futex.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/sched/wake_q.h>
  65. #include <linux/sched/mm.h>
  66. #include <linux/hugetlb.h>
  67. #include <linux/freezer.h>
  68. #include <linux/bootmem.h>
  69. #include <linux/fault-inject.h>
  70. #include <asm/futex.h>
  71. #include "locking/rtmutex_common.h"
  72. /*
  73. * READ this before attempting to hack on futexes!
  74. *
  75. * Basic futex operation and ordering guarantees
  76. * =============================================
  77. *
  78. * The waiter reads the futex value in user space and calls
  79. * futex_wait(). This function computes the hash bucket and acquires
  80. * the hash bucket lock. After that it reads the futex user space value
  81. * again and verifies that the data has not changed. If it has not changed
  82. * it enqueues itself into the hash bucket, releases the hash bucket lock
  83. * and schedules.
  84. *
  85. * The waker side modifies the user space value of the futex and calls
  86. * futex_wake(). This function computes the hash bucket and acquires the
  87. * hash bucket lock. Then it looks for waiters on that futex in the hash
  88. * bucket and wakes them.
  89. *
  90. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91. * the hb spinlock can be avoided and simply return. In order for this
  92. * optimization to work, ordering guarantees must exist so that the waiter
  93. * being added to the list is acknowledged when the list is concurrently being
  94. * checked by the waker, avoiding scenarios like the following:
  95. *
  96. * CPU 0 CPU 1
  97. * val = *futex;
  98. * sys_futex(WAIT, futex, val);
  99. * futex_wait(futex, val);
  100. * uval = *futex;
  101. * *futex = newval;
  102. * sys_futex(WAKE, futex);
  103. * futex_wake(futex);
  104. * if (queue_empty())
  105. * return;
  106. * if (uval == val)
  107. * lock(hash_bucket(futex));
  108. * queue();
  109. * unlock(hash_bucket(futex));
  110. * schedule();
  111. *
  112. * This would cause the waiter on CPU 0 to wait forever because it
  113. * missed the transition of the user space value from val to newval
  114. * and the waker did not find the waiter in the hash bucket queue.
  115. *
  116. * The correct serialization ensures that a waiter either observes
  117. * the changed user space value before blocking or is woken by a
  118. * concurrent waker:
  119. *
  120. * CPU 0 CPU 1
  121. * val = *futex;
  122. * sys_futex(WAIT, futex, val);
  123. * futex_wait(futex, val);
  124. *
  125. * waiters++; (a)
  126. * smp_mb(); (A) <-- paired with -.
  127. * |
  128. * lock(hash_bucket(futex)); |
  129. * |
  130. * uval = *futex; |
  131. * | *futex = newval;
  132. * | sys_futex(WAKE, futex);
  133. * | futex_wake(futex);
  134. * |
  135. * `--------> smp_mb(); (B)
  136. * if (uval == val)
  137. * queue();
  138. * unlock(hash_bucket(futex));
  139. * schedule(); if (waiters)
  140. * lock(hash_bucket(futex));
  141. * else wake_waiters(futex);
  142. * waiters--; (b) unlock(hash_bucket(futex));
  143. *
  144. * Where (A) orders the waiters increment and the futex value read through
  145. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  146. * to futex and the waiters read -- this is done by the barriers for both
  147. * shared and private futexes in get_futex_key_refs().
  148. *
  149. * This yields the following case (where X:=waiters, Y:=futex):
  150. *
  151. * X = Y = 0
  152. *
  153. * w[X]=1 w[Y]=1
  154. * MB MB
  155. * r[Y]=y r[X]=x
  156. *
  157. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  158. * the guarantee that we cannot both miss the futex variable change and the
  159. * enqueue.
  160. *
  161. * Note that a new waiter is accounted for in (a) even when it is possible that
  162. * the wait call can return error, in which case we backtrack from it in (b).
  163. * Refer to the comment in queue_lock().
  164. *
  165. * Similarly, in order to account for waiters being requeued on another
  166. * address we always increment the waiters for the destination bucket before
  167. * acquiring the lock. It then decrements them again after releasing it -
  168. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  169. * will do the additional required waiter count housekeeping. This is done for
  170. * double_lock_hb() and double_unlock_hb(), respectively.
  171. */
  172. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  173. int __read_mostly futex_cmpxchg_enabled;
  174. #endif
  175. /*
  176. * Futex flags used to encode options to functions and preserve them across
  177. * restarts.
  178. */
  179. #ifdef CONFIG_MMU
  180. # define FLAGS_SHARED 0x01
  181. #else
  182. /*
  183. * NOMMU does not have per process address space. Let the compiler optimize
  184. * code away.
  185. */
  186. # define FLAGS_SHARED 0x00
  187. #endif
  188. #define FLAGS_CLOCKRT 0x02
  189. #define FLAGS_HAS_TIMEOUT 0x04
  190. /*
  191. * Priority Inheritance state:
  192. */
  193. struct futex_pi_state {
  194. /*
  195. * list of 'owned' pi_state instances - these have to be
  196. * cleaned up in do_exit() if the task exits prematurely:
  197. */
  198. struct list_head list;
  199. /*
  200. * The PI object:
  201. */
  202. struct rt_mutex pi_mutex;
  203. struct task_struct *owner;
  204. atomic_t refcount;
  205. union futex_key key;
  206. } __randomize_layout;
  207. /**
  208. * struct futex_q - The hashed futex queue entry, one per waiting task
  209. * @list: priority-sorted list of tasks waiting on this futex
  210. * @task: the task waiting on the futex
  211. * @lock_ptr: the hash bucket lock
  212. * @key: the key the futex is hashed on
  213. * @pi_state: optional priority inheritance state
  214. * @rt_waiter: rt_waiter storage for use with requeue_pi
  215. * @requeue_pi_key: the requeue_pi target futex key
  216. * @bitset: bitset for the optional bitmasked wakeup
  217. *
  218. * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
  219. * we can wake only the relevant ones (hashed queues may be shared).
  220. *
  221. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  222. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  223. * The order of wakeup is always to make the first condition true, then
  224. * the second.
  225. *
  226. * PI futexes are typically woken before they are removed from the hash list via
  227. * the rt_mutex code. See unqueue_me_pi().
  228. */
  229. struct futex_q {
  230. struct plist_node list;
  231. struct task_struct *task;
  232. spinlock_t *lock_ptr;
  233. union futex_key key;
  234. struct futex_pi_state *pi_state;
  235. struct rt_mutex_waiter *rt_waiter;
  236. union futex_key *requeue_pi_key;
  237. u32 bitset;
  238. } __randomize_layout;
  239. static const struct futex_q futex_q_init = {
  240. /* list gets initialized in queue_me()*/
  241. .key = FUTEX_KEY_INIT,
  242. .bitset = FUTEX_BITSET_MATCH_ANY
  243. };
  244. /*
  245. * Hash buckets are shared by all the futex_keys that hash to the same
  246. * location. Each key may have multiple futex_q structures, one for each task
  247. * waiting on a futex.
  248. */
  249. struct futex_hash_bucket {
  250. atomic_t waiters;
  251. spinlock_t lock;
  252. struct plist_head chain;
  253. } ____cacheline_aligned_in_smp;
  254. /*
  255. * The base of the bucket array and its size are always used together
  256. * (after initialization only in hash_futex()), so ensure that they
  257. * reside in the same cacheline.
  258. */
  259. static struct {
  260. struct futex_hash_bucket *queues;
  261. unsigned long hashsize;
  262. } __futex_data __read_mostly __aligned(2*sizeof(long));
  263. #define futex_queues (__futex_data.queues)
  264. #define futex_hashsize (__futex_data.hashsize)
  265. /*
  266. * Fault injections for futexes.
  267. */
  268. #ifdef CONFIG_FAIL_FUTEX
  269. static struct {
  270. struct fault_attr attr;
  271. bool ignore_private;
  272. } fail_futex = {
  273. .attr = FAULT_ATTR_INITIALIZER,
  274. .ignore_private = false,
  275. };
  276. static int __init setup_fail_futex(char *str)
  277. {
  278. return setup_fault_attr(&fail_futex.attr, str);
  279. }
  280. __setup("fail_futex=", setup_fail_futex);
  281. static bool should_fail_futex(bool fshared)
  282. {
  283. if (fail_futex.ignore_private && !fshared)
  284. return false;
  285. return should_fail(&fail_futex.attr, 1);
  286. }
  287. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  288. static int __init fail_futex_debugfs(void)
  289. {
  290. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  291. struct dentry *dir;
  292. dir = fault_create_debugfs_attr("fail_futex", NULL,
  293. &fail_futex.attr);
  294. if (IS_ERR(dir))
  295. return PTR_ERR(dir);
  296. if (!debugfs_create_bool("ignore-private", mode, dir,
  297. &fail_futex.ignore_private)) {
  298. debugfs_remove_recursive(dir);
  299. return -ENOMEM;
  300. }
  301. return 0;
  302. }
  303. late_initcall(fail_futex_debugfs);
  304. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  305. #else
  306. static inline bool should_fail_futex(bool fshared)
  307. {
  308. return false;
  309. }
  310. #endif /* CONFIG_FAIL_FUTEX */
  311. static inline void futex_get_mm(union futex_key *key)
  312. {
  313. mmgrab(key->private.mm);
  314. /*
  315. * Ensure futex_get_mm() implies a full barrier such that
  316. * get_futex_key() implies a full barrier. This is relied upon
  317. * as smp_mb(); (B), see the ordering comment above.
  318. */
  319. smp_mb__after_atomic();
  320. }
  321. /*
  322. * Reflects a new waiter being added to the waitqueue.
  323. */
  324. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  325. {
  326. #ifdef CONFIG_SMP
  327. atomic_inc(&hb->waiters);
  328. /*
  329. * Full barrier (A), see the ordering comment above.
  330. */
  331. smp_mb__after_atomic();
  332. #endif
  333. }
  334. /*
  335. * Reflects a waiter being removed from the waitqueue by wakeup
  336. * paths.
  337. */
  338. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  339. {
  340. #ifdef CONFIG_SMP
  341. atomic_dec(&hb->waiters);
  342. #endif
  343. }
  344. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  345. {
  346. #ifdef CONFIG_SMP
  347. return atomic_read(&hb->waiters);
  348. #else
  349. return 1;
  350. #endif
  351. }
  352. /**
  353. * hash_futex - Return the hash bucket in the global hash
  354. * @key: Pointer to the futex key for which the hash is calculated
  355. *
  356. * We hash on the keys returned from get_futex_key (see below) and return the
  357. * corresponding hash bucket in the global hash.
  358. */
  359. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  360. {
  361. u32 hash = jhash2((u32*)&key->both.word,
  362. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  363. key->both.offset);
  364. return &futex_queues[hash & (futex_hashsize - 1)];
  365. }
  366. /**
  367. * match_futex - Check whether two futex keys are equal
  368. * @key1: Pointer to key1
  369. * @key2: Pointer to key2
  370. *
  371. * Return 1 if two futex_keys are equal, 0 otherwise.
  372. */
  373. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  374. {
  375. return (key1 && key2
  376. && key1->both.word == key2->both.word
  377. && key1->both.ptr == key2->both.ptr
  378. && key1->both.offset == key2->both.offset);
  379. }
  380. /*
  381. * Take a reference to the resource addressed by a key.
  382. * Can be called while holding spinlocks.
  383. *
  384. */
  385. static void get_futex_key_refs(union futex_key *key)
  386. {
  387. if (!key->both.ptr)
  388. return;
  389. /*
  390. * On MMU less systems futexes are always "private" as there is no per
  391. * process address space. We need the smp wmb nevertheless - yes,
  392. * arch/blackfin has MMU less SMP ...
  393. */
  394. if (!IS_ENABLED(CONFIG_MMU)) {
  395. smp_mb(); /* explicit smp_mb(); (B) */
  396. return;
  397. }
  398. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  399. case FUT_OFF_INODE:
  400. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  401. break;
  402. case FUT_OFF_MMSHARED:
  403. futex_get_mm(key); /* implies smp_mb(); (B) */
  404. break;
  405. default:
  406. /*
  407. * Private futexes do not hold reference on an inode or
  408. * mm, therefore the only purpose of calling get_futex_key_refs
  409. * is because we need the barrier for the lockless waiter check.
  410. */
  411. smp_mb(); /* explicit smp_mb(); (B) */
  412. }
  413. }
  414. /*
  415. * Drop a reference to the resource addressed by a key.
  416. * The hash bucket spinlock must not be held. This is
  417. * a no-op for private futexes, see comment in the get
  418. * counterpart.
  419. */
  420. static void drop_futex_key_refs(union futex_key *key)
  421. {
  422. if (!key->both.ptr) {
  423. /* If we're here then we tried to put a key we failed to get */
  424. WARN_ON_ONCE(1);
  425. return;
  426. }
  427. if (!IS_ENABLED(CONFIG_MMU))
  428. return;
  429. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  430. case FUT_OFF_INODE:
  431. iput(key->shared.inode);
  432. break;
  433. case FUT_OFF_MMSHARED:
  434. mmdrop(key->private.mm);
  435. break;
  436. }
  437. }
  438. /**
  439. * get_futex_key() - Get parameters which are the keys for a futex
  440. * @uaddr: virtual address of the futex
  441. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  442. * @key: address where result is stored.
  443. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  444. * VERIFY_WRITE)
  445. *
  446. * Return: a negative error code or 0
  447. *
  448. * The key words are stored in @key on success.
  449. *
  450. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  451. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  452. * We can usually work out the index without swapping in the page.
