fs-writeback.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/slab.h>
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/mm.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/kthread.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/tracepoint.h>
  28. #include <linux/device.h>
  29. #include <linux/memcontrol.h>
  30. #include "internal.h"
  31. /*
  32. * 4MB minimal write chunk size
  33. */
  34. #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
  35. struct wb_completion {
  36. atomic_t cnt;
  37. };
  38. /*
  39. * Passed into wb_writeback(), essentially a subset of writeback_control
  40. */
  41. struct wb_writeback_work {
  42. long nr_pages;
  43. struct super_block *sb;
  44. unsigned long *older_than_this;
  45. enum writeback_sync_modes sync_mode;
  46. unsigned int tagged_writepages:1;
  47. unsigned int for_kupdate:1;
  48. unsigned int range_cyclic:1;
  49. unsigned int for_background:1;
  50. unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
  51. unsigned int auto_free:1; /* free on completion */
  52. enum wb_reason reason; /* why was writeback initiated? */
  53. struct list_head list; /* pending work list */
  54. struct wb_completion *done; /* set if the caller waits */
  55. };
  56. /*
  57. * If one wants to wait for one or more wb_writeback_works, each work's
  58. * ->done should be set to a wb_completion defined using the following
  59. * macro. Once all work items are issued with wb_queue_work(), the caller
  60. * can wait for the completion of all using wb_wait_for_completion(). Work
  61. * items which are waited upon aren't freed automatically on completion.
  62. */
  63. #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
  64. struct wb_completion cmpl = { \
  65. .cnt = ATOMIC_INIT(1), \
  66. }
  67. /*
  68. * If an inode is constantly having its pages dirtied, but then the
  69. * updates stop dirtytime_expire_interval seconds in the past, it's
  70. * possible for the worst case time between when an inode has its
  71. * timestamps updated and when they finally get written out to be two
  72. * dirtytime_expire_intervals. We set the default to 12 hours (in
  73. * seconds), which means most of the time inodes will have their
  74. * timestamps written to disk after 12 hours, but in the worst case a
  75. * few inodes might not their timestamps updated for 24 hours.
  76. */
  77. unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  78. static inline struct inode *wb_inode(struct list_head *head)
  79. {
  80. return list_entry(head, struct inode, i_io_list);
  81. }
  82. /*
  83. * Include the creation of the trace points after defining the
  84. * wb_writeback_work structure and inline functions so that the definition
  85. * remains local to this file.
  86. */
  87. #define CREATE_TRACE_POINTS
  88. #include <trace/events/writeback.h>
  89. EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  90. static bool wb_io_lists_populated(struct bdi_writeback *wb)
  91. {
  92. if (wb_has_dirty_io(wb)) {
  93. return false;
  94. } else {
  95. set_bit(WB_has_dirty_io, &wb->state);
  96. WARN_ON_ONCE(!wb->avg_write_bandwidth);
  97. atomic_long_add(wb->avg_write_bandwidth,
  98. &wb->bdi->tot_write_bandwidth);
  99. return true;
  100. }
  101. }
  102. static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  103. {
  104. if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
  105. list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
  106. clear_bit(WB_has_dirty_io, &wb->state);
  107. WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
  108. &wb->bdi->tot_write_bandwidth) < 0);
  109. }
  110. }
  111. /**
  112. * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
  113. * @inode: inode to be moved
  114. * @wb: target bdi_writeback
  115. * @head: one of @wb->b_{dirty|io|more_io}
  116. *
  117. * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
  118. * Returns %true if @inode is the first occupant of the !dirty_time IO
  119. * lists; otherwise, %false.
  120. */
  121. static bool inode_io_list_move_locked(struct inode *inode,
  122. struct bdi_writeback *wb,
  123. struct list_head *head)
  124. {
  125. assert_spin_locked(&wb->list_lock);
  126. list_move(&inode->i_io_list, head);
  127. /* dirty_time doesn't count as dirty_io until expiration */
  128. if (head != &wb->b_dirty_time)
  129. return wb_io_lists_populated(wb);
  130. wb_io_lists_depopulated(wb);
  131. return false;
  132. }
  133. /**
  134. * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
  135. * @inode: inode to be removed
  136. * @wb: bdi_writeback @inode is being removed from
  137. *
  138. * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
  139. * clear %WB_has_dirty_io if all are empty afterwards.
  140. */
  141. static void inode_io_list_del_locked(struct inode *inode,
  142. struct bdi_writeback *wb)
  143. {
  144. assert_spin_locked(&wb->list_lock);
  145. list_del_init(&inode->i_io_list);
  146. wb_io_lists_depopulated(wb);
  147. }
  148. static void wb_wakeup(struct bdi_writeback *wb)
  149. {
  150. spin_lock_bh(&wb->work_lock);
  151. if (test_bit(WB_registered, &wb->state))
  152. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  153. spin_unlock_bh(&wb->work_lock);
  154. }
  155. static void wb_queue_work(struct bdi_writeback *wb,
  156. struct wb_writeback_work *work)
  157. {
  158. trace_writeback_queue(wb, work);
  159. spin_lock_bh(&wb->work_lock);
  160. if (!test_bit(WB_registered, &wb->state))
  161. goto out_unlock;
  162. if (work->done)
  163. atomic_inc(&work->done->cnt);
  164. list_add_tail(&work->list, &wb->work_list);
  165. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  166. out_unlock:
  167. spin_unlock_bh(&wb->work_lock);
  168. }
  169. /**
  170. * wb_wait_for_completion - wait for completion of bdi_writeback_works
  171. * @bdi: bdi work items were issued to
  172. * @done: target wb_completion
  173. *
  174. * Wait for one or more work items issued to @bdi with their ->done field
  175. * set to @done, which should have been defined with
  176. * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
  177. * work items are completed. Work items which are waited upon aren't freed
  178. * automatically on completion.
  179. */
  180. static void wb_wait_for_completion(struct backing_dev_info *bdi,
  181. struct wb_completion *done)
  182. {
  183. atomic_dec(&done->cnt); /* put down the initial count */
  184. wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
  185. }
  186. #ifdef CONFIG_CGROUP_WRITEBACK
  187. /* parameters for foreign inode detection, see wb_detach_inode() */
  188. #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
  189. #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
  190. #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
  191. #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
  192. #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
  193. #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
  194. /* each slot's duration is 2s / 16 */
  195. #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
  196. /* if foreign slots >= 8, switch */
  197. #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
  198. /* one round can affect upto 5 slots */
  199. static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
  200. static struct workqueue_struct *isw_wq;
  201. void __inode_attach_wb(struct inode *inode, struct page *page)
  202. {
  203. struct backing_dev_info *bdi = inode_to_bdi(inode);
  204. struct bdi_writeback *wb = NULL;
  205. if (inode_cgwb_enabled(inode)) {
  206. struct cgroup_subsys_state *memcg_css;
  207. if (page) {
  208. memcg_css = mem_cgroup_css_from_page(page);
  209. wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  210. } else {
  211. /* must pin memcg_css, see wb_get_create() */
  212. memcg_css = task_get_css(current, memory_cgrp_id);
  213. wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  214. css_put(memcg_css);
  215. }
  216. }
  217. if (!wb)
  218. wb = &bdi->wb;
  219. /*
  220. * There may be multiple instances of this function racing to
  221. * update the same inode. Use cmpxchg() to tell the winner.
  222. */
  223. if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
  224. wb_put(wb);
  225. }
  226. /**
  227. * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
  228. * @inode: inode of interest with i_lock held
  229. *
  230. * Returns @inode's wb with its list_lock held. @inode->i_lock must be
  231. * held on entry and is released on return. The returned wb is guaranteed
  232. * to stay @inode's associated wb until its list_lock is released.
  233. */
  234. static struct bdi_writeback *
  235. locked_inode_to_wb_and_lock_list(struct inode *inode)
  236. __releases(&inode->i_lock)
  237. __acquires(&wb->list_lock)
  238. {
  239. while (true) {
  240. struct bdi_writeback *wb = inode_to_wb(inode);
  241. /*
  242. * inode_to_wb() association is protected by both
  243. * @inode->i_lock and @wb->list_lock but list_lock nests
  244. * outside i_lock. Drop i_lock and verify that the
  245. * association hasn't changed after acquiring list_lock.
  246. */
  247. wb_get(wb);
  248. spin_unlock(&inode->i_lock);
  249. spin_lock(&wb->list_lock);
  250. /* i_wb may have changed inbetween, can't use inode_to_wb() */
  251. if (likely(wb == inode->i_wb)) {
  252. wb_put(wb); /* @inode already has ref */
  253. return wb;
  254. }
  255. spin_unlock(&wb->list_lock);
  256. wb_put(wb);
  257. cpu_relax();
  258. spin_lock(&inode->i_lock);
  259. }
  260. }
  261. /**
  262. * inode_to_wb_and_lock_list - determine an inode's wb and lock it
  263. * @inode: inode of interest
  264. *
  265. * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
  266. * on entry.
  267. */
  268. static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
  269. __acquires(&wb->list_lock)
  270. {
  271. spin_lock(&inode->i_lock);
  272. return locked_inode_to_wb_and_lock_list(inode);
  273. }
  274. struct inode_switch_wbs_context {
  275. struct inode *inode;
  276. struct bdi_writeback *new_wb;
  277. struct rcu_head rcu_head;
  278. struct work_struct work;
  279. };
  280. static void inode_switch_wbs_work_fn(struct work_struct *work)
  281. {
  282. struct inode_switch_wbs_context *isw =
  283. container_of(work, struct inode_switch_wbs_context, work);
  284. struct inode *inode = isw->inode;
  285. struct address_space *mapping = inode->i_mapping;
  286. struct bdi_writeback *old_wb = inode->i_wb;
  287. struct bdi_writeback *new_wb = isw->new_wb;
  288. struct radix_tree_iter iter;
  289. bool switched = false;
  290. void **slot;
  291. /*
  292. * By the time control reaches here, RCU grace period has passed
  293. * since I_WB_SWITCH assertion and all wb stat update transactions
  294. * between unlocked_inode_to_wb_begin/end() are guaranteed to be
  295. * synchronizing against mapping->tree_lock.
