * @timer: hrtimer to forward
  678. * @now: forward past this time
  679. * @interval: the interval to forward
  680. *
  681. * Forward the timer expiry so it will expire in the future.
  682. * Returns the number of overruns.
  683. *
  684. * Can be safely called from the callback function of @timer. If
  685. * called from other contexts @timer must neither be enqueued nor
  686. * running the callback and the caller needs to take care of
  687. * serialization.
  688. *
  689. * Note: This only updates the timer expiry value and does not requeue
  690. * the timer.
  691. */
  692. u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  693. {
  694. u64 orun = 1;
  695. ktime_t delta;
  696. delta = ktime_sub(now, hrtimer_get_expires(timer));
  697. if (delta < 0)
  698. return 0;
  699. if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
  700. return 0;
  701. if (interval < hrtimer_resolution)
  702. interval = hrtimer_resolution;
  703. if (unlikely(delta >= interval)) {
  704. s64 incr = ktime_to_ns(interval);
  705. orun = ktime_divns(delta, incr);
  706. hrtimer_add_expires_ns(timer, incr * orun);
  707. if (hrtimer_get_expires_tv64(timer) > now)
  708. return orun;
  709. /*
  710. * This (and the ktime_add() below) is the
  711. * correction for exact:
  712. */
  713. orun++;
  714. }
  715. hrtimer_add_expires(timer, interval);
  716. return orun;
  717. }
  718. EXPORT_SYMBOL_GPL(hrtimer_forward);
  719. /*
  720. * enqueue_hrtimer - internal function to (re)start a timer
  721. *
  722. * The timer is inserted in expiry order. Insertion into the
  723. * red black tree is O(log(n)). Must hold the base lock.
  724. *
  725. * Returns 1 when the new timer is the leftmost timer in the tree.
  726. */
  727. static int enqueue_hrtimer(struct hrtimer *timer,
  728. struct hrtimer_clock_base *base)
  729. {
  730. debug_activate(timer);
  731. base->cpu_base->active_bases |= 1 << base->index;
  732. timer->state = HRTIMER_STATE_ENQUEUED;
  733. return timerqueue_add(&base->active, &timer->node);
  734. }
  735. /*
  736. * __remove_hrtimer - internal function to remove a timer
  737. *
  738. * Caller must hold the base lock.
  739. *
  740. * High resolution timer mode reprograms the clock event device when the
  741. * timer is the one which expires next. The caller can disable this by setting
  742. * reprogram to zero. This is useful, when the context does a reprogramming
  743. * anyway (e.g. timer interrupt)
  744. */
  745. static void __remove_hrtimer(struct hrtimer *timer,
  746. struct hrtimer_clock_base *base,
  747. u8 newstate, int reprogram)
  748. {
  749. struct hrtimer_cpu_base *cpu_base = base->cpu_base;
  750. u8 state = timer->state;
  751. timer->state = newstate;
  752. if (!(state & HRTIMER_STATE_ENQUEUED))
  753. return;
  754. if (!timerqueue_del(&base->active, &timer->node))
  755. cpu_base->active_bases &= ~(1 << base->index);
  756. #ifdef CONFIG_HIGH_RES_TIMERS
  757. /*
  758. * Note: If reprogram is false we do not update
  759. * cpu_base->next_timer. This happens when we remove the first
  760. * timer on a remote cpu. No harm as we never dereference
  761. * cpu_base->next_timer. So the worst thing what can happen is
  762. * an superflous call to hrtimer_force_reprogram() on the
  763. * remote cpu later on if the same timer gets enqueued again.
  764. */
  765. if (reprogram && timer == cpu_base->next_timer)
  766. hrtimer_force_reprogram(cpu_base, 1);
  767. #endif
  768. }
  769. /*
  770. * remove hrtimer, called with base lock held
  771. */
  772. static inline int
  773. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
  774. {
  775. if (hrtimer_is_queued(timer)) {
  776. u8 state = timer->state;
  777. int reprogram;
  778. /*
  779. * Remove the timer and force reprogramming when high
  780. * resolution mode is active and the timer is on the current
  781. * CPU. If we remove a timer on another CPU, reprogramming is
  782. * skipped. The interrupt event on this CPU is fired and
  783. * reprogramming happens in the interrupt handler. This is a
  784. * rare case and less expensive than a smp call.