  453. *
  454. * lock_page() might sleep, the caller should not hold a spinlock.
  455. */
  456. static int
  457. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  458. {
  459. unsigned long address = (unsigned long)uaddr;
  460. struct mm_struct *mm = current->mm;
  461. struct page *page, *tail;
  462. struct address_space *mapping;
  463. int err, ro = 0;
  464. /*
  465. * The futex address must be "naturally" aligned.
  466. */
  467. key->both.offset = address % PAGE_SIZE;
  468. if (unlikely((address % sizeof(u32)) != 0))
  469. return -EINVAL;
  470. address -= key->both.offset;
  471. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  472. return -EFAULT;
  473. if (unlikely(should_fail_futex(fshared)))
  474. return -EFAULT;
  475. /*
  476. * PROCESS_PRIVATE futexes are fast.
  477. * As the mm cannot disappear under us and the 'key' only needs
  478. * virtual address, we dont even have to find the underlying vma.
  479. * Note : We do have to check 'uaddr' is a valid user address,
  480. * but access_ok() should be faster than find_vma()
  481. */
  482. if (!fshared) {
  483. key->private.mm = mm;
  484. key->private.address = address;
  485. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  486. return 0;
  487. }
  488. again:
  489. /* Ignore any VERIFY_READ mapping (futex common case) */
  490. if (unlikely(should_fail_futex(fshared)))
  491. return -EFAULT;
  492. err = get_user_pages_fast(address, 1, 1, &page);
  493. /*
  494. * If write access is not required (eg. FUTEX_WAIT), try
  495. * and get read-only access.
  496. */
  497. if (err == -EFAULT && rw == VERIFY_READ) {
  498. err = get_user_pages_fast(address, 1, 0, &page);
  499. ro = 1;
  500. }
  501. if (err < 0)
  502. return err;
  503. else
  504. err = 0;
  505. /*
  506. * The treatment of mapping from this point on is critical. The page
  507. * lock protects many things but in this context the page lock
  508. * stabilizes mapping, prevents inode freeing in the shared
  509. * file-backed region case and guards against movement to swap cache.
  510. *
  511. * Strictly speaking the page lock is not needed in all cases being
  512. * considered here and page lock forces unnecessarily serialization
  513. * From this point on, mapping will be re-verified if necessary and
  514. * page lock will be acquired only if it is unavoidable
  515. *
  516. * Mapping checks require the head page for any compound page so the
  517. * head page and mapping is looked up now. For anonymous pages, it
  518. * does not matter if the page splits in the future as the key is
  519. * based on the address. For filesystem-backed pages, the tail is
  520. * required as the index of the page determines the key. For
  521. * base pages, there is no tail page and tail == page.
  522. */
  523. tail = page;
  524. page = compound_head(page);
  525. mapping = READ_ONCE(page->mapping);
  526. /*
  527. * If page->mapping is NULL, then it cannot be a PageAnon
  528. * page; but it might be the ZERO_PAGE or in the gate area or
  529. * in a special mapping (all cases which we are happy to fail);
  530. * or it may have been a good file page when get_user_pages_fast
  531. * found it, but truncated or holepunched or subjected to
  532. * invalidate_complete_page2 before we got the page lock (also
  533. * cases which we are happy to fail). And we hold a reference,
  534. * so refcount care in invalidate_complete_page's remove_mapping
  535. * prevents drop_caches from setting mapping to NULL beneath us.
  536. *
  537. * The case we do have to guard against is when memory pressure made
  538. * shmem_writepage move it from filecache to swapcache beneath us:
  539. * an unlikely race, but we do need to retry for page->mapping.
  540. */
  541. if (unlikely(!mapping)) {
  542. int shmem_swizzled;
  543. /*
  544. * Page lock is required to identify which special case above
  545. * applies. If this is really a shmem page then the page lock
  546. * will prevent unexpected transitions.
  547. */
  548. lock_page(page);
  549. shmem_swizzled = PageSwapCache(page) || page->mapping;
  550. unlock_page(page);
  551. put_page(page);
  552. if (shmem_swizzled)
  553. goto again;
  554. return -EFAULT;
  555. }
  556. /*
  557. * Private mappings are handled in a simple way.
  558. *
  559. * If the futex key is stored on an anonymous page, then the associated
  560. * object is the mm which is implicitly pinned by the calling process.
  561. *
  562. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  563. * it's a read-only handle, it's expected that futexes attach to
  564. * the object not the particular process.
  565. */
  566. if (PageAnon(page)) {
  567. /*
  568. * A RO anonymous page will never change and thus doesn't make
  569. * sense for futex operations.
  570. */
  571. if (unlikely(should_fail_futex(fshared)) || ro) {
  572. err = -EFAULT;
  573. goto out;
  574. }
  575. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  576. key->private.mm = mm;
  577. key->private.address = address;
  578. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  579. } else {
  580. struct inode *inode;
  581. /*
  582. * The associated futex object in this case is the inode and
  583. * the page->mapping must be traversed. Ordinarily this should
  584. * be stabilised under page lock but it's not strictly
  585. * necessary in this case as we just want to pin the inode, not
  586. * update the radix tree or anything like that.
  587. *
  588. * The RCU read lock is taken as the inode is finally freed
  589. * under RCU. If the mapping still matches expectations then the
  590. * mapping->host can be safely accessed as being a valid inode.
  591. */
  592. rcu_read_lock();
  593. if (READ_ONCE(page->mapping) != mapping) {
  594. rcu_read_unlock();
  595. put_page(page);
  596. goto again;
  597. }
  598. inode = READ_ONCE(mapping->host);
  599. if (!inode) {
  600. rcu_read_unlock();
  601. put_page(page);
  602. goto again;
  603. }
  604. /*
  605. * Take a reference unless it is about to be freed. Previously
  606. * this reference was taken by ihold under the page lock
  607. * pinning the inode in place so i_lock was unnecessary. The
  608. * only way for this check to fail is if the inode was
  609. * truncated in parallel which is almost certainly an
  610. * application bug. In such a case, just retry.
  611. *
  612. * We are not calling into get_futex_key_refs() in file-backed
  613. * cases, therefore a successful atomic_inc return below will
  614. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  615. */
  616. if (!atomic_inc_not_zero(&inode->i_count)) {
  617. rcu_read_unlock();
  618. put_page(page);
  619. goto again;
  620. }
  621. /* Should be impossible but lets be paranoid for now */
  622. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  623. err = -EFAULT;
  624. rcu_read_unlock();
  625. iput(inode);
  626. goto out;
  627. }
  628. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  629. key->shared.inode = inode;
  630. key->shared.pgoff = basepage_index(tail);
  631. rcu_read_unlock();
  632. }
  633. out:
  634. put_page(page);
  635. return err;
  636. }
  637. static inline void put_futex_key(union futex_key *key)
  638. {
  639. drop_futex_key_refs(key);
  640. }
  641. /**
  642. * fault_in_user_writeable() - Fault in user address and verify RW access
  643. * @uaddr: pointer to faulting user space address
  644. *
  645. * Slow path to fixup the fault we just took in the atomic write
  646. * access to @uaddr.
  647. *
  648. * We have no generic implementation of a non-destructive write to the
  649. * user address. We know that we faulted in the atomic pagefault
  650. * disabled section so we can as well avoid the #PF overhead by
  651. * calling get_user_pages() right away.
  652. */
  653. static int fault_in_user_writeable(u32 __user *uaddr)
  654. {
  655. struct mm_struct *mm = current->mm;
  656. int ret;
  657. down_read(&mm->mmap_sem);
  658. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  659. FAULT_FLAG_WRITE, NULL);
  660. up_read(&mm->mmap_sem);
  661. return ret < 0 ? ret : 0;
  662. }
  663. /**
  664. * futex_top_waiter() - Return the highest priority waiter on a futex
  665. * @hb: the hash bucket the futex_q's reside in
  666. * @key: the futex key (to distinguish it from other futex futex_q's)
  667. *
  668. * Must be called with the hb lock held.
  669. */
  670. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  671. union futex_key *key)
  672. {
  673. struct futex_q *this;
  674. plist_for_each_entry(this, &hb->chain, list) {
  675. if (match_futex(&this->key, key))
  676. return this;
  677. }
  678. return NULL;
  679. }
  680. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  681. u32 uval, u32 newval)
  682. {
  683. int ret;
  684. pagefault_disable();
  685. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  686. pagefault_enable();
  687. return ret;
  688. }
  689. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  690. {
  691. int ret;
  692. pagefault_disable();
  693. ret = __get_user(*dest, from);
  694. pagefault_enable();
  695. return ret ? -EFAULT : 0;
  696. }
  697. /*
  698. * PI code:
  699. */
  700. static int refill_pi_state_cache(void)
  701. {
  702. struct futex_pi_state *pi_state;
  703. if (likely(current->pi_state_cache))
  704. return 0;
  705. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  706. if (!pi_state)
  707. return -ENOMEM;
  708. INIT_LIST_HEAD(&pi_state->list);
  709. /* pi_mutex gets initialized later */
  710. pi_state->owner = NULL;
  711. atomic_set(&pi_state->refcount, 1);
  712. pi_state->key = FUTEX_KEY_INIT;
  713. current->pi_state_cache = pi_state;
  714. return 0;
  715. }
  716. static struct futex_pi_state *alloc_pi_state(void)
  717. {
  718. struct futex_pi_state *pi_state = current->pi_state_cache;
  719. WARN_ON(!pi_state);
  720. current->pi_state_cache = NULL;
  721. return pi_state;
  722. }
  723. static void get_pi_state(struct futex_pi_state *pi_state)
  724. {
  725. WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
  726. }
  727. /*
  728. * Drops a reference to the pi_state object and frees or caches it
  729. * when the last reference is gone.
  730. */
  731. static void put_pi_state(struct futex_pi_state *pi_state)
  732. {
  733. if (!pi_state)
  734. return;
  735. if (!atomic_dec_and_test(&pi_state->refcount))
  736. return;
  737. /*
  738. * If pi_state->owner is NULL, the owner is most probably dying
  739. * and has cleaned up the pi_state already
  740. */
  741. if (pi_state->owner) {
  742. struct task_struct *owner;
  743. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  744. owner = pi_state->owner;
  745. if (owner) {
  746. raw_spin_lock(&owner->pi_lock);
  747. list_del_init(&pi_state->list);
  748. raw_spin_unlock(&owner->pi_lock);
  749. }
  750. rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
  751. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  752. }
  753. if (current->pi_state_cache) {
  754. kfree(pi_state);
  755. } else {
  756. /*
  757. * pi_state->list is already empty.
  758. * clear pi_state->owner.
  759. * refcount is at 0 - put it back to 1.
  760. */
  761. pi_state->owner = NULL;
  762. atomic_set(&pi_state->refcount, 1);
  763. current->pi_state_cache = pi_state;
  764. }
  765. }
  766. /*
  767. * Look up the task based on what TID userspace gave us.
  768. * We dont trust it.
  769. */
  770. static struct task_struct *futex_find_get_task(pid_t pid)
  771. {
  772. struct task_struct *p;
  773. rcu_read_lock();
  774. p = find_task_by_vpid(pid);
  775. if (p)
  776. get_task_struct(p);
  777. rcu_read_unlock();
  778. return p;
  779. }
  780. #ifdef CONFIG_FUTEX_PI
  781. /*
  782. * This task is holding PI mutexes at exit time => bad.
  783. * Kernel cleans up PI-state, but userspace is likely hosed.
  784. * (Robust-futex cleanup is separate and might save the day for userspace.)
  785. */
  786. void exit_pi_state_list(struct task_struct *curr)
  787. {
  788. struct list_head *next, *head = &curr->pi_state_list;
  789. struct futex_pi_state *pi_state;
  790. struct futex_hash_bucket *hb;
  791. union futex_key key = FUTEX_KEY_INIT;
  792. if (!futex_cmpxchg_enabled)
  793. return;
  794. /*
  795. * We are a ZOMBIE and nobody can enqueue itself on
  796. * pi_state_list anymore, but we have to be careful
  797. * versus waiters unqueueing themselves:
  798. */
  799. raw_spin_lock_irq(&curr->pi_lock);
  800. while (!list_empty(head)) {
  801. next = head->next;
  802. pi_state = list_entry(next, struct futex_pi_state, list);
  803. key = pi_state->key;
  804. hb = hash_futex(&key);
  805. /*
  806. * We can race against put_pi_state() removing itself from the
  807. * list (a waiter going away). put_pi_state() will first
  808. * decrement the reference count and then modify the list, so
  809. * its possible to see the list entry but fail this reference
  810. * acquire.
  811. *
  812. * In that case; drop the locks to let put_pi_state() make
  813. * progress and retry the loop.
