interrupt.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * handling kvm guest interrupts
  4. *
  5. * Copyright IBM Corp. 2008, 2015
  6. *
  7. * Author(s): Carsten Otte <cotte@de.ibm.com>
  8. */
  9. #include <linux/interrupt.h>
  10. #include <linux/kvm_host.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/mmu_context.h>
  13. #include <linux/signal.h>
  14. #include <linux/slab.h>
  15. #include <linux/bitmap.h>
  16. #include <linux/vmalloc.h>
  17. #include <asm/asm-offsets.h>
  18. #include <asm/dis.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/sclp.h>
  21. #include <asm/isc.h>
  22. #include <asm/gmap.h>
  23. #include <asm/switch_to.h>
  24. #include <asm/nmi.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define PFAULT_INIT 0x0600
  29. #define PFAULT_DONE 0x0680
  30. #define VIRTIO_PARAM 0x0d00
  31. /* handle external calls via sigp interpretation facility */
  32. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  33. {
  34. int c, scn;
  35. if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
  36. return 0;
  37. BUG_ON(!kvm_s390_use_sca_entries());
  38. read_lock(&vcpu->kvm->arch.sca_lock);
  39. if (vcpu->kvm->arch.use_esca) {
  40. struct esca_block *sca = vcpu->kvm->arch.sca;
  41. union esca_sigp_ctrl sigp_ctrl =
  42. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  43. c = sigp_ctrl.c;
  44. scn = sigp_ctrl.scn;
  45. } else {
  46. struct bsca_block *sca = vcpu->kvm->arch.sca;
  47. union bsca_sigp_ctrl sigp_ctrl =
  48. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  49. c = sigp_ctrl.c;
  50. scn = sigp_ctrl.scn;
  51. }
  52. read_unlock(&vcpu->kvm->arch.sca_lock);
  53. if (src_id)
  54. *src_id = scn;
  55. return c;
  56. }
  57. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  58. {
  59. int expect, rc;
  60. BUG_ON(!kvm_s390_use_sca_entries());
  61. read_lock(&vcpu->kvm->arch.sca_lock);
  62. if (vcpu->kvm->arch.use_esca) {
  63. struct esca_block *sca = vcpu->kvm->arch.sca;
  64. union esca_sigp_ctrl *sigp_ctrl =
  65. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  66. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  67. new_val.scn = src_id;
  68. new_val.c = 1;
  69. old_val.c = 0;
  70. expect = old_val.value;
  71. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  72. } else {
  73. struct bsca_block *sca = vcpu->kvm->arch.sca;
  74. union bsca_sigp_ctrl *sigp_ctrl =
  75. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  76. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  77. new_val.scn = src_id;
  78. new_val.c = 1;
  79. old_val.c = 0;
  80. expect = old_val.value;
  81. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  82. }
  83. read_unlock(&vcpu->kvm->arch.sca_lock);
  84. if (rc != expect) {
  85. /* another external call is pending */
  86. return -EBUSY;
  87. }
  88. kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
  89. return 0;
  90. }
  91. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  92. {
  93. int rc, expect;
  94. if (!kvm_s390_use_sca_entries())
  95. return;
  96. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
  97. read_lock(&vcpu->kvm->arch.sca_lock);
  98. if (vcpu->kvm->arch.use_esca) {
  99. struct esca_block *sca = vcpu->kvm->arch.sca;
  100. union esca_sigp_ctrl *sigp_ctrl =
  101. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  102. union esca_sigp_ctrl old = *sigp_ctrl;
  103. expect = old.value;
  104. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  105. } else {
  106. struct bsca_block *sca = vcpu->kvm->arch.sca;
  107. union bsca_sigp_ctrl *sigp_ctrl =
  108. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  109. union bsca_sigp_ctrl old = *sigp_ctrl;
  110. expect = old.value;
  111. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  112. }
  113. read_unlock(&vcpu->kvm->arch.sca_lock);
  114. WARN_ON(rc != expect); /* cannot clear? */
  115. }
  116. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  117. {
  118. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  119. }
  120. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  123. }
  124. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  127. }
  128. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return psw_extint_disabled(vcpu) &&
  131. psw_ioint_disabled(vcpu) &&
  132. psw_mchk_disabled(vcpu);
  133. }
  134. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  135. {
  136. if (psw_extint_disabled(vcpu) ||
  137. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  138. return 0;
  139. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  140. /* No timer interrupts when single stepping */
  141. return 0;
  142. return 1;
  143. }
  144. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  145. {
  146. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  147. return 0;
  148. return ckc_interrupts_enabled(vcpu);
  149. }
  150. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  151. {
  152. return !psw_extint_disabled(vcpu) &&
  153. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  154. }
  155. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  156. {
  157. if (!cpu_timer_interrupts_enabled(vcpu))
  158. return 0;
  159. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  160. }
  161. static inline int is_ioirq(unsigned long irq_type)
  162. {
  163. return ((irq_type >= IRQ_PEND_IO_ISC_7) &&
  164. (irq_type <= IRQ_PEND_IO_ISC_0));
  165. }
  166. static uint64_t isc_to_isc_bits(int isc)
  167. {
  168. return (0x80 >> isc) << 24;
  169. }
  170. static inline u32 isc_to_int_word(u8 isc)
  171. {
  172. return ((u32)isc << 27) | 0x80000000;
  173. }
  174. static inline u8 int_word_to_isc(u32 int_word)
  175. {
  176. return (int_word & 0x38000000) >> 27;
  177. }
  178. /*
  179. * To use atomic bitmap functions, we have to provide a bitmap address
  180. * that is u64 aligned. However, the ipm might be u32 aligned.
  181. * Therefore, we logically start the bitmap at the very beginning of the
  182. * struct and fixup the bit number.
  183. */
  184. #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
  185. static inline void kvm_s390_gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  186. {
  187. set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  188. }
  189. static inline u8 kvm_s390_gisa_get_ipm(struct kvm_s390_gisa *gisa)
  190. {
  191. return READ_ONCE(gisa->ipm);
  192. }
  193. static inline void kvm_s390_gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  194. {
  195. clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  196. }
  197. static inline int kvm_s390_gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  198. {
  199. return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  200. }
  201. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  202. {
  203. return vcpu->kvm->arch.float_int.pending_irqs |
  204. vcpu->arch.local_int.pending_irqs |
  205. kvm_s390_gisa_get_ipm(vcpu->kvm->arch.gisa) << IRQ_PEND_IO_ISC_7;
  206. }
  207. static inline int isc_to_irq_type(unsigned long isc)
  208. {
  209. return IRQ_PEND_IO_ISC_0 - isc;
  210. }
  211. static inline int irq_type_to_isc(unsigned long irq_type)
  212. {
  213. return IRQ_PEND_IO_ISC_0 - irq_type;
  214. }
  215. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  216. unsigned long active_mask)
  217. {
  218. int i;
  219. for (i = 0; i <= MAX_ISC; i++)
  220. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  221. active_mask &= ~(1UL << (isc_to_irq_type(i)));
  222. return active_mask;
  223. }
  224. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  225. {
  226. unsigned long active_mask;
  227. active_mask = pending_irqs(vcpu);
  228. if (!active_mask)
  229. return 0;
  230. if (psw_extint_disabled(vcpu))
  231. active_mask &= ~IRQ_PEND_EXT_MASK;
  232. if (psw_ioint_disabled(vcpu))
  233. active_mask &= ~IRQ_PEND_IO_MASK;
  234. else
  235. active_mask = disable_iscs(vcpu, active_mask);
  236. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  237. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  238. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  239. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  240. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  241. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  242. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  243. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  244. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  245. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  246. if (psw_mchk_disabled(vcpu))
  247. active_mask &= ~IRQ_PEND_MCHK_MASK;
  248. /*
  249. * Check both floating and local interrupt's cr14 because
  250. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  251. */
  252. if (!(vcpu->arch.sie_block->gcr[14] &
  253. (vcpu->kvm->arch.float_int.mchk.cr14 |
  254. vcpu->arch.local_int.irq.mchk.cr14)))
  255. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  256. /*
  257. * STOP irqs will never be actively delivered. They are triggered via
  258. * intercept requests and cleared when the stop intercept is performed.