  296. *
  297. * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
  298. * gives us exclusion against all wb related operations on @inode
  299. * including IO list manipulations and stat updates.
  300. */
  301. if (old_wb < new_wb) {
  302. spin_lock(&old_wb->list_lock);
  303. spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
  304. } else {
  305. spin_lock(&new_wb->list_lock);
  306. spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
  307. }
  308. spin_lock(&inode->i_lock);
  309. spin_lock_irq(&mapping->tree_lock);
  310. /*
  311. * Once I_FREEING is visible under i_lock, the eviction path owns
  312. * the inode and we shouldn't modify ->i_io_list.
  313. */
  314. if (unlikely(inode->i_state & I_FREEING))
  315. goto skip_switch;
  316. /*
  317. * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
  318. * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
  319. * pages actually under underwriteback.
  320. */
  321. radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
  322. PAGECACHE_TAG_DIRTY) {
  323. struct page *page = radix_tree_deref_slot_protected(slot,
  324. &mapping->tree_lock);
  325. if (likely(page) && PageDirty(page)) {
  326. __dec_wb_stat(old_wb, WB_RECLAIMABLE);
  327. __inc_wb_stat(new_wb, WB_RECLAIMABLE);
  328. }
  329. }
  330. radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
  331. PAGECACHE_TAG_WRITEBACK) {
  332. struct page *page = radix_tree_deref_slot_protected(slot,
  333. &mapping->tree_lock);
  334. if (likely(page)) {
  335. WARN_ON_ONCE(!PageWriteback(page));
  336. __dec_wb_stat(old_wb, WB_WRITEBACK);
  337. __inc_wb_stat(new_wb, WB_WRITEBACK);
  338. }
  339. }
  340. wb_get(new_wb);
  341. /*
  342. * Transfer to @new_wb's IO list if necessary. The specific list
  343. * @inode was on is ignored and the inode is put on ->b_dirty which
  344. * is always correct including from ->b_dirty_time. The transfer
  345. * preserves @inode->dirtied_when ordering.
  346. */
  347. if (!list_empty(&inode->i_io_list)) {
  348. struct inode *pos;
  349. inode_io_list_del_locked(inode, old_wb);
  350. inode->i_wb = new_wb;
  351. list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
  352. if (time_after_eq(inode->dirtied_when,
  353. pos->dirtied_when))
  354. break;
  355. inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
  356. } else {
  357. inode->i_wb = new_wb;
  358. }
  359. /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
  360. inode->i_wb_frn_winner = 0;
  361. inode->i_wb_frn_avg_time = 0;
  362. inode->i_wb_frn_history = 0;
  363. switched = true;
  364. skip_switch:
  365. /*
  366. * Paired with load_acquire in unlocked_inode_to_wb_begin() and
  367. * ensures that the new wb is visible if they see !I_WB_SWITCH.
  368. */
  369. smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
  370. spin_unlock_irq(&mapping->tree_lock);
  371. spin_unlock(&inode->i_lock);
  372. spin_unlock(&new_wb->list_lock);
  373. spin_unlock(&old_wb->list_lock);
  374. if (switched) {
  375. wb_wakeup(new_wb);
  376. wb_put(old_wb);
  377. }
  378. wb_put(new_wb);
  379. iput(inode);
  380. kfree(isw);
  381. atomic_dec(&isw_nr_in_flight);
  382. }
  383. static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
  384. {
  385. struct inode_switch_wbs_context *isw = container_of(rcu_head,
  386. struct inode_switch_wbs_context, rcu_head);
  387. /* needs to grab bh-unsafe locks, bounce to work item */
  388. INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
  389. queue_work(isw_wq, &isw->work);
  390. }
  391. /**
  392. * inode_switch_wbs - change the wb association of an inode
  393. * @inode: target inode
  394. * @new_wb_id: ID of the new wb
  395. *
  396. * Switch @inode's wb association to the wb identified by @new_wb_id. The
  397. * switching is performed asynchronously and may fail silently.
  398. */
  399. static void inode_switch_wbs(struct inode *inode, int new_wb_id)
  400. {
  401. struct backing_dev_info *bdi = inode_to_bdi(inode);
  402. struct cgroup_subsys_state *memcg_css;
  403. struct inode_switch_wbs_context *isw;
  404. /* noop if seems to be already in progress */
  405. if (inode->i_state & I_WB_SWITCH)
  406. return;
  407. isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
  408. if (!isw)
  409. return;
  410. /* find and pin the new wb */
  411. rcu_read_lock();
  412. memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
  413. if (memcg_css)
  414. isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
  415. rcu_read_unlock();
  416. if (!isw->new_wb)
  417. goto out_free;
  418. /* while holding I_WB_SWITCH, no one else can update the association */
  419. spin_lock(&inode->i_lock);
  420. if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
  421. inode->i_state & (I_WB_SWITCH | I_FREEING) ||
  422. inode_to_wb(inode) == isw->new_wb) {
  423. spin_unlock(&inode->i_lock);
  424. goto out_free;
  425. }
  426. inode->i_state |= I_WB_SWITCH;
  427. __iget(inode);
  428. spin_unlock(&inode->i_lock);
  429. isw->inode = inode;
  430. atomic_inc(&isw_nr_in_flight);
  431. /*
  432. * In addition to synchronizing among switchers, I_WB_SWITCH tells
  433. * the RCU protected stat update paths to grab the mapping's
  434. * tree_lock so that stat transfer can synchronize against them.
  435. * Let's continue after I_WB_SWITCH is guaranteed to be visible.
  436. */
  437. call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
  438. return;
  439. out_free:
  440. if (isw->new_wb)
  441. wb_put(isw->new_wb);
  442. kfree(isw);
  443. }
  444. /**
  445. * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
  446. * @wbc: writeback_control of interest
  447. * @inode: target inode
  448. *
  449. * @inode is locked and about to be written back under the control of @wbc.
  450. * Record @inode's writeback context into @wbc and unlock the i_lock. On
  451. * writeback completion, wbc_detach_inode() should be called. This is used
  452. * to track the cgroup writeback context.
  453. */
  454. void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
  455. struct inode *inode)
  456. {
  457. if (!inode_cgwb_enabled(inode)) {
  458. spin_unlock(&inode->i_lock);
  459. return;
  460. }
  461. wbc->wb = inode_to_wb(inode);
  462. wbc->inode = inode;
  463. wbc->wb_id = wbc->wb->memcg_css->id;
  464. wbc->wb_lcand_id = inode->i_wb_frn_winner;
  465. wbc->wb_tcand_id = 0;
  466. wbc->wb_bytes = 0;
  467. wbc->wb_lcand_bytes = 0;
  468. wbc->wb_tcand_bytes = 0;
  469. wb_get(wbc->wb);
  470. spin_unlock(&inode->i_lock);
  471. /*
  472. * A dying wb indicates that the memcg-blkcg mapping has changed
  473. * and a new wb is already serving the memcg. Switch immediately.
  474. */
  475. if (unlikely(wb_dying(wbc->wb)))
  476. inode_switch_wbs(inode, wbc->wb_id);
  477. }
  478. /**
  479. * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
  480. * @wbc: writeback_control of the just finished writeback
  481. *
  482. * To be called after a writeback attempt of an inode finishes and undoes
  483. * wbc_attach_and_unlock_inode(). Can be called under any context.
  484. *
  485. * As concurrent write sharing of an inode is expected to be very rare and
  486. * memcg only tracks page ownership on first-use basis severely confining
  487. * the usefulness of such sharing, cgroup writeback tracks ownership
  488. * per-inode. While the support for concurrent write sharing of an inode
  489. * is deemed unnecessary, an inode being written to by different cgroups at
  490. * different points in time is a lot more common, and, more importantly,
  491. * charging only by first-use can too readily lead to grossly incorrect
  492. * behaviors (single foreign page can lead to gigabytes of writeback to be
  493. * incorrectly attributed).
  494. *
  495. * To resolve this issue, cgroup writeback detects the majority dirtier of
  496. * an inode and transfers the ownership to it. To avoid unnnecessary
  497. * oscillation, the detection mechanism keeps track of history and gives
  498. * out the switch verdict only if the foreign usage pattern is stable over
  499. * a certain amount of time and/or writeback attempts.
  500. *
  501. * On each writeback attempt, @wbc tries to detect the majority writer
  502. * using Boyer-Moore majority vote algorithm. In addition to the byte
  503. * count from the majority voting, it also counts the bytes written for the
  504. * current wb and the last round's winner wb (max of last round's current
  505. * wb, the winner from two rounds ago, and the last round's majority
  506. * candidate). Keeping track of the historical winner helps the algorithm
  507. * to semi-reliably detect the most active writer even when it's not the
  508. * absolute majority.
  509. *
  510. * Once the winner of the round is determined, whether the winner is
  511. * foreign or not and how much IO time the round consumed is recorded in
  512. * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
  513. * over a certain threshold, the switch verdict is given.
  514. */
  515. void wbc_detach_inode(struct writeback_control *wbc)
  516. {
  517. struct bdi_writeback *wb = wbc->wb;
  518. struct inode *inode = wbc->inode;
  519. unsigned long avg_time, max_bytes, max_time;
  520. u16 history;
  521. int max_id;
  522. if (!wb)
  523. return;
  524. history = inode->i_wb_frn_history;
  525. avg_time = inode->i_wb_frn_avg_time;
  526. /* pick the winner of this round */
  527. if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
  528. wbc->wb_bytes >= wbc->wb_tcand_bytes) {
  529. max_id = wbc->wb_id;
  530. max_bytes = wbc->wb_bytes;
  531. } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
  532. max_id = wbc->wb_lcand_id;
  533. max_bytes = wbc->wb_lcand_bytes;
  534. } else {
  535. max_id = wbc->wb_tcand_id;
  536. max_bytes = wbc->wb_tcand_bytes;
  537. }
  538. /*
  539. * Calculate the amount of IO time the winner consumed and fold it
  540. * into the running average kept per inode. If the consumed IO
  541. * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
  542. * deciding whether to switch or not. This is to prevent one-off
  543. * small dirtiers from skewing the verdict.