  814. */
  815. if (!atomic_inc_not_zero(&pi_state->refcount)) {
  816. raw_spin_unlock_irq(&curr->pi_lock);
  817. cpu_relax();
  818. raw_spin_lock_irq(&curr->pi_lock);
  819. continue;
  820. }
  821. raw_spin_unlock_irq(&curr->pi_lock);
  822. spin_lock(&hb->lock);
  823. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  824. raw_spin_lock(&curr->pi_lock);
  825. /*
  826. * We dropped the pi-lock, so re-check whether this
  827. * task still owns the PI-state:
  828. */
  829. if (head->next != next) {
  830. /* retain curr->pi_lock for the loop invariant */
  831. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  832. spin_unlock(&hb->lock);
  833. put_pi_state(pi_state);
  834. continue;
  835. }
  836. WARN_ON(pi_state->owner != curr);
  837. WARN_ON(list_empty(&pi_state->list));
  838. list_del_init(&pi_state->list);
  839. pi_state->owner = NULL;
  840. raw_spin_unlock(&curr->pi_lock);
  841. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  842. spin_unlock(&hb->lock);
  843. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  844. put_pi_state(pi_state);
  845. raw_spin_lock_irq(&curr->pi_lock);
  846. }
  847. raw_spin_unlock_irq(&curr->pi_lock);
  848. }
  849. #endif
  850. /*
  851. * We need to check the following states:
  852. *
  853. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  854. *
  855. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  856. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  857. *
  858. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  859. *
  860. * [4] Found | Found | NULL | 0 | 1 | Valid
  861. * [5] Found | Found | NULL | >0 | 1 | Invalid
  862. *
  863. * [6] Found | Found | task | 0 | 1 | Valid
  864. *
  865. * [7] Found | Found | NULL | Any | 0 | Invalid
  866. *
  867. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  868. * [9] Found | Found | task | 0 | 0 | Invalid
  869. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  870. *
  871. * [1] Indicates that the kernel can acquire the futex atomically. We
  872. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  873. *
  874. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  875. * thread is found then it indicates that the owner TID has died.
  876. *
  877. * [3] Invalid. The waiter is queued on a non PI futex
  878. *
  879. * [4] Valid state after exit_robust_list(), which sets the user space
  880. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  881. *
  882. * [5] The user space value got manipulated between exit_robust_list()
  883. * and exit_pi_state_list()
  884. *
  885. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  886. * the pi_state but cannot access the user space value.
  887. *
  888. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  889. *
  890. * [8] Owner and user space value match
  891. *
  892. * [9] There is no transient state which sets the user space TID to 0
  893. * except exit_robust_list(), but this is indicated by the
  894. * FUTEX_OWNER_DIED bit. See [4]
  895. *
  896. * [10] There is no transient state which leaves owner and user space
  897. * TID out of sync.
  898. *
  899. *
  900. * Serialization and lifetime rules:
  901. *
  902. * hb->lock:
  903. *
  904. * hb -> futex_q, relation
  905. * futex_q -> pi_state, relation
  906. *
  907. * (cannot be raw because hb can contain arbitrary amount
  908. * of futex_q's)
  909. *
  910. * pi_mutex->wait_lock:
  911. *
  912. * {uval, pi_state}
  913. *
  914. * (and pi_mutex 'obviously')
  915. *
  916. * p->pi_lock:
  917. *
  918. * p->pi_state_list -> pi_state->list, relation
  919. *
  920. * pi_state->refcount:
  921. *
  922. * pi_state lifetime
  923. *
  924. *
  925. * Lock order:
  926. *
  927. * hb->lock
  928. * pi_mutex->wait_lock
  929. * p->pi_lock
  930. *
  931. */
  932. /*
  933. * Validate that the existing waiter has a pi_state and sanity check
  934. * the pi_state against the user space value. If correct, attach to
  935. * it.
  936. */
  937. static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
  938. struct futex_pi_state *pi_state,
  939. struct futex_pi_state **ps)
  940. {
  941. pid_t pid = uval & FUTEX_TID_MASK;
  942. u32 uval2;
  943. int ret;
  944. /*
  945. * Userspace might have messed up non-PI and PI futexes [3]
  946. */
  947. if (unlikely(!pi_state))
  948. return -EINVAL;
  949. /*
  950. * We get here with hb->lock held, and having found a
  951. * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
  952. * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
  953. * which in turn means that futex_lock_pi() still has a reference on
  954. * our pi_state.
  955. *
  956. * The waiter holding a reference on @pi_state also protects against
  957. * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
  958. * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
  959. * free pi_state before we can take a reference ourselves.
  960. */
  961. WARN_ON(!atomic_read(&pi_state->refcount));
  962. /*
  963. * Now that we have a pi_state, we can acquire wait_lock
  964. * and do the state validation.
  965. */
  966. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  967. /*
  968. * Since {uval, pi_state} is serialized by wait_lock, and our current
  969. * uval was read without holding it, it can have changed. Verify it
  970. * still is what we expect it to be, otherwise retry the entire
  971. * operation.
  972. */
  973. if (get_futex_value_locked(&uval2, uaddr))
  974. goto out_efault;
  975. if (uval != uval2)
  976. goto out_eagain;
  977. /*
  978. * Handle the owner died case:
  979. */
  980. if (uval & FUTEX_OWNER_DIED) {
  981. /*
  982. * exit_pi_state_list sets owner to NULL and wakes the
  983. * topmost waiter. The task which acquires the
  984. * pi_state->rt_mutex will fixup owner.
  985. */
  986. if (!pi_state->owner) {
  987. /*
  988. * No pi state owner, but the user space TID
  989. * is not 0. Inconsistent state. [5]
  990. */
  991. if (pid)
  992. goto out_einval;
  993. /*
  994. * Take a ref on the state and return success. [4]
  995. */
  996. goto out_attach;
  997. }
  998. /*
  999. * If TID is 0, then either the dying owner has not
  1000. * yet executed exit_pi_state_list() or some waiter
  1001. * acquired the rtmutex in the pi state, but did not
  1002. * yet fixup the TID in user space.
  1003. *
  1004. * Take a ref on the state and return success. [6]
  1005. */
  1006. if (!pid)
  1007. goto out_attach;
  1008. } else {
  1009. /*
  1010. * If the owner died bit is not set, then the pi_state
  1011. * must have an owner. [7]
  1012. */
  1013. if (!pi_state->owner)
  1014. goto out_einval;
  1015. }
  1016. /*
  1017. * Bail out if user space manipulated the futex value. If pi
  1018. * state exists then the owner TID must be the same as the
  1019. * user space TID. [9/10]
  1020. */
  1021. if (pid != task_pid_vnr(pi_state->owner))
  1022. goto out_einval;
  1023. out_attach:
  1024. get_pi_state(pi_state);
  1025. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1026. *ps = pi_state;
  1027. return 0;
  1028. out_einval:
  1029. ret = -EINVAL;
  1030. goto out_error;
  1031. out_eagain:
  1032. ret = -EAGAIN;
  1033. goto out_error;
  1034. out_efault:
  1035. ret = -EFAULT;
  1036. goto out_error;
  1037. out_error:
  1038. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1039. return ret;
  1040. }
  1041. /*
  1042. * Lookup the task for the TID provided from user space and attach to
  1043. * it after doing proper sanity checks.
  1044. */
  1045. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  1046. struct futex_pi_state **ps)
  1047. {
  1048. pid_t pid = uval & FUTEX_TID_MASK;
  1049. struct futex_pi_state *pi_state;
  1050. struct task_struct *p;
  1051. /*
  1052. * We are the first waiter - try to look up the real owner and attach
  1053. * the new pi_state to it, but bail out when TID = 0 [1]
  1054. */
  1055. if (!pid)
  1056. return -ESRCH;
  1057. p = futex_find_get_task(pid);
  1058. if (!p)
  1059. return -ESRCH;
  1060. if (unlikely(p->flags & PF_KTHREAD)) {
  1061. put_task_struct(p);
  1062. return -EPERM;
  1063. }
  1064. /*
  1065. * We need to look at the task state flags to figure out,
  1066. * whether the task is exiting. To protect against the do_exit
  1067. * change of the task flags, we do this protected by
  1068. * p->pi_lock:
  1069. */
  1070. raw_spin_lock_irq(&p->pi_lock);
  1071. if (unlikely(p->flags & PF_EXITING)) {
  1072. /*
  1073. * The task is on the way out. When PF_EXITPIDONE is
  1074. * set, we know that the task has finished the
  1075. * cleanup:
  1076. */
  1077. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  1078. raw_spin_unlock_irq(&p->pi_lock);
  1079. put_task_struct(p);
  1080. return ret;
  1081. }
  1082. /*
  1083. * No existing pi state. First waiter. [2]
  1084. *
  1085. * This creates pi_state, we have hb->lock held, this means nothing can
  1086. * observe this state, wait_lock is irrelevant.
  1087. */
  1088. pi_state = alloc_pi_state();
  1089. /*
  1090. * Initialize the pi_mutex in locked state and make @p
  1091. * the owner of it:
  1092. */
  1093. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  1094. /* Store the key for possible exit cleanups: */
  1095. pi_state->key = *key;
  1096. WARN_ON(!list_empty(&pi_state->list));
  1097. list_add(&pi_state->list, &p->pi_state_list);
  1098. /*
  1099. * Assignment without holding pi_state->pi_mutex.wait_lock is safe
  1100. * because there is no concurrency as the object is not published yet.
  1101. */
  1102. pi_state->owner = p;
  1103. raw_spin_unlock_irq(&p->pi_lock);
  1104. put_task_struct(p);
  1105. *ps = pi_state;
  1106. return 0;
  1107. }
  1108. static int lookup_pi_state(u32 __user *uaddr, u32 uval,
  1109. struct futex_hash_bucket *hb,
  1110. union futex_key *key, struct futex_pi_state **ps)
  1111. {
  1112. struct futex_q *top_waiter = futex_top_waiter(hb, key);
  1113. /*
  1114. * If there is a waiter on that futex, validate it and
  1115. * attach to the pi_state when the validation succeeds.
  1116. */
  1117. if (top_waiter)
  1118. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1119. /*
  1120. * We are the first waiter - try to look up the owner based on
  1121. * @uval and attach to it.
  1122. */
  1123. return attach_to_pi_owner(uval, key, ps);
  1124. }
  1125. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1126. {
  1127. u32 uninitialized_var(curval);
  1128. if (unlikely(should_fail_futex(true)))
  1129. return -EFAULT;
  1130. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1131. return -EFAULT;
  1132. /* If user space value changed, let the caller retry */
  1133. return curval != uval ? -EAGAIN : 0;
  1134. }
  1135. /**
  1136. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1137. * @uaddr: the pi futex user address
  1138. * @hb: the pi futex hash bucket
  1139. * @key: the futex key associated with uaddr and hb
  1140. * @ps: the pi_state pointer where we store the result of the
  1141. * lookup
  1142. * @task: the task to perform the atomic lock work for. This will
  1143. * be "current" except in the case of requeue pi.
  1144. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1145. *
  1146. * Return:
  1147. * - 0 - ready to wait;
  1148. * - 1 - acquired the lock;
  1149. * - <0 - error
  1150. *
  1151. * The hb->lock and futex_key refs shall be held by the caller.
  1152. */
  1153. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1154. union futex_key *key,
  1155. struct futex_pi_state **ps,
  1156. struct task_struct *task, int set_waiters)
  1157. {
  1158. u32 uval, newval, vpid = task_pid_vnr(task);
  1159. struct futex_q *top_waiter;
  1160. int ret;
  1161. /*
  1162. * Read the user space value first so we can validate a few
  1163. * things before proceeding further.
  1164. */
  1165. if (get_futex_value_locked(&uval, uaddr))
  1166. return -EFAULT;
  1167. if (unlikely(should_fail_futex(true)))
  1168. return -EFAULT;
  1169. /*
  1170. * Detect deadlocks.
  1171. */
  1172. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1173. return -EDEADLK;
  1174. if ((unlikely(should_fail_futex(true))))
  1175. return -EDEADLK;
  1176. /*
  1177. * Lookup existing state first. If it exists, try to attach to
  1178. * its pi_state.
  1179. */
  1180. top_waiter = futex_top_waiter(hb, key);
  1181. if (top_waiter)
  1182. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1183. /*
  1184. * No waiter and user TID is 0. We are here because the
  1185. * waiters or the owner died bit is set or called from
  1186. * requeue_cmp_pi or for whatever reason something took the
  1187. * syscall.
  1188. */
  1189. if (!(uval & FUTEX_TID_MASK)) {
  1190. /*
  1191. * We take over the futex. No other waiters and the user space
  1192. * TID is 0. We preserve the owner died bit.
  1193. */
  1194. newval = uval & FUTEX_OWNER_DIED;
  1195. newval |= vpid;
  1196. /* The futex requeue_pi code can enforce the waiters bit */
  1197. if (set_waiters)
  1198. newval |= FUTEX_WAITERS;
  1199. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1200. /* If the take over worked, return 1 */
  1201. return ret < 0 ? ret : 1;
  1202. }
  1203. /*
  1204. * First waiter. Set the waiters bit before attaching ourself to
  1205. * the owner. If owner tries to unlock, it will be forced into
  1206. * the kernel and blocked on hb->lock.
  1207. */
  1208. newval = uval | FUTEX_WAITERS;
  1209. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1210. if (ret)
  1211. return ret;
  1212. /*
  1213. * If the update of the user space value succeeded, we try to
  1214. * attach to the owner. If that fails, no harm done, we only
  1215. * set the FUTEX_WAITERS bit in the user space variable.
  1216. */
  1217. return attach_to_pi_owner(uval, key, ps);
  1218. }
  1219. /**
  1220. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1221. * @q: The futex_q to unqueue
  1222. *
  1223. * The q->lock_ptr must not be NULL and must be held by the caller.
  1224. */
  1225. static void __unqueue_futex(struct futex_q *q)
  1226. {
  1227. struct futex_hash_bucket *hb;
  1228. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1229. || WARN_ON(plist_node_empty(&q->list)))
  1230. return;
  1231. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1232. plist_del(&q->list, &hb->chain);
  1233. hb_waiters_dec(hb);
  1234. }
  1235. /*
  1236. * The hash bucket lock must be held when this is called.
  1237. * Afterwards, the futex_q must not be accessed. Callers
  1238. * must ensure to later call wake_up_q() for the actual
  1239. * wakeups to occur.
