devmap.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* Devmaps primary use is as a backend map for XDP BPF helper call
  13. * bpf_redirect_map(). Because XDP is mostly concerned with performance we
  14. * spent some effort to ensure the datapath with redirect maps does not use
  15. * any locking. This is a quick note on the details.
  16. *
  17. * We have three possible paths to get into the devmap control plane bpf
  18. * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  19. * will invoke an update, delete, or lookup operation. To ensure updates and
  20. * deletes appear atomic from the datapath side xchg() is used to modify the
  21. * netdev_map array. Then because the datapath does a lookup into the netdev_map
  22. * array (read-only) from an RCU critical section we use call_rcu() to wait for
  23. * an rcu grace period before free'ing the old data structures. This ensures the
  24. * datapath always has a valid copy. However, the datapath does a "flush"
  25. * operation that pushes any pending packets in the driver outside the RCU
  26. * critical section. Each bpf_dtab_netdev tracks these pending operations using
  27. * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
  28. * until all bits are cleared indicating outstanding flush operations have
  29. * completed.
  30. *
  31. * BPF syscalls may race with BPF program calls on any of the update, delete
  32. * or lookup operations. As noted above the xchg() operation also keep the
  33. * netdev_map consistent in this case. From the devmap side BPF programs
  34. * calling into these operations are the same as multiple user space threads
  35. * making system calls.
  36. *
  37. * Finally, any of the above may race with a netdev_unregister notifier. The
  38. * unregister notifier must search for net devices in the map structure that
  39. * contain a reference to the net device and remove them. This is a two step
  40. * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  41. * check to see if the ifindex is the same as the net_device being removed.
  42. * When removing the dev a cmpxchg() is used to ensure the correct dev is
  43. * removed, in the case of a concurrent update or delete operation it is
  44. * possible that the initially referenced dev is no longer in the map. As the
  45. * notifier hook walks the map we know that new dev references can not be
  46. * added by the user because core infrastructure ensures dev_get_by_index()
  47. * calls will fail at this point.
  48. */
  49. #include <linux/bpf.h>
  50. #include <linux/filter.h>
  51. #define DEV_CREATE_FLAG_MASK \
  52. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  53. struct bpf_dtab_netdev {
  54. struct net_device *dev;
  55. struct bpf_dtab *dtab;
  56. unsigned int bit;
  57. struct rcu_head rcu;
  58. };
  59. struct bpf_dtab {
  60. struct bpf_map map;
  61. struct bpf_dtab_netdev **netdev_map;
  62. unsigned long __percpu *flush_needed;
  63. struct list_head list;
  64. };
  65. static DEFINE_SPINLOCK(dev_map_lock);
  66. static LIST_HEAD(dev_map_list);
  67. static u64 dev_map_bitmap_size(const union bpf_attr *attr)
  68. {
  69. return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
  70. }
  71. static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
  72. {
  73. struct bpf_dtab *dtab;
  74. int err = -EINVAL;
  75. u64 cost;
  76. if (!capable(CAP_NET_ADMIN))
  77. return ERR_PTR(-EPERM);
  78. /* check sanity of attributes */
  79. if (attr->max_entries == 0 || attr->key_size != 4 ||
  80. attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
  81. return ERR_PTR(-EINVAL);
  82. dtab = kzalloc(sizeof(*dtab), GFP_USER);
  83. if (!dtab)
  84. return ERR_PTR(-ENOMEM);
  85. /* mandatory map attributes */
  86. dtab->map.map_type = attr->map_type;
  87. dtab->map.key_size = attr->key_size;
  88. dtab->map.value_size = attr->value_size;
  89. dtab->map.max_entries = attr->max_entries;
  90. dtab->map.map_flags = attr->map_flags;
  91. dtab->map.numa_node = bpf_map_attr_numa_node(attr);
  92. /* make sure page count doesn't overflow */
  93. cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
  94. cost += dev_map_bitmap_size(attr) * num_possible_cpus();
  95. if (cost >= U32_MAX - PAGE_SIZE)
  96. goto free_dtab;
  97. dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  98. /* if map size is larger than memlock limit, reject it early */
  99. err = bpf_map_precharge_memlock(dtab->map.pages);
  100. if (err)
  101. goto free_dtab;
  102. err = -ENOMEM;
  103. /* A per cpu bitfield with a bit per possible net device */
  104. dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
  105. __alignof__(unsigned long),
  106. GFP_KERNEL | __GFP_NOWARN);
  107. if (!dtab->flush_needed)
  108. goto free_dtab;
  109. dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
  110. sizeof(struct bpf_dtab_netdev *),
  111. dtab->map.numa_node);
  112. if (!dtab->netdev_map)
  113. goto free_dtab;
  114. spin_lock(&dev_map_lock);
  115. list_add_tail_rcu(&dtab->list, &dev_map_list);
  116. spin_unlock(&dev_map_lock);
  117. return &dtab->map;
  118. free_dtab:
  119. free_percpu(dtab->flush_needed);
  120. kfree(dtab);
  121. return ERR_PTR(err);
  122. }
  123. static void dev_map_free(struct bpf_map *map)
  124. {
  125. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  126. int i, cpu;
  127. /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  128. * so the programs (can be more than one that used this map) were
  129. * disconnected from events. Wait for outstanding critical sections in
  130. * these programs to complete. The rcu critical section only guarantees
  131. * no further reads against netdev_map. It does __not__ ensure pending
  132. * flush operations (if any) are complete.