  785. */
  786. debug_deactivate(timer);
  787. reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
  788. if (!restart)
  789. state = HRTIMER_STATE_INACTIVE;
  790. __remove_hrtimer(timer, base, state, reprogram);
  791. return 1;
  792. }
  793. return 0;
  794. }
  795. static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
  796. const enum hrtimer_mode mode)
  797. {
  798. #ifdef CONFIG_TIME_LOW_RES
  799. /*
  800. * CONFIG_TIME_LOW_RES indicates that the system has no way to return
  801. * granular time values. For relative timers we add hrtimer_resolution
  802. * (i.e. one jiffie) to prevent short timeouts.
  803. */
  804. timer->is_rel = mode & HRTIMER_MODE_REL;
  805. if (timer->is_rel)
  806. tim = ktime_add_safe(tim, hrtimer_resolution);
  807. #endif
  808. return tim;
  809. }
  810. /**
  811. * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
  812. * @timer: the timer to be added
  813. * @tim: expiry time
  814. * @delta_ns: "slack" range for the timer
  815. * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
  816. * relative (HRTIMER_MODE_REL)
  817. */
  818. void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
  819. u64 delta_ns, const enum hrtimer_mode mode)
  820. {
  821. struct hrtimer_clock_base *base, *new_base;
  822. unsigned long flags;
  823. int leftmost;
  824. base = lock_hrtimer_base(timer, &flags);
  825. /* Remove an active timer from the queue: */
  826. remove_hrtimer(timer, base, true);
  827. if (mode & HRTIMER_MODE_REL)
  828. tim = ktime_add_safe(tim, base->get_time());
  829. tim = hrtimer_update_lowres(timer, tim, mode);
  830. hrtimer_set_expires_range_ns(timer, tim, delta_ns);
  831. /* Switch the timer base, if necessary: */
  832. new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
  833. leftmost = enqueue_hrtimer(timer, new_base);
  834. if (!leftmost)
  835. goto unlock;
  836. if (!hrtimer_is_hres_active(timer)) {
  837. /*
  838. * Kick to reschedule the next tick to handle the new timer
  839. * on dynticks target.
  840. */
  841. if (new_base->cpu_base->nohz_active)
  842. wake_up_nohz_cpu(new_base->cpu_base->cpu);
  843. } else {
  844. hrtimer_reprogram(timer, new_base);
  845. }
  846. unlock:
  847. unlock_hrtimer_base(timer, &flags);
  848. }
  849. EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
  850. /**
  851. * hrtimer_try_to_cancel - try to deactivate a timer
  852. * @timer: hrtimer to stop
  853. *
  854. * Returns:
  855. * 0 when the timer was not active
  856. * 1 when the timer was active
  857. * -1 when the timer is currently executing the callback function and
  858. * cannot be stopped
  859. */
  860. int hrtimer_try_to_cancel(struct hrtimer *timer)
  861. {
  862. struct hrtimer_clock_base *base;
  863. unsigned long flags;
  864. int ret = -1;
  865. /*
  866. * Check lockless first. If the timer is not active (neither
  867. * enqueued nor running the callback, nothing to do here. The
  868. * base lock does not serialize against a concurrent enqueue,
  869. * so we can avoid taking it.
  870. */
  871. if (!hrtimer_active(timer))
  872. return 0;
  873. base = lock_hrtimer_base(timer, &flags);
  874. if (!hrtimer_callback_running(timer))
  875. ret = remove_hrtimer(timer, base, false);
  876. unlock_hrtimer_base(timer, &flags);
  877. return ret;
  878. }
  879. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  880. /**
  881. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  882. * @timer: the timer to be cancelled
  883. *
  884. * Returns:
  885. * 0 when the timer was not active
  886. * 1 when the timer was active
  887. */
  888. int hrtimer_cancel(struct hrtimer *timer)
  889. {
  890. for (;;) {
  891. int ret = hrtimer_try_to_cancel(timer);
  892. if (ret >= 0)
  893. return ret;
  894. cpu_relax();
  895. }
  896. }
  897. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  898. /**
  899. * hrtimer_get_remaining - get remaining time for the timer
  900. * @timer: the timer to read
  901. * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
  902. */
  903. ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
  904. {
  905. unsigned long flags;
  906. ktime_t rem;
  907. lock_hrtimer_base(timer, &flags);
  908. if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
  909. rem = hrtimer_expires_remaining_adjusted(timer);
  910. else
  911. rem = hrtimer_expires_remaining(timer);
  912. unlock_hrtimer_base(timer, &flags);
  913. return rem;
  914. }
  915. EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
  916. #ifdef CONFIG_NO_HZ_COMMON
  917. /**
  918. * hrtimer_get_next_event - get the time until next expiry event
  919. *
  920. * Returns the next expiry time or KTIME_MAX if no timer is pending.