  1240. */
  1241. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1242. {
  1243. struct task_struct *p = q->task;
  1244. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1245. return;
  1246. /*
  1247. * Queue the task for later wakeup for after we've released
  1248. * the hb->lock. wake_q_add() grabs reference to p.
  1249. */
  1250. wake_q_add(wake_q, p);
  1251. __unqueue_futex(q);
  1252. /*
  1253. * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
  1254. * is written, without taking any locks. This is possible in the event
  1255. * of a spurious wakeup, for example. A memory barrier is required here
  1256. * to prevent the following store to lock_ptr from getting ahead of the
  1257. * plist_del in __unqueue_futex().
  1258. */
  1259. smp_store_release(&q->lock_ptr, NULL);
  1260. }
  1261. /*
  1262. * Caller must hold a reference on @pi_state.
  1263. */
  1264. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
  1265. {
  1266. u32 uninitialized_var(curval), newval;
  1267. struct task_struct *new_owner;
  1268. bool postunlock = false;
  1269. DEFINE_WAKE_Q(wake_q);
  1270. int ret = 0;
  1271. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1272. if (WARN_ON_ONCE(!new_owner)) {
  1273. /*
  1274. * As per the comment in futex_unlock_pi() this should not happen.
  1275. *
  1276. * When this happens, give up our locks and try again, giving
  1277. * the futex_lock_pi() instance time to complete, either by
  1278. * waiting on the rtmutex or removing itself from the futex
  1279. * queue.
  1280. */
  1281. ret = -EAGAIN;
  1282. goto out_unlock;
  1283. }
  1284. /*
  1285. * We pass it to the next owner. The WAITERS bit is always kept
  1286. * enabled while there is PI state around. We cleanup the owner
  1287. * died bit, because we are the owner.
  1288. */
  1289. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1290. if (unlikely(should_fail_futex(true)))
  1291. ret = -EFAULT;
  1292. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1293. ret = -EFAULT;
  1294. } else if (curval != uval) {
  1295. /*
  1296. * If a unconditional UNLOCK_PI operation (user space did not
  1297. * try the TID->0 transition) raced with a waiter setting the
  1298. * FUTEX_WAITERS flag between get_user() and locking the hash
  1299. * bucket lock, retry the operation.
  1300. */
  1301. if ((FUTEX_TID_MASK & curval) == uval)
  1302. ret = -EAGAIN;
  1303. else
  1304. ret = -EINVAL;
  1305. }
  1306. if (ret)
  1307. goto out_unlock;
  1308. /*
  1309. * This is a point of no return; once we modify the uval there is no
  1310. * going back and subsequent operations must not fail.
  1311. */
  1312. raw_spin_lock(&pi_state->owner->pi_lock);
  1313. WARN_ON(list_empty(&pi_state->list));
  1314. list_del_init(&pi_state->list);
  1315. raw_spin_unlock(&pi_state->owner->pi_lock);
  1316. raw_spin_lock(&new_owner->pi_lock);
  1317. WARN_ON(!list_empty(&pi_state->list));
  1318. list_add(&pi_state->list, &new_owner->pi_state_list);
  1319. pi_state->owner = new_owner;
  1320. raw_spin_unlock(&new_owner->pi_lock);
  1321. postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1322. out_unlock:
  1323. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1324. if (postunlock)
  1325. rt_mutex_postunlock(&wake_q);
  1326. return ret;
  1327. }
  1328. /*
  1329. * Express the locking dependencies for lockdep:
  1330. */
  1331. static inline void
  1332. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1333. {
  1334. if (hb1 <= hb2) {
  1335. spin_lock(&hb1->lock);
  1336. if (hb1 < hb2)
  1337. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1338. } else { /* hb1 > hb2 */
  1339. spin_lock(&hb2->lock);
  1340. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1341. }
  1342. }
  1343. static inline void
  1344. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1345. {
  1346. spin_unlock(&hb1->lock);
  1347. if (hb1 != hb2)
  1348. spin_unlock(&hb2->lock);
  1349. }
  1350. /*
  1351. * Wake up waiters matching bitset queued on this futex (uaddr).
  1352. */
  1353. static int
  1354. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1355. {
  1356. struct futex_hash_bucket *hb;
  1357. struct futex_q *this, *next;
  1358. union futex_key key = FUTEX_KEY_INIT;
  1359. int ret;
  1360. DEFINE_WAKE_Q(wake_q);
  1361. if (!bitset)
  1362. return -EINVAL;
  1363. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1364. if (unlikely(ret != 0))
  1365. goto out;
  1366. hb = hash_futex(&key);
  1367. /* Make sure we really have tasks to wakeup */
  1368. if (!hb_waiters_pending(hb))
  1369. goto out_put_key;
  1370. spin_lock(&hb->lock);
  1371. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1372. if (match_futex (&this->key, &key)) {
  1373. if (this->pi_state || this->rt_waiter) {
  1374. ret = -EINVAL;
  1375. break;
  1376. }
  1377. /* Check if one of the bits is set in both bitsets */
  1378. if (!(this->bitset & bitset))
  1379. continue;
  1380. mark_wake_futex(&wake_q, this);
  1381. if (++ret >= nr_wake)
  1382. break;
  1383. }
  1384. }
  1385. spin_unlock(&hb->lock);
  1386. wake_up_q(&wake_q);
  1387. out_put_key:
  1388. put_futex_key(&key);
  1389. out:
  1390. return ret;
  1391. }
  1392. static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
  1393. {
  1394. unsigned int op = (encoded_op & 0x70000000) >> 28;
  1395. unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
  1396. int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
  1397. int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
  1398. int oldval, ret;
  1399. if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
  1400. if (oparg < 0 || oparg > 31) {
  1401. char comm[sizeof(current->comm)];
  1402. /*
  1403. * kill this print and return -EINVAL when userspace
  1404. * is sane again
  1405. */
  1406. pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
  1407. get_task_comm(comm, current), oparg);
  1408. oparg &= 31;
  1409. }
  1410. oparg = 1 << oparg;
  1411. }
  1412. if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
  1413. return -EFAULT;
  1414. ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
  1415. if (ret)
  1416. return ret;
  1417. switch (cmp) {
  1418. case FUTEX_OP_CMP_EQ:
  1419. return oldval == cmparg;
  1420. case FUTEX_OP_CMP_NE:
  1421. return oldval != cmparg;
  1422. case FUTEX_OP_CMP_LT:
  1423. return oldval < cmparg;
  1424. case FUTEX_OP_CMP_GE:
  1425. return oldval >= cmparg;
  1426. case FUTEX_OP_CMP_LE:
  1427. return oldval <= cmparg;
  1428. case FUTEX_OP_CMP_GT:
  1429. return oldval > cmparg;
  1430. default:
  1431. return -ENOSYS;
  1432. }
  1433. }
  1434. /*
  1435. * Wake up all waiters hashed on the physical page that is mapped
  1436. * to this virtual address:
  1437. */
  1438. static int
  1439. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1440. int nr_wake, int nr_wake2, int op)
  1441. {
  1442. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1443. struct futex_hash_bucket *hb1, *hb2;
  1444. struct futex_q *this, *next;
  1445. int ret, op_ret;
  1446. DEFINE_WAKE_Q(wake_q);
  1447. retry:
  1448. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1449. if (unlikely(ret != 0))
  1450. goto out;
  1451. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1452. if (unlikely(ret != 0))
  1453. goto out_put_key1;
  1454. hb1 = hash_futex(&key1);
  1455. hb2 = hash_futex(&key2);
  1456. retry_private:
  1457. double_lock_hb(hb1, hb2);
  1458. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1459. if (unlikely(op_ret < 0)) {
  1460. double_unlock_hb(hb1, hb2);
  1461. #ifndef CONFIG_MMU
  1462. /*
  1463. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1464. * but we might get them from range checking
  1465. */
  1466. ret = op_ret;
  1467. goto out_put_keys;
  1468. #endif
  1469. if (unlikely(op_ret != -EFAULT)) {
  1470. ret = op_ret;
  1471. goto out_put_keys;
  1472. }
  1473. ret = fault_in_user_writeable(uaddr2);
  1474. if (ret)
  1475. goto out_put_keys;
  1476. if (!(flags & FLAGS_SHARED))
  1477. goto retry_private;
  1478. put_futex_key(&key2);
  1479. put_futex_key(&key1);
  1480. goto retry;
  1481. }
  1482. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1483. if (match_futex (&this->key, &key1)) {
  1484. if (this->pi_state || this->rt_waiter) {
  1485. ret = -EINVAL;
  1486. goto out_unlock;
  1487. }
  1488. mark_wake_futex(&wake_q, this);
  1489. if (++ret >= nr_wake)
  1490. break;
  1491. }
  1492. }
  1493. if (op_ret > 0) {
  1494. op_ret = 0;
  1495. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1496. if (match_futex (&this->key, &key2)) {
  1497. if (this->pi_state || this->rt_waiter) {
  1498. ret = -EINVAL;
  1499. goto out_unlock;
  1500. }
  1501. mark_wake_futex(&wake_q, this);
  1502. if (++op_ret >= nr_wake2)
  1503. break;
  1504. }
  1505. }
  1506. ret += op_ret;
  1507. }
  1508. out_unlock:
  1509. double_unlock_hb(hb1, hb2);
  1510. wake_up_q(&wake_q);
  1511. out_put_keys:
  1512. put_futex_key(&key2);
  1513. out_put_key1:
  1514. put_futex_key(&key1);
  1515. out:
  1516. return ret;
  1517. }
  1518. /**
  1519. * requeue_futex() - Requeue a futex_q from one hb to another
  1520. * @q: the futex_q to requeue
  1521. * @hb1: the source hash_bucket
  1522. * @hb2: the target hash_bucket
  1523. * @key2: the new key for the requeued futex_q
  1524. */
  1525. static inline
  1526. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1527. struct futex_hash_bucket *hb2, union futex_key *key2)
  1528. {
  1529. /*
  1530. * If key1 and key2 hash to the same bucket, no need to
  1531. * requeue.
  1532. */
  1533. if (likely(&hb1->chain != &hb2->chain)) {
  1534. plist_del(&q->list, &hb1->chain);
  1535. hb_waiters_dec(hb1);
  1536. hb_waiters_inc(hb2);
  1537. plist_add(&q->list, &hb2->chain);
  1538. q->lock_ptr = &hb2->lock;
  1539. }
  1540. get_futex_key_refs(key2);
  1541. q->key = *key2;
  1542. }
  1543. /**
  1544. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1545. * @q: the futex_q
  1546. * @key: the key of the requeue target futex
  1547. * @hb: the hash_bucket of the requeue target futex
  1548. *
  1549. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1550. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1551. * to the requeue target futex so the waiter can detect the wakeup on the right
  1552. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1553. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1554. * to protect access to the pi_state to fixup the owner later. Must be called
  1555. * with both q->lock_ptr and hb->lock held.
  1556. */
  1557. static inline
  1558. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1559. struct futex_hash_bucket *hb)
  1560. {
  1561. get_futex_key_refs(key);
  1562. q->key = *key;
  1563. __unqueue_futex(q);
  1564. WARN_ON(!q->rt_waiter);
  1565. q->rt_waiter = NULL;
  1566. q->lock_ptr = &hb->lock;
  1567. wake_up_state(q->task, TASK_NORMAL);
  1568. }
  1569. /**
  1570. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1571. * @pifutex: the user address of the to futex
  1572. * @hb1: the from futex hash bucket, must be locked by the caller
  1573. * @hb2: the to futex hash bucket, must be locked by the caller
  1574. * @key1: the from futex key
  1575. * @key2: the to futex key
  1576. * @ps: address to store the pi_state pointer
  1577. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1578. *
  1579. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1580. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1581. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1582. * hb1 and hb2 must be held by the caller.
  1583. *
  1584. * Return:
  1585. * - 0 - failed to acquire the lock atomically;
  1586. * - >0 - acquired the lock, return value is vpid of the top_waiter
  1587. * - <0 - error
  1588. */
  1589. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1590. struct futex_hash_bucket *hb1,
  1591. struct futex_hash_bucket *hb2,
  1592. union futex_key *key1, union futex_key *key2,
  1593. struct futex_pi_state **ps, int set_waiters)
  1594. {
  1595. struct futex_q *top_waiter = NULL;
  1596. u32 curval;
  1597. int ret, vpid;
  1598. if (get_futex_value_locked(&curval, pifutex))
  1599. return -EFAULT;
  1600. if (unlikely(should_fail_futex(true)))
  1601. return -EFAULT;
  1602. /*
  1603. * Find the top_waiter and determine if there are additional waiters.
  1604. * If the caller intends to requeue more than 1 waiter to pifutex,
  1605. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1606. * as we have means to handle the possible fault. If not, don't set
  1607. * the bit unecessarily as it will force the subsequent unlock to enter
  1608. * the kernel.
  1609. */
  1610. top_waiter = futex_top_waiter(hb1, key1);
  1611. /* There are no waiters, nothing for us to do. */
  1612. if (!top_waiter)
  1613. return 0;
  1614. /* Ensure we requeue to the expected futex. */
  1615. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1616. return -EINVAL;
  1617. /*
  1618. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1619. * the contended case or if set_waiters is 1. The pi_state is returned
  1620. * in ps in contended cases.
  1621. */
  1622. vpid = task_pid_vnr(top_waiter->task);
  1623. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1624. set_waiters);
  1625. if (ret == 1) {
  1626. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1627. return vpid;
  1628. }
  1629. return ret;
  1630. }
  1631. /**
  1632. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1633. * @uaddr1: source futex user address
  1634. * @flags: futex flags (FLAGS_SHARED, etc.)