  544. */
  545. max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
  546. wb->avg_write_bandwidth);
  547. if (avg_time)
  548. avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
  549. (avg_time >> WB_FRN_TIME_AVG_SHIFT);
  550. else
  551. avg_time = max_time; /* immediate catch up on first run */
  552. if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
  553. int slots;
  554. /*
  555. * The switch verdict is reached if foreign wb's consume
  556. * more than a certain proportion of IO time in a
  557. * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
  558. * history mask where each bit represents one sixteenth of
  559. * the period. Determine the number of slots to shift into
  560. * history from @max_time.
  561. */
  562. slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
  563. (unsigned long)WB_FRN_HIST_MAX_SLOTS);
  564. history <<= slots;
  565. if (wbc->wb_id != max_id)
  566. history |= (1U << slots) - 1;
  567. /*
  568. * Switch if the current wb isn't the consistent winner.
  569. * If there are multiple closely competing dirtiers, the
  570. * inode may switch across them repeatedly over time, which
  571. * is okay. The main goal is avoiding keeping an inode on
  572. * the wrong wb for an extended period of time.
  573. */
  574. if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
  575. inode_switch_wbs(inode, max_id);
  576. }
  577. /*
  578. * Multiple instances of this function may race to update the
  579. * following fields but we don't mind occassional inaccuracies.
  580. */
  581. inode->i_wb_frn_winner = max_id;
  582. inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
  583. inode->i_wb_frn_history = history;
  584. wb_put(wbc->wb);
  585. wbc->wb = NULL;
  586. }
  587. /**
  588. * wbc_account_io - account IO issued during writeback
  589. * @wbc: writeback_control of the writeback in progress
  590. * @page: page being written out
  591. * @bytes: number of bytes being written out
  592. *
  593. * @bytes from @page are about to written out during the writeback
  594. * controlled by @wbc. Keep the book for foreign inode detection. See
  595. * wbc_detach_inode().
  596. */
  597. void wbc_account_io(struct writeback_control *wbc, struct page *page,
  598. size_t bytes)
  599. {
  600. int id;
  601. /*
  602. * pageout() path doesn't attach @wbc to the inode being written
  603. * out. This is intentional as we don't want the function to block
  604. * behind a slow cgroup. Ultimately, we want pageout() to kick off
  605. * regular writeback instead of writing things out itself.
  606. */
  607. if (!wbc->wb)
  608. return;
  609. id = mem_cgroup_css_from_page(page)->id;
  610. if (id == wbc->wb_id) {
  611. wbc->wb_bytes += bytes;
  612. return;
  613. }
  614. if (id == wbc->wb_lcand_id)
  615. wbc->wb_lcand_bytes += bytes;
  616. /* Boyer-Moore majority vote algorithm */
  617. if (!wbc->wb_tcand_bytes)
  618. wbc->wb_tcand_id = id;
  619. if (id == wbc->wb_tcand_id)
  620. wbc->wb_tcand_bytes += bytes;
  621. else
  622. wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
  623. }
  624. EXPORT_SYMBOL_GPL(wbc_account_io);
  625. /**
  626. * inode_congested - test whether an inode is congested
  627. * @inode: inode to test for congestion (may be NULL)
  628. * @cong_bits: mask of WB_[a]sync_congested bits to test
  629. *
  630. * Tests whether @inode is congested. @cong_bits is the mask of congestion
  631. * bits to test and the return value is the mask of set bits.
  632. *
  633. * If cgroup writeback is enabled for @inode, the congestion state is
  634. * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
  635. * associated with @inode is congested; otherwise, the root wb's congestion
  636. * state is used.
  637. *
  638. * @inode is allowed to be NULL as this function is often called on
  639. * mapping->host which is NULL for the swapper space.
  640. */
  641. int inode_congested(struct inode *inode, int cong_bits)
  642. {
  643. /*
  644. * Once set, ->i_wb never becomes NULL while the inode is alive.
  645. * Start transaction iff ->i_wb is visible.
  646. */
  647. if (inode && inode_to_wb_is_valid(inode)) {
  648. struct bdi_writeback *wb;
  649. bool locked, congested;
  650. wb = unlocked_inode_to_wb_begin(inode, &locked);
  651. congested = wb_congested(wb, cong_bits);
  652. unlocked_inode_to_wb_end(inode, locked);
  653. return congested;
  654. }
  655. return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
  656. }
  657. EXPORT_SYMBOL_GPL(inode_congested);
  658. /**
  659. * wb_split_bdi_pages - split nr_pages to write according to bandwidth
  660. * @wb: target bdi_writeback to split @nr_pages to
  661. * @nr_pages: number of pages to write for the whole bdi
  662. *
  663. * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
  664. * relation to the total write bandwidth of all wb's w/ dirty inodes on
  665. * @wb->bdi.
  666. */
  667. static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
  668. {
  669. unsigned long this_bw = wb->avg_write_bandwidth;
  670. unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
  671. if (nr_pages == LONG_MAX)
  672. return LONG_MAX;
  673. /*
  674. * This may be called on clean wb's and proportional distribution
  675. * may not make sense, just use the original @nr_pages in those
  676. * cases. In general, we wanna err on the side of writing more.
  677. */
  678. if (!tot_bw || this_bw >= tot_bw)
  679. return nr_pages;
  680. else
  681. return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
  682. }
  683. /**
  684. * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
  685. * @bdi: target backing_dev_info
  686. * @base_work: wb_writeback_work to issue
  687. * @skip_if_busy: skip wb's which already have writeback in progress
  688. *
  689. * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
  690. * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
  691. * distributed to the busy wbs according to each wb's proportion in the
  692. * total active write bandwidth of @bdi.
  693. */
  694. static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
  695. struct wb_writeback_work *base_work,
  696. bool skip_if_busy)
  697. {
  698. struct bdi_writeback *last_wb = NULL;
  699. struct bdi_writeback *wb = list_entry(&bdi->wb_list,
  700. struct bdi_writeback, bdi_node);
  701. might_sleep();
  702. restart:
  703. rcu_read_lock();
  704. list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
  705. DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
  706. struct wb_writeback_work fallback_work;
  707. struct wb_writeback_work *work;
  708. long nr_pages;
  709. if (last_wb) {
  710. wb_put(last_wb);
  711. last_wb = NULL;
  712. }
  713. /* SYNC_ALL writes out I_DIRTY_TIME too */
  714. if (!wb_has_dirty_io(wb) &&
  715. (base_work->sync_mode == WB_SYNC_NONE ||
  716. list_empty(&wb->b_dirty_time)))
  717. continue;
  718. if (skip_if_busy && writeback_in_progress(wb))
  719. continue;
  720. nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
  721. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  722. if (work) {
  723. *work = *base_work;
  724. work->nr_pages = nr_pages;
  725. work->auto_free = 1;
  726. wb_queue_work(wb, work);
  727. continue;
  728. }
  729. /* alloc failed, execute synchronously using on-stack fallback */
  730. work = &fallback_work;
  731. *work = *base_work;
  732. work->nr_pages = nr_pages;
  733. work->auto_free = 0;
  734. work->done = &fallback_work_done;
  735. wb_queue_work(wb, work);
  736. /*
  737. * Pin @wb so that it stays on @bdi->wb_list. This allows
  738. * continuing iteration from @wb after dropping and
  739. * regrabbing rcu read lock.
  740. */
  741. wb_get(wb);
  742. last_wb = wb;
  743. rcu_read_unlock();
  744. wb_wait_for_completion(bdi, &fallback_work_done);
  745. goto restart;
  746. }
  747. rcu_read_unlock();
  748. if (last_wb)
  749. wb_put(last_wb);
  750. }
  751. /**
  752. * cgroup_writeback_umount - flush inode wb switches for umount
  753. *
  754. * This function is called when a super_block is about to be destroyed and
  755. * flushes in-flight inode wb switches. An inode wb switch goes through
  756. * RCU and then workqueue, so the two need to be flushed in order to ensure
  757. * that all previously scheduled switches are finished. As wb switches are
  758. * rare occurrences and synchronize_rcu() can take a while, perform
  759. * flushing iff wb switches are in flight.
  760. */
  761. void cgroup_writeback_umount(void)
  762. {
  763. if (atomic_read(&isw_nr_in_flight)) {
  764. synchronize_rcu();
  765. flush_workqueue(isw_wq);
  766. }
  767. }
  768. static int __init cgroup_writeback_init(void)
  769. {
  770. isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
  771. if (!isw_wq)
  772. return -ENOMEM;
  773. return 0;
  774. }
  775. fs_initcall(cgroup_writeback_init);
  776. #else /* CONFIG_CGROUP_WRITEBACK */
  777. static struct bdi_writeback *
  778. locked_inode_to_wb_and_lock_list(struct inode *inode)
  779. __releases(&inode->i_lock)
  780. __acquires(&wb->list_lock)
  781. {
  782. struct bdi_writeback *wb = inode_to_wb(inode);
  783. spin_unlock(&inode->i_lock);
  784. spin_lock(&wb->list_lock);
  785. return wb;
  786. }
  787. static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
  788. __acquires(&wb->list_lock)
  789. {
  790. struct bdi_writeback *wb = inode_to_wb(inode);
  791. spin_lock(&wb->list_lock);
  792. return wb;
  793. }
  794. static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
  795. {
  796. return nr_pages;
  797. }
  798. static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
  799. struct wb_writeback_work *base_work,
  800. bool skip_if_busy)
  801. {
  802. might_sleep();
  803. if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
  804. base_work->auto_free = 0;
  805. wb_queue_work(&bdi->wb, base_work);
  806. }
  807. }
  808. #endif /* CONFIG_CGROUP_WRITEBACK */
  809. void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
  810. bool range_cyclic, enum wb_reason reason)
  811. {
  812. struct wb_writeback_work *work;
  813. if (!wb_has_dirty_io(wb))
  814. return;
  815. /*
  816. * This is WB_SYNC_NONE writeback, so if allocation fails just
  817. * wakeup the thread for old dirty data writeback
  818. */
  819. work = kzalloc(sizeof(*work),
  820. GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
  821. if (!work) {
  822. trace_writeback_nowork(wb);
  823. wb_wakeup(wb);
  824. return;
  825. }
  826. work->sync_mode = WB_SYNC_NONE;
  827. work->nr_pages = nr_pages;
  828. work->range_cyclic = range_cyclic;
  829. work->reason = reason;
  830. work->auto_free = 1;
  831. wb_queue_work(wb, work);
  832. }
  833. /**
  834. * wb_start_background_writeback - start background writeback
  835. * @wb: bdi_writback to write from
  836. *
  837. * Description:
  838. * This makes sure WB_SYNC_NONE background writeback happens. When
  839. * this function returns, it is only guaranteed that for given wb
  840. * some IO is happening if we are over background dirty threshold.