  921. */
  922. u64 hrtimer_get_next_event(void)
  923. {
  924. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  925. u64 expires = KTIME_MAX;
  926. unsigned long flags;
  927. raw_spin_lock_irqsave(&cpu_base->lock, flags);
  928. if (!__hrtimer_hres_active(cpu_base))
  929. expires = __hrtimer_get_next_event(cpu_base);
  930. raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
  931. return expires;
  932. }
  933. #endif
  934. static inline int hrtimer_clockid_to_base(clockid_t clock_id)
  935. {
  936. if (likely(clock_id < MAX_CLOCKS)) {
  937. int base = hrtimer_clock_to_base_table[clock_id];
  938. if (likely(base != HRTIMER_MAX_CLOCK_BASES))
  939. return base;
  940. }
  941. WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
  942. return HRTIMER_BASE_MONOTONIC;
  943. }
  944. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  945. enum hrtimer_mode mode)
  946. {
  947. struct hrtimer_cpu_base *cpu_base;
  948. int base;
  949. memset(timer, 0, sizeof(struct hrtimer));
  950. cpu_base = raw_cpu_ptr(&hrtimer_bases);
  951. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  952. clock_id = CLOCK_MONOTONIC;
  953. base = hrtimer_clockid_to_base(clock_id);
  954. timer->base = &cpu_base->clock_base[base];
  955. timerqueue_init(&timer->node);
  956. }
  957. /**
  958. * hrtimer_init - initialize a timer to the given clock
  959. * @timer: the timer to be initialized
  960. * @clock_id: the clock to be used
  961. * @mode: timer mode abs/rel
  962. */
  963. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  964. enum hrtimer_mode mode)
  965. {
  966. debug_init(timer, clock_id, mode);
  967. __hrtimer_init(timer, clock_id, mode);
  968. }
  969. EXPORT_SYMBOL_GPL(hrtimer_init);
  970. /*
  971. * A timer is active, when it is enqueued into the rbtree or the
  972. * callback function is running or it's in the state of being migrated
  973. * to another cpu.
  974. *
  975. * It is important for this function to not return a false negative.
  976. */
  977. bool hrtimer_active(const struct hrtimer *timer)
  978. {
  979. struct hrtimer_cpu_base *cpu_base;
  980. unsigned int seq;
  981. do {
  982. cpu_base = READ_ONCE(timer->base->cpu_base);
  983. seq = raw_read_seqcount_begin(&cpu_base->seq);
  984. if (timer->state != HRTIMER_STATE_INACTIVE ||
  985. cpu_base->running == timer)
  986. return true;
  987. } while (read_seqcount_retry(&cpu_base->seq, seq) ||
  988. cpu_base != READ_ONCE(timer->base->cpu_base));
  989. return false;
  990. }
  991. EXPORT_SYMBOL_GPL(hrtimer_active);
  992. /*
  993. * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
  994. * distinct sections:
  995. *
  996. * - queued: the timer is queued
  997. * - callback: the timer is being ran
  998. * - post: the timer is inactive or (re)queued
  999. *
  1000. * On the read side we ensure we observe timer->state and cpu_base->running
  1001. * from the same section, if anything changed while we looked at it, we retry.
  1002. * This includes timer->base changing because sequence numbers alone are
  1003. * insufficient for that.
  1004. *
  1005. * The sequence numbers are required because otherwise we could still observe
  1006. * a false negative if the read side got smeared over multiple consequtive
  1007. * __run_hrtimer() invocations.