  1635. * @uaddr2: target futex user address
  1636. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1637. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1638. * @cmpval: @uaddr1 expected value (or %NULL)
  1639. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1640. * pi futex (pi to pi requeue is not supported)
  1641. *
  1642. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1643. * uaddr2 atomically on behalf of the top waiter.
  1644. *
  1645. * Return:
  1646. * - >=0 - on success, the number of tasks requeued or woken;
  1647. * - <0 - on error
  1648. */
  1649. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1650. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1651. u32 *cmpval, int requeue_pi)
  1652. {
  1653. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1654. int drop_count = 0, task_count = 0, ret;
  1655. struct futex_pi_state *pi_state = NULL;
  1656. struct futex_hash_bucket *hb1, *hb2;
  1657. struct futex_q *this, *next;
  1658. DEFINE_WAKE_Q(wake_q);
  1659. /*
  1660. * When PI not supported: return -ENOSYS if requeue_pi is true,
  1661. * consequently the compiler knows requeue_pi is always false past
  1662. * this point which will optimize away all the conditional code
  1663. * further down.
  1664. */
  1665. if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
  1666. return -ENOSYS;
  1667. if (requeue_pi) {
  1668. /*
  1669. * Requeue PI only works on two distinct uaddrs. This
  1670. * check is only valid for private futexes. See below.
  1671. */
  1672. if (uaddr1 == uaddr2)
  1673. return -EINVAL;
  1674. /*
  1675. * requeue_pi requires a pi_state, try to allocate it now
  1676. * without any locks in case it fails.
  1677. */
  1678. if (refill_pi_state_cache())
  1679. return -ENOMEM;
  1680. /*
  1681. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1682. * + nr_requeue, since it acquires the rt_mutex prior to
  1683. * returning to userspace, so as to not leave the rt_mutex with
  1684. * waiters and no owner. However, second and third wake-ups
  1685. * cannot be predicted as they involve race conditions with the
  1686. * first wake and a fault while looking up the pi_state. Both
  1687. * pthread_cond_signal() and pthread_cond_broadcast() should
  1688. * use nr_wake=1.
  1689. */
  1690. if (nr_wake != 1)
  1691. return -EINVAL;
  1692. }
  1693. retry:
  1694. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1695. if (unlikely(ret != 0))
  1696. goto out;
  1697. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1698. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1699. if (unlikely(ret != 0))
  1700. goto out_put_key1;
  1701. /*
  1702. * The check above which compares uaddrs is not sufficient for
  1703. * shared futexes. We need to compare the keys:
  1704. */
  1705. if (requeue_pi && match_futex(&key1, &key2)) {
  1706. ret = -EINVAL;
  1707. goto out_put_keys;
  1708. }
  1709. hb1 = hash_futex(&key1);
  1710. hb2 = hash_futex(&key2);
  1711. retry_private:
  1712. hb_waiters_inc(hb2);
  1713. double_lock_hb(hb1, hb2);
  1714. if (likely(cmpval != NULL)) {
  1715. u32 curval;
  1716. ret = get_futex_value_locked(&curval, uaddr1);
  1717. if (unlikely(ret)) {
  1718. double_unlock_hb(hb1, hb2);
  1719. hb_waiters_dec(hb2);
  1720. ret = get_user(curval, uaddr1);
  1721. if (ret)
  1722. goto out_put_keys;
  1723. if (!(flags & FLAGS_SHARED))
  1724. goto retry_private;
  1725. put_futex_key(&key2);
  1726. put_futex_key(&key1);
  1727. goto retry;
  1728. }
  1729. if (curval != *cmpval) {
  1730. ret = -EAGAIN;
  1731. goto out_unlock;
  1732. }
  1733. }
  1734. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1735. /*
  1736. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1737. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1738. * bit. We force this here where we are able to easily handle
  1739. * faults rather in the requeue loop below.
  1740. */
  1741. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1742. &key2, &pi_state, nr_requeue);
  1743. /*
  1744. * At this point the top_waiter has either taken uaddr2 or is
  1745. * waiting on it. If the former, then the pi_state will not
  1746. * exist yet, look it up one more time to ensure we have a
  1747. * reference to it. If the lock was taken, ret contains the
  1748. * vpid of the top waiter task.
  1749. * If the lock was not taken, we have pi_state and an initial
  1750. * refcount on it. In case of an error we have nothing.
  1751. */
  1752. if (ret > 0) {
  1753. WARN_ON(pi_state);
  1754. drop_count++;
  1755. task_count++;
  1756. /*
  1757. * If we acquired the lock, then the user space value
  1758. * of uaddr2 should be vpid. It cannot be changed by
  1759. * the top waiter as it is blocked on hb2 lock if it
  1760. * tries to do so. If something fiddled with it behind
  1761. * our back the pi state lookup might unearth it. So
  1762. * we rather use the known value than rereading and
  1763. * handing potential crap to lookup_pi_state.
  1764. *
  1765. * If that call succeeds then we have pi_state and an
  1766. * initial refcount on it.
  1767. */
  1768. ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
  1769. }
  1770. switch (ret) {
  1771. case 0:
  1772. /* We hold a reference on the pi state. */
  1773. break;
  1774. /* If the above failed, then pi_state is NULL */
  1775. case -EFAULT:
  1776. double_unlock_hb(hb1, hb2);
  1777. hb_waiters_dec(hb2);
  1778. put_futex_key(&key2);
  1779. put_futex_key(&key1);
  1780. ret = fault_in_user_writeable(uaddr2);
  1781. if (!ret)
  1782. goto retry;
  1783. goto out;
  1784. case -EAGAIN:
  1785. /*
  1786. * Two reasons for this:
  1787. * - Owner is exiting and we just wait for the
  1788. * exit to complete.
  1789. * - The user space value changed.
  1790. */
  1791. double_unlock_hb(hb1, hb2);
  1792. hb_waiters_dec(hb2);
  1793. put_futex_key(&key2);
  1794. put_futex_key(&key1);
  1795. cond_resched();
  1796. goto retry;
  1797. default:
  1798. goto out_unlock;
  1799. }
  1800. }
  1801. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1802. if (task_count - nr_wake >= nr_requeue)
  1803. break;
  1804. if (!match_futex(&this->key, &key1))
  1805. continue;
  1806. /*
  1807. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1808. * be paired with each other and no other futex ops.
  1809. *
  1810. * We should never be requeueing a futex_q with a pi_state,
  1811. * which is awaiting a futex_unlock_pi().
  1812. */
  1813. if ((requeue_pi && !this->rt_waiter) ||
  1814. (!requeue_pi && this->rt_waiter) ||
  1815. this->pi_state) {
  1816. ret = -EINVAL;
  1817. break;
  1818. }
  1819. /*
  1820. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1821. * lock, we already woke the top_waiter. If not, it will be
  1822. * woken by futex_unlock_pi().
  1823. */
  1824. if (++task_count <= nr_wake && !requeue_pi) {
  1825. mark_wake_futex(&wake_q, this);
  1826. continue;
  1827. }
  1828. /* Ensure we requeue to the expected futex for requeue_pi. */
  1829. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1830. ret = -EINVAL;
  1831. break;
  1832. }
  1833. /*
  1834. * Requeue nr_requeue waiters and possibly one more in the case
  1835. * of requeue_pi if we couldn't acquire the lock atomically.
  1836. */
  1837. if (requeue_pi) {
  1838. /*
  1839. * Prepare the waiter to take the rt_mutex. Take a
  1840. * refcount on the pi_state and store the pointer in
  1841. * the futex_q object of the waiter.
  1842. */
  1843. get_pi_state(pi_state);
  1844. this->pi_state = pi_state;
  1845. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1846. this->rt_waiter,
  1847. this->task);
  1848. if (ret == 1) {
  1849. /*
  1850. * We got the lock. We do neither drop the
  1851. * refcount on pi_state nor clear
  1852. * this->pi_state because the waiter needs the
  1853. * pi_state for cleaning up the user space
  1854. * value. It will drop the refcount after
  1855. * doing so.
  1856. */
  1857. requeue_pi_wake_futex(this, &key2, hb2);
  1858. drop_count++;
  1859. continue;
  1860. } else if (ret) {
  1861. /*
  1862. * rt_mutex_start_proxy_lock() detected a
  1863. * potential deadlock when we tried to queue
  1864. * that waiter. Drop the pi_state reference
  1865. * which we took above and remove the pointer
  1866. * to the state from the waiters futex_q
  1867. * object.
  1868. */
  1869. this->pi_state = NULL;
  1870. put_pi_state(pi_state);
  1871. /*
  1872. * We stop queueing more waiters and let user
  1873. * space deal with the mess.
  1874. */
  1875. break;
  1876. }
  1877. }
  1878. requeue_futex(this, hb1, hb2, &key2);
  1879. drop_count++;
  1880. }
  1881. /*
  1882. * We took an extra initial reference to the pi_state either
  1883. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1884. * need to drop it here again.
  1885. */
  1886. put_pi_state(pi_state);
  1887. out_unlock:
  1888. double_unlock_hb(hb1, hb2);
  1889. wake_up_q(&wake_q);
  1890. hb_waiters_dec(hb2);
  1891. /*
  1892. * drop_futex_key_refs() must be called outside the spinlocks. During
  1893. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1894. * one at key2 and updated their key pointer. We no longer need to
  1895. * hold the references to key1.
  1896. */
  1897. while (--drop_count >= 0)
  1898. drop_futex_key_refs(&key1);
  1899. out_put_keys:
  1900. put_futex_key(&key2);
  1901. out_put_key1:
  1902. put_futex_key(&key1);
  1903. out:
  1904. return ret ? ret : task_count;
  1905. }
  1906. /* The key must be already stored in q->key. */
  1907. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1908. __acquires(&hb->lock)
  1909. {
  1910. struct futex_hash_bucket *hb;
  1911. hb = hash_futex(&q->key);
  1912. /*
  1913. * Increment the counter before taking the lock so that
  1914. * a potential waker won't miss a to-be-slept task that is
  1915. * waiting for the spinlock. This is safe as all queue_lock()
  1916. * users end up calling queue_me(). Similarly, for housekeeping,
  1917. * decrement the counter at queue_unlock() when some error has
  1918. * occurred and we don't end up adding the task to the list.
  1919. */
  1920. hb_waiters_inc(hb);
  1921. q->lock_ptr = &hb->lock;
  1922. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1923. return hb;
  1924. }
  1925. static inline void
  1926. queue_unlock(struct futex_hash_bucket *hb)
  1927. __releases(&hb->lock)
  1928. {
  1929. spin_unlock(&hb->lock);
  1930. hb_waiters_dec(hb);
  1931. }
  1932. static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1933. {
  1934. int prio;
  1935. /*
  1936. * The priority used to register this element is
  1937. * - either the real thread-priority for the real-time threads
  1938. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1939. * - or MAX_RT_PRIO for non-RT threads.
  1940. * Thus, all RT-threads are woken first in priority order, and
  1941. * the others are woken last, in FIFO order.
  1942. */
  1943. prio = min(current->normal_prio, MAX_RT_PRIO);
  1944. plist_node_init(&q->list, prio);
  1945. plist_add(&q->list, &hb->chain);
  1946. q->task = current;
  1947. }
  1948. /**
  1949. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1950. * @q: The futex_q to enqueue
  1951. * @hb: The destination hash bucket
  1952. *
  1953. * The hb->lock must be held by the caller, and is released here. A call to
  1954. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1955. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1956. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1957. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1958. * an example).
  1959. */
  1960. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1961. __releases(&hb->lock)
  1962. {
  1963. __queue_me(q, hb);
  1964. spin_unlock(&hb->lock);
  1965. }
  1966. /**
  1967. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1968. * @q: The futex_q to unqueue
  1969. *
  1970. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1971. * be paired with exactly one earlier call to queue_me().
  1972. *
  1973. * Return:
  1974. * - 1 - if the futex_q was still queued (and we removed unqueued it);
  1975. * - 0 - if the futex_q was already removed by the waking thread
  1976. */
  1977. static int unqueue_me(struct futex_q *q)
  1978. {
  1979. spinlock_t *lock_ptr;
  1980. int ret = 0;
  1981. /* In the common case we don't take the spinlock, which is nice. */
  1982. retry:
  1983. /*
  1984. * q->lock_ptr can change between this read and the following spin_lock.
  1985. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1986. * optimizing lock_ptr out of the logic below.
  1987. */
  1988. lock_ptr = READ_ONCE(q->lock_ptr);
  1989. if (lock_ptr != NULL) {
  1990. spin_lock(lock_ptr);
  1991. /*
  1992. * q->lock_ptr can change between reading it and
  1993. * spin_lock(), causing us to take the wrong lock. This
  1994. * corrects the race condition.
  1995. *
  1996. * Reasoning goes like this: if we have the wrong lock,
  1997. * q->lock_ptr must have changed (maybe several times)
  1998. * between reading it and the spin_lock(). It can
  1999. * change again after the spin_lock() but only if it was
  2000. * already changed before the spin_lock(). It cannot,
  2001. * however, change back to the original value. Therefore
  2002. * we can detect whether we acquired the correct lock.
  2003. */
  2004. if (unlikely(lock_ptr != q->lock_ptr)) {
  2005. spin_unlock(lock_ptr);
  2006. goto retry;
  2007. }
  2008. __unqueue_futex(q);
  2009. BUG_ON(q->pi_state);
  2010. spin_unlock(lock_ptr);
  2011. ret = 1;
  2012. }
  2013. drop_futex_key_refs(&q->key);
  2014. return ret;
  2015. }
  2016. /*
  2017. * PI futexes can not be requeued and must remove themself from the
  2018. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  2019. * and dropped here.