  259. */
  260. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  261. return active_mask;
  262. }
  263. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  264. {
  265. kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
  266. set_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  267. }
  268. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  269. {
  270. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
  271. clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  272. }
  273. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  274. {
  275. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
  276. CPUSTAT_STOP_INT);
  277. vcpu->arch.sie_block->lctl = 0x0000;
  278. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  279. if (guestdbg_enabled(vcpu)) {
  280. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  281. LCTL_CR10 | LCTL_CR11);
  282. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  283. }
  284. }
  285. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  286. {
  287. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  288. return;
  289. else if (psw_ioint_disabled(vcpu))
  290. kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
  291. else
  292. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  293. }
  294. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  295. {
  296. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  297. return;
  298. if (psw_extint_disabled(vcpu))
  299. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  300. else
  301. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  302. }
  303. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  304. {
  305. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  306. return;
  307. if (psw_mchk_disabled(vcpu))
  308. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  309. else
  310. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  311. }
  312. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  313. {
  314. if (kvm_s390_is_stop_irq_pending(vcpu))
  315. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  316. }
  317. /* Set interception request for non-deliverable interrupts */
  318. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  319. {
  320. set_intercept_indicators_io(vcpu);
  321. set_intercept_indicators_ext(vcpu);
  322. set_intercept_indicators_mchk(vcpu);
  323. set_intercept_indicators_stop(vcpu);
  324. }
  325. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  326. {
  327. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  328. int rc;
  329. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  330. 0, 0);
  331. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  332. (u16 *)__LC_EXT_INT_CODE);
  333. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  334. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  335. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  336. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  337. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  338. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  339. return rc ? -EFAULT : 0;
  340. }
  341. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  342. {
  343. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  344. int rc;
  345. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  346. 0, 0);
  347. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  348. (u16 __user *)__LC_EXT_INT_CODE);
  349. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  350. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  351. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  352. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  353. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  354. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  355. return rc ? -EFAULT : 0;
  356. }
  357. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  358. {
  359. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  360. struct kvm_s390_ext_info ext;
  361. int rc;
  362. spin_lock(&li->lock);
  363. ext = li->irq.ext;
  364. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  365. li->irq.ext.ext_params2 = 0;
  366. spin_unlock(&li->lock);
  367. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  368. ext.ext_params2);
  369. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  370. KVM_S390_INT_PFAULT_INIT,
  371. 0, ext.ext_params2);
  372. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  373. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  374. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  375. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  376. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  377. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  378. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  379. return rc ? -EFAULT : 0;
  380. }
  381. static int __write_machine_check(struct kvm_vcpu *vcpu,
  382. struct kvm_s390_mchk_info *mchk)
  383. {
  384. unsigned long ext_sa_addr;
  385. unsigned long lc;
  386. freg_t fprs[NUM_FPRS];
  387. union mci mci;
  388. int rc;
  389. mci.val = mchk->mcic;
  390. /* take care of lazy register loading */
  391. save_fpu_regs();
  392. save_access_regs(vcpu->run->s.regs.acrs);
  393. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  394. save_gs_cb(current->thread.gs_cb);
  395. /* Extended save area */
  396. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  397. sizeof(unsigned long));
  398. /* Only bits 0 through 63-LC are used for address formation */
  399. lc = ext_sa_addr & MCESA_LC_MASK;
  400. if (test_kvm_facility(vcpu->kvm, 133)) {
  401. switch (lc) {
  402. case 0:
  403. case 10:
  404. ext_sa_addr &= ~0x3ffUL;
  405. break;
  406. case 11:
  407. ext_sa_addr &= ~0x7ffUL;
  408. break;
  409. case 12:
  410. ext_sa_addr &= ~0xfffUL;
  411. break;
  412. default:
  413. ext_sa_addr = 0;
  414. break;
  415. }
  416. } else {
  417. ext_sa_addr &= ~0x3ffUL;
  418. }
  419. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  420. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  421. 512))
  422. mci.vr = 0;
  423. } else {
  424. mci.vr = 0;
  425. }
  426. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  427. && (lc == 11 || lc == 12)) {
  428. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  429. &vcpu->run->s.regs.gscb, 32))
  430. mci.gs = 0;
  431. } else {
  432. mci.gs = 0;
  433. }
  434. /* General interruption information */
  435. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  436. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  437. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  438. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  439. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  440. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  441. /* Register-save areas */
  442. if (MACHINE_HAS_VX) {
  443. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  444. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  445. } else {
  446. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  447. vcpu->run->s.regs.fprs, 128);
  448. }
  449. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  450. vcpu->run->s.regs.gprs, 128);
  451. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  452. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  453. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  454. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  455. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  456. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  457. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  458. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  459. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  460. &vcpu->run->s.regs.acrs, 64);
  461. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  462. &vcpu->arch.sie_block->gcr, 128);
  463. /* Extended interruption information */
  464. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  465. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  466. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  467. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  468. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  469. sizeof(mchk->fixed_logout));
  470. return rc ? -EFAULT : 0;
  471. }
  472. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  473. {
  474. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  475. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  476. struct kvm_s390_mchk_info mchk = {};
  477. int deliver = 0;
  478. int rc = 0;
  479. spin_lock(&fi->lock);
  480. spin_lock(&li->lock);
  481. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  482. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  483. /*
  484. * If there was an exigent machine check pending, then any
  485. * repressible machine checks that might have been pending
  486. * are indicated along with it, so always clear bits for
  487. * repressible and exigent interrupts
  488. */
  489. mchk = li->irq.mchk;
  490. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  491. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  492. memset(&li->irq.mchk, 0, sizeof(mchk));
  493. deliver = 1;
  494. }
  495. /*
  496. * We indicate floating repressible conditions along with
  497. * other pending conditions. Channel Report Pending and Channel
  498. * Subsystem damage are the only two and and are indicated by
  499. * bits in mcic and masked in cr14.
  500. */
  501. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  502. mchk.mcic |= fi->mchk.mcic;
  503. mchk.cr14 |= fi->mchk.cr14;
  504. memset(&fi->mchk, 0, sizeof(mchk));
  505. deliver = 1;
  506. }
  507. spin_unlock(&li->lock);
  508. spin_unlock(&fi->lock);
  509. if (deliver) {
  510. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  511. mchk.mcic);
  512. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  513. KVM_S390_MCHK,
  514. mchk.cr14, mchk.mcic);
  515. rc = __write_machine_check(vcpu, &mchk);
  516. }
  517. return rc;
  518. }
  519. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  520. {
  521. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  522. int rc;
  523. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  524. vcpu->stat.deliver_restart_signal++;
  525. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  526. rc = write_guest_lc(vcpu,
  527. offsetof(struct lowcore, restart_old_psw),
  528. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  529. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  530. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  531. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  532. return rc ? -EFAULT : 0;
  533. }
  534. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  535. {
  536. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  537. struct kvm_s390_prefix_info prefix;
  538. spin_lock(&li->lock);
  539. prefix = li->irq.prefix;
  540. li->irq.prefix.address = 0;
  541. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  542. spin_unlock(&li->lock);
  543. vcpu->stat.deliver_prefix_signal++;
  544. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  545. KVM_S390_SIGP_SET_PREFIX,
  546. prefix.address, 0);
  547. kvm_s390_set_prefix(vcpu, prefix.address);
  548. return 0;
  549. }
  550. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  551. {
  552. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  553. int rc;
  554. int cpu_addr;
  555. spin_lock(&li->lock);
  556. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  557. clear_bit(cpu_addr, li->sigp_emerg_pending);
  558. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  559. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  560. spin_unlock(&li->lock);
  561. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  562. vcpu->stat.deliver_emergency_signal++;
  563. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  564. cpu_addr, 0);
  565. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  566. (u16 *)__LC_EXT_INT_CODE);
  567. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  568. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  569. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  570. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  571. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  572. return rc ? -EFAULT : 0;
  573. }
  574. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  575. {
  576. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  577. struct kvm_s390_extcall_info extcall;
  578. int rc;
  579. spin_lock(&li->lock);
  580. extcall = li->irq.extcall;
  581. li->irq.extcall.code = 0;
  582. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  583. spin_unlock(&li->lock);
  584. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  585. vcpu->stat.deliver_external_call++;
  586. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  587. KVM_S390_INT_EXTERNAL_CALL,
  588. extcall.code, 0);
  589. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  590. (u16 *)__LC_EXT_INT_CODE);
  591. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  592. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  593. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  594. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  595. sizeof(psw_t));
  596. return rc ? -EFAULT : 0;
  597. }
  598. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  599. {
  600. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  601. struct kvm_s390_pgm_info pgm_info;
  602. int rc = 0, nullifying = false;
  603. u16 ilen;
  604. spin_lock(&li->lock);
  605. pgm_info = li->irq.pgm;
  606. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  607. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  608. spin_unlock(&li->lock);
  609. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  610. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  611. pgm_info.code, ilen);
  612. vcpu->stat.deliver_program_int++;
  613. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  614. pgm_info.code, 0);
  615. switch (pgm_info.code & ~PGM_PER) {
  616. case PGM_AFX_TRANSLATION:
  617. case PGM_ASX_TRANSLATION:
  618. case PGM_EX_TRANSLATION:
  619. case PGM_LFX_TRANSLATION:
  620. case PGM_LSTE_SEQUENCE:
  621. case PGM_LSX_TRANSLATION:
  622. case PGM_LX_TRANSLATION:
  623. case PGM_PRIMARY_AUTHORITY:
  624. case PGM_SECONDARY_AUTHORITY:
  625. nullifying = true;
  626. /* fall through */
  627. case PGM_SPACE_SWITCH:
  628. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  629. (u64 *)__LC_TRANS_EXC_CODE);
  630. break;
  631. case PGM_ALEN_TRANSLATION:
  632. case PGM_ALE_SEQUENCE:
  633. case PGM_ASTE_INSTANCE:
  634. case PGM_ASTE_SEQUENCE:
  635. case PGM_ASTE_VALIDITY:
  636. case PGM_EXTENDED_AUTHORITY:
  637. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  638. (u8 *)__LC_EXC_ACCESS_ID);
  639. nullifying = true;
  640. break;
  641. case PGM_ASCE_TYPE:
  642. case PGM_PAGE_TRANSLATION:
  643. case PGM_REGION_FIRST_TRANS:
  644. case PGM_REGION_SECOND_TRANS:
  645. case PGM_REGION_THIRD_TRANS:
  646. case PGM_SEGMENT_TRANSLATION:
  647. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  648. (u64 *)__LC_TRANS_EXC_CODE);
  649. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  650. (u8 *)__LC_EXC_ACCESS_ID);
  651. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  652. (u8 *)__LC_OP_ACCESS_ID);
  653. nullifying = true;
  654. break;
  655. case PGM_MONITOR:
  656. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  657. (u16 *)__LC_MON_CLASS_NR);
  658. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  659. (u64 *)__LC_MON_CODE);
  660. break;
  661. case PGM_VECTOR_PROCESSING:
  662. case PGM_DATA:
  663. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  664. (u32 *)__LC_DATA_EXC_CODE);
  665. break;
  666. case PGM_PROTECTION:
  667. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  668. (u64 *)__LC_TRANS_EXC_CODE);
  669. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  670. (u8 *)__LC_EXC_ACCESS_ID);
  671. break;
  672. case PGM_STACK_FULL:
  673. case PGM_STACK_EMPTY:
  674. case PGM_STACK_SPECIFICATION:
  675. case PGM_STACK_TYPE:
  676. case PGM_STACK_OPERATION:
  677. case PGM_TRACE_TABEL:
  678. case PGM_CRYPTO_OPERATION:
  679. nullifying = true;
  680. break;
  681. }
  682. if (pgm_info.code & PGM_PER) {
  683. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  684. (u8 *) __LC_PER_CODE);
  685. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  686. (u8 *)__LC_PER_ATMID);
  687. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  688. (u64 *) __LC_PER_ADDRESS);
  689. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  690. (u8 *) __LC_PER_ACCESS_ID);
  691. }
  692. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  693. kvm_s390_rewind_psw(vcpu, ilen);
  694. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  695. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  696. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  697. (u64 *) __LC_LAST_BREAK);
  698. rc |= put_guest_lc(vcpu, pgm_info.code,
  699. (u16 *)__LC_PGM_INT_CODE);
  700. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  701. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  702. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  703. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  704. return rc ? -EFAULT : 0;
  705. }
  706. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  707. {
  708. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  709. struct kvm_s390_ext_info ext;
  710. int rc = 0;
  711. spin_lock(&fi->lock);
  712. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  713. spin_unlock(&fi->lock);
  714. return 0;
  715. }
  716. ext = fi->srv_signal;
  717. memset(&fi->srv_signal, 0, sizeof(ext));
  718. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  719. spin_unlock(&fi->lock);
  720. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  721. ext.ext_params);
  722. vcpu->stat.deliver_service_signal++;
  723. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  724. ext.ext_params, 0);
  725. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  726. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  727. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  728. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  729. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  730. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  731. rc |= put_guest_lc(vcpu, ext.ext_params,
  732. (u32 *)__LC_EXT_PARAMS);
  733. return rc ? -EFAULT : 0;
  734. }
  735. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  736. {
  737. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  738. struct kvm_s390_interrupt_info *inti;
  739. int rc = 0;
  740. spin_lock(&fi->lock);
  741. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  742. struct kvm_s390_interrupt_info,
  743. list);
  744. if (inti) {
  745. list_del(&inti->list);
  746. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  747. }
  748. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  749. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  750. spin_unlock(&fi->lock);
  751. if (inti) {
  752. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  753. KVM_S390_INT_PFAULT_DONE, 0,
  754. inti->ext.ext_params2);
  755. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  756. inti->ext.ext_params2);
  757. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  758. (u16 *)__LC_EXT_INT_CODE);
  759. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  760. (u16 *)__LC_EXT_CPU_ADDR);
  761. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  762. &vcpu->arch.sie_block->gpsw,
  763. sizeof(psw_t));
  764. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  765. &vcpu->arch.sie_block->gpsw,
  766. sizeof(psw_t));
  767. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  768. (u64 *)__LC_EXT_PARAMS2);
  769. kfree(inti);
  770. }
  771. return rc ? -EFAULT : 0;
  772. }
  773. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  774. {
  775. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  776. struct kvm_s390_interrupt_info *inti;
  777. int rc = 0;
  778. spin_lock(&fi->lock);
  779. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  780. struct kvm_s390_interrupt_info,
  781. list);
  782. if (inti) {
  783. VCPU_EVENT(vcpu, 4,
  784. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  785. inti->ext.ext_params, inti->ext.ext_params2);
  786. vcpu->stat.deliver_virtio_interrupt++;
  787. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  788. inti->type,
  789. inti->ext.ext_params,
  790. inti->ext.ext_params2);
  791. list_del(&inti->list);
  792. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  793. }
  794. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  795. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  796. spin_unlock(&fi->lock);
  797. if (inti) {
  798. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  799. (u16 *)__LC_EXT_INT_CODE);
  800. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  801. (u16 *)__LC_EXT_CPU_ADDR);
  802. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  803. &vcpu->arch.sie_block->gpsw,
  804. sizeof(psw_t));
  805. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  806. &vcpu->arch.sie_block->gpsw,
  807. sizeof(psw_t));
  808. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  809. (u32 *)__LC_EXT_PARAMS);
  810. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  811. (u64 *)__LC_EXT_PARAMS2);
  812. kfree(inti);
  813. }
  814. return rc ? -EFAULT : 0;
  815. }
  816. static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
  817. {
  818. int rc;
  819. rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
  820. rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
  821. rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
  822. rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
  823. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  824. &vcpu->arch.sie_block->gpsw,
  825. sizeof(psw_t));
  826. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  827. &vcpu->arch.sie_block->gpsw,
  828. sizeof(psw_t));
  829. return rc ? -EFAULT : 0;
  830. }
  831. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  832. unsigned long irq_type)
  833. {
  834. struct list_head *isc_list;
  835. struct kvm_s390_float_interrupt *fi;
  836. struct kvm_s390_interrupt_info *inti = NULL;
  837. struct kvm_s390_io_info io;
  838. u32 isc;
  839. int rc = 0;
  840. fi = &vcpu->kvm->arch.float_int;
  841. spin_lock(&fi->lock);
  842. isc = irq_type_to_isc(irq_type);
  843. isc_list = &fi->lists[isc];
  844. inti = list_first_entry_or_null(isc_list,
  845. struct kvm_s390_interrupt_info,
  846. list);
  847. if (inti) {
  848. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  849. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  850. else
  851. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  852. inti->io.subchannel_id >> 8,
  853. inti->io.subchannel_id >> 1 & 0x3,
  854. inti->io.subchannel_nr);
  855. vcpu->stat.deliver_io_int++;
  856. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  857. inti->type,
  858. ((__u32)inti->io.subchannel_id << 16) |
  859. inti->io.subchannel_nr,
  860. ((__u64)inti->io.io_int_parm << 32) |
  861. inti->io.io_int_word);
  862. list_del(&inti->list);
  863. fi->counters[FIRQ_CNTR_IO] -= 1;
  864. }
  865. if (list_empty(isc_list))
  866. clear_bit(irq_type, &fi->pending_irqs);
  867. spin_unlock(&fi->lock);
  868. if (inti) {
  869. rc = __do_deliver_io(vcpu, &(inti->io));
  870. kfree(inti);
  871. goto out;
  872. }
  873. if (vcpu->kvm->arch.gisa &&
  874. kvm_s390_gisa_tac_ipm_gisc(vcpu->kvm->arch.gisa, isc)) {
  875. /*
  876. * in case an adapter interrupt was not delivered
  877. * in SIE context KVM will handle the delivery
  878. */
  879. VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
  880. memset(&io, 0, sizeof(io));
  881. io.io_int_word = isc_to_int_word(isc);
  882. vcpu->stat.deliver_io_int++;
  883. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  884. KVM_S390_INT_IO(1, 0, 0, 0),
  885. ((__u32)io.subchannel_id << 16) |
  886. io.subchannel_nr,
  887. ((__u64)io.io_int_parm << 32) |
  888. io.io_int_word);
  889. rc = __do_deliver_io(vcpu, &io);
  890. }
  891. out:
  892. return rc;
  893. }
  894. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  895. static const deliver_irq_t deliver_irq_funcs[] = {
  896. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  897. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  898. [IRQ_PEND_PROG] = __deliver_prog,
  899. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  900. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  901. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  902. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  903. [IRQ_PEND_RESTART] = __deliver_restart,
  904. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  905. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  906. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  907. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  908. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  909. };
  910. /* Check whether an external call is pending (deliverable or not) */
  911. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  912. {
  913. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  914. if (!sclp.has_sigpif)
  915. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  916. return sca_ext_call_pending(vcpu, NULL);
  917. }
  918. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  919. {
  920. if (deliverable_irqs(vcpu))
  921. return 1;
  922. if (kvm_cpu_has_pending_timer(vcpu))
  923. return 1;
  924. /* external call pending and deliverable */
  925. if (kvm_s390_ext_call_pending(vcpu) &&
  926. !psw_extint_disabled(vcpu) &&
  927. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  928. return 1;
  929. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  930. return 1;
  931. return 0;
  932. }
  933. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  934. {
  935. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  936. }
  937. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  938. {
  939. u64 now, cputm, sltime = 0;
  940. if (ckc_interrupts_enabled(vcpu)) {
  941. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  942. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  943. /* already expired or overflow? */
  944. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  945. return 0;
  946. if (cpu_timer_interrupts_enabled(vcpu)) {
  947. cputm = kvm_s390_get_cpu_timer(vcpu);
  948. /* already expired? */
  949. if (cputm >> 63)
  950. return 0;
  951. return min(sltime, tod_to_ns(cputm));
  952. }
  953. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  954. sltime = kvm_s390_get_cpu_timer(vcpu);
  955. /* already expired? */
  956. if (sltime >> 63)
  957. return 0;
  958. }
  959. return sltime;
  960. }
  961. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  962. {
  963. u64 sltime;
  964. vcpu->stat.exit_wait_state++;
  965. /* fast path */
  966. if (kvm_arch_vcpu_runnable(vcpu))
  967. return 0;
  968. if (psw_interrupts_disabled(vcpu)) {
  969. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  970. return -EOPNOTSUPP; /* disabled wait */
  971. }
  972. if (!ckc_interrupts_enabled(vcpu) &&
  973. !cpu_timer_interrupts_enabled(vcpu)) {
  974. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  975. __set_cpu_idle(vcpu);
  976. goto no_timer;
  977. }
  978. sltime = __calculate_sltime(vcpu);
  979. if (!sltime)
  980. return 0;
  981. __set_cpu_idle(vcpu);
  982. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  983. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  984. no_timer:
  985. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  986. kvm_vcpu_block(vcpu);
  987. __unset_cpu_idle(vcpu);
  988. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  989. hrtimer_cancel(&vcpu->arch.ckc_timer);
  990. return 0;
  991. }
  992. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  993. {
  994. /*
  995. * We cannot move this into the if, as the CPU might be already
  996. * in kvm_vcpu_block without having the waitqueue set (polling)
  997. */
  998. vcpu->valid_wakeup = true;
  999. /*
  1000. * This is mostly to document, that the read in swait_active could
  1001. * be moved before other stores, leading to subtle races.