  1008. */
  1009. static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
  1010. struct hrtimer_clock_base *base,
  1011. struct hrtimer *timer, ktime_t *now)
  1012. {
  1013. enum hrtimer_restart (*fn)(struct hrtimer *);
  1014. int restart;
  1015. lockdep_assert_held(&cpu_base->lock);
  1016. debug_deactivate(timer);
  1017. cpu_base->running = timer;
  1018. /*
  1019. * Separate the ->running assignment from the ->state assignment.
  1020. *
  1021. * As with a regular write barrier, this ensures the read side in
  1022. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1023. * timer->state == INACTIVE.
  1024. */
  1025. raw_write_seqcount_barrier(&cpu_base->seq);
  1026. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
  1027. fn = timer->function;
  1028. /*
  1029. * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
  1030. * timer is restarted with a period then it becomes an absolute
  1031. * timer. If its not restarted it does not matter.
  1032. */
  1033. if (IS_ENABLED(CONFIG_TIME_LOW_RES))
  1034. timer->is_rel = false;
  1035. /*
  1036. * Because we run timers from hardirq context, there is no chance
  1037. * they get migrated to another cpu, therefore its safe to unlock
  1038. * the timer base.
  1039. */
  1040. raw_spin_unlock(&cpu_base->lock);
  1041. trace_hrtimer_expire_entry(timer, now);
  1042. restart = fn(timer);
  1043. trace_hrtimer_expire_exit(timer);
  1044. raw_spin_lock(&cpu_base->lock);
  1045. /*
  1046. * Note: We clear the running state after enqueue_hrtimer and
  1047. * we do not reprogram the event hardware. Happens either in
  1048. * hrtimer_start_range_ns() or in hrtimer_interrupt()
  1049. *
  1050. * Note: Because we dropped the cpu_base->lock above,
  1051. * hrtimer_start_range_ns() can have popped in and enqueued the timer
  1052. * for us already.
  1053. */
  1054. if (restart != HRTIMER_NORESTART &&
  1055. !(timer->state & HRTIMER_STATE_ENQUEUED))
  1056. enqueue_hrtimer(timer, base);
  1057. /*
  1058. * Separate the ->running assignment from the ->state assignment.
  1059. *
  1060. * As with a regular write barrier, this ensures the read side in
  1061. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1062. * timer->state == INACTIVE.
  1063. */
  1064. raw_write_seqcount_barrier(&cpu_base->seq);
  1065. WARN_ON_ONCE(cpu_base->running != timer);
  1066. cpu_base->running = NULL;
  1067. }
  1068. static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
  1069. {
  1070. struct hrtimer_clock_base *base = cpu_base->clock_base;
  1071. unsigned int active = cpu_base->active_bases;
  1072. for (; active; base++, active >>= 1) {
  1073. struct timerqueue_node *node;
  1074. ktime_t basenow;
  1075. if (!(active & 0x01))
  1076. continue;
  1077. basenow = ktime_add(now, base->offset);
  1078. while ((node = timerqueue_getnext(&base->active))) {
  1079. struct hrtimer *timer;
  1080. timer = container_of(node, struct hrtimer, node);
  1081. /*
  1082. * The immediate goal for using the softexpires is
  1083. * minimizing wakeups, not running timers at the
  1084. * earliest interrupt after their soft expiration.
  1085. * This allows us to avoid using a Priority Search
  1086. * Tree, which can answer a stabbing querry for
  1087. * overlapping intervals and instead use the simple
  1088. * BST we already have.
  1089. * We don't add extra wakeups by delaying timers that
  1090. * are right-of a not yet expired timer, because that
  1091. * timer will have to trigger a wakeup anyway.