  2020. */
  2021. static void unqueue_me_pi(struct futex_q *q)
  2022. __releases(q->lock_ptr)
  2023. {
  2024. __unqueue_futex(q);
  2025. BUG_ON(!q->pi_state);
  2026. put_pi_state(q->pi_state);
  2027. q->pi_state = NULL;
  2028. spin_unlock(q->lock_ptr);
  2029. }
  2030. /*
  2031. * Fixup the pi_state owner with the new owner.
  2032. *
  2033. * Must be called with hash bucket lock held and mm->sem held for non
  2034. * private futexes.
  2035. */
  2036. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  2037. struct task_struct *newowner)
  2038. {
  2039. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  2040. struct futex_pi_state *pi_state = q->pi_state;
  2041. u32 uval, uninitialized_var(curval), newval;
  2042. struct task_struct *oldowner;
  2043. int ret;
  2044. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2045. oldowner = pi_state->owner;
  2046. /* Owner died? */
  2047. if (!pi_state->owner)
  2048. newtid |= FUTEX_OWNER_DIED;
  2049. /*
  2050. * We are here either because we stole the rtmutex from the
  2051. * previous highest priority waiter or we are the highest priority
  2052. * waiter but have failed to get the rtmutex the first time.
  2053. *
  2054. * We have to replace the newowner TID in the user space variable.
  2055. * This must be atomic as we have to preserve the owner died bit here.
  2056. *
  2057. * Note: We write the user space value _before_ changing the pi_state
  2058. * because we can fault here. Imagine swapped out pages or a fork
  2059. * that marked all the anonymous memory readonly for cow.
  2060. *
  2061. * Modifying pi_state _before_ the user space value would leave the
  2062. * pi_state in an inconsistent state when we fault here, because we
  2063. * need to drop the locks to handle the fault. This might be observed
  2064. * in the PID check in lookup_pi_state.
  2065. */
  2066. retry:
  2067. if (get_futex_value_locked(&uval, uaddr))
  2068. goto handle_fault;
  2069. for (;;) {
  2070. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  2071. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  2072. goto handle_fault;
  2073. if (curval == uval)
  2074. break;
  2075. uval = curval;
  2076. }
  2077. /*
  2078. * We fixed up user space. Now we need to fix the pi_state
  2079. * itself.
  2080. */
  2081. if (pi_state->owner != NULL) {
  2082. raw_spin_lock(&pi_state->owner->pi_lock);
  2083. WARN_ON(list_empty(&pi_state->list));
  2084. list_del_init(&pi_state->list);
  2085. raw_spin_unlock(&pi_state->owner->pi_lock);
  2086. }
  2087. pi_state->owner = newowner;
  2088. raw_spin_lock(&newowner->pi_lock);
  2089. WARN_ON(!list_empty(&pi_state->list));
  2090. list_add(&pi_state->list, &newowner->pi_state_list);
  2091. raw_spin_unlock(&newowner->pi_lock);
  2092. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2093. return 0;
  2094. /*
  2095. * To handle the page fault we need to drop the locks here. That gives
  2096. * the other task (either the highest priority waiter itself or the
  2097. * task which stole the rtmutex) the chance to try the fixup of the
  2098. * pi_state. So once we are back from handling the fault we need to
  2099. * check the pi_state after reacquiring the locks and before trying to
  2100. * do another fixup. When the fixup has been done already we simply
  2101. * return.
  2102. *
  2103. * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
  2104. * drop hb->lock since the caller owns the hb -> futex_q relation.
  2105. * Dropping the pi_mutex->wait_lock requires the state revalidate.
  2106. */
  2107. handle_fault:
  2108. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2109. spin_unlock(q->lock_ptr);
  2110. ret = fault_in_user_writeable(uaddr);
  2111. spin_lock(q->lock_ptr);
  2112. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2113. /*
  2114. * Check if someone else fixed it for us:
  2115. */
  2116. if (pi_state->owner != oldowner) {
  2117. ret = 0;
  2118. goto out_unlock;
  2119. }
  2120. if (ret)
  2121. goto out_unlock;
  2122. goto retry;
  2123. out_unlock:
  2124. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2125. return ret;
  2126. }
  2127. static long futex_wait_restart(struct restart_block *restart);
  2128. /**
  2129. * fixup_owner() - Post lock pi_state and corner case management
  2130. * @uaddr: user address of the futex
  2131. * @q: futex_q (contains pi_state and access to the rt_mutex)
  2132. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  2133. *
  2134. * After attempting to lock an rt_mutex, this function is called to cleanup
  2135. * the pi_state owner as well as handle race conditions that may allow us to
  2136. * acquire the lock. Must be called with the hb lock held.
  2137. *
  2138. * Return:
  2139. * - 1 - success, lock taken;
  2140. * - 0 - success, lock not taken;
  2141. * - <0 - on error (-EFAULT)
  2142. */
  2143. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  2144. {
  2145. int ret = 0;
  2146. if (locked) {
  2147. /*
  2148. * Got the lock. We might not be the anticipated owner if we
  2149. * did a lock-steal - fix up the PI-state in that case:
  2150. *
  2151. * We can safely read pi_state->owner without holding wait_lock
  2152. * because we now own the rt_mutex, only the owner will attempt
  2153. * to change it.
  2154. */
  2155. if (q->pi_state->owner != current)
  2156. ret = fixup_pi_state_owner(uaddr, q, current);
  2157. goto out;
  2158. }
  2159. /*
  2160. * Paranoia check. If we did not take the lock, then we should not be
  2161. * the owner of the rt_mutex.
  2162. */
  2163. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
  2164. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2165. "pi-state %p\n", ret,
  2166. q->pi_state->pi_mutex.owner,
  2167. q->pi_state->owner);
  2168. }
  2169. out:
  2170. return ret ? ret : locked;
  2171. }
  2172. /**
  2173. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2174. * @hb: the futex hash bucket, must be locked by the caller
  2175. * @q: the futex_q to queue up on
  2176. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2177. */
  2178. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2179. struct hrtimer_sleeper *timeout)
  2180. {
  2181. /*
  2182. * The task state is guaranteed to be set before another task can
  2183. * wake it. set_current_state() is implemented using smp_store_mb() and
  2184. * queue_me() calls spin_unlock() upon completion, both serializing
  2185. * access to the hash list and forcing another memory barrier.
  2186. */
  2187. set_current_state(TASK_INTERRUPTIBLE);
  2188. queue_me(q, hb);
  2189. /* Arm the timer */
  2190. if (timeout)
  2191. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2192. /*
  2193. * If we have been removed from the hash list, then another task
  2194. * has tried to wake us, and we can skip the call to schedule().
  2195. */
  2196. if (likely(!plist_node_empty(&q->list))) {
  2197. /*
  2198. * If the timer has already expired, current will already be
  2199. * flagged for rescheduling. Only call schedule if there
  2200. * is no timeout, or if it has yet to expire.
  2201. */
  2202. if (!timeout || timeout->task)
  2203. freezable_schedule();
  2204. }
  2205. __set_current_state(TASK_RUNNING);
  2206. }
  2207. /**
  2208. * futex_wait_setup() - Prepare to wait on a futex
  2209. * @uaddr: the futex userspace address
  2210. * @val: the expected value
  2211. * @flags: futex flags (FLAGS_SHARED, etc.)
  2212. * @q: the associated futex_q
  2213. * @hb: storage for hash_bucket pointer to be returned to caller
  2214. *
  2215. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2216. * compare it with the expected value. Handle atomic faults internally.
  2217. * Return with the hb lock held and a q.key reference on success, and unlocked
  2218. * with no q.key reference on failure.
  2219. *
  2220. * Return:
  2221. * - 0 - uaddr contains val and hb has been locked;
  2222. * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2223. */
  2224. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2225. struct futex_q *q, struct futex_hash_bucket **hb)
  2226. {
  2227. u32 uval;
  2228. int ret;
  2229. /*
  2230. * Access the page AFTER the hash-bucket is locked.
  2231. * Order is important:
  2232. *
  2233. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2234. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2235. *
  2236. * The basic logical guarantee of a futex is that it blocks ONLY
  2237. * if cond(var) is known to be true at the time of blocking, for
  2238. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2239. * would open a race condition where we could block indefinitely with
  2240. * cond(var) false, which would violate the guarantee.
  2241. *
  2242. * On the other hand, we insert q and release the hash-bucket only
  2243. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2244. * absorb a wakeup if *uaddr does not match the desired values
  2245. * while the syscall executes.
  2246. */
  2247. retry:
  2248. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2249. if (unlikely(ret != 0))
  2250. return ret;
  2251. retry_private:
  2252. *hb = queue_lock(q);
  2253. ret = get_futex_value_locked(&uval, uaddr);
  2254. if (ret) {
  2255. queue_unlock(*hb);
  2256. ret = get_user(uval, uaddr);
  2257. if (ret)
  2258. goto out;
  2259. if (!(flags & FLAGS_SHARED))
  2260. goto retry_private;
  2261. put_futex_key(&q->key);
  2262. goto retry;
  2263. }
  2264. if (uval != val) {
  2265. queue_unlock(*hb);
  2266. ret = -EWOULDBLOCK;
  2267. }
  2268. out:
  2269. if (ret)
  2270. put_futex_key(&q->key);
  2271. return ret;
  2272. }
  2273. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2274. ktime_t *abs_time, u32 bitset)
  2275. {
  2276. struct hrtimer_sleeper timeout, *to = NULL;
  2277. struct restart_block *restart;
  2278. struct futex_hash_bucket *hb;
  2279. struct futex_q q = futex_q_init;
  2280. int ret;
  2281. if (!bitset)
  2282. return -EINVAL;
  2283. q.bitset = bitset;
  2284. if (abs_time) {
  2285. to = &timeout;
  2286. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2287. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2288. HRTIMER_MODE_ABS);
  2289. hrtimer_init_sleeper(to, current);
  2290. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2291. current->timer_slack_ns);
  2292. }
  2293. retry:
  2294. /*
  2295. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2296. * q.key refs.
  2297. */
  2298. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2299. if (ret)
  2300. goto out;
  2301. /* queue_me and wait for wakeup, timeout, or a signal. */
  2302. futex_wait_queue_me(hb, &q, to);
  2303. /* If we were woken (and unqueued), we succeeded, whatever. */
  2304. ret = 0;
  2305. /* unqueue_me() drops q.key ref */
  2306. if (!unqueue_me(&q))
  2307. goto out;
  2308. ret = -ETIMEDOUT;
  2309. if (to && !to->task)
  2310. goto out;
  2311. /*
  2312. * We expect signal_pending(current), but we might be the
  2313. * victim of a spurious wakeup as well.
  2314. */
  2315. if (!signal_pending(current))
  2316. goto retry;
  2317. ret = -ERESTARTSYS;
  2318. if (!abs_time)
  2319. goto out;
  2320. restart = &current->restart_block;
  2321. restart->fn = futex_wait_restart;
  2322. restart->futex.uaddr = uaddr;
  2323. restart->futex.val = val;
  2324. restart->futex.time = *abs_time;
  2325. restart->futex.bitset = bitset;
  2326. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2327. ret = -ERESTART_RESTARTBLOCK;
  2328. out:
  2329. if (to) {
  2330. hrtimer_cancel(&to->timer);
  2331. destroy_hrtimer_on_stack(&to->timer);
  2332. }
  2333. return ret;
  2334. }
  2335. static long futex_wait_restart(struct restart_block *restart)
  2336. {
  2337. u32 __user *uaddr = restart->futex.uaddr;
  2338. ktime_t t, *tp = NULL;
  2339. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2340. t = restart->futex.time;
  2341. tp = &t;
  2342. }
  2343. restart->fn = do_no_restart_syscall;
  2344. return (long)futex_wait(uaddr, restart->futex.flags,
  2345. restart->futex.val, tp, restart->futex.bitset);
  2346. }
  2347. /*
  2348. * Userspace tried a 0 -> TID atomic transition of the futex value
  2349. * and failed. The kernel side here does the whole locking operation:
  2350. * if there are waiters then it will block as a consequence of relying
  2351. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2352. * a 0 value of the futex too.).
  2353. *
  2354. * Also serves as futex trylock_pi()'ing, and due semantics.
  2355. */
  2356. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2357. ktime_t *time, int trylock)
  2358. {
  2359. struct hrtimer_sleeper timeout, *to = NULL;
  2360. struct futex_pi_state *pi_state = NULL;
  2361. struct rt_mutex_waiter rt_waiter;
  2362. struct futex_hash_bucket *hb;
  2363. struct futex_q q = futex_q_init;
  2364. int res, ret;
  2365. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2366. return -ENOSYS;
  2367. if (refill_pi_state_cache())
  2368. return -ENOMEM;
  2369. if (time) {
  2370. to = &timeout;
  2371. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2372. HRTIMER_MODE_ABS);
  2373. hrtimer_init_sleeper(to, current);
  2374. hrtimer_set_expires(&to->timer, *time);
  2375. }
  2376. retry:
  2377. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2378. if (unlikely(ret != 0))
  2379. goto out;
  2380. retry_private:
  2381. hb = queue_lock(&q);
  2382. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2383. if (unlikely(ret)) {
  2384. /*
  2385. * Atomic work succeeded and we got the lock,
  2386. * or failed. Either way, we do _not_ block.