  841. * Caller need not hold sb s_umount semaphore.
  842. */
  843. void wb_start_background_writeback(struct bdi_writeback *wb)
  844. {
  845. /*
  846. * We just wake up the flusher thread. It will perform background
  847. * writeback as soon as there is no other work to do.
  848. */
  849. trace_writeback_wake_background(wb);
  850. wb_wakeup(wb);
  851. }
  852. /*
  853. * Remove the inode from the writeback list it is on.
  854. */
  855. void inode_io_list_del(struct inode *inode)
  856. {
  857. struct bdi_writeback *wb;
  858. wb = inode_to_wb_and_lock_list(inode);
  859. inode_io_list_del_locked(inode, wb);
  860. spin_unlock(&wb->list_lock);
  861. }
  862. /*
  863. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  864. * furthest end of its superblock's dirty-inode list.
  865. *
  866. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  867. * already the most-recently-dirtied inode on the b_dirty list. If that is
  868. * the case then the inode must have been redirtied while it was being written
  869. * out and we don't reset its dirtied_when.
  870. */
  871. static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
  872. {
  873. if (!list_empty(&wb->b_dirty)) {
  874. struct inode *tail;
  875. tail = wb_inode(wb->b_dirty.next);
  876. if (time_before(inode->dirtied_when, tail->dirtied_when))
  877. inode->dirtied_when = jiffies;
  878. }
  879. inode_io_list_move_locked(inode, wb, &wb->b_dirty);
  880. }
  881. /*
  882. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  883. */
  884. static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
  885. {
  886. inode_io_list_move_locked(inode, wb, &wb->b_more_io);
  887. }
  888. static void inode_sync_complete(struct inode *inode)
  889. {
  890. inode->i_state &= ~I_SYNC;
  891. /* If inode is clean an unused, put it into LRU now... */
  892. inode_add_lru(inode);
  893. /* Waiters must see I_SYNC cleared before being woken up */
  894. smp_mb();
  895. wake_up_bit(&inode->i_state, __I_SYNC);
  896. }
  897. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  898. {
  899. bool ret = time_after(inode->dirtied_when, t);
  900. #ifndef CONFIG_64BIT
  901. /*
  902. * For inodes being constantly redirtied, dirtied_when can get stuck.
  903. * It _appears_ to be in the future, but is actually in distant past.
  904. * This test is necessary to prevent such wrapped-around relative times
  905. * from permanently stopping the whole bdi writeback.
  906. */
  907. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  908. #endif
  909. return ret;
  910. }
  911. #define EXPIRE_DIRTY_ATIME 0x0001
  912. /*
  913. * Move expired (dirtied before work->older_than_this) dirty inodes from
  914. * @delaying_queue to @dispatch_queue.
  915. */
  916. static int move_expired_inodes(struct list_head *delaying_queue,
  917. struct list_head *dispatch_queue,
  918. int flags,
  919. struct wb_writeback_work *work)
  920. {
  921. unsigned long *older_than_this = NULL;
  922. unsigned long expire_time;
  923. LIST_HEAD(tmp);
  924. struct list_head *pos, *node;
  925. struct super_block *sb = NULL;
  926. struct inode *inode;
  927. int do_sb_sort = 0;
  928. int moved = 0;
  929. if ((flags & EXPIRE_DIRTY_ATIME) == 0)
  930. older_than_this = work->older_than_this;
  931. else if (!work->for_sync) {
  932. expire_time = jiffies - (dirtytime_expire_interval * HZ);
  933. older_than_this = &expire_time;
  934. }
  935. while (!list_empty(delaying_queue)) {
  936. inode = wb_inode(delaying_queue->prev);
  937. if (older_than_this &&
  938. inode_dirtied_after(inode, *older_than_this))
  939. break;
  940. list_move(&inode->i_io_list, &tmp);
  941. moved++;
  942. if (flags & EXPIRE_DIRTY_ATIME)
  943. set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
  944. if (sb_is_blkdev_sb(inode->i_sb))
  945. continue;
  946. if (sb && sb != inode->i_sb)
  947. do_sb_sort = 1;
  948. sb = inode->i_sb;
  949. }
  950. /* just one sb in list, splice to dispatch_queue and we're done */
  951. if (!do_sb_sort) {
  952. list_splice(&tmp, dispatch_queue);
  953. goto out;
  954. }
  955. /* Move inodes from one superblock together */
  956. while (!list_empty(&tmp)) {
  957. sb = wb_inode(tmp.prev)->i_sb;
  958. list_for_each_prev_safe(pos, node, &tmp) {
  959. inode = wb_inode(pos);
  960. if (inode->i_sb == sb)
  961. list_move(&inode->i_io_list, dispatch_queue);
  962. }
  963. }
  964. out:
  965. return moved;
  966. }
  967. /*
  968. * Queue all expired dirty inodes for io, eldest first.
  969. * Before
  970. * newly dirtied b_dirty b_io b_more_io
  971. * =============> gf edc BA
  972. * After
  973. * newly dirtied b_dirty b_io b_more_io
  974. * =============> g fBAedc
  975. * |
  976. * +--> dequeue for IO
  977. */
  978. static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
  979. {
  980. int moved;
  981. assert_spin_locked(&wb->list_lock);
  982. list_splice_init(&wb->b_more_io, &wb->b_io);
  983. moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
  984. moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
  985. EXPIRE_DIRTY_ATIME, work);
  986. if (moved)
  987. wb_io_lists_populated(wb);
  988. trace_writeback_queue_io(wb, work, moved);
  989. }
  990. static int write_inode(struct inode *inode, struct writeback_control *wbc)
  991. {
  992. int ret;
  993. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
  994. trace_writeback_write_inode_start(inode, wbc);
  995. ret = inode->i_sb->s_op->write_inode(inode, wbc);
  996. trace_writeback_write_inode(inode, wbc);
  997. return ret;
  998. }
  999. return 0;
  1000. }
  1001. /*
  1002. * Wait for writeback on an inode to complete. Called with i_lock held.
  1003. * Caller must make sure inode cannot go away when we drop i_lock.
  1004. */
  1005. static void __inode_wait_for_writeback(struct inode *inode)
  1006. __releases(inode->i_lock)
  1007. __acquires(inode->i_lock)
  1008. {
  1009. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  1010. wait_queue_head_t *wqh;
  1011. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  1012. while (inode->i_state & I_SYNC) {
  1013. spin_unlock(&inode->i_lock);
  1014. __wait_on_bit(wqh, &wq, bit_wait,
  1015. TASK_UNINTERRUPTIBLE);
  1016. spin_lock(&inode->i_lock);
  1017. }
  1018. }
  1019. /*
  1020. * Wait for writeback on an inode to complete. Caller must have inode pinned.
  1021. */
  1022. void inode_wait_for_writeback(struct inode *inode)
  1023. {
  1024. spin_lock(&inode->i_lock);
  1025. __inode_wait_for_writeback(inode);
  1026. spin_unlock(&inode->i_lock);
  1027. }
  1028. /*
  1029. * Sleep until I_SYNC is cleared. This function must be called with i_lock
  1030. * held and drops it. It is aimed for callers not holding any inode reference
  1031. * so once i_lock is dropped, inode can go away.
  1032. */
  1033. static void inode_sleep_on_writeback(struct inode *inode)
  1034. __releases(inode->i_lock)
  1035. {
  1036. DEFINE_WAIT(wait);
  1037. wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  1038. int sleep;
  1039. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  1040. sleep = inode->i_state & I_SYNC;
  1041. spin_unlock(&inode->i_lock);
  1042. if (sleep)
  1043. schedule();
  1044. finish_wait(wqh, &wait);
  1045. }
  1046. /*
  1047. * Find proper writeback list for the inode depending on its current state and
  1048. * possibly also change of its state while we were doing writeback. Here we
  1049. * handle things such as livelock prevention or fairness of writeback among
  1050. * inodes. This function can be called only by flusher thread - noone else
  1051. * processes all inodes in writeback lists and requeueing inodes behind flusher
  1052. * thread's back can have unexpected consequences.
  1053. */
  1054. static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
  1055. struct writeback_control *wbc)
  1056. {
  1057. if (inode->i_state & I_FREEING)
  1058. return;
  1059. /*
  1060. * Sync livelock prevention. Each inode is tagged and synced in one
  1061. * shot. If still dirty, it will be redirty_tail()'ed below. Update
  1062. * the dirty time to prevent enqueue and sync it again.
  1063. */
  1064. if ((inode->i_state & I_DIRTY) &&
  1065. (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
  1066. inode->dirtied_when = jiffies;
  1067. if (wbc->pages_skipped) {
  1068. /*
  1069. * writeback is not making progress due to locked
  1070. * buffers. Skip this inode for now.
  1071. */
  1072. redirty_tail(inode, wb);
  1073. return;
  1074. }
  1075. if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  1076. /*
  1077. * We didn't write back all the pages. nfs_writepages()
  1078. * sometimes bales out without doing anything.
  1079. */
  1080. if (wbc->nr_to_write <= 0) {
  1081. /* Slice used up. Queue for next turn. */
  1082. requeue_io(inode, wb);
  1083. } else {
  1084. /*
  1085. * Writeback blocked by something other than
  1086. * congestion. Delay the inode for some time to
  1087. * avoid spinning on the CPU (100% iowait)
  1088. * retrying writeback of the dirty page/inode
  1089. * that cannot be performed immediately.
  1090. */
  1091. redirty_tail(inode, wb);
  1092. }
  1093. } else if (inode->i_state & I_DIRTY) {
  1094. /*
  1095. * Filesystems can dirty the inode during writeback operations,
  1096. * such as delayed allocation during submission or metadata
  1097. * updates after data IO completion.