  1092. */
  1093. if (basenow < hrtimer_get_softexpires_tv64(timer))
  1094. break;
  1095. __run_hrtimer(cpu_base, base, timer, &basenow);
  1096. }
  1097. }
  1098. }
  1099. #ifdef CONFIG_HIGH_RES_TIMERS
  1100. /*
  1101. * High resolution timer interrupt
  1102. * Called with interrupts disabled
  1103. */
  1104. void hrtimer_interrupt(struct clock_event_device *dev)
  1105. {
  1106. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1107. ktime_t expires_next, now, entry_time, delta;
  1108. int retries = 0;
  1109. BUG_ON(!cpu_base->hres_active);
  1110. cpu_base->nr_events++;
  1111. dev->next_event = KTIME_MAX;
  1112. raw_spin_lock(&cpu_base->lock);
  1113. entry_time = now = hrtimer_update_base(cpu_base);
  1114. retry:
  1115. cpu_base->in_hrtirq = 1;
  1116. /*
  1117. * We set expires_next to KTIME_MAX here with cpu_base->lock
  1118. * held to prevent that a timer is enqueued in our queue via
  1119. * the migration code. This does not affect enqueueing of
  1120. * timers which run their callback and need to be requeued on
  1121. * this CPU.
  1122. */
  1123. cpu_base->expires_next = KTIME_MAX;
  1124. __hrtimer_run_queues(cpu_base, now);
  1125. /* Reevaluate the clock bases for the next expiry */
  1126. expires_next = __hrtimer_get_next_event(cpu_base);
  1127. /*
  1128. * Store the new expiry value so the migration code can verify
  1129. * against it.
  1130. */
  1131. cpu_base->expires_next = expires_next;
  1132. cpu_base->in_hrtirq = 0;
  1133. raw_spin_unlock(&cpu_base->lock);
  1134. /* Reprogramming necessary ? */
  1135. if (!tick_program_event(expires_next, 0)) {
  1136. cpu_base->hang_detected = 0;
  1137. return;
  1138. }
  1139. /*
  1140. * The next timer was already expired due to:
  1141. * - tracing
  1142. * - long lasting callbacks
  1143. * - being scheduled away when running in a VM
  1144. *
  1145. * We need to prevent that we loop forever in the hrtimer
  1146. * interrupt routine. We give it 3 attempts to avoid
  1147. * overreacting on some spurious event.
  1148. *
  1149. * Acquire base lock for updating the offsets and retrieving
  1150. * the current time.
  1151. */
  1152. raw_spin_lock(&cpu_base->lock);
  1153. now = hrtimer_update_base(cpu_base);
  1154. cpu_base->nr_retries++;
  1155. if (++retries < 3)
  1156. goto retry;
  1157. /*
  1158. * Give the system a chance to do something else than looping
  1159. * here. We stored the entry time, so we know exactly how long
  1160. * we spent here. We schedule the next event this amount of
  1161. * time away.
  1162. */
  1163. cpu_base->nr_hangs++;
  1164. cpu_base->hang_detected = 1;
  1165. raw_spin_unlock(&cpu_base->lock);
  1166. delta = ktime_sub(now, entry_time);
  1167. if ((unsigned int)delta > cpu_base->max_hang_time)
  1168. cpu_base->max_hang_time = (unsigned int) delta;
  1169. /*
  1170. * Limit it to a sensible value as we enforce a longer
  1171. * delay. Give the CPU at least 100ms to catch up.
  1172. */
  1173. if (delta > 100 * NSEC_PER_MSEC)
  1174. expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
  1175. else
  1176. expires_next = ktime_add(now, delta);
  1177. tick_program_event(expires_next, 1);
  1178. printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
  1179. ktime_to_ns(delta));
  1180. }
  1181. /* called with interrupts disabled */
  1182. static inline void __hrtimer_peek_ahead_timers(void)
  1183. {
  1184. struct tick_device *td;
  1185. if (!hrtimer_hres_active())
  1186. return;
  1187. td = this_cpu_ptr(&tick_cpu_device);
  1188. if (td && td->evtdev)
  1189. hrtimer_interrupt(td->evtdev);
  1190. }
  1191. #else /* CONFIG_HIGH_RES_TIMERS */
  1192. static inline void __hrtimer_peek_ahead_timers(void) { }
  1193. #endif /* !CONFIG_HIGH_RES_TIMERS */
  1194. /*
  1195. * Called from run_local_timers in hardirq context every jiffy
  1196. */
  1197. void hrtimer_run_queues(void)
  1198. {
  1199. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1200. ktime_t now;
  1201. if (__hrtimer_hres_active(cpu_base))
  1202. return;
  1203. /*
  1204. * This _is_ ugly: We have to check periodically, whether we
  1205. * can switch to highres and / or nohz mode. The clocksource
  1206. * switch happens with xtime_lock held. Notification from
  1207. * there only sets the check bit in the tick_oneshot code,
  1208. * otherwise we might deadlock vs. xtime_lock.