  2387. */
  2388. switch (ret) {
  2389. case 1:
  2390. /* We got the lock. */
  2391. ret = 0;
  2392. goto out_unlock_put_key;
  2393. case -EFAULT:
  2394. goto uaddr_faulted;
  2395. case -EAGAIN:
  2396. /*
  2397. * Two reasons for this:
  2398. * - Task is exiting and we just wait for the
  2399. * exit to complete.
  2400. * - The user space value changed.
  2401. */
  2402. queue_unlock(hb);
  2403. put_futex_key(&q.key);
  2404. cond_resched();
  2405. goto retry;
  2406. default:
  2407. goto out_unlock_put_key;
  2408. }
  2409. }
  2410. WARN_ON(!q.pi_state);
  2411. /*
  2412. * Only actually queue now that the atomic ops are done:
  2413. */
  2414. __queue_me(&q, hb);
  2415. if (trylock) {
  2416. ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
  2417. /* Fixup the trylock return value: */
  2418. ret = ret ? 0 : -EWOULDBLOCK;
  2419. goto no_block;
  2420. }
  2421. rt_mutex_init_waiter(&rt_waiter);
  2422. /*
  2423. * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
  2424. * hold it while doing rt_mutex_start_proxy(), because then it will
  2425. * include hb->lock in the blocking chain, even through we'll not in
  2426. * fact hold it while blocking. This will lead it to report -EDEADLK
  2427. * and BUG when futex_unlock_pi() interleaves with this.
  2428. *
  2429. * Therefore acquire wait_lock while holding hb->lock, but drop the
  2430. * latter before calling rt_mutex_start_proxy_lock(). This still fully
  2431. * serializes against futex_unlock_pi() as that does the exact same
  2432. * lock handoff sequence.
  2433. */
  2434. raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
  2435. spin_unlock(q.lock_ptr);
  2436. ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
  2437. raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
  2438. if (ret) {
  2439. if (ret == 1)
  2440. ret = 0;
  2441. spin_lock(q.lock_ptr);
  2442. goto no_block;
  2443. }
  2444. if (unlikely(to))
  2445. hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
  2446. ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
  2447. spin_lock(q.lock_ptr);
  2448. /*
  2449. * If we failed to acquire the lock (signal/timeout), we must
  2450. * first acquire the hb->lock before removing the lock from the
  2451. * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
  2452. * wait lists consistent.
  2453. *
  2454. * In particular; it is important that futex_unlock_pi() can not
  2455. * observe this inconsistency.
  2456. */
  2457. if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
  2458. ret = 0;
  2459. no_block:
  2460. /*
  2461. * Fixup the pi_state owner and possibly acquire the lock if we
  2462. * haven't already.
  2463. */
  2464. res = fixup_owner(uaddr, &q, !ret);
  2465. /*
  2466. * If fixup_owner() returned an error, proprogate that. If it acquired
  2467. * the lock, clear our -ETIMEDOUT or -EINTR.
  2468. */
  2469. if (res)
  2470. ret = (res < 0) ? res : 0;
  2471. /*
  2472. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2473. * it and return the fault to userspace.
  2474. */
  2475. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
  2476. pi_state = q.pi_state;
  2477. get_pi_state(pi_state);
  2478. }
  2479. /* Unqueue and drop the lock */
  2480. unqueue_me_pi(&q);
  2481. if (pi_state) {
  2482. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2483. put_pi_state(pi_state);
  2484. }
  2485. goto out_put_key;
  2486. out_unlock_put_key:
  2487. queue_unlock(hb);
  2488. out_put_key:
  2489. put_futex_key(&q.key);
  2490. out:
  2491. if (to) {
  2492. hrtimer_cancel(&to->timer);
  2493. destroy_hrtimer_on_stack(&to->timer);
  2494. }
  2495. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2496. uaddr_faulted:
  2497. queue_unlock(hb);
  2498. ret = fault_in_user_writeable(uaddr);
  2499. if (ret)
  2500. goto out_put_key;
  2501. if (!(flags & FLAGS_SHARED))
  2502. goto retry_private;
  2503. put_futex_key(&q.key);
  2504. goto retry;
  2505. }
  2506. /*
  2507. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2508. * This is the in-kernel slowpath: we look up the PI state (if any),
  2509. * and do the rt-mutex unlock.
  2510. */
  2511. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2512. {
  2513. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2514. union futex_key key = FUTEX_KEY_INIT;
  2515. struct futex_hash_bucket *hb;
  2516. struct futex_q *top_waiter;
  2517. int ret;
  2518. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2519. return -ENOSYS;
  2520. retry:
  2521. if (get_user(uval, uaddr))
  2522. return -EFAULT;
  2523. /*
  2524. * We release only a lock we actually own:
  2525. */
  2526. if ((uval & FUTEX_TID_MASK) != vpid)
  2527. return -EPERM;
  2528. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2529. if (ret)
  2530. return ret;
  2531. hb = hash_futex(&key);
  2532. spin_lock(&hb->lock);
  2533. /*
  2534. * Check waiters first. We do not trust user space values at
  2535. * all and we at least want to know if user space fiddled
  2536. * with the futex value instead of blindly unlocking.
  2537. */
  2538. top_waiter = futex_top_waiter(hb, &key);
  2539. if (top_waiter) {
  2540. struct futex_pi_state *pi_state = top_waiter->pi_state;
  2541. ret = -EINVAL;
  2542. if (!pi_state)
  2543. goto out_unlock;
  2544. /*
  2545. * If current does not own the pi_state then the futex is
  2546. * inconsistent and user space fiddled with the futex value.
  2547. */
  2548. if (pi_state->owner != current)
  2549. goto out_unlock;
  2550. get_pi_state(pi_state);
  2551. /*
  2552. * By taking wait_lock while still holding hb->lock, we ensure
  2553. * there is no point where we hold neither; and therefore
  2554. * wake_futex_pi() must observe a state consistent with what we
  2555. * observed.
  2556. */
  2557. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2558. spin_unlock(&hb->lock);
  2559. /* drops pi_state->pi_mutex.wait_lock */
  2560. ret = wake_futex_pi(uaddr, uval, pi_state);
  2561. put_pi_state(pi_state);
  2562. /*
  2563. * Success, we're done! No tricky corner cases.
  2564. */
  2565. if (!ret)
  2566. goto out_putkey;
  2567. /*
  2568. * The atomic access to the futex value generated a
  2569. * pagefault, so retry the user-access and the wakeup:
  2570. */
  2571. if (ret == -EFAULT)
  2572. goto pi_faulted;
  2573. /*
  2574. * A unconditional UNLOCK_PI op raced against a waiter
  2575. * setting the FUTEX_WAITERS bit. Try again.
  2576. */
  2577. if (ret == -EAGAIN) {
  2578. put_futex_key(&key);
  2579. goto retry;
  2580. }
  2581. /*
  2582. * wake_futex_pi has detected invalid state. Tell user
  2583. * space.
  2584. */
  2585. goto out_putkey;
  2586. }
  2587. /*
  2588. * We have no kernel internal state, i.e. no waiters in the
  2589. * kernel. Waiters which are about to queue themselves are stuck
  2590. * on hb->lock. So we can safely ignore them. We do neither
  2591. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2592. * owner.
  2593. */
  2594. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
  2595. spin_unlock(&hb->lock);
  2596. goto pi_faulted;
  2597. }
  2598. /*
  2599. * If uval has changed, let user space handle it.
  2600. */
  2601. ret = (curval == uval) ? 0 : -EAGAIN;
  2602. out_unlock:
  2603. spin_unlock(&hb->lock);
  2604. out_putkey:
  2605. put_futex_key(&key);
  2606. return ret;
  2607. pi_faulted:
  2608. put_futex_key(&key);
  2609. ret = fault_in_user_writeable(uaddr);
  2610. if (!ret)
  2611. goto retry;
  2612. return ret;
  2613. }
  2614. /**
  2615. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2616. * @hb: the hash_bucket futex_q was original enqueued on
  2617. * @q: the futex_q woken while waiting to be requeued
  2618. * @key2: the futex_key of the requeue target futex
  2619. * @timeout: the timeout associated with the wait (NULL if none)
  2620. *
  2621. * Detect if the task was woken on the initial futex as opposed to the requeue
  2622. * target futex. If so, determine if it was a timeout or a signal that caused
  2623. * the wakeup and return the appropriate error code to the caller. Must be
  2624. * called with the hb lock held.
  2625. *
  2626. * Return:
  2627. * - 0 = no early wakeup detected;
  2628. * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2629. */
  2630. static inline
  2631. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2632. struct futex_q *q, union futex_key *key2,
  2633. struct hrtimer_sleeper *timeout)
  2634. {
  2635. int ret = 0;
  2636. /*
  2637. * With the hb lock held, we avoid races while we process the wakeup.
  2638. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2639. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2640. * It can't be requeued from uaddr2 to something else since we don't
  2641. * support a PI aware source futex for requeue.
  2642. */
  2643. if (!match_futex(&q->key, key2)) {
  2644. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2645. /*
  2646. * We were woken prior to requeue by a timeout or a signal.
  2647. * Unqueue the futex_q and determine which it was.
  2648. */
  2649. plist_del(&q->list, &hb->chain);
  2650. hb_waiters_dec(hb);
  2651. /* Handle spurious wakeups gracefully */
  2652. ret = -EWOULDBLOCK;
  2653. if (timeout && !timeout->task)
  2654. ret = -ETIMEDOUT;
  2655. else if (signal_pending(current))
  2656. ret = -ERESTARTNOINTR;
  2657. }
  2658. return ret;
  2659. }
  2660. /**
  2661. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2662. * @uaddr: the futex we initially wait on (non-pi)
  2663. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2664. * the same type, no requeueing from private to shared, etc.
  2665. * @val: the expected value of uaddr
  2666. * @abs_time: absolute timeout
  2667. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2668. * @uaddr2: the pi futex we will take prior to returning to user-space
  2669. *
  2670. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2671. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2672. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2673. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2674. * without one, the pi logic would not know which task to boost/deboost, if
  2675. * there was a need to.
  2676. *
  2677. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2678. * via the following--
  2679. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2680. * 2) wakeup on uaddr2 after a requeue
  2681. * 3) signal
  2682. * 4) timeout
  2683. *
  2684. * If 3, cleanup and return -ERESTARTNOINTR.
  2685. *
  2686. * If 2, we may then block on trying to take the rt_mutex and return via:
  2687. * 5) successful lock
  2688. * 6) signal
  2689. * 7) timeout
  2690. * 8) other lock acquisition failure
  2691. *
  2692. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2693. *
  2694. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2695. *
  2696. * Return:
  2697. * - 0 - On success;
  2698. * - <0 - On error
  2699. */
  2700. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2701. u32 val, ktime_t *abs_time, u32 bitset,
  2702. u32 __user *uaddr2)
  2703. {
  2704. struct hrtimer_sleeper timeout, *to = NULL;
  2705. struct futex_pi_state *pi_state = NULL;
  2706. struct rt_mutex_waiter rt_waiter;
  2707. struct futex_hash_bucket *hb;
  2708. union futex_key key2 = FUTEX_KEY_INIT;
  2709. struct futex_q q = futex_q_init;
  2710. int res, ret;
  2711. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2712. return -ENOSYS;
  2713. if (uaddr == uaddr2)
  2714. return -EINVAL;
  2715. if (!bitset)
  2716. return -EINVAL;
  2717. if (abs_time) {
  2718. to = &timeout;
  2719. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2720. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2721. HRTIMER_MODE_ABS);
  2722. hrtimer_init_sleeper(to, current);
  2723. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2724. current->timer_slack_ns);
  2725. }
  2726. /*
  2727. * The waiter is allocated on our stack, manipulated by the requeue
  2728. * code while we sleep on uaddr.
  2729. */
  2730. rt_mutex_init_waiter(&rt_waiter);
  2731. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2732. if (unlikely(ret != 0))
  2733. goto out;
  2734. q.bitset = bitset;
  2735. q.rt_waiter = &rt_waiter;
  2736. q.requeue_pi_key = &key2;
  2737. /*
  2738. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2739. * count.
  2740. */
  2741. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2742. if (ret)
  2743. goto out_key2;
  2744. /*
  2745. * The check above which compares uaddrs is not sufficient for
  2746. * shared futexes. We need to compare the keys:
  2747. */
  2748. if (match_futex(&q.key, &key2)) {
  2749. queue_unlock(hb);
  2750. ret = -EINVAL;
  2751. goto out_put_keys;
  2752. }
  2753. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2754. futex_wait_queue_me(hb, &q, to);
  2755. spin_lock(&hb->lock);
  2756. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2757. spin_unlock(&hb->lock);
  2758. if (ret)
  2759. goto out_put_keys;
  2760. /*
  2761. * In order for us to be here, we know our q.key == key2, and since
  2762. * we took the hb->lock above, we also know that futex_requeue() has
  2763. * completed and we no longer have to concern ourselves with a wakeup
  2764. * race with the atomic proxy lock acquisition by the requeue code. The
  2765. * futex_requeue dropped our key1 reference and incremented our key2
  2766. * reference count.
  2767. */
  2768. /* Check if the requeue code acquired the second futex for us. */
  2769. if (!q.rt_waiter) {
  2770. /*
  2771. * Got the lock. We might not be the anticipated owner if we
  2772. * did a lock-steal - fix up the PI-state in that case.
  2773. */
  2774. if (q.pi_state && (q.pi_state->owner != current)) {
  2775. spin_lock(q.lock_ptr);
  2776. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2777. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2778. pi_state = q.pi_state;
  2779. get_pi_state(pi_state);
  2780. }
  2781. /*
  2782. * Drop the reference to the pi state which
  2783. * the requeue_pi() code acquired for us.