  1098. */
  1099. redirty_tail(inode, wb);
  1100. } else if (inode->i_state & I_DIRTY_TIME) {
  1101. inode->dirtied_when = jiffies;
  1102. inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
  1103. } else {
  1104. /* The inode is clean. Remove from writeback lists. */
  1105. inode_io_list_del_locked(inode, wb);
  1106. }
  1107. }
  1108. /*
  1109. * Write out an inode and its dirty pages. Do not update the writeback list
  1110. * linkage. That is left to the caller. The caller is also responsible for
  1111. * setting I_SYNC flag and calling inode_sync_complete() to clear it.
  1112. */
  1113. static int
  1114. __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  1115. {
  1116. struct address_space *mapping = inode->i_mapping;
  1117. long nr_to_write = wbc->nr_to_write;
  1118. unsigned dirty;
  1119. int ret;
  1120. WARN_ON(!(inode->i_state & I_SYNC));
  1121. trace_writeback_single_inode_start(inode, wbc, nr_to_write);
  1122. ret = do_writepages(mapping, wbc);
  1123. /*
  1124. * Make sure to wait on the data before writing out the metadata.
  1125. * This is important for filesystems that modify metadata on data
  1126. * I/O completion. We don't do it for sync(2) writeback because it has a
  1127. * separate, external IO completion path and ->sync_fs for guaranteeing
  1128. * inode metadata is written back correctly.
  1129. */
  1130. if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
  1131. int err = filemap_fdatawait(mapping);
  1132. if (ret == 0)
  1133. ret = err;
  1134. }
  1135. /*
  1136. * Some filesystems may redirty the inode during the writeback
  1137. * due to delalloc, clear dirty metadata flags right before
  1138. * write_inode()
  1139. */
  1140. spin_lock(&inode->i_lock);
  1141. dirty = inode->i_state & I_DIRTY;
  1142. if (inode->i_state & I_DIRTY_TIME) {
  1143. if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
  1144. unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
  1145. unlikely(time_after(jiffies,
  1146. (inode->dirtied_time_when +
  1147. dirtytime_expire_interval * HZ)))) {
  1148. dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
  1149. trace_writeback_lazytime(inode);
  1150. }
  1151. } else
  1152. inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
  1153. inode->i_state &= ~dirty;
  1154. /*
  1155. * Paired with smp_mb() in __mark_inode_dirty(). This allows
  1156. * __mark_inode_dirty() to test i_state without grabbing i_lock -
  1157. * either they see the I_DIRTY bits cleared or we see the dirtied
  1158. * inode.
  1159. *
  1160. * I_DIRTY_PAGES is always cleared together above even if @mapping
  1161. * still has dirty pages. The flag is reinstated after smp_mb() if
  1162. * necessary. This guarantees that either __mark_inode_dirty()
  1163. * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
  1164. */
  1165. smp_mb();
  1166. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1167. inode->i_state |= I_DIRTY_PAGES;
  1168. spin_unlock(&inode->i_lock);
  1169. if (dirty & I_DIRTY_TIME)
  1170. mark_inode_dirty_sync(inode);
  1171. /* Don't write the inode if only I_DIRTY_PAGES was set */
  1172. if (dirty & ~I_DIRTY_PAGES) {
  1173. int err = write_inode(inode, wbc);
  1174. if (ret == 0)
  1175. ret = err;
  1176. }
  1177. trace_writeback_single_inode(inode, wbc, nr_to_write);
  1178. return ret;
  1179. }
  1180. /*
  1181. * Write out an inode's dirty pages. Either the caller has an active reference
  1182. * on the inode or the inode has I_WILL_FREE set.
  1183. *
  1184. * This function is designed to be called for writing back one inode which
  1185. * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
  1186. * and does more profound writeback list handling in writeback_sb_inodes().
  1187. */
  1188. static int writeback_single_inode(struct inode *inode,
  1189. struct writeback_control *wbc)
  1190. {
  1191. struct bdi_writeback *wb;
  1192. int ret = 0;
  1193. spin_lock(&inode->i_lock);
  1194. if (!atomic_read(&inode->i_count))
  1195. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  1196. else
  1197. WARN_ON(inode->i_state & I_WILL_FREE);
  1198. if (inode->i_state & I_SYNC) {
  1199. if (wbc->sync_mode != WB_SYNC_ALL)
  1200. goto out;
  1201. /*
  1202. * It's a data-integrity sync. We must wait. Since callers hold
  1203. * inode reference or inode has I_WILL_FREE set, it cannot go
  1204. * away under us.
  1205. */
  1206. __inode_wait_for_writeback(inode);
  1207. }
  1208. WARN_ON(inode->i_state & I_SYNC);
  1209. /*
  1210. * Skip inode if it is clean and we have no outstanding writeback in
  1211. * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
  1212. * function since flusher thread may be doing for example sync in
  1213. * parallel and if we move the inode, it could get skipped. So here we
  1214. * make sure inode is on some writeback list and leave it there unless
  1215. * we have completely cleaned the inode.
  1216. */
  1217. if (!(inode->i_state & I_DIRTY_ALL) &&
  1218. (wbc->sync_mode != WB_SYNC_ALL ||
  1219. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
  1220. goto out;
  1221. inode->i_state |= I_SYNC;
  1222. wbc_attach_and_unlock_inode(wbc, inode);
  1223. ret = __writeback_single_inode(inode, wbc);
  1224. wbc_detach_inode(wbc);
  1225. wb = inode_to_wb_and_lock_list(inode);
  1226. spin_lock(&inode->i_lock);
  1227. /*
  1228. * If inode is clean, remove it from writeback lists. Otherwise don't
  1229. * touch it. See comment above for explanation.
  1230. */
  1231. if (!(inode->i_state & I_DIRTY_ALL))
  1232. inode_io_list_del_locked(inode, wb);
  1233. spin_unlock(&wb->list_lock);
  1234. inode_sync_complete(inode);
  1235. out:
  1236. spin_unlock(&inode->i_lock);
  1237. return ret;
  1238. }
  1239. static long writeback_chunk_size(struct bdi_writeback *wb,
  1240. struct wb_writeback_work *work)
  1241. {
  1242. long pages;
  1243. /*
  1244. * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
  1245. * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
  1246. * here avoids calling into writeback_inodes_wb() more than once.
  1247. *
  1248. * The intended call sequence for WB_SYNC_ALL writeback is:
  1249. *
  1250. * wb_writeback()
  1251. * writeback_sb_inodes() <== called only once
  1252. * write_cache_pages() <== called once for each inode
  1253. * (quickly) tag currently dirty pages
  1254. * (maybe slowly) sync all tagged pages
  1255. */
  1256. if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
  1257. pages = LONG_MAX;
  1258. else {
  1259. pages = min(wb->avg_write_bandwidth / 2,
  1260. global_wb_domain.dirty_limit / DIRTY_SCOPE);
  1261. pages = min(pages, work->nr_pages);
  1262. pages = round_down(pages + MIN_WRITEBACK_PAGES,
  1263. MIN_WRITEBACK_PAGES);
  1264. }
  1265. return pages;
  1266. }
  1267. /*
  1268. * Write a portion of b_io inodes which belong to @sb.
  1269. *
  1270. * Return the number of pages and/or inodes written.
  1271. *
  1272. * NOTE! This is called with wb->list_lock held, and will
  1273. * unlock and relock that for each inode it ends up doing
  1274. * IO for.
  1275. */
  1276. static long writeback_sb_inodes(struct super_block *sb,
  1277. struct bdi_writeback *wb,
  1278. struct wb_writeback_work *work)
  1279. {
  1280. struct writeback_control wbc = {
  1281. .sync_mode = work->sync_mode,
  1282. .tagged_writepages = work->tagged_writepages,
  1283. .for_kupdate = work->for_kupdate,
  1284. .for_background = work->for_background,
  1285. .for_sync = work->for_sync,
  1286. .range_cyclic = work->range_cyclic,
  1287. .range_start = 0,
  1288. .range_end = LLONG_MAX,
  1289. };
  1290. unsigned long start_time = jiffies;
  1291. long write_chunk;
  1292. long wrote = 0; /* count both pages and inodes */
  1293. while (!list_empty(&wb->b_io)) {
  1294. struct inode *inode = wb_inode(wb->b_io.prev);
  1295. struct bdi_writeback *tmp_wb;
  1296. if (inode->i_sb != sb) {
  1297. if (work->sb) {
  1298. /*
  1299. * We only want to write back data for this
  1300. * superblock, move all inodes not belonging
  1301. * to it back onto the dirty list.
  1302. */
  1303. redirty_tail(inode, wb);
  1304. continue;
  1305. }
  1306. /*
  1307. * The inode belongs to a different superblock.
  1308. * Bounce back to the caller to unpin this and
  1309. * pin the next superblock.
  1310. */
  1311. break;
  1312. }
  1313. /*
  1314. * Don't bother with new inodes or inodes being freed, first
  1315. * kind does not need periodic writeout yet, and for the latter
  1316. * kind writeout is handled by the freer.
  1317. */
  1318. spin_lock(&inode->i_lock);
  1319. if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
  1320. spin_unlock(&inode->i_lock);
  1321. redirty_tail(inode, wb);
  1322. continue;
  1323. }
  1324. if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
  1325. /*
  1326. * If this inode is locked for writeback and we are not
  1327. * doing writeback-for-data-integrity, move it to
  1328. * b_more_io so that writeback can proceed with the
  1329. * other inodes on s_io.
  1330. *
  1331. * We'll have another go at writing back this inode
  1332. * when we completed a full scan of b_io.
  1333. */
  1334. spin_unlock(&inode->i_lock);
  1335. requeue_io(inode, wb);
  1336. trace_writeback_sb_inodes_requeue(inode);
  1337. continue;
  1338. }
  1339. spin_unlock(&wb->list_lock);
  1340. /*
  1341. * We already requeued the inode if it had I_SYNC set and we
  1342. * are doing WB_SYNC_NONE writeback. So this catches only the
  1343. * WB_SYNC_ALL case.