  1002. * All current users do not store or use an atomic like update
  1003. */
  1004. smp_mb__after_atomic();
  1005. if (swait_active(&vcpu->wq)) {
  1006. /*
  1007. * The vcpu gave up the cpu voluntarily, mark it as a good
  1008. * yield-candidate.
  1009. */
  1010. vcpu->preempted = true;
  1011. swake_up(&vcpu->wq);
  1012. vcpu->stat.halt_wakeup++;
  1013. }
  1014. /*
  1015. * The VCPU might not be sleeping but is executing the VSIE. Let's
  1016. * kick it, so it leaves the SIE to process the request.
  1017. */
  1018. kvm_s390_vsie_kick(vcpu);
  1019. }
  1020. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  1021. {
  1022. struct kvm_vcpu *vcpu;
  1023. u64 sltime;
  1024. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  1025. sltime = __calculate_sltime(vcpu);
  1026. /*
  1027. * If the monotonic clock runs faster than the tod clock we might be
  1028. * woken up too early and have to go back to sleep to avoid deadlocks.
  1029. */
  1030. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  1031. return HRTIMER_RESTART;
  1032. kvm_s390_vcpu_wakeup(vcpu);
  1033. return HRTIMER_NORESTART;
  1034. }
  1035. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  1036. {
  1037. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1038. spin_lock(&li->lock);
  1039. li->pending_irqs = 0;
  1040. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  1041. memset(&li->irq, 0, sizeof(li->irq));
  1042. spin_unlock(&li->lock);
  1043. sca_clear_ext_call(vcpu);
  1044. }
  1045. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  1046. {
  1047. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1048. deliver_irq_t func;
  1049. int rc = 0;
  1050. unsigned long irq_type;
  1051. unsigned long irqs;
  1052. __reset_intercept_indicators(vcpu);
  1053. /* pending ckc conditions might have been invalidated */
  1054. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1055. if (ckc_irq_pending(vcpu))
  1056. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1057. /* pending cpu timer conditions might have been invalidated */
  1058. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1059. if (cpu_timer_irq_pending(vcpu))
  1060. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1061. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1062. /* bits are in the reverse order of interrupt priority */
  1063. irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
  1064. if (is_ioirq(irq_type)) {
  1065. rc = __deliver_io(vcpu, irq_type);
  1066. } else {
  1067. func = deliver_irq_funcs[irq_type];
  1068. if (!func) {
  1069. WARN_ON_ONCE(func == NULL);
  1070. clear_bit(irq_type, &li->pending_irqs);
  1071. continue;
  1072. }
  1073. rc = func(vcpu);
  1074. }
  1075. }
  1076. set_intercept_indicators(vcpu);
  1077. return rc;
  1078. }
  1079. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1080. {
  1081. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1082. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1083. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1084. irq->u.pgm.code, 0);
  1085. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1086. /* auto detection if no valid ILC was given */
  1087. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1088. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1089. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1090. }
  1091. if (irq->u.pgm.code == PGM_PER) {
  1092. li->irq.pgm.code |= PGM_PER;
  1093. li->irq.pgm.flags = irq->u.pgm.flags;
  1094. /* only modify PER related information */
  1095. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1096. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1097. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1098. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1099. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1100. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1101. irq->u.pgm.code;
  1102. li->irq.pgm.flags = irq->u.pgm.flags;
  1103. /* only modify non-PER information */
  1104. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1105. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1106. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1107. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1108. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1109. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1110. } else {
  1111. li->irq.pgm = irq->u.pgm;
  1112. }
  1113. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1114. return 0;
  1115. }
  1116. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1117. {
  1118. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1119. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1120. irq->u.ext.ext_params2);
  1121. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1122. irq->u.ext.ext_params,
  1123. irq->u.ext.ext_params2);
  1124. li->irq.ext = irq->u.ext;
  1125. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1126. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1127. return 0;
  1128. }
  1129. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1130. {
  1131. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1132. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1133. uint16_t src_id = irq->u.extcall.code;
  1134. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1135. src_id);
  1136. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1137. src_id, 0);
  1138. /* sending vcpu invalid */
  1139. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1140. return -EINVAL;
  1141. if (sclp.has_sigpif)
  1142. return sca_inject_ext_call(vcpu, src_id);
  1143. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1144. return -EBUSY;
  1145. *extcall = irq->u.extcall;
  1146. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1147. return 0;
  1148. }
  1149. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1150. {
  1151. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1152. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1153. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1154. irq->u.prefix.address);
  1155. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1156. irq->u.prefix.address, 0);
  1157. if (!is_vcpu_stopped(vcpu))
  1158. return -EBUSY;
  1159. *prefix = irq->u.prefix;
  1160. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1161. return 0;
  1162. }
  1163. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1164. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1165. {
  1166. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1167. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1168. int rc = 0;
  1169. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1170. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1171. return -EINVAL;
  1172. if (is_vcpu_stopped(vcpu)) {
  1173. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1174. rc = kvm_s390_store_status_unloaded(vcpu,
  1175. KVM_S390_STORE_STATUS_NOADDR);
  1176. return rc;
  1177. }
  1178. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1179. return -EBUSY;
  1180. stop->flags = irq->u.stop.flags;
  1181. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  1182. return 0;
  1183. }
  1184. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1185. struct kvm_s390_irq *irq)
  1186. {
  1187. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1188. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1189. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1190. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1191. return 0;
  1192. }
  1193. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1194. struct kvm_s390_irq *irq)
  1195. {
  1196. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1197. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1198. irq->u.emerg.code);
  1199. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1200. irq->u.emerg.code, 0);
  1201. /* sending vcpu invalid */
  1202. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1203. return -EINVAL;
  1204. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1205. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1206. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1207. return 0;
  1208. }
  1209. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1210. {
  1211. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1212. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1213. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1214. irq->u.mchk.mcic);
  1215. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1216. irq->u.mchk.mcic);
  1217. /*
  1218. * Because repressible machine checks can be indicated along with
  1219. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1220. * we need to combine cr14, mcic and external damage code.
  1221. * Failing storage address and the logout area should not be or'ed
  1222. * together, we just indicate the last occurrence of the corresponding
  1223. * machine check
  1224. */
  1225. mchk->cr14 |= irq->u.mchk.cr14;
  1226. mchk->mcic |= irq->u.mchk.mcic;
  1227. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1228. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1229. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1230. sizeof(mchk->fixed_logout));
  1231. if (mchk->mcic & MCHK_EX_MASK)
  1232. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1233. else if (mchk->mcic & MCHK_REP_MASK)
  1234. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1235. return 0;
  1236. }
  1237. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1238. {
  1239. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1240. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1241. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1242. 0, 0);
  1243. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1244. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1245. return 0;
  1246. }
  1247. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1248. {
  1249. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1250. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1251. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1252. 0, 0);
  1253. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1254. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1255. return 0;
  1256. }
  1257. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1258. int isc, u32 schid)
  1259. {
  1260. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1261. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1262. struct kvm_s390_interrupt_info *iter;
  1263. u16 id = (schid & 0xffff0000U) >> 16;
  1264. u16 nr = schid & 0x0000ffffU;
  1265. spin_lock(&fi->lock);
  1266. list_for_each_entry(iter, isc_list, list) {
  1267. if (schid && (id != iter->io.subchannel_id ||
  1268. nr != iter->io.subchannel_nr))
  1269. continue;
  1270. /* found an appropriate entry */
  1271. list_del_init(&iter->list);
  1272. fi->counters[FIRQ_CNTR_IO] -= 1;
  1273. if (list_empty(isc_list))
  1274. clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1275. spin_unlock(&fi->lock);
  1276. return iter;
  1277. }
  1278. spin_unlock(&fi->lock);
  1279. return NULL;
  1280. }
  1281. static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
  1282. u64 isc_mask, u32 schid)
  1283. {
  1284. struct kvm_s390_interrupt_info *inti = NULL;
  1285. int isc;
  1286. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1287. if (isc_mask & isc_to_isc_bits(isc))
  1288. inti = get_io_int(kvm, isc, schid);
  1289. }
  1290. return inti;
  1291. }
  1292. static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
  1293. {
  1294. unsigned long active_mask;
  1295. int isc;
  1296. if (schid)
  1297. goto out;
  1298. if (!kvm->arch.gisa)
  1299. goto out;
  1300. active_mask = (isc_mask & kvm_s390_gisa_get_ipm(kvm->arch.gisa) << 24) << 32;
  1301. while (active_mask) {
  1302. isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
  1303. if (kvm_s390_gisa_tac_ipm_gisc(kvm->arch.gisa, isc))
  1304. return isc;
  1305. clear_bit_inv(isc, &active_mask);
  1306. }
  1307. out:
  1308. return -EINVAL;
  1309. }
  1310. /*
  1311. * Dequeue and return an I/O interrupt matching any of the interruption
  1312. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1313. * Take into account the interrupts pending in the interrupt list and in GISA.
  1314. *
  1315. * Note that for a guest that does not enable I/O interrupts
  1316. * but relies on TPI, a flood of classic interrupts may starve
  1317. * out adapter interrupts on the same isc. Linux does not do
  1318. * that, and it is possible to work around the issue by configuring
  1319. * different iscs for classic and adapter interrupts in the guest,
  1320. * but we may want to revisit this in the future.