  133. */
  134. spin_lock(&dev_map_lock);
  135. list_del_rcu(&dtab->list);
  136. spin_unlock(&dev_map_lock);
  137. synchronize_rcu();
  138. /* To ensure all pending flush operations have completed wait for flush
  139. * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
  140. * Because the above synchronize_rcu() ensures the map is disconnected
  141. * from the program we can assume no new bits will be set.
  142. */
  143. for_each_online_cpu(cpu) {
  144. unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
  145. while (!bitmap_empty(bitmap, dtab->map.max_entries))
  146. cond_resched();
  147. }
  148. for (i = 0; i < dtab->map.max_entries; i++) {
  149. struct bpf_dtab_netdev *dev;
  150. dev = dtab->netdev_map[i];
  151. if (!dev)
  152. continue;
  153. dev_put(dev->dev);
  154. kfree(dev);
  155. }
  156. free_percpu(dtab->flush_needed);
  157. bpf_map_area_free(dtab->netdev_map);
  158. kfree(dtab);
  159. }
  160. static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  161. {
  162. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  163. u32 index = key ? *(u32 *)key : U32_MAX;
  164. u32 *next = next_key;
  165. if (index >= dtab->map.max_entries) {
  166. *next = 0;
  167. return 0;
  168. }
  169. if (index == dtab->map.max_entries - 1)
  170. return -ENOENT;
  171. *next = index + 1;
  172. return 0;
  173. }
  174. void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
  175. {
  176. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  177. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  178. __set_bit(bit, bitmap);
  179. }
  180. /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
  181. * from the driver before returning from its napi->poll() routine. The poll()
  182. * routine is called either from busy_poll context or net_rx_action signaled
  183. * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
  184. * net device can be torn down. On devmap tear down we ensure the ctx bitmap
  185. * is zeroed before completing to ensure all flush operations have completed.
  186. */
  187. void __dev_map_flush(struct bpf_map *map)
  188. {
  189. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  190. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  191. u32 bit;
  192. for_each_set_bit(bit, bitmap, map->max_entries) {
  193. struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
  194. struct net_device *netdev;
  195. /* This is possible if the dev entry is removed by user space
  196. * between xdp redirect and flush op.
  197. */
  198. if (unlikely(!dev))
  199. continue;
  200. __clear_bit(bit, bitmap);
  201. netdev = dev->dev;
  202. if (likely(netdev->netdev_ops->ndo_xdp_flush))
  203. netdev->netdev_ops->ndo_xdp_flush(netdev);
  204. }
  205. }
  206. /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
  207. * update happens in parallel here a dev_put wont happen until after reading the
  208. * ifindex.