  2784. */
  2785. put_pi_state(q.pi_state);
  2786. spin_unlock(q.lock_ptr);
  2787. }
  2788. } else {
  2789. struct rt_mutex *pi_mutex;
  2790. /*
  2791. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2792. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2793. * the pi_state.
  2794. */
  2795. WARN_ON(!q.pi_state);
  2796. pi_mutex = &q.pi_state->pi_mutex;
  2797. ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
  2798. spin_lock(q.lock_ptr);
  2799. if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
  2800. ret = 0;
  2801. debug_rt_mutex_free_waiter(&rt_waiter);
  2802. /*
  2803. * Fixup the pi_state owner and possibly acquire the lock if we
  2804. * haven't already.
  2805. */
  2806. res = fixup_owner(uaddr2, &q, !ret);
  2807. /*
  2808. * If fixup_owner() returned an error, proprogate that. If it
  2809. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2810. */
  2811. if (res)
  2812. ret = (res < 0) ? res : 0;
  2813. /*
  2814. * If fixup_pi_state_owner() faulted and was unable to handle
  2815. * the fault, unlock the rt_mutex and return the fault to
  2816. * userspace.
  2817. */
  2818. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2819. pi_state = q.pi_state;
  2820. get_pi_state(pi_state);
  2821. }
  2822. /* Unqueue and drop the lock. */
  2823. unqueue_me_pi(&q);
  2824. }
  2825. if (pi_state) {
  2826. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2827. put_pi_state(pi_state);
  2828. }
  2829. if (ret == -EINTR) {
  2830. /*
  2831. * We've already been requeued, but cannot restart by calling
  2832. * futex_lock_pi() directly. We could restart this syscall, but
  2833. * it would detect that the user space "val" changed and return
  2834. * -EWOULDBLOCK. Save the overhead of the restart and return
  2835. * -EWOULDBLOCK directly.
  2836. */
  2837. ret = -EWOULDBLOCK;
  2838. }
  2839. out_put_keys:
  2840. put_futex_key(&q.key);
  2841. out_key2:
  2842. put_futex_key(&key2);
  2843. out:
  2844. if (to) {
  2845. hrtimer_cancel(&to->timer);
  2846. destroy_hrtimer_on_stack(&to->timer);
  2847. }
  2848. return ret;
  2849. }
  2850. /*
  2851. * Support for robust futexes: the kernel cleans up held futexes at
  2852. * thread exit time.
  2853. *
  2854. * Implementation: user-space maintains a per-thread list of locks it
  2855. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2856. * and marks all locks that are owned by this thread with the
  2857. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2858. * always manipulated with the lock held, so the list is private and
  2859. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2860. * field, to allow the kernel to clean up if the thread dies after
  2861. * acquiring the lock, but just before it could have added itself to
  2862. * the list. There can only be one such pending lock.
  2863. */
  2864. /**
  2865. * sys_set_robust_list() - Set the robust-futex list head of a task
  2866. * @head: pointer to the list-head
  2867. * @len: length of the list-head, as userspace expects
  2868. */
  2869. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2870. size_t, len)
  2871. {
  2872. if (!futex_cmpxchg_enabled)
  2873. return -ENOSYS;
  2874. /*
  2875. * The kernel knows only one size for now:
  2876. */
  2877. if (unlikely(len != sizeof(*head)))
  2878. return -EINVAL;
  2879. current->robust_list = head;
  2880. return 0;
  2881. }
  2882. /**
  2883. * sys_get_robust_list() - Get the robust-futex list head of a task
  2884. * @pid: pid of the process [zero for current task]
  2885. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2886. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2887. */
  2888. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2889. struct robust_list_head __user * __user *, head_ptr,
  2890. size_t __user *, len_ptr)
  2891. {
  2892. struct robust_list_head __user *head;
  2893. unsigned long ret;
  2894. struct task_struct *p;
  2895. if (!futex_cmpxchg_enabled)
  2896. return -ENOSYS;
  2897. rcu_read_lock();
  2898. ret = -ESRCH;
  2899. if (!pid)
  2900. p = current;
  2901. else {
  2902. p = find_task_by_vpid(pid);
  2903. if (!p)
  2904. goto err_unlock;
  2905. }
  2906. ret = -EPERM;
  2907. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2908. goto err_unlock;
  2909. head = p->robust_list;
  2910. rcu_read_unlock();
  2911. if (put_user(sizeof(*head), len_ptr))
  2912. return -EFAULT;
  2913. return put_user(head, head_ptr);
  2914. err_unlock:
  2915. rcu_read_unlock();
  2916. return ret;
  2917. }
  2918. /*
  2919. * Process a futex-list entry, check whether it's owned by the
  2920. * dying task, and do notification if so:
  2921. */
  2922. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2923. {
  2924. u32 uval, uninitialized_var(nval), mval;
  2925. retry:
  2926. if (get_user(uval, uaddr))
  2927. return -1;
  2928. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2929. /*
  2930. * Ok, this dying thread is truly holding a futex
  2931. * of interest. Set the OWNER_DIED bit atomically
  2932. * via cmpxchg, and if the value had FUTEX_WAITERS
  2933. * set, wake up a waiter (if any). (We have to do a
  2934. * futex_wake() even if OWNER_DIED is already set -
  2935. * to handle the rare but possible case of recursive
  2936. * thread-death.) The rest of the cleanup is done in
  2937. * userspace.
  2938. */
  2939. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2940. /*
  2941. * We are not holding a lock here, but we want to have
  2942. * the pagefault_disable/enable() protection because
  2943. * we want to handle the fault gracefully. If the
  2944. * access fails we try to fault in the futex with R/W
  2945. * verification via get_user_pages. get_user() above
  2946. * does not guarantee R/W access. If that fails we
  2947. * give up and leave the futex locked.
  2948. */
  2949. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2950. if (fault_in_user_writeable(uaddr))
  2951. return -1;
  2952. goto retry;
  2953. }
  2954. if (nval != uval)
  2955. goto retry;
  2956. /*
  2957. * Wake robust non-PI futexes here. The wakeup of
  2958. * PI futexes happens in exit_pi_state():
  2959. */
  2960. if (!pi && (uval & FUTEX_WAITERS))
  2961. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2962. }
  2963. return 0;
  2964. }
  2965. /*
  2966. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2967. */
  2968. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2969. struct robust_list __user * __user *head,
  2970. unsigned int *pi)
  2971. {
  2972. unsigned long uentry;
  2973. if (get_user(uentry, (unsigned long __user *)head))
  2974. return -EFAULT;
  2975. *entry = (void __user *)(uentry & ~1UL);
  2976. *pi = uentry & 1;
  2977. return 0;
  2978. }
  2979. /*
  2980. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2981. * and mark any locks found there dead, and notify any waiters.
  2982. *
  2983. * We silently return on any sign of list-walking problem.
  2984. */
  2985. void exit_robust_list(struct task_struct *curr)
  2986. {
  2987. struct robust_list_head __user *head = curr->robust_list;
  2988. struct robust_list __user *entry, *next_entry, *pending;
  2989. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2990. unsigned int uninitialized_var(next_pi);
  2991. unsigned long futex_offset;
  2992. int rc;
  2993. if (!futex_cmpxchg_enabled)
  2994. return;
  2995. /*
  2996. * Fetch the list head (which was registered earlier, via
  2997. * sys_set_robust_list()):
  2998. */
  2999. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  3000. return;
  3001. /*
  3002. * Fetch the relative futex offset:
  3003. */
  3004. if (get_user(futex_offset, &head->futex_offset))
  3005. return;
  3006. /*
  3007. * Fetch any possibly pending lock-add first, and handle it
  3008. * if it exists:
  3009. */
  3010. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  3011. return;
  3012. next_entry = NULL; /* avoid warning with gcc */
  3013. while (entry != &head->list) {
  3014. /*
  3015. * Fetch the next entry in the list before calling
  3016. * handle_futex_death:
  3017. */
  3018. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  3019. /*
  3020. * A pending lock might already be on the list, so
  3021. * don't process it twice:
  3022. */
  3023. if (entry != pending)
  3024. if (handle_futex_death((void __user *)entry + futex_offset,
  3025. curr, pi))
  3026. return;
  3027. if (rc)
  3028. return;
  3029. entry = next_entry;
  3030. pi = next_pi;
  3031. /*
  3032. * Avoid excessively long or circular lists:
  3033. */
  3034. if (!--limit)
  3035. break;
  3036. cond_resched();
  3037. }
  3038. if (pending)
  3039. handle_futex_death((void __user *)pending + futex_offset,
  3040. curr, pip);
  3041. }
  3042. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  3043. u32 __user *uaddr2, u32 val2, u32 val3)
  3044. {
  3045. int cmd = op & FUTEX_CMD_MASK;
  3046. unsigned int flags = 0;
  3047. if (!(op & FUTEX_PRIVATE_FLAG))
  3048. flags |= FLAGS_SHARED;
  3049. if (op & FUTEX_CLOCK_REALTIME) {
  3050. flags |= FLAGS_CLOCKRT;
  3051. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  3052. cmd != FUTEX_WAIT_REQUEUE_PI)
  3053. return -ENOSYS;
  3054. }
  3055. switch (cmd) {
  3056. case FUTEX_LOCK_PI:
  3057. case FUTEX_UNLOCK_PI:
  3058. case FUTEX_TRYLOCK_PI:
  3059. case FUTEX_WAIT_REQUEUE_PI:
  3060. case FUTEX_CMP_REQUEUE_PI:
  3061. if (!futex_cmpxchg_enabled)
  3062. return -ENOSYS;
  3063. }
  3064. switch (cmd) {
  3065. case FUTEX_WAIT:
  3066. val3 = FUTEX_BITSET_MATCH_ANY;
  3067. case FUTEX_WAIT_BITSET:
  3068. return futex_wait(uaddr, flags, val, timeout, val3);
  3069. case FUTEX_WAKE:
  3070. val3 = FUTEX_BITSET_MATCH_ANY;
  3071. case FUTEX_WAKE_BITSET:
  3072. return futex_wake(uaddr, flags, val, val3);
  3073. case FUTEX_REQUEUE:
  3074. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  3075. case FUTEX_CMP_REQUEUE:
  3076. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  3077. case FUTEX_WAKE_OP:
  3078. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  3079. case FUTEX_LOCK_PI:
  3080. return futex_lock_pi(uaddr, flags, timeout, 0);
  3081. case FUTEX_UNLOCK_PI:
  3082. return futex_unlock_pi(uaddr, flags);
  3083. case FUTEX_TRYLOCK_PI:
  3084. return futex_lock_pi(uaddr, flags, NULL, 1);
  3085. case FUTEX_WAIT_REQUEUE_PI:
  3086. val3 = FUTEX_BITSET_MATCH_ANY;
  3087. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  3088. uaddr2);
  3089. case FUTEX_CMP_REQUEUE_PI:
  3090. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  3091. }
  3092. return -ENOSYS;
  3093. }
  3094. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  3095. struct timespec __user *, utime, u32 __user *, uaddr2,
  3096. u32, val3)
  3097. {
  3098. struct timespec ts;
  3099. ktime_t t, *tp = NULL;
  3100. u32 val2 = 0;
  3101. int cmd = op & FUTEX_CMD_MASK;
  3102. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  3103. cmd == FUTEX_WAIT_BITSET ||
  3104. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  3105. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  3106. return -EFAULT;
  3107. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  3108. return -EFAULT;
  3109. if (!timespec_valid(&ts))
  3110. return -EINVAL;
  3111. t = timespec_to_ktime(ts);
  3112. if (cmd == FUTEX_WAIT)
  3113. t = ktime_add_safe(ktime_get(), t);
  3114. tp = &t;
  3115. }
  3116. /*
  3117. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  3118. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  3119. */
  3120. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  3121. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  3122. val2 = (u32) (unsigned long) utime;
  3123. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  3124. }
  3125. static void __init futex_detect_cmpxchg(void)
  3126. {
  3127. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  3128. u32 curval;
  3129. /*
  3130. * This will fail and we want it. Some arch implementations do
  3131. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  3132. * functionality. We want to know that before we call in any
  3133. * of the complex code paths. Also we want to prevent
  3134. * registration of robust lists in that case. NULL is
  3135. * guaranteed to fault and we get -EFAULT on functional
  3136. * implementation, the non-functional ones will return
  3137. * -ENOSYS.
  3138. */
  3139. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  3140. futex_cmpxchg_enabled = 1;
  3141. #endif
  3142. }
  3143. static int __init futex_init(void)
  3144. {
  3145. unsigned int futex_shift;
  3146. unsigned long i;
  3147. #if CONFIG_BASE_SMALL
  3148. futex_hashsize = 16;
  3149. #else
  3150. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  3151. #endif
  3152. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  3153. futex_hashsize, 0,
  3154. futex_hashsize < 256 ? HASH_SMALL : 0,
  3155. &futex_shift, NULL,
  3156. futex_hashsize, futex_hashsize);
  3157. futex_hashsize = 1UL << futex_shift;
  3158. futex_detect_cmpxchg();
  3159. for (i = 0; i < futex_hashsize; i++) {
  3160. atomic_set(&futex_queues[i].waiters, 0);
  3161. plist_head_init(&futex_queues[i].chain);
  3162. spin_lock_init(&futex_queues[i].lock);
  3163. }
  3164. return 0;
  3165. }
  3166. core_initcall(futex_init);