  1321. */
  1322. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1323. u64 isc_mask, u32 schid)
  1324. {
  1325. struct kvm_s390_interrupt_info *inti, *tmp_inti;
  1326. int isc;
  1327. inti = get_top_io_int(kvm, isc_mask, schid);
  1328. isc = get_top_gisa_isc(kvm, isc_mask, schid);
  1329. if (isc < 0)
  1330. /* no AI in GISA */
  1331. goto out;
  1332. if (!inti)
  1333. /* AI in GISA but no classical IO int */
  1334. goto gisa_out;
  1335. /* both types of interrupts present */
  1336. if (int_word_to_isc(inti->io.io_int_word) <= isc) {
  1337. /* classical IO int with higher priority */
  1338. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1339. goto out;
  1340. }
  1341. gisa_out:
  1342. tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1343. if (tmp_inti) {
  1344. tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
  1345. tmp_inti->io.io_int_word = isc_to_int_word(isc);
  1346. if (inti)
  1347. kvm_s390_reinject_io_int(kvm, inti);
  1348. inti = tmp_inti;
  1349. } else
  1350. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1351. out:
  1352. return inti;
  1353. }
  1354. #define SCCB_MASK 0xFFFFFFF8
  1355. #define SCCB_EVENT_PENDING 0x3
  1356. static int __inject_service(struct kvm *kvm,
  1357. struct kvm_s390_interrupt_info *inti)
  1358. {
  1359. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1360. spin_lock(&fi->lock);
  1361. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1362. /*
  1363. * Early versions of the QEMU s390 bios will inject several
  1364. * service interrupts after another without handling a
  1365. * condition code indicating busy.
  1366. * We will silently ignore those superfluous sccb values.
  1367. * A future version of QEMU will take care of serialization
  1368. * of servc requests
  1369. */
  1370. if (fi->srv_signal.ext_params & SCCB_MASK)
  1371. goto out;
  1372. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1373. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1374. out:
  1375. spin_unlock(&fi->lock);
  1376. kfree(inti);
  1377. return 0;
  1378. }
  1379. static int __inject_virtio(struct kvm *kvm,
  1380. struct kvm_s390_interrupt_info *inti)
  1381. {
  1382. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1383. spin_lock(&fi->lock);
  1384. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1385. spin_unlock(&fi->lock);
  1386. return -EBUSY;
  1387. }
  1388. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1389. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1390. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1391. spin_unlock(&fi->lock);
  1392. return 0;
  1393. }
  1394. static int __inject_pfault_done(struct kvm *kvm,
  1395. struct kvm_s390_interrupt_info *inti)
  1396. {
  1397. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1398. spin_lock(&fi->lock);
  1399. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1400. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1401. spin_unlock(&fi->lock);
  1402. return -EBUSY;
  1403. }
  1404. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1405. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1406. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1407. spin_unlock(&fi->lock);
  1408. return 0;
  1409. }
  1410. #define CR_PENDING_SUBCLASS 28
  1411. static int __inject_float_mchk(struct kvm *kvm,
  1412. struct kvm_s390_interrupt_info *inti)
  1413. {
  1414. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1415. spin_lock(&fi->lock);
  1416. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1417. fi->mchk.mcic |= inti->mchk.mcic;
  1418. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1419. spin_unlock(&fi->lock);
  1420. kfree(inti);
  1421. return 0;
  1422. }
  1423. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1424. {
  1425. struct kvm_s390_float_interrupt *fi;
  1426. struct list_head *list;
  1427. int isc;
  1428. isc = int_word_to_isc(inti->io.io_int_word);
  1429. if (kvm->arch.gisa && inti->type & KVM_S390_INT_IO_AI_MASK) {
  1430. VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
  1431. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1432. kfree(inti);
  1433. return 0;
  1434. }
  1435. fi = &kvm->arch.float_int;
  1436. spin_lock(&fi->lock);
  1437. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1438. spin_unlock(&fi->lock);
  1439. return -EBUSY;
  1440. }
  1441. fi->counters[FIRQ_CNTR_IO] += 1;
  1442. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1443. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1444. else
  1445. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1446. inti->io.subchannel_id >> 8,
  1447. inti->io.subchannel_id >> 1 & 0x3,
  1448. inti->io.subchannel_nr);
  1449. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1450. list_add_tail(&inti->list, list);
  1451. set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1452. spin_unlock(&fi->lock);
  1453. return 0;
  1454. }
  1455. /*
  1456. * Find a destination VCPU for a floating irq and kick it.
  1457. */
  1458. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1459. {
  1460. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1461. struct kvm_vcpu *dst_vcpu;
  1462. int sigcpu, online_vcpus, nr_tries = 0;
  1463. online_vcpus = atomic_read(&kvm->online_vcpus);
  1464. if (!online_vcpus)
  1465. return;
  1466. /* find idle VCPUs first, then round robin */
  1467. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1468. if (sigcpu == online_vcpus) {
  1469. do {
  1470. sigcpu = fi->next_rr_cpu;
  1471. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1472. /* avoid endless loops if all vcpus are stopped */
  1473. if (nr_tries++ >= online_vcpus)
  1474. return;
  1475. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1476. }
  1477. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1478. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1479. switch (type) {
  1480. case KVM_S390_MCHK:
  1481. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
  1482. break;
  1483. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1484. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
  1485. break;
  1486. default:
  1487. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
  1488. break;
  1489. }
  1490. kvm_s390_vcpu_wakeup(dst_vcpu);
  1491. }
  1492. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1493. {
  1494. u64 type = READ_ONCE(inti->type);
  1495. int rc;
  1496. switch (type) {
  1497. case KVM_S390_MCHK:
  1498. rc = __inject_float_mchk(kvm, inti);
  1499. break;
  1500. case KVM_S390_INT_VIRTIO:
  1501. rc = __inject_virtio(kvm, inti);
  1502. break;
  1503. case KVM_S390_INT_SERVICE:
  1504. rc = __inject_service(kvm, inti);
  1505. break;
  1506. case KVM_S390_INT_PFAULT_DONE:
  1507. rc = __inject_pfault_done(kvm, inti);
  1508. break;
  1509. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1510. rc = __inject_io(kvm, inti);
  1511. break;
  1512. default:
  1513. rc = -EINVAL;
  1514. }
  1515. if (rc)
  1516. return rc;
  1517. __floating_irq_kick(kvm, type);
  1518. return 0;
  1519. }
  1520. int kvm_s390_inject_vm(struct kvm *kvm,
  1521. struct kvm_s390_interrupt *s390int)
  1522. {
  1523. struct kvm_s390_interrupt_info *inti;
  1524. int rc;
  1525. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1526. if (!inti)
  1527. return -ENOMEM;
  1528. inti->type = s390int->type;
  1529. switch (inti->type) {
  1530. case KVM_S390_INT_VIRTIO:
  1531. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1532. s390int->parm, s390int->parm64);
  1533. inti->ext.ext_params = s390int->parm;
  1534. inti->ext.ext_params2 = s390int->parm64;
  1535. break;
  1536. case KVM_S390_INT_SERVICE:
  1537. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1538. inti->ext.ext_params = s390int->parm;
  1539. break;
  1540. case KVM_S390_INT_PFAULT_DONE:
  1541. inti->ext.ext_params2 = s390int->parm64;
  1542. break;
  1543. case KVM_S390_MCHK:
  1544. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1545. s390int->parm64);
  1546. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1547. inti->mchk.mcic = s390int->parm64;
  1548. break;
  1549. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1550. inti->io.subchannel_id = s390int->parm >> 16;
  1551. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1552. inti->io.io_int_parm = s390int->parm64 >> 32;
  1553. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1554. break;
  1555. default:
  1556. kfree(inti);
  1557. return -EINVAL;
  1558. }
  1559. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1560. 2);
  1561. rc = __inject_vm(kvm, inti);
  1562. if (rc)
  1563. kfree(inti);
  1564. return rc;
  1565. }
  1566. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1567. struct kvm_s390_interrupt_info *inti)
  1568. {
  1569. return __inject_vm(kvm, inti);
  1570. }
  1571. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1572. struct kvm_s390_irq *irq)
  1573. {
  1574. irq->type = s390int->type;
  1575. switch (irq->type) {
  1576. case KVM_S390_PROGRAM_INT:
  1577. if (s390int->parm & 0xffff0000)
  1578. return -EINVAL;
  1579. irq->u.pgm.code = s390int->parm;
  1580. break;