  1209. */
  1210. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
  1211. hrtimer_switch_to_hres();
  1212. return;
  1213. }
  1214. raw_spin_lock(&cpu_base->lock);
  1215. now = hrtimer_update_base(cpu_base);
  1216. __hrtimer_run_queues(cpu_base, now);
  1217. raw_spin_unlock(&cpu_base->lock);
  1218. }
  1219. /*
  1220. * Sleep related functions:
  1221. */
  1222. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1223. {
  1224. struct hrtimer_sleeper *t =
  1225. container_of(timer, struct hrtimer_sleeper, timer);
  1226. struct task_struct *task = t->task;
  1227. t->task = NULL;
  1228. if (task)
  1229. wake_up_process(task);
  1230. return HRTIMER_NORESTART;
  1231. }
  1232. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1233. {
  1234. sl->timer.function = hrtimer_wakeup;
  1235. sl->task = task;
  1236. }
  1237. EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
  1238. int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
  1239. {
  1240. switch(restart->nanosleep.type) {
  1241. #ifdef CONFIG_COMPAT
  1242. case TT_COMPAT:
  1243. if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
  1244. return -EFAULT;
  1245. break;
  1246. #endif
  1247. case TT_NATIVE:
  1248. if (put_timespec64(ts, restart->nanosleep.rmtp))
  1249. return -EFAULT;
  1250. break;
  1251. default:
  1252. BUG();
  1253. }
  1254. return -ERESTART_RESTARTBLOCK;
  1255. }
  1256. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1257. {
  1258. struct restart_block *restart;
  1259. hrtimer_init_sleeper(t, current);
  1260. do {
  1261. set_current_state(TASK_INTERRUPTIBLE);
  1262. hrtimer_start_expires(&t->timer, mode);
  1263. if (likely(t->task))
  1264. freezable_schedule();
  1265. hrtimer_cancel(&t->timer);
  1266. mode = HRTIMER_MODE_ABS;
  1267. } while (t->task && !signal_pending(current));
  1268. __set_current_state(TASK_RUNNING);
  1269. if (!t->task)
  1270. return 0;
  1271. restart = &current->restart_block;
  1272. if (restart->nanosleep.type != TT_NONE) {
  1273. ktime_t rem = hrtimer_expires_remaining(&t->timer);
  1274. struct timespec64 rmt;
  1275. if (rem <= 0)
  1276. return 0;
  1277. rmt = ktime_to_timespec64(rem);
  1278. return nanosleep_copyout(restart, &rmt);
  1279. }
  1280. return -ERESTART_RESTARTBLOCK;
  1281. }
  1282. static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1283. {
  1284. struct hrtimer_sleeper t;
  1285. int ret;
  1286. hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
  1287. HRTIMER_MODE_ABS);
  1288. hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
  1289. ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
  1290. destroy_hrtimer_on_stack(&t.timer);
  1291. return ret;
  1292. }
  1293. long hrtimer_nanosleep(const struct timespec64 *rqtp,
  1294. const enum hrtimer_mode mode, const clockid_t clockid)
  1295. {
  1296. struct restart_block *restart;
  1297. struct hrtimer_sleeper t;
  1298. int ret = 0;
  1299. u64 slack;
  1300. slack = current->timer_slack_ns;
  1301. if (dl_task(current) || rt_task(current))
  1302. slack = 0;
  1303. hrtimer_init_on_stack(&t.timer, clockid, mode);
  1304. hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
  1305. ret = do_nanosleep(&t, mode);
  1306. if (ret != -ERESTART_RESTARTBLOCK)
  1307. goto out;
  1308. /* Absolute timers do not update the rmtp value and restart: */
  1309. if (mode == HRTIMER_MODE_ABS) {
  1310. ret = -ERESTARTNOHAND;
  1311. goto out;
  1312. }
  1313. restart = &current->restart_block;
  1314. restart->fn = hrtimer_nanosleep_restart;
  1315. restart->nanosleep.clockid = t.timer.base->clockid;
  1316. restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
  1317. out:
  1318. destroy_hrtimer_on_stack(&t.timer);
  1319. return ret;
  1320. }
  1321. SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
  1322. struct timespec __user *, rmtp)
  1323. {
  1324. struct timespec64 tu;
  1325. if (get_timespec64(&tu, rqtp))
  1326. return -EFAULT;
  1327. if (!timespec64_valid(&tu))
  1328. return -EINVAL;