  1344. */
  1345. if (inode->i_state & I_SYNC) {
  1346. /* Wait for I_SYNC. This function drops i_lock... */
  1347. inode_sleep_on_writeback(inode);
  1348. /* Inode may be gone, start again */
  1349. spin_lock(&wb->list_lock);
  1350. continue;
  1351. }
  1352. inode->i_state |= I_SYNC;
  1353. wbc_attach_and_unlock_inode(&wbc, inode);
  1354. write_chunk = writeback_chunk_size(wb, work);
  1355. wbc.nr_to_write = write_chunk;
  1356. wbc.pages_skipped = 0;
  1357. /*
  1358. * We use I_SYNC to pin the inode in memory. While it is set
  1359. * evict_inode() will wait so the inode cannot be freed.
  1360. */
  1361. __writeback_single_inode(inode, &wbc);
  1362. wbc_detach_inode(&wbc);
  1363. work->nr_pages -= write_chunk - wbc.nr_to_write;
  1364. wrote += write_chunk - wbc.nr_to_write;
  1365. if (need_resched()) {
  1366. /*
  1367. * We're trying to balance between building up a nice
  1368. * long list of IOs to improve our merge rate, and
  1369. * getting those IOs out quickly for anyone throttling
  1370. * in balance_dirty_pages(). cond_resched() doesn't
  1371. * unplug, so get our IOs out the door before we
  1372. * give up the CPU.
  1373. */
  1374. blk_flush_plug(current);
  1375. cond_resched();
  1376. }
  1377. /*
  1378. * Requeue @inode if still dirty. Be careful as @inode may
  1379. * have been switched to another wb in the meantime.
  1380. */
  1381. tmp_wb = inode_to_wb_and_lock_list(inode);
  1382. spin_lock(&inode->i_lock);
  1383. if (!(inode->i_state & I_DIRTY_ALL))
  1384. wrote++;
  1385. requeue_inode(inode, tmp_wb, &wbc);
  1386. inode_sync_complete(inode);
  1387. spin_unlock(&inode->i_lock);
  1388. if (unlikely(tmp_wb != wb)) {
  1389. spin_unlock(&tmp_wb->list_lock);
  1390. spin_lock(&wb->list_lock);
  1391. }
  1392. /*
  1393. * bail out to wb_writeback() often enough to check
  1394. * background threshold and other termination conditions.
  1395. */
  1396. if (wrote) {
  1397. if (time_is_before_jiffies(start_time + HZ / 10UL))
  1398. break;
  1399. if (work->nr_pages <= 0)
  1400. break;
  1401. }
  1402. }
  1403. return wrote;
  1404. }
  1405. static long __writeback_inodes_wb(struct bdi_writeback *wb,
  1406. struct wb_writeback_work *work)
  1407. {
  1408. unsigned long start_time = jiffies;
  1409. long wrote = 0;
  1410. while (!list_empty(&wb->b_io)) {
  1411. struct inode *inode = wb_inode(wb->b_io.prev);
  1412. struct super_block *sb = inode->i_sb;
  1413. if (!trylock_super(sb)) {
  1414. /*
  1415. * trylock_super() may fail consistently due to
  1416. * s_umount being grabbed by someone else. Don't use
  1417. * requeue_io() to avoid busy retrying the inode/sb.
  1418. */
  1419. redirty_tail(inode, wb);
  1420. continue;
  1421. }
  1422. wrote += writeback_sb_inodes(sb, wb, work);
  1423. up_read(&sb->s_umount);
  1424. /* refer to the same tests at the end of writeback_sb_inodes */
  1425. if (wrote) {
  1426. if (time_is_before_jiffies(start_time + HZ / 10UL))
  1427. break;
  1428. if (work->nr_pages <= 0)
  1429. break;
  1430. }
  1431. }
  1432. /* Leave any unwritten inodes on b_io */
  1433. return wrote;
  1434. }
  1435. static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
  1436. enum wb_reason reason)
  1437. {
  1438. struct wb_writeback_work work = {
  1439. .nr_pages = nr_pages,
  1440. .sync_mode = WB_SYNC_NONE,
  1441. .range_cyclic = 1,
  1442. .reason = reason,
  1443. };
  1444. struct blk_plug plug;
  1445. blk_start_plug(&plug);
  1446. spin_lock(&wb->list_lock);
  1447. if (list_empty(&wb->b_io))
  1448. queue_io(wb, &work);
  1449. __writeback_inodes_wb(wb, &work);
  1450. spin_unlock(&wb->list_lock);
  1451. blk_finish_plug(&plug);
  1452. return nr_pages - work.nr_pages;
  1453. }
  1454. /*
  1455. * Explicit flushing or periodic writeback of "old" data.
  1456. *
  1457. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  1458. * dirtying-time in the inode's address_space. So this periodic writeback code
  1459. * just walks the superblock inode list, writing back any inodes which are
  1460. * older than a specific point in time.
  1461. *
  1462. * Try to run once per dirty_writeback_interval. But if a writeback event
  1463. * takes longer than a dirty_writeback_interval interval, then leave a
  1464. * one-second gap.
  1465. *
  1466. * older_than_this takes precedence over nr_to_write. So we'll only write back
  1467. * all dirty pages if they are all attached to "old" mappings.
  1468. */
  1469. static long wb_writeback(struct bdi_writeback *wb,
  1470. struct wb_writeback_work *work)
  1471. {
  1472. unsigned long wb_start = jiffies;
  1473. long nr_pages = work->nr_pages;
  1474. unsigned long oldest_jif;
  1475. struct inode *inode;
  1476. long progress;
  1477. struct blk_plug plug;
  1478. oldest_jif = jiffies;
  1479. work->older_than_this = &oldest_jif;
  1480. blk_start_plug(&plug);
  1481. spin_lock(&wb->list_lock);
  1482. for (;;) {
  1483. /*
  1484. * Stop writeback when nr_pages has been consumed
  1485. */
  1486. if (work->nr_pages <= 0)
  1487. break;
  1488. /*
  1489. * Background writeout and kupdate-style writeback may
  1490. * run forever. Stop them if there is other work to do
  1491. * so that e.g. sync can proceed. They'll be restarted
  1492. * after the other works are all done.
  1493. */
  1494. if ((work->for_background || work->for_kupdate) &&
  1495. !list_empty(&wb->work_list))
  1496. break;
  1497. /*
  1498. * For background writeout, stop when we are below the
  1499. * background dirty threshold
  1500. */
  1501. if (work->for_background && !wb_over_bg_thresh(wb))
  1502. break;
  1503. /*
  1504. * Kupdate and background works are special and we want to
  1505. * include all inodes that need writing. Livelock avoidance is
  1506. * handled by these works yielding to any other work so we are
  1507. * safe.
  1508. */
  1509. if (work->for_kupdate) {
  1510. oldest_jif = jiffies -
  1511. msecs_to_jiffies(dirty_expire_interval * 10);
  1512. } else if (work->for_background)
  1513. oldest_jif = jiffies;
  1514. trace_writeback_start(wb, work);
  1515. if (list_empty(&wb->b_io))
  1516. queue_io(wb, work);
  1517. if (work->sb)
  1518. progress = writeback_sb_inodes(work->sb, wb, work);
  1519. else
  1520. progress = __writeback_inodes_wb(wb, work);
  1521. trace_writeback_written(wb, work);
  1522. wb_update_bandwidth(wb, wb_start);
  1523. /*
  1524. * Did we write something? Try for more
  1525. *
  1526. * Dirty inodes are moved to b_io for writeback in batches.
  1527. * The completion of the current batch does not necessarily
  1528. * mean the overall work is done. So we keep looping as long
  1529. * as made some progress on cleaning pages or inodes.
  1530. */
  1531. if (progress)
  1532. continue;
  1533. /*
  1534. * No more inodes for IO, bail
  1535. */
  1536. if (list_empty(&wb->b_more_io))
  1537. break;
  1538. /*
  1539. * Nothing written. Wait for some inode to
  1540. * become available for writeback. Otherwise
  1541. * we'll just busyloop.
  1542. */
  1543. if (!list_empty(&wb->b_more_io)) {
  1544. trace_writeback_wait(wb, work);
  1545. inode = wb_inode(wb->b_more_io.prev);
  1546. spin_lock(&inode->i_lock);
  1547. spin_unlock(&wb->list_lock);
  1548. /* This function drops i_lock... */
  1549. inode_sleep_on_writeback(inode);
  1550. spin_lock(&wb->list_lock);
  1551. }
  1552. }
  1553. spin_unlock(&wb->list_lock);
  1554. blk_finish_plug(&plug);
  1555. return nr_pages - work->nr_pages;
  1556. }
  1557. /*
  1558. * Return the next wb_writeback_work struct that hasn't been processed yet.
  1559. */
  1560. static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
  1561. {
  1562. struct wb_writeback_work *work = NULL;
  1563. spin_lock_bh(&wb->work_lock);
  1564. if (!list_empty(&wb->work_list)) {
  1565. work = list_entry(wb->work_list.next,
  1566. struct wb_writeback_work, list);
  1567. list_del_init(&work->list);
  1568. }
  1569. spin_unlock_bh(&wb->work_lock);
  1570. return work;
  1571. }
  1572. /*
  1573. * Add in the number of potentially dirty inodes, because each inode
  1574. * write can dirty pagecache in the underlying blockdev.