  209. */
  210. struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
  211. {
  212. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  213. struct bpf_dtab_netdev *dev;
  214. if (key >= map->max_entries)
  215. return NULL;
  216. dev = READ_ONCE(dtab->netdev_map[key]);
  217. return dev ? dev->dev : NULL;
  218. }
  219. static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
  220. {
  221. struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
  222. return dev ? &dev->ifindex : NULL;
  223. }
  224. static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
  225. {
  226. if (dev->dev->netdev_ops->ndo_xdp_flush) {
  227. struct net_device *fl = dev->dev;
  228. unsigned long *bitmap;
  229. int cpu;
  230. for_each_online_cpu(cpu) {
  231. bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
  232. __clear_bit(dev->bit, bitmap);
  233. fl->netdev_ops->ndo_xdp_flush(dev->dev);
  234. }
  235. }
  236. }
  237. static void __dev_map_entry_free(struct rcu_head *rcu)
  238. {
  239. struct bpf_dtab_netdev *dev;
  240. dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
  241. dev_map_flush_old(dev);
  242. dev_put(dev->dev);
  243. kfree(dev);
  244. }
  245. static int dev_map_delete_elem(struct bpf_map *map, void *key)
  246. {
  247. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  248. struct bpf_dtab_netdev *old_dev;
  249. int k = *(u32 *)key;
  250. if (k >= map->max_entries)
  251. return -EINVAL;
  252. /* Use call_rcu() here to ensure any rcu critical sections have
  253. * completed, but this does not guarantee a flush has happened
  254. * yet. Because driver side rcu_read_lock/unlock only protects the
  255. * running XDP program. However, for pending flush operations the
  256. * dev and ctx are stored in another per cpu map. And additionally,
  257. * the driver tear down ensures all soft irqs are complete before
  258. * removing the net device in the case of dev_put equals zero.
  259. */
  260. old_dev = xchg(&dtab->netdev_map[k], NULL);
  261. if (old_dev)
  262. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  263. return 0;
  264. }
  265. static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
  266. u64 map_flags)
  267. {
  268. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  269. struct net *net = current->nsproxy->net_ns;
  270. struct bpf_dtab_netdev *dev, *old_dev;
  271. u32 i = *(u32 *)key;
  272. u32 ifindex = *(u32 *)value;
  273. if (unlikely(map_flags > BPF_EXIST))
  274. return -EINVAL;
  275. if (unlikely(i >= dtab->map.max_entries))
  276. return -E2BIG;
  277. if (unlikely(map_flags == BPF_NOEXIST))
  278. return -EEXIST;
  279. if (!ifindex) {
  280. dev = NULL;
  281. } else {
  282. dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
  283. map->numa_node);
  284. if (!dev)
  285. return -ENOMEM;
  286. dev->dev = dev_get_by_index(net, ifindex);
  287. if (!dev->dev) {
  288. kfree(dev);
  289. return -EINVAL;
  290. }
  291. dev->bit = i;
  292. dev->dtab = dtab;
  293. }
  294. /* Use call_rcu() here to ensure rcu critical sections have completed
  295. * Remembering the driver side flush operation will happen before the
  296. * net device is removed.
  297. */
  298. old_dev = xchg(&dtab->netdev_map[i], dev);
  299. if (old_dev)
  300. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  301. return 0;
  302. }
  303. const struct bpf_map_ops dev_map_ops = {
  304. .map_alloc = dev_map_alloc,
  305. .map_free = dev_map_free,
  306. .map_get_next_key = dev_map_get_next_key,
  307. .map_lookup_elem = dev_map_lookup_elem,
  308. .map_update_elem = dev_map_update_elem,
  309. .map_delete_elem = dev_map_delete_elem,
  310. };
  311. static int dev_map_notification(struct notifier_block *notifier,
  312. ulong event, void *ptr)
  313. {
  314. struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
  315. struct bpf_dtab *dtab;
  316. int i;
  317. switch (event) {
  318. case NETDEV_UNREGISTER:
  319. /* This rcu_read_lock/unlock pair is needed because
  320. * dev_map_list is an RCU list AND to ensure a delete
  321. * operation does not free a netdev_map entry while we
  322. * are comparing it against the netdev being unregistered.
  323. */
  324. rcu_read_lock();
  325. list_for_each_entry_rcu(dtab, &dev_map_list, list) {
  326. for (i = 0; i < dtab->map.max_entries; i++) {
  327. struct bpf_dtab_netdev *dev, *odev;
  328. dev = READ_ONCE(dtab->netdev_map[i]);
  329. if (!dev ||
  330. dev->dev->ifindex != netdev->ifindex)
  331. continue;
  332. odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
  333. if (dev == odev)
  334. call_rcu(&dev->rcu,
  335. __dev_map_entry_free);
  336. }
  337. }
  338. rcu_read_unlock();
  339. break;
  340. default:
  341. break;
  342. }
  343. return NOTIFY_OK;
  344. }
  345. static struct notifier_block dev_map_notifier = {
  346. .notifier_call = dev_map_notification,
  347. };
  348. static int __init dev_map_init(void)
  349. {
  350. register_netdevice_notifier(&dev_map_notifier);
  351. return 0;
  352. }
  353. subsys_initcall(dev_map_init);