  1329. current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
  1330. current->restart_block.nanosleep.rmtp = rmtp;
  1331. return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1332. }
  1333. #ifdef CONFIG_COMPAT
  1334. COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
  1335. struct compat_timespec __user *, rmtp)
  1336. {
  1337. struct timespec64 tu;
  1338. if (compat_get_timespec64(&tu, rqtp))
  1339. return -EFAULT;
  1340. if (!timespec64_valid(&tu))
  1341. return -EINVAL;
  1342. current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
  1343. current->restart_block.nanosleep.compat_rmtp = rmtp;
  1344. return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1345. }
  1346. #endif
  1347. /*
  1348. * Functions related to boot-time initialization:
  1349. */
  1350. int hrtimers_prepare_cpu(unsigned int cpu)
  1351. {
  1352. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1353. int i;
  1354. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1355. cpu_base->clock_base[i].cpu_base = cpu_base;
  1356. timerqueue_init_head(&cpu_base->clock_base[i].active);
  1357. }
  1358. cpu_base->cpu = cpu;
  1359. hrtimer_init_hres(cpu_base);
  1360. return 0;
  1361. }
  1362. #ifdef CONFIG_HOTPLUG_CPU
  1363. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1364. struct hrtimer_clock_base *new_base)
  1365. {
  1366. struct hrtimer *timer;
  1367. struct timerqueue_node *node;
  1368. while ((node = timerqueue_getnext(&old_base->active))) {
  1369. timer = container_of(node, struct hrtimer, node);
  1370. BUG_ON(hrtimer_callback_running(timer));
  1371. debug_deactivate(timer);
  1372. /*
  1373. * Mark it as ENQUEUED not INACTIVE otherwise the
  1374. * timer could be seen as !active and just vanish away
  1375. * under us on another CPU
  1376. */
  1377. __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
  1378. timer->base = new_base;
  1379. /*
  1380. * Enqueue the timers on the new cpu. This does not
  1381. * reprogram the event device in case the timer
  1382. * expires before the earliest on this CPU, but we run
  1383. * hrtimer_interrupt after we migrated everything to
  1384. * sort out already expired timers and reprogram the
  1385. * event device.
  1386. */
  1387. enqueue_hrtimer(timer, new_base);
  1388. }
  1389. }
  1390. int hrtimers_dead_cpu(unsigned int scpu)
  1391. {
  1392. struct hrtimer_cpu_base *old_base, *new_base;
  1393. int i;
  1394. BUG_ON(cpu_online(scpu));
  1395. tick_cancel_sched_timer(scpu);
  1396. local_irq_disable();
  1397. old_base = &per_cpu(hrtimer_bases, scpu);
  1398. new_base = this_cpu_ptr(&hrtimer_bases);
  1399. /*
  1400. * The caller is globally serialized and nobody else
  1401. * takes two locks at once, deadlock is not possible.
  1402. */
  1403. raw_spin_lock(&new_base->lock);
  1404. raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1405. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1406. migrate_hrtimer_list(&old_base->clock_base[i],
  1407. &new_base->clock_base[i]);
  1408. }
  1409. raw_spin_unlock(&old_base->lock);
  1410. raw_spin_unlock(&new_base->lock);
  1411. /* Check, if we got expired work to do */
  1412. __hrtimer_peek_ahead_timers();
  1413. local_irq_enable();
  1414. return 0;
  1415. }
  1416. #endif /* CONFIG_HOTPLUG_CPU */
  1417. void __init hrtimers_init(void)
  1418. {
  1419. hrtimers_prepare_cpu(smp_processor_id());
  1420. }
  1421. /**
  1422. * schedule_hrtimeout_range_clock - sleep until timeout
  1423. * @expires: timeout value (ktime_t)
  1424. * @delta: slack in expires timeout (ktime_t)
  1425. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1426. * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
  1427. */
  1428. int __sched
  1429. schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
  1430. const enum hrtimer_mode mode, int clock)
  1431. {
  1432. struct hrtimer_sleeper t;
  1433. /*
  1434. * Optimize when a zero timeout value is given. It does not
  1435. * matter whether this is an absolute or a relative time.
