delayed-inode.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  68. {
  69. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  70. struct btrfs_root *root = btrfs_inode->root;
  71. u64 ino = btrfs_ino(btrfs_inode);
  72. struct btrfs_delayed_node *node;
  73. node = READ_ONCE(btrfs_inode->delayed_node);
  74. if (node) {
  75. atomic_inc(&node->refs);
  76. return node;
  77. }
  78. spin_lock(&root->inode_lock);
  79. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  80. if (node) {
  81. if (btrfs_inode->delayed_node) {
  82. atomic_inc(&node->refs); /* can be accessed */
  83. BUG_ON(btrfs_inode->delayed_node != node);
  84. spin_unlock(&root->inode_lock);
  85. return node;
  86. }
  87. btrfs_inode->delayed_node = node;
  88. /* can be accessed and cached in the inode */
  89. atomic_add(2, &node->refs);
  90. spin_unlock(&root->inode_lock);
  91. return node;
  92. }
  93. spin_unlock(&root->inode_lock);
  94. return NULL;
  95. }
  96. /* Will return either the node or PTR_ERR(-ENOMEM) */
  97. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  98. struct inode *inode)
  99. {
  100. struct btrfs_delayed_node *node;
  101. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  102. struct btrfs_root *root = btrfs_inode->root;
  103. u64 ino = btrfs_ino(btrfs_inode);
  104. int ret;
  105. again:
  106. node = btrfs_get_delayed_node(inode);
  107. if (node)
  108. return node;
  109. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  110. if (!node)
  111. return ERR_PTR(-ENOMEM);
  112. btrfs_init_delayed_node(node, root, ino);
  113. /* cached in the btrfs inode and can be accessed */
  114. atomic_add(2, &node->refs);
  115. ret = radix_tree_preload(GFP_NOFS);
  116. if (ret) {
  117. kmem_cache_free(delayed_node_cache, node);
  118. return ERR_PTR(ret);
  119. }
  120. spin_lock(&root->inode_lock);
  121. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  122. if (ret == -EEXIST) {
  123. spin_unlock(&root->inode_lock);
  124. kmem_cache_free(delayed_node_cache, node);
  125. radix_tree_preload_end();
  126. goto again;
  127. }
  128. btrfs_inode->delayed_node = node;
  129. spin_unlock(&root->inode_lock);
  130. radix_tree_preload_end();
  131. return node;
  132. }
  133. /*
  134. * Call it when holding delayed_node->mutex
  135. *
  136. * If mod = 1, add this node into the prepared list.
  137. */
  138. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  139. struct btrfs_delayed_node *node,
  140. int mod)
  141. {
  142. spin_lock(&root->lock);
  143. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  144. if (!list_empty(&node->p_list))
  145. list_move_tail(&node->p_list, &root->prepare_list);
  146. else if (mod)
  147. list_add_tail(&node->p_list, &root->prepare_list);
  148. } else {
  149. list_add_tail(&node->n_list, &root->node_list);
  150. list_add_tail(&node->p_list, &root->prepare_list);
  151. atomic_inc(&node->refs); /* inserted into list */
  152. root->nodes++;
  153. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  154. }
  155. spin_unlock(&root->lock);
  156. }
  157. /* Call it when holding delayed_node->mutex */
  158. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  159. struct btrfs_delayed_node *node)
  160. {
  161. spin_lock(&root->lock);
  162. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  163. root->nodes--;
  164. atomic_dec(&node->refs); /* not in the list */
  165. list_del_init(&node->n_list);
  166. if (!list_empty(&node->p_list))
  167. list_del_init(&node->p_list);
  168. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  169. }
  170. spin_unlock(&root->lock);
  171. }
  172. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  173. struct btrfs_delayed_root *delayed_root)
  174. {
  175. struct list_head *p;
  176. struct btrfs_delayed_node *node = NULL;
  177. spin_lock(&delayed_root->lock);
  178. if (list_empty(&delayed_root->node_list))
  179. goto out;
  180. p = delayed_root->node_list.next;
  181. node = list_entry(p, struct btrfs_delayed_node, n_list);
  182. atomic_inc(&node->refs);
  183. out:
  184. spin_unlock(&delayed_root->lock);
  185. return node;
  186. }
  187. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  188. struct btrfs_delayed_node *node)