  1575. */
  1576. static unsigned long get_nr_dirty_pages(void)
  1577. {
  1578. return global_page_state(NR_FILE_DIRTY) +
  1579. global_page_state(NR_UNSTABLE_NFS) +
  1580. get_nr_dirty_inodes();
  1581. }
  1582. static long wb_check_background_flush(struct bdi_writeback *wb)
  1583. {
  1584. if (wb_over_bg_thresh(wb)) {
  1585. struct wb_writeback_work work = {
  1586. .nr_pages = LONG_MAX,
  1587. .sync_mode = WB_SYNC_NONE,
  1588. .for_background = 1,
  1589. .range_cyclic = 1,
  1590. .reason = WB_REASON_BACKGROUND,
  1591. };
  1592. return wb_writeback(wb, &work);
  1593. }
  1594. return 0;
  1595. }
  1596. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  1597. {
  1598. unsigned long expired;
  1599. long nr_pages;
  1600. /*
  1601. * When set to zero, disable periodic writeback
  1602. */
  1603. if (!dirty_writeback_interval)
  1604. return 0;
  1605. expired = wb->last_old_flush +
  1606. msecs_to_jiffies(dirty_writeback_interval * 10);
  1607. if (time_before(jiffies, expired))
  1608. return 0;
  1609. wb->last_old_flush = jiffies;
  1610. nr_pages = get_nr_dirty_pages();
  1611. if (nr_pages) {
  1612. struct wb_writeback_work work = {
  1613. .nr_pages = nr_pages,
  1614. .sync_mode = WB_SYNC_NONE,
  1615. .for_kupdate = 1,
  1616. .range_cyclic = 1,
  1617. .reason = WB_REASON_PERIODIC,
  1618. };
  1619. return wb_writeback(wb, &work);
  1620. }
  1621. return 0;
  1622. }
  1623. /*
  1624. * Retrieve work items and do the writeback they describe
  1625. */
  1626. static long wb_do_writeback(struct bdi_writeback *wb)
  1627. {
  1628. struct wb_writeback_work *work;
  1629. long wrote = 0;
  1630. set_bit(WB_writeback_running, &wb->state);
  1631. while ((work = get_next_work_item(wb)) != NULL) {
  1632. struct wb_completion *done = work->done;
  1633. trace_writeback_exec(wb, work);
  1634. wrote += wb_writeback(wb, work);
  1635. if (work->auto_free)
  1636. kfree(work);
  1637. if (done && atomic_dec_and_test(&done->cnt))
  1638. wake_up_all(&wb->bdi->wb_waitq);
  1639. }
  1640. /*
  1641. * Check for periodic writeback, kupdated() style
  1642. */
  1643. wrote += wb_check_old_data_flush(wb);
  1644. wrote += wb_check_background_flush(wb);
  1645. clear_bit(WB_writeback_running, &wb->state);
  1646. return wrote;
  1647. }
  1648. /*
  1649. * Handle writeback of dirty data for the device backed by this bdi. Also
  1650. * reschedules periodically and does kupdated style flushing.
  1651. */
  1652. void wb_workfn(struct work_struct *work)
  1653. {
  1654. struct bdi_writeback *wb = container_of(to_delayed_work(work),
  1655. struct bdi_writeback, dwork);
  1656. long pages_written;
  1657. set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
  1658. current->flags |= PF_SWAPWRITE;
  1659. if (likely(!current_is_workqueue_rescuer() ||
  1660. !test_bit(WB_registered, &wb->state))) {
  1661. /*
  1662. * The normal path. Keep writing back @wb until its
  1663. * work_list is empty. Note that this path is also taken
  1664. * if @wb is shutting down even when we're running off the
  1665. * rescuer as work_list needs to be drained.
  1666. */
  1667. do {
  1668. pages_written = wb_do_writeback(wb);
  1669. trace_writeback_pages_written(pages_written);
  1670. } while (!list_empty(&wb->work_list));
  1671. } else {
  1672. /*
  1673. * bdi_wq can't get enough workers and we're running off
  1674. * the emergency worker. Don't hog it. Hopefully, 1024 is
  1675. * enough for efficient IO.
  1676. */
  1677. pages_written = writeback_inodes_wb(wb, 1024,
  1678. WB_REASON_FORKER_THREAD);
  1679. trace_writeback_pages_written(pages_written);
  1680. }
  1681. if (!list_empty(&wb->work_list))
  1682. mod_delayed_work(bdi_wq, &wb->dwork, 0);
  1683. else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
  1684. wb_wakeup_delayed(wb);
  1685. current->flags &= ~PF_SWAPWRITE;
  1686. }
  1687. /*
  1688. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  1689. * the whole world.
  1690. */
  1691. void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
  1692. {
  1693. struct backing_dev_info *bdi;
  1694. if (!nr_pages)
  1695. nr_pages = get_nr_dirty_pages();
  1696. rcu_read_lock();
  1697. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  1698. struct bdi_writeback *wb;
  1699. if (!bdi_has_dirty_io(bdi))
  1700. continue;
  1701. list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
  1702. wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
  1703. false, reason);
  1704. }
  1705. rcu_read_unlock();
  1706. }
  1707. /*
  1708. * Wake up bdi's periodically to make sure dirtytime inodes gets
  1709. * written back periodically. We deliberately do *not* check the
  1710. * b_dirtytime list in wb_has_dirty_io(), since this would cause the
  1711. * kernel to be constantly waking up once there are any dirtytime
  1712. * inodes on the system. So instead we define a separate delayed work
  1713. * function which gets called much more rarely. (By default, only
  1714. * once every 12 hours.)
  1715. *
  1716. * If there is any other write activity going on in the file system,
  1717. * this function won't be necessary. But if the only thing that has
  1718. * happened on the file system is a dirtytime inode caused by an atime
  1719. * update, we need this infrastructure below to make sure that inode
  1720. * eventually gets pushed out to disk.
  1721. */
  1722. static void wakeup_dirtytime_writeback(struct work_struct *w);
  1723. static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
  1724. static void wakeup_dirtytime_writeback(struct work_struct *w)
  1725. {
  1726. struct backing_dev_info *bdi;
  1727. rcu_read_lock();
  1728. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  1729. struct bdi_writeback *wb;
  1730. list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
  1731. if (!list_empty(&wb->b_dirty_time))
  1732. wb_wakeup(wb);
  1733. }
  1734. rcu_read_unlock();
  1735. schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
  1736. }
  1737. static int __init start_dirtytime_writeback(void)
  1738. {
  1739. schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
  1740. return 0;
  1741. }
  1742. __initcall(start_dirtytime_writeback);
  1743. int dirtytime_interval_handler(struct ctl_table *table, int write,
  1744. void __user *buffer, size_t *lenp, loff_t *ppos)
  1745. {
  1746. int ret;
  1747. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  1748. if (ret == 0 && write)
  1749. mod_delayed_work(system_wq, &dirtytime_work, 0);
  1750. return ret;
  1751. }
  1752. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  1753. {
  1754. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  1755. struct dentry *dentry;
  1756. const char *name = "?";
  1757. dentry = d_find_alias(inode);
  1758. if (dentry) {
  1759. spin_lock(&dentry->d_lock);
  1760. name = (const char *) dentry->d_name.name;
  1761. }
  1762. printk(KERN_DEBUG
  1763. "%s(%d): dirtied inode %lu (%s) on %s\n",
  1764. current->comm, task_pid_nr(current), inode->i_ino,
  1765. name, inode->i_sb->s_id);
  1766. if (dentry) {
  1767. spin_unlock(&dentry->d_lock);
  1768. dput(dentry);
  1769. }
  1770. }
  1771. }
  1772. /**
  1773. * __mark_inode_dirty - internal function
  1774. * @inode: inode to mark
  1775. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  1776. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  1777. * mark_inode_dirty_sync.
  1778. *
  1779. * Put the inode on the super block's dirty list.
  1780. *
  1781. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  1782. * dirty list only if it is hashed or if it refers to a blockdev.
  1783. * If it was not hashed, it will never be added to the dirty list
  1784. * even if it is later hashed, as it will have been marked dirty already.
  1785. *
  1786. * In short, make sure you hash any inodes _before_ you start marking
  1787. * them dirty.
  1788. *
  1789. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  1790. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  1791. * the kernel-internal blockdev inode represents the dirtying time of the
  1792. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  1793. * page->mapping->host, so the page-dirtying time is recorded in the internal
  1794. * blockdev inode.
  1795. */
  1796. void __mark_inode_dirty(struct inode *inode, int flags)
  1797. {
  1798. #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
  1799. struct super_block *sb = inode->i_sb;
  1800. int dirtytime;
  1801. trace_writeback_mark_inode_dirty(inode, flags);
  1802. /*
  1803. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  1804. * dirty the inode itself
  1805. */
  1806. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
  1807. trace_writeback_dirty_inode_start(inode, flags);
  1808. if (sb->s_op->dirty_inode)
  1809. sb->s_op->dirty_inode(inode, flags);
  1810. trace_writeback_dirty_inode(inode, flags);
  1811. }
  1812. if (flags & I_DIRTY_INODE)
  1813. flags &= ~I_DIRTY_TIME;
  1814. dirtytime = flags & I_DIRTY_TIME;
  1815. /*
  1816. * Paired with smp_mb() in __writeback_single_inode() for the
  1817. * following lockless i_state test. See there for details.
  1818. */
  1819. smp_mb();
  1820. if (((inode->i_state & flags) == flags) ||
  1821. (dirtytime && (inode->i_state & I_DIRTY_INODE)))
  1822. return;
  1823. if (unlikely(block_dump))
  1824. block_dump___mark_inode_dirty(inode);
  1825. spin_lock(&inode->i_lock);
  1826. if (dirtytime && (inode->i_state & I_DIRTY_INODE))
  1827. goto out_unlock_inode;
  1828. if ((inode->i_state & flags) != flags) {
  1829. const int was_dirty = inode->i_state & I_DIRTY;
  1830. inode_attach_wb(inode, NULL);
  1831. if (flags & I_DIRTY_INODE)
  1832. inode->i_state &= ~I_DIRTY_TIME;
  1833. inode->i_state |= flags;
  1834. /*
  1835. * If the inode is being synced, just update its dirty state.
  1836. * The unlocker will place the inode on the appropriate
  1837. * superblock list, based upon its state.
  1838. */
  1839. if (inode->i_state & I_SYNC)
  1840. goto out_unlock_inode;
  1841. /*
  1842. * Only add valid (hashed) inodes to the superblock's
  1843. * dirty list. Add blockdev inodes as well.
  1844. */
  1845. if (!S_ISBLK(inode->i_mode)) {
  1846. if (inode_unhashed(inode))
  1847. goto out_unlock_inode;
  1848. }
  1849. if (inode->i_state & I_FREEING)
  1850. goto out_unlock_inode;
  1851. /*
  1852. * If the inode was already on b_dirty/b_io/b_more_io, don't
  1853. * reposition it (that would break b_dirty time-ordering).