  1436. */
  1437. if (expires && *expires == 0) {
  1438. __set_current_state(TASK_RUNNING);
  1439. return 0;
  1440. }
  1441. /*
  1442. * A NULL parameter means "infinite"
  1443. */
  1444. if (!expires) {
  1445. schedule();
  1446. return -EINTR;
  1447. }
  1448. hrtimer_init_on_stack(&t.timer, clock, mode);
  1449. hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
  1450. hrtimer_init_sleeper(&t, current);
  1451. hrtimer_start_expires(&t.timer, mode);
  1452. if (likely(t.task))
  1453. schedule();
  1454. hrtimer_cancel(&t.timer);
  1455. destroy_hrtimer_on_stack(&t.timer);
  1456. __set_current_state(TASK_RUNNING);
  1457. return !t.task ? 0 : -EINTR;
  1458. }
  1459. /**
  1460. * schedule_hrtimeout_range - sleep until timeout
  1461. * @expires: timeout value (ktime_t)
  1462. * @delta: slack in expires timeout (ktime_t)
  1463. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1464. *
  1465. * Make the current task sleep until the given expiry time has
  1466. * elapsed. The routine will return immediately unless
  1467. * the current task state has been set (see set_current_state()).
  1468. *
  1469. * The @delta argument gives the kernel the freedom to schedule the
  1470. * actual wakeup to a time that is both power and performance friendly.
  1471. * The kernel give the normal best effort behavior for "@expires+@delta",
  1472. * but may decide to fire the timer earlier, but no earlier than @expires.
  1473. *
  1474. * You can set the task state as follows -
  1475. *
  1476. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1477. * pass before the routine returns unless the current task is explicitly
  1478. * woken up, (e.g. by wake_up_process()).
  1479. *
  1480. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1481. * delivered to the current task or the current task is explicitly woken
  1482. * up.
  1483. *
  1484. * The current task state is guaranteed to be TASK_RUNNING when this
  1485. * routine returns.
  1486. *
  1487. * Returns 0 when the timer has expired. If the task was woken before the
  1488. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1489. * by an explicit wakeup, it returns -EINTR.
  1490. */
  1491. int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
  1492. const enum hrtimer_mode mode)
  1493. {
  1494. return schedule_hrtimeout_range_clock(expires, delta, mode,
  1495. CLOCK_MONOTONIC);
  1496. }
  1497. EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
  1498. /**
  1499. * schedule_hrtimeout - sleep until timeout
  1500. * @expires: timeout value (ktime_t)
  1501. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1502. *
  1503. * Make the current task sleep until the given expiry time has
  1504. * elapsed. The routine will return immediately unless
  1505. * the current task state has been set (see set_current_state()).
  1506. *
  1507. * You can set the task state as follows -
  1508. *
  1509. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1510. * pass before the routine returns unless the current task is explicitly
  1511. * woken up, (e.g. by wake_up_process()).
  1512. *
  1513. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1514. * delivered to the current task or the current task is explicitly woken
  1515. * up.
  1516. *
  1517. * The current task state is guaranteed to be TASK_RUNNING when this
  1518. * routine returns.
  1519. *
  1520. * Returns 0 when the timer has expired. If the task was woken before the
  1521. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1522. * by an explicit wakeup, it returns -EINTR.
  1523. */
  1524. int __sched schedule_hrtimeout(ktime_t *expires,
  1525. const enum hrtimer_mode mode)
  1526. {
  1527. return schedule_hrtimeout_range(expires, 0, mode);
  1528. }
  1529. EXPORT_SYMBOL_GPL(schedule_hrtimeout);