  1581. case KVM_S390_SIGP_SET_PREFIX:
  1582. irq->u.prefix.address = s390int->parm;
  1583. break;
  1584. case KVM_S390_SIGP_STOP:
  1585. irq->u.stop.flags = s390int->parm;
  1586. break;
  1587. case KVM_S390_INT_EXTERNAL_CALL:
  1588. if (s390int->parm & 0xffff0000)
  1589. return -EINVAL;
  1590. irq->u.extcall.code = s390int->parm;
  1591. break;
  1592. case KVM_S390_INT_EMERGENCY:
  1593. if (s390int->parm & 0xffff0000)
  1594. return -EINVAL;
  1595. irq->u.emerg.code = s390int->parm;
  1596. break;
  1597. case KVM_S390_MCHK:
  1598. irq->u.mchk.mcic = s390int->parm64;
  1599. break;
  1600. }
  1601. return 0;
  1602. }
  1603. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1604. {
  1605. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1606. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1607. }
  1608. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1609. {
  1610. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1611. spin_lock(&li->lock);
  1612. li->irq.stop.flags = 0;
  1613. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1614. spin_unlock(&li->lock);
  1615. }
  1616. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1617. {
  1618. int rc;
  1619. switch (irq->type) {
  1620. case KVM_S390_PROGRAM_INT:
  1621. rc = __inject_prog(vcpu, irq);
  1622. break;
  1623. case KVM_S390_SIGP_SET_PREFIX:
  1624. rc = __inject_set_prefix(vcpu, irq);
  1625. break;
  1626. case KVM_S390_SIGP_STOP:
  1627. rc = __inject_sigp_stop(vcpu, irq);
  1628. break;
  1629. case KVM_S390_RESTART:
  1630. rc = __inject_sigp_restart(vcpu, irq);
  1631. break;
  1632. case KVM_S390_INT_CLOCK_COMP:
  1633. rc = __inject_ckc(vcpu);
  1634. break;
  1635. case KVM_S390_INT_CPU_TIMER:
  1636. rc = __inject_cpu_timer(vcpu);
  1637. break;
  1638. case KVM_S390_INT_EXTERNAL_CALL:
  1639. rc = __inject_extcall(vcpu, irq);
  1640. break;
  1641. case KVM_S390_INT_EMERGENCY:
  1642. rc = __inject_sigp_emergency(vcpu, irq);
  1643. break;
  1644. case KVM_S390_MCHK:
  1645. rc = __inject_mchk(vcpu, irq);
  1646. break;
  1647. case KVM_S390_INT_PFAULT_INIT:
  1648. rc = __inject_pfault_init(vcpu, irq);
  1649. break;
  1650. case KVM_S390_INT_VIRTIO:
  1651. case KVM_S390_INT_SERVICE:
  1652. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1653. default:
  1654. rc = -EINVAL;
  1655. }
  1656. return rc;
  1657. }
  1658. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1659. {
  1660. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1661. int rc;
  1662. spin_lock(&li->lock);
  1663. rc = do_inject_vcpu(vcpu, irq);
  1664. spin_unlock(&li->lock);
  1665. if (!rc)
  1666. kvm_s390_vcpu_wakeup(vcpu);
  1667. return rc;
  1668. }
  1669. static inline void clear_irq_list(struct list_head *_list)
  1670. {
  1671. struct kvm_s390_interrupt_info *inti, *n;
  1672. list_for_each_entry_safe(inti, n, _list, list) {
  1673. list_del(&inti->list);
  1674. kfree(inti);
  1675. }
  1676. }
  1677. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1678. struct kvm_s390_irq *irq)
  1679. {
  1680. irq->type = inti->type;
  1681. switch (inti->type) {
  1682. case KVM_S390_INT_PFAULT_INIT:
  1683. case KVM_S390_INT_PFAULT_DONE:
  1684. case KVM_S390_INT_VIRTIO:
  1685. irq->u.ext = inti->ext;
  1686. break;
  1687. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1688. irq->u.io = inti->io;
  1689. break;
  1690. }
  1691. }
  1692. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1693. {
  1694. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1695. int i;
  1696. spin_lock(&fi->lock);
  1697. fi->pending_irqs = 0;
  1698. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1699. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1700. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1701. clear_irq_list(&fi->lists[i]);
  1702. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1703. fi->counters[i] = 0;
  1704. spin_unlock(&fi->lock);
  1705. kvm_s390_gisa_clear(kvm);
  1706. };
  1707. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1708. {
  1709. struct kvm_s390_interrupt_info *inti;
  1710. struct kvm_s390_float_interrupt *fi;
  1711. struct kvm_s390_irq *buf;
  1712. struct kvm_s390_irq *irq;
  1713. int max_irqs;
  1714. int ret = 0;
  1715. int n = 0;
  1716. int i;
  1717. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1718. return -EINVAL;
  1719. /*
  1720. * We are already using -ENOMEM to signal
  1721. * userspace it may retry with a bigger buffer,
  1722. * so we need to use something else for this case
  1723. */
  1724. buf = vzalloc(len);
  1725. if (!buf)
  1726. return -ENOBUFS;
  1727. max_irqs = len / sizeof(struct kvm_s390_irq);
  1728. if (kvm->arch.gisa &&
  1729. kvm_s390_gisa_get_ipm(kvm->arch.gisa)) {
  1730. for (i = 0; i <= MAX_ISC; i++) {
  1731. if (n == max_irqs) {
  1732. /* signal userspace to try again */
  1733. ret = -ENOMEM;
  1734. goto out_nolock;
  1735. }
  1736. if (kvm_s390_gisa_tac_ipm_gisc(kvm->arch.gisa, i)) {
  1737. irq = (struct kvm_s390_irq *) &buf[n];
  1738. irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
  1739. irq->u.io.io_int_word = isc_to_int_word(i);
  1740. n++;
  1741. }
  1742. }
  1743. }
  1744. fi = &kvm->arch.float_int;
  1745. spin_lock(&fi->lock);
  1746. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1747. list_for_each_entry(inti, &fi->lists[i], list) {
  1748. if (n == max_irqs) {
  1749. /* signal userspace to try again */
  1750. ret = -ENOMEM;
  1751. goto out;
  1752. }
  1753. inti_to_irq(inti, &buf[n]);
  1754. n++;
  1755. }
  1756. }
  1757. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1758. if (n == max_irqs) {
  1759. /* signal userspace to try again */
  1760. ret = -ENOMEM;
  1761. goto out;
  1762. }
  1763. irq = (struct kvm_s390_irq *) &buf[n];
  1764. irq->type = KVM_S390_INT_SERVICE;
  1765. irq->u.ext = fi->srv_signal;
  1766. n++;
  1767. }
  1768. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1769. if (n == max_irqs) {
  1770. /* signal userspace to try again */
  1771. ret = -ENOMEM;
  1772. goto out;
  1773. }
  1774. irq = (struct kvm_s390_irq *) &buf[n];
  1775. irq->type = KVM_S390_MCHK;
  1776. irq->u.mchk = fi->mchk;
  1777. n++;
  1778. }
  1779. out:
  1780. spin_unlock(&fi->lock);
  1781. out_nolock:
  1782. if (!ret && n > 0) {
  1783. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1784. ret = -EFAULT;
  1785. }
  1786. vfree(buf);
  1787. return ret < 0 ? ret : n;
  1788. }
  1789. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1790. {
  1791. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1792. struct kvm_s390_ais_all ais;
  1793. if (attr->attr < sizeof(ais))
  1794. return -EINVAL;
  1795. if (!test_kvm_facility(kvm, 72))
  1796. return -ENOTSUPP;
  1797. mutex_lock(&fi->ais_lock);
  1798. ais.simm = fi->simm;
  1799. ais.nimm = fi->nimm;
  1800. mutex_unlock(&fi->ais_lock);
  1801. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1802. return -EFAULT;
  1803. return 0;
  1804. }
  1805. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1806. {
  1807. int r;
  1808. switch (attr->group) {
  1809. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1810. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1811. attr->attr);
  1812. break;
  1813. case KVM_DEV_FLIC_AISM_ALL:
  1814. r = flic_ais_mode_get_all(dev->kvm, attr);
  1815. break;
  1816. default:
  1817. r = -EINVAL;
  1818. }
  1819. return r;
  1820. }
  1821. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1822. u64 addr)
  1823. {
  1824. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1825. void *target = NULL;
  1826. void __user *source;
  1827. u64 size;
  1828. if (get_user(inti->type, (u64 __user *)addr))
  1829. return -EFAULT;
  1830. switch (inti->type) {
  1831. case KVM_S390_INT_PFAULT_INIT:
  1832. case KVM_S390_INT_PFAULT_DONE:
  1833. case KVM_S390_INT_VIRTIO:
  1834. case KVM_S390_INT_SERVICE:
  1835. target = (void *) &inti->ext;
  1836. source = &uptr->u.ext;
  1837. size = sizeof(inti->ext);
  1838. break;
  1839. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1840. target = (void *) &inti->io;
  1841. source = &uptr->u.io;
  1842. size = sizeof(inti->io);
  1843. break;
  1844. case KVM_S390_MCHK:
  1845. target = (void *) &inti->mchk;
  1846. source = &uptr->u.mchk;
  1847. size = sizeof(inti->mchk);
  1848. break;
  1849. default:
  1850. return -EINVAL;
  1851. }
  1852. if (copy_from_user(target, source, size))
  1853. return -EFAULT;
  1854. return 0;
  1855. }
  1856. static int enqueue_floating_irq(struct kvm_device *dev,
  1857. struct kvm_device_attr *attr)
  1858. {
  1859. struct kvm_s390_interrupt_info *inti = NULL;
  1860. int r = 0;
  1861. int len = attr->attr;
  1862. if (len % sizeof(struct kvm_s390_irq) != 0)
  1863. return -EINVAL;
  1864. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1865. return -EINVAL;
  1866. while (len >= sizeof(struct kvm_s390_irq)) {
  1867. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1868. if (!inti)
  1869. return -ENOMEM;
  1870. r = copy_irq_from_user(inti, attr->addr);
  1871. if (r) {
  1872. kfree(inti);
  1873. return r;
  1874. }
  1875. r = __inject_vm(dev->kvm, inti);