  1854. */
  1855. if (!was_dirty) {
  1856. struct bdi_writeback *wb;
  1857. struct list_head *dirty_list;
  1858. bool wakeup_bdi = false;
  1859. wb = locked_inode_to_wb_and_lock_list(inode);
  1860. WARN(bdi_cap_writeback_dirty(wb->bdi) &&
  1861. !test_bit(WB_registered, &wb->state),
  1862. "bdi-%s not registered\n", wb->bdi->name);
  1863. inode->dirtied_when = jiffies;
  1864. if (dirtytime)
  1865. inode->dirtied_time_when = jiffies;
  1866. if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
  1867. dirty_list = &wb->b_dirty;
  1868. else
  1869. dirty_list = &wb->b_dirty_time;
  1870. wakeup_bdi = inode_io_list_move_locked(inode, wb,
  1871. dirty_list);
  1872. spin_unlock(&wb->list_lock);
  1873. trace_writeback_dirty_inode_enqueue(inode);
  1874. /*
  1875. * If this is the first dirty inode for this bdi,
  1876. * we have to wake-up the corresponding bdi thread
  1877. * to make sure background write-back happens
  1878. * later.
  1879. */
  1880. if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
  1881. wb_wakeup_delayed(wb);
  1882. return;
  1883. }
  1884. }
  1885. out_unlock_inode:
  1886. spin_unlock(&inode->i_lock);
  1887. #undef I_DIRTY_INODE
  1888. }
  1889. EXPORT_SYMBOL(__mark_inode_dirty);
  1890. /*
  1891. * The @s_sync_lock is used to serialise concurrent sync operations
  1892. * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
  1893. * Concurrent callers will block on the s_sync_lock rather than doing contending
  1894. * walks. The queueing maintains sync(2) required behaviour as all the IO that
  1895. * has been issued up to the time this function is enter is guaranteed to be
  1896. * completed by the time we have gained the lock and waited for all IO that is
  1897. * in progress regardless of the order callers are granted the lock.
  1898. */
  1899. static void wait_sb_inodes(struct super_block *sb)
  1900. {
  1901. struct inode *inode, *old_inode = NULL;
  1902. /*
  1903. * We need to be protected against the filesystem going from
  1904. * r/o to r/w or vice versa.
  1905. */
  1906. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  1907. mutex_lock(&sb->s_sync_lock);
  1908. spin_lock(&sb->s_inode_list_lock);
  1909. /*
  1910. * Data integrity sync. Must wait for all pages under writeback,
  1911. * because there may have been pages dirtied before our sync
  1912. * call, but which had writeout started before we write it out.
  1913. * In which case, the inode may not be on the dirty list, but
  1914. * we still have to wait for that writeout.
  1915. */
  1916. list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
  1917. struct address_space *mapping = inode->i_mapping;
  1918. spin_lock(&inode->i_lock);
  1919. if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
  1920. (mapping->nrpages == 0)) {
  1921. spin_unlock(&inode->i_lock);
  1922. continue;
  1923. }
  1924. __iget(inode);
  1925. spin_unlock(&inode->i_lock);
  1926. spin_unlock(&sb->s_inode_list_lock);
  1927. /*
  1928. * We hold a reference to 'inode' so it couldn't have been
  1929. * removed from s_inodes list while we dropped the
  1930. * s_inode_list_lock. We cannot iput the inode now as we can
  1931. * be holding the last reference and we cannot iput it under
  1932. * s_inode_list_lock. So we keep the reference and iput it
  1933. * later.
  1934. */
  1935. iput(old_inode);
  1936. old_inode = inode;
  1937. /*
  1938. * We keep the error status of individual mapping so that
  1939. * applications can catch the writeback error using fsync(2).
  1940. * See filemap_fdatawait_keep_errors() for details.
  1941. */
  1942. filemap_fdatawait_keep_errors(mapping);
  1943. cond_resched();
  1944. spin_lock(&sb->s_inode_list_lock);
  1945. }
  1946. spin_unlock(&sb->s_inode_list_lock);
  1947. iput(old_inode);
  1948. mutex_unlock(&sb->s_sync_lock);
  1949. }
  1950. static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
  1951. enum wb_reason reason, bool skip_if_busy)
  1952. {
  1953. DEFINE_WB_COMPLETION_ONSTACK(done);
  1954. struct wb_writeback_work work = {
  1955. .sb = sb,
  1956. .sync_mode = WB_SYNC_NONE,
  1957. .tagged_writepages = 1,
  1958. .done = &done,
  1959. .nr_pages = nr,
  1960. .reason = reason,
  1961. };
  1962. struct backing_dev_info *bdi = sb->s_bdi;
  1963. if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
  1964. return;
  1965. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  1966. bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
  1967. wb_wait_for_completion(bdi, &done);
  1968. }
  1969. /**
  1970. * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
  1971. * @sb: the superblock
  1972. * @nr: the number of pages to write
  1973. * @reason: reason why some writeback work initiated
  1974. *
  1975. * Start writeback on some inodes on this super_block. No guarantees are made
  1976. * on how many (if any) will be written, and this function does not wait
  1977. * for IO completion of submitted IO.
  1978. */
  1979. void writeback_inodes_sb_nr(struct super_block *sb,
  1980. unsigned long nr,
  1981. enum wb_reason reason)
  1982. {
  1983. __writeback_inodes_sb_nr(sb, nr, reason, false);
  1984. }
  1985. EXPORT_SYMBOL(writeback_inodes_sb_nr);
  1986. /**
  1987. * writeback_inodes_sb - writeback dirty inodes from given super_block
  1988. * @sb: the superblock
  1989. * @reason: reason why some writeback work was initiated
  1990. *
  1991. * Start writeback on some inodes on this super_block. No guarantees are made
  1992. * on how many (if any) will be written, and this function does not wait
  1993. * for IO completion of submitted IO.
  1994. */
  1995. void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
  1996. {
  1997. return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
  1998. }
  1999. EXPORT_SYMBOL(writeback_inodes_sb);
  2000. /**
  2001. * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
  2002. * @sb: the superblock
  2003. * @nr: the number of pages to write
  2004. * @reason: the reason of writeback
  2005. *
  2006. * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
  2007. * Returns 1 if writeback was started, 0 if not.
  2008. */
  2009. bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
  2010. enum wb_reason reason)
  2011. {
  2012. if (!down_read_trylock(&sb->s_umount))
  2013. return false;
  2014. __writeback_inodes_sb_nr(sb, nr, reason, true);
  2015. up_read(&sb->s_umount);
  2016. return true;
  2017. }
  2018. EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
  2019. /**
  2020. * try_to_writeback_inodes_sb - try to start writeback if none underway
  2021. * @sb: the superblock
  2022. * @reason: reason why some writeback work was initiated
  2023. *
  2024. * Implement by try_to_writeback_inodes_sb_nr()
  2025. * Returns 1 if writeback was started, 0 if not.
  2026. */
  2027. bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
  2028. {
  2029. return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
  2030. }
  2031. EXPORT_SYMBOL(try_to_writeback_inodes_sb);
  2032. /**
  2033. * sync_inodes_sb - sync sb inode pages
  2034. * @sb: the superblock
  2035. *
  2036. * This function writes and waits on any dirty inode belonging to this
  2037. * super_block.
  2038. */
  2039. void sync_inodes_sb(struct super_block *sb)
  2040. {
  2041. DEFINE_WB_COMPLETION_ONSTACK(done);
  2042. struct wb_writeback_work work = {
  2043. .sb = sb,
  2044. .sync_mode = WB_SYNC_ALL,
  2045. .nr_pages = LONG_MAX,
  2046. .range_cyclic = 0,
  2047. .done = &done,
  2048. .reason = WB_REASON_SYNC,
  2049. .for_sync = 1,
  2050. };
  2051. struct backing_dev_info *bdi = sb->s_bdi;
  2052. /*
  2053. * Can't skip on !bdi_has_dirty() because we should wait for !dirty
  2054. * inodes under writeback and I_DIRTY_TIME inodes ignored by
  2055. * bdi_has_dirty() need to be written out too.
  2056. */
  2057. if (bdi == &noop_backing_dev_info)
  2058. return;
  2059. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  2060. bdi_split_work_to_wbs(bdi, &work, false);
  2061. wb_wait_for_completion(bdi, &done);
  2062. wait_sb_inodes(sb);
  2063. }
  2064. EXPORT_SYMBOL(sync_inodes_sb);
  2065. /**
  2066. * write_inode_now - write an inode to disk
  2067. * @inode: inode to write to disk
  2068. * @sync: whether the write should be synchronous or not
  2069. *
  2070. * This function commits an inode to disk immediately if it is dirty. This is
  2071. * primarily needed by knfsd.
  2072. *
  2073. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  2074. */
  2075. int write_inode_now(struct inode *inode, int sync)
  2076. {
  2077. struct writeback_control wbc = {
  2078. .nr_to_write = LONG_MAX,
  2079. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  2080. .range_start = 0,
  2081. .range_end = LLONG_MAX,
  2082. };
  2083. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  2084. wbc.nr_to_write = 0;
  2085. might_sleep();
  2086. return writeback_single_inode(inode, &wbc);
  2087. }
  2088. EXPORT_SYMBOL(write_inode_now);
  2089. /**
  2090. * sync_inode - write an inode and its pages to disk.
  2091. * @inode: the inode to sync
  2092. * @wbc: controls the writeback mode
  2093. *
  2094. * sync_inode() will write an inode and its pages to disk. It will also
  2095. * correctly update the inode on its superblock's dirty inode lists and will
  2096. * update inode->i_state.
  2097. *
  2098. * The caller must have a ref on the inode.
  2099. */
  2100. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  2101. {
  2102. return writeback_single_inode(inode, wbc);
  2103. }
  2104. EXPORT_SYMBOL(sync_inode);
  2105. /**
  2106. * sync_inode_metadata - write an inode to disk
  2107. * @inode: the inode to sync
  2108. * @wait: wait for I/O to complete.
  2109. *
  2110. * Write an inode to disk and adjust its dirty state after completion.
  2111. *
  2112. * Note: only writes the actual inode, no associated data or other metadata.
  2113. */
  2114. int sync_inode_metadata(struct inode *inode, int wait)
  2115. {
  2116. struct writeback_control wbc = {
  2117. .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
  2118. .nr_to_write = 0, /* metadata-only */
  2119. };
  2120. return sync_inode(inode, &wbc);
  2121. }
  2122. EXPORT_SYMBOL(sync_inode_metadata);