  1876. if (r) {
  1877. kfree(inti);
  1878. return r;
  1879. }
  1880. len -= sizeof(struct kvm_s390_irq);
  1881. attr->addr += sizeof(struct kvm_s390_irq);
  1882. }
  1883. return r;
  1884. }
  1885. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1886. {
  1887. if (id >= MAX_S390_IO_ADAPTERS)
  1888. return NULL;
  1889. return kvm->arch.adapters[id];
  1890. }
  1891. static int register_io_adapter(struct kvm_device *dev,
  1892. struct kvm_device_attr *attr)
  1893. {
  1894. struct s390_io_adapter *adapter;
  1895. struct kvm_s390_io_adapter adapter_info;
  1896. if (copy_from_user(&adapter_info,
  1897. (void __user *)attr->addr, sizeof(adapter_info)))
  1898. return -EFAULT;
  1899. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1900. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1901. return -EINVAL;
  1902. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1903. if (!adapter)
  1904. return -ENOMEM;
  1905. INIT_LIST_HEAD(&adapter->maps);
  1906. init_rwsem(&adapter->maps_lock);
  1907. atomic_set(&adapter->nr_maps, 0);
  1908. adapter->id = adapter_info.id;
  1909. adapter->isc = adapter_info.isc;
  1910. adapter->maskable = adapter_info.maskable;
  1911. adapter->masked = false;
  1912. adapter->swap = adapter_info.swap;
  1913. adapter->suppressible = (adapter_info.flags) &
  1914. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1915. dev->kvm->arch.adapters[adapter->id] = adapter;
  1916. return 0;
  1917. }
  1918. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1919. {
  1920. int ret;
  1921. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1922. if (!adapter || !adapter->maskable)
  1923. return -EINVAL;
  1924. ret = adapter->masked;
  1925. adapter->masked = masked;
  1926. return ret;
  1927. }
  1928. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1929. {
  1930. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1931. struct s390_map_info *map;
  1932. int ret;
  1933. if (!adapter || !addr)
  1934. return -EINVAL;
  1935. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1936. if (!map) {
  1937. ret = -ENOMEM;
  1938. goto out;
  1939. }
  1940. INIT_LIST_HEAD(&map->list);
  1941. map->guest_addr = addr;
  1942. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1943. if (map->addr == -EFAULT) {
  1944. ret = -EFAULT;
  1945. goto out;
  1946. }
  1947. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1948. if (ret < 0)
  1949. goto out;
  1950. BUG_ON(ret != 1);
  1951. down_write(&adapter->maps_lock);
  1952. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1953. list_add_tail(&map->list, &adapter->maps);
  1954. ret = 0;
  1955. } else {
  1956. put_page(map->page);
  1957. ret = -EINVAL;
  1958. }
  1959. up_write(&adapter->maps_lock);
  1960. out:
  1961. if (ret)
  1962. kfree(map);
  1963. return ret;
  1964. }
  1965. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1966. {
  1967. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1968. struct s390_map_info *map, *tmp;
  1969. int found = 0;
  1970. if (!adapter || !addr)
  1971. return -EINVAL;
  1972. down_write(&adapter->maps_lock);
  1973. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1974. if (map->guest_addr == addr) {
  1975. found = 1;
  1976. atomic_dec(&adapter->nr_maps);
  1977. list_del(&map->list);
  1978. put_page(map->page);
  1979. kfree(map);
  1980. break;
  1981. }
  1982. }
  1983. up_write(&adapter->maps_lock);
  1984. return found ? 0 : -EINVAL;
  1985. }
  1986. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1987. {
  1988. int i;
  1989. struct s390_map_info *map, *tmp;
  1990. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1991. if (!kvm->arch.adapters[i])
  1992. continue;
  1993. list_for_each_entry_safe(map, tmp,
  1994. &kvm->arch.adapters[i]->maps, list) {
  1995. list_del(&map->list);
  1996. put_page(map->page);
  1997. kfree(map);
  1998. }
  1999. kfree(kvm->arch.adapters[i]);
  2000. }
  2001. }
  2002. static int modify_io_adapter(struct kvm_device *dev,
  2003. struct kvm_device_attr *attr)
  2004. {
  2005. struct kvm_s390_io_adapter_req req;
  2006. struct s390_io_adapter *adapter;
  2007. int ret;
  2008. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  2009. return -EFAULT;
  2010. adapter = get_io_adapter(dev->kvm, req.id);
  2011. if (!adapter)
  2012. return -EINVAL;
  2013. switch (req.type) {
  2014. case KVM_S390_IO_ADAPTER_MASK:
  2015. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  2016. if (ret > 0)
  2017. ret = 0;
  2018. break;
  2019. case KVM_S390_IO_ADAPTER_MAP:
  2020. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  2021. break;
  2022. case KVM_S390_IO_ADAPTER_UNMAP:
  2023. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  2024. break;
  2025. default:
  2026. ret = -EINVAL;
  2027. }
  2028. return ret;
  2029. }
  2030. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  2031. {
  2032. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  2033. u32 schid;
  2034. if (attr->flags)
  2035. return -EINVAL;
  2036. if (attr->attr != sizeof(schid))
  2037. return -EINVAL;
  2038. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  2039. return -EFAULT;
  2040. if (!schid)
  2041. return -EINVAL;
  2042. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  2043. /*
  2044. * If userspace is conforming to the architecture, we can have at most
  2045. * one pending I/O interrupt per subchannel, so this is effectively a
  2046. * clear all.
  2047. */
  2048. return 0;
  2049. }
  2050. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  2051. {
  2052. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2053. struct kvm_s390_ais_req req;
  2054. int ret = 0;
  2055. if (!test_kvm_facility(kvm, 72))
  2056. return -ENOTSUPP;
  2057. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  2058. return -EFAULT;
  2059. if (req.isc > MAX_ISC)
  2060. return -EINVAL;
  2061. trace_kvm_s390_modify_ais_mode(req.isc,
  2062. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  2063. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  2064. 2 : KVM_S390_AIS_MODE_SINGLE :
  2065. KVM_S390_AIS_MODE_ALL, req.mode);
  2066. mutex_lock(&fi->ais_lock);
  2067. switch (req.mode) {
  2068. case KVM_S390_AIS_MODE_ALL:
  2069. fi->simm &= ~AIS_MODE_MASK(req.isc);
  2070. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  2071. break;
  2072. case KVM_S390_AIS_MODE_SINGLE:
  2073. fi->simm |= AIS_MODE_MASK(req.isc);
  2074. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  2075. break;
  2076. default:
  2077. ret = -EINVAL;
  2078. }
  2079. mutex_unlock(&fi->ais_lock);
  2080. return ret;
  2081. }
  2082. static int kvm_s390_inject_airq(struct kvm *kvm,
  2083. struct s390_io_adapter *adapter)
  2084. {
  2085. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2086. struct kvm_s390_interrupt s390int = {
  2087. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  2088. .parm = 0,
  2089. .parm64 = isc_to_int_word(adapter->isc),
  2090. };
  2091. int ret = 0;
  2092. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  2093. return kvm_s390_inject_vm(kvm, &s390int);
  2094. mutex_lock(&fi->ais_lock);
  2095. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  2096. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  2097. goto out;
  2098. }
  2099. ret = kvm_s390_inject_vm(kvm, &s390int);
  2100. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  2101. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  2102. trace_kvm_s390_modify_ais_mode(adapter->isc,
  2103. KVM_S390_AIS_MODE_SINGLE, 2);
  2104. }
  2105. out:
  2106. mutex_unlock(&fi->ais_lock);
  2107. return ret;
  2108. }
  2109. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  2110. {
  2111. unsigned int id = attr->attr;
  2112. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  2113. if (!adapter)
  2114. return -EINVAL;
  2115. return kvm_s390_inject_airq(kvm, adapter);
  2116. }
  2117. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  2118. {
  2119. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2120. struct kvm_s390_ais_all ais;
  2121. if (!test_kvm_facility(kvm, 72))
  2122. return -ENOTSUPP;
  2123. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  2124. return -EFAULT;
  2125. mutex_lock(&fi->ais_lock);
  2126. fi->simm = ais.simm;
  2127. fi->nimm = ais.nimm;
  2128. mutex_unlock(&fi->ais_lock);
  2129. return 0;
  2130. }
  2131. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  2132. {
  2133. int r = 0;
  2134. unsigned int i;
  2135. struct kvm_vcpu *vcpu;
  2136. switch (attr->group) {
  2137. case KVM_DEV_FLIC_ENQUEUE:
  2138. r = enqueue_floating_irq(dev, attr);
  2139. break;
  2140. case KVM_DEV_FLIC_CLEAR_IRQS:
  2141. kvm_s390_clear_float_irqs(dev->kvm);
  2142. break;
  2143. case KVM_DEV_FLIC_APF_ENABLE:
  2144. dev->kvm->arch.gmap->pfault_enabled = 1;
  2145. break;
  2146. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2147. dev->kvm->arch.gmap->pfault_enabled = 0;
  2148. /*
  2149. * Make sure no async faults are in transition when
  2150. * clearing the queues. So we don't need to worry
  2151. * about late coming workers.
  2152. */
  2153. synchronize_srcu(&dev->kvm->srcu);
  2154. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2155. kvm_clear_async_pf_completion_queue(vcpu);
  2156. break;
  2157. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2158. r = register_io_adapter(dev, attr);
  2159. break;
  2160. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2161. r = modify_io_adapter(dev, attr);
  2162. break;
  2163. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2164. r = clear_io_irq(dev->kvm, attr);
  2165. break;
  2166. case KVM_DEV_FLIC_AISM:
  2167. r = modify_ais_mode(dev->kvm, attr);
  2168. break;
  2169. case KVM_DEV_FLIC_AIRQ_INJECT:
  2170. r = flic_inject_airq(dev->kvm, attr);
  2171. break;
  2172. case KVM_DEV_FLIC_AISM_ALL:
  2173. r = flic_ais_mode_set_all(dev->kvm, attr);
  2174. break;
  2175. default:
  2176. r = -EINVAL;
  2177. }
  2178. return r;
  2179. }
  2180. static int flic_has_attr(struct kvm_device *dev,
  2181. struct kvm_device_attr *attr)
  2182. {
  2183. switch (attr->group) {
  2184. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2185. case KVM_DEV_FLIC_ENQUEUE:
  2186. case KVM_DEV_FLIC_CLEAR_IRQS:
  2187. case KVM_DEV_FLIC_APF_ENABLE:
  2188. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2189. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2190. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2191. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2192. case KVM_DEV_FLIC_AISM:
  2193. case KVM_DEV_FLIC_AIRQ_INJECT:
  2194. case KVM_DEV_FLIC_AISM_ALL:
  2195. return 0;
  2196. }
  2197. return -ENXIO;
  2198. }
  2199. static int flic_create(struct kvm_device *dev, u32 type)
  2200. {
  2201. if (!dev)
  2202. return -EINVAL;
  2203. if (dev->kvm->arch.flic)
  2204. return -EINVAL;
  2205. dev->kvm->arch.flic = dev;
  2206. return 0;
  2207. }
  2208. static void flic_destroy(struct kvm_device *dev)
  2209. {
  2210. dev->kvm->arch.flic = NULL;
  2211. kfree(dev);
  2212. }
  2213. /* s390 floating irq controller (flic) */
  2214. struct kvm_device_ops kvm_flic_ops = {
  2215. .name = "kvm-flic",
  2216. .get_attr = flic_get_attr,
  2217. .set_attr = flic_set_attr,
  2218. .has_attr = flic_has_attr,
  2219. .create = flic_create,
  2220. .destroy = flic_destroy,
  2221. };
  2222. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2223. {
  2224. unsigned long bit;
  2225. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2226. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2227. }
  2228. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2229. u64 addr)
  2230. {
  2231. struct s390_map_info *map;
  2232. if (!adapter)
  2233. return NULL;
  2234. list_for_each_entry(map, &adapter->maps, list) {
  2235. if (map->guest_addr == addr)
  2236. return map;
  2237. }
  2238. return NULL;
  2239. }
  2240. static int adapter_indicators_set(struct kvm *kvm,
  2241. struct s390_io_adapter *adapter,
  2242. struct kvm_s390_adapter_int *adapter_int)
  2243. {
  2244. unsigned long bit;
  2245. int summary_set, idx;
  2246. struct s390_map_info *info;
  2247. void *map;
  2248. info = get_map_info(adapter, adapter_int->ind_addr);
  2249. if (!info)
  2250. return -1;
  2251. map = page_address(info->page);
  2252. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2253. set_bit(bit, map);
  2254. idx = srcu_read_lock(&kvm->srcu);
  2255. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2256. set_page_dirty_lock(info->page);
  2257. info = get_map_info(adapter, adapter_int->summary_addr);
  2258. if (!info) {
  2259. srcu_read_unlock(&kvm->srcu, idx);
  2260. return -1;
  2261. }
  2262. map = page_address(info->page);
  2263. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2264. adapter->swap);
  2265. summary_set = test_and_set_bit(bit, map);
  2266. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2267. set_page_dirty_lock(info->page);
  2268. srcu_read_unlock(&kvm->srcu, idx);
  2269. return summary_set ? 0 : 1;
  2270. }
  2271. /*
  2272. * < 0 - not injected due to error
  2273. * = 0 - coalesced, summary indicator already active
  2274. * > 0 - injected interrupt
  2275. */
  2276. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2277. struct kvm *kvm, int irq_source_id, int level,
  2278. bool line_status)
  2279. {
  2280. int ret;
  2281. struct s390_io_adapter *adapter;
  2282. /* We're only interested in the 0->1 transition. */
  2283. if (!level)
  2284. return 0;
  2285. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2286. if (!adapter)
  2287. return -1;
  2288. down_read(&adapter->maps_lock);
  2289. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2290. up_read(&adapter->maps_lock);
  2291. if ((ret > 0) && !adapter->masked) {
  2292. ret = kvm_s390_inject_airq(kvm, adapter);
  2293. if (ret == 0)
  2294. ret = 1;
  2295. }
  2296. return ret;
  2297. }
  2298. /*
  2299. * Inject the machine check to the guest.
  2300. */
  2301. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2302. struct mcck_volatile_info *mcck_info)
  2303. {
  2304. struct kvm_s390_interrupt_info inti;
  2305. struct kvm_s390_irq irq;
  2306. struct kvm_s390_mchk_info *mchk;
  2307. union mci mci;
  2308. __u64 cr14 = 0; /* upper bits are not used */
  2309. int rc;
  2310. mci.val = mcck_info->mcic;
  2311. if (mci.sr)
  2312. cr14 |= CR14_RECOVERY_SUBMASK;
  2313. if (mci.dg)
  2314. cr14 |= CR14_DEGRADATION_SUBMASK;
  2315. if (mci.w)
  2316. cr14 |= CR14_WARNING_SUBMASK;
  2317. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2318. mchk->cr14 = cr14;
  2319. mchk->mcic = mcck_info->mcic;
  2320. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2321. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2322. if (mci.ck) {
  2323. /* Inject the floating machine check */
  2324. inti.type = KVM_S390_MCHK;
  2325. rc = __inject_vm(vcpu->kvm, &inti);
  2326. } else {
  2327. /* Inject the machine check to specified vcpu */
  2328. irq.type = KVM_S390_MCHK;
  2329. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2330. }
  2331. WARN_ON_ONCE(rc);
  2332. }
  2333. int kvm_set_routing_entry(struct kvm *kvm,
  2334. struct kvm_kernel_irq_routing_entry *e,
  2335. const struct kvm_irq_routing_entry *ue)
  2336. {
  2337. int ret;
  2338. switch (ue->type) {
  2339. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2340. e->set = set_adapter_int;
  2341. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2342. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2343. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2344. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2345. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2346. ret = 0;
  2347. break;
  2348. default:
  2349. ret = -EINVAL;
  2350. }
  2351. return ret;
  2352. }
  2353. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2354. int irq_source_id, int level, bool line_status)
  2355. {
  2356. return -EINVAL;
  2357. }
  2358. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2359. {
  2360. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2361. struct kvm_s390_irq *buf;
  2362. int r = 0;
  2363. int n;
  2364. buf = vmalloc(len);
  2365. if (!buf)
  2366. return -ENOMEM;
  2367. if (copy_from_user((void *) buf, irqstate, len)) {
  2368. r = -EFAULT;
  2369. goto out_free;
  2370. }
  2371. /*
  2372. * Don't allow setting the interrupt state
  2373. * when there are already interrupts pending
  2374. */
  2375. spin_lock(&li->lock);
  2376. if (li->pending_irqs) {
  2377. r = -EBUSY;
  2378. goto out_unlock;
  2379. }
  2380. for (n = 0; n < len / sizeof(*buf); n++) {
  2381. r = do_inject_vcpu(vcpu, &buf[n]);
  2382. if (r)
  2383. break;
  2384. }
  2385. out_unlock:
  2386. spin_unlock(&li->lock);
  2387. out_free:
  2388. vfree(buf);
  2389. return r;
  2390. }
  2391. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2392. struct kvm_s390_irq *irq,
  2393. unsigned long irq_type)
  2394. {
  2395. switch (irq_type) {
  2396. case IRQ_PEND_MCHK_EX:
  2397. case IRQ_PEND_MCHK_REP:
  2398. irq->type = KVM_S390_MCHK;
  2399. irq->u.mchk = li->irq.mchk;
  2400. break;
  2401. case IRQ_PEND_PROG:
  2402. irq->type = KVM_S390_PROGRAM_INT;
  2403. irq->u.pgm = li->irq.pgm;
  2404. break;
  2405. case IRQ_PEND_PFAULT_INIT:
  2406. irq->type = KVM_S390_INT_PFAULT_INIT;
  2407. irq->u.ext = li->irq.ext;
  2408. break;
  2409. case IRQ_PEND_EXT_EXTERNAL:
  2410. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2411. irq->u.extcall = li->irq.extcall;
  2412. break;
  2413. case IRQ_PEND_EXT_CLOCK_COMP:
  2414. irq->type = KVM_S390_INT_CLOCK_COMP;
  2415. break;
  2416. case IRQ_PEND_EXT_CPU_TIMER:
  2417. irq->type = KVM_S390_INT_CPU_TIMER;
  2418. break;
  2419. case IRQ_PEND_SIGP_STOP:
  2420. irq->type = KVM_S390_SIGP_STOP;
  2421. irq->u.stop = li->irq.stop;
  2422. break;
  2423. case IRQ_PEND_RESTART:
  2424. irq->type = KVM_S390_RESTART;
  2425. break;
  2426. case IRQ_PEND_SET_PREFIX:
  2427. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2428. irq->u.prefix = li->irq.prefix;
  2429. break;
  2430. }
  2431. }
  2432. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2433. {
  2434. int scn;
  2435. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2436. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2437. unsigned long pending_irqs;
  2438. struct kvm_s390_irq irq;
  2439. unsigned long irq_type;
  2440. int cpuaddr;
  2441. int n = 0;
  2442. spin_lock(&li->lock);
  2443. pending_irqs = li->pending_irqs;
  2444. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2445. sizeof(sigp_emerg_pending));
  2446. spin_unlock(&li->lock);
  2447. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2448. memset(&irq, 0, sizeof(irq));
  2449. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2450. continue;
  2451. if (n + sizeof(irq) > len)
  2452. return -ENOBUFS;
  2453. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2454. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2455. return -EFAULT;
  2456. n += sizeof(irq);
  2457. }
  2458. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2459. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2460. memset(&irq, 0, sizeof(irq));
  2461. if (n + sizeof(irq) > len)
  2462. return -ENOBUFS;
  2463. irq.type = KVM_S390_INT_EMERGENCY;
  2464. irq.u.emerg.code = cpuaddr;
  2465. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2466. return -EFAULT;
  2467. n += sizeof(irq);
  2468. }
  2469. }
  2470. if (sca_ext_call_pending(vcpu, &scn)) {
  2471. if (n + sizeof(irq) > len)
  2472. return -ENOBUFS;
  2473. memset(&irq, 0, sizeof(irq));
  2474. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2475. irq.u.extcall.code = scn;
  2476. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2477. return -EFAULT;
  2478. n += sizeof(irq);
  2479. }
  2480. return n;
  2481. }
  2482. void kvm_s390_gisa_clear(struct kvm *kvm)
  2483. {
  2484. if (kvm->arch.gisa) {
  2485. memset(kvm->arch.gisa, 0, sizeof(struct kvm_s390_gisa));
  2486. kvm->arch.gisa->next_alert = (u32)(u64)kvm->arch.gisa;
  2487. VM_EVENT(kvm, 3, "gisa 0x%pK cleared", kvm->arch.gisa);
  2488. }
  2489. }
  2490. void kvm_s390_gisa_init(struct kvm *kvm)
  2491. {
  2492. /* not implemented yet */
  2493. }
  2494. void kvm_s390_gisa_destroy(struct kvm *kvm)
  2495. {
  2496. if (!kvm->arch.gisa)
  2497. return;
  2498. kvm->arch.gisa = NULL;
  2499. }