  189. {
  190. struct btrfs_delayed_root *delayed_root;
  191. struct list_head *p;
  192. struct btrfs_delayed_node *next = NULL;
  193. delayed_root = node->root->fs_info->delayed_root;
  194. spin_lock(&delayed_root->lock);
  195. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  196. /* not in the list */
  197. if (list_empty(&delayed_root->node_list))
  198. goto out;
  199. p = delayed_root->node_list.next;
  200. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  201. goto out;
  202. else
  203. p = node->n_list.next;
  204. next = list_entry(p, struct btrfs_delayed_node, n_list);
  205. atomic_inc(&next->refs);
  206. out:
  207. spin_unlock(&delayed_root->lock);
  208. return next;
  209. }
  210. static void __btrfs_release_delayed_node(
  211. struct btrfs_delayed_node *delayed_node,
  212. int mod)
  213. {
  214. struct btrfs_delayed_root *delayed_root;
  215. if (!delayed_node)
  216. return;
  217. delayed_root = delayed_node->root->fs_info->delayed_root;
  218. mutex_lock(&delayed_node->mutex);
  219. if (delayed_node->count)
  220. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  221. else
  222. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  223. mutex_unlock(&delayed_node->mutex);
  224. if (atomic_dec_and_test(&delayed_node->refs)) {
  225. bool free = false;
  226. struct btrfs_root *root = delayed_node->root;
  227. spin_lock(&root->inode_lock);
  228. if (atomic_read(&delayed_node->refs) == 0) {
  229. radix_tree_delete(&root->delayed_nodes_tree,
  230. delayed_node->inode_id);
  231. free = true;
  232. }
  233. spin_unlock(&root->inode_lock);
  234. if (free)
  235. kmem_cache_free(delayed_node_cache, delayed_node);
  236. }
  237. }
  238. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  239. {
  240. __btrfs_release_delayed_node(node, 0);
  241. }
  242. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  243. struct btrfs_delayed_root *delayed_root)
  244. {
  245. struct list_head *p;
  246. struct btrfs_delayed_node *node = NULL;
  247. spin_lock(&delayed_root->lock);
  248. if (list_empty(&delayed_root->prepare_list))
  249. goto out;
  250. p = delayed_root->prepare_list.next;
  251. list_del_init(p);
  252. node = list_entry(p, struct btrfs_delayed_node, p_list);
  253. atomic_inc(&node->refs);
  254. out:
  255. spin_unlock(&delayed_root->lock);
  256. return node;
  257. }
  258. static inline void btrfs_release_prepared_delayed_node(
  259. struct btrfs_delayed_node *node)
  260. {
  261. __btrfs_release_delayed_node(node, 1);
  262. }
  263. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  264. {
  265. struct btrfs_delayed_item *item;
  266. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  267. if (item) {
  268. item->data_len = data_len;
  269. item->ins_or_del = 0;
  270. item->bytes_reserved = 0;
  271. item->delayed_node = NULL;
  272. atomic_set(&item->refs, 1);
  273. }
  274. return item;
  275. }
  276. /*
  277. * __btrfs_lookup_delayed_item - look up the delayed item by key
  278. * @delayed_node: pointer to the delayed node
  279. * @key: the key to look up
  280. * @prev: used to store the prev item if the right item isn't found
  281. * @next: used to store the next item if the right item isn't found
  282. *
  283. * Note: if we don't find the right item, we will return the prev item and
  284. * the next item.
  285. */
  286. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  287. struct rb_root *root,
  288. struct btrfs_key *key,
  289. struct btrfs_delayed_item **prev,
  290. struct btrfs_delayed_item **next)
  291. {
  292. struct rb_node *node, *prev_node = NULL;
  293. struct btrfs_delayed_item *delayed_item = NULL;
  294. int ret = 0;
  295. node = root->rb_node;
  296. while (node) {
  297. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  298. rb_node);
  299. prev_node = node;
  300. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  301. if (ret < 0)
  302. node = node->rb_right;
  303. else if (ret > 0)
  304. node = node->rb_left;
  305. else
  306. return delayed_item;
  307. }
  308. if (prev) {
  309. if (!prev_node)
  310. *prev = NULL;
  311. else if (ret < 0)
  312. *prev = delayed_item;
  313. else if ((node = rb_prev(prev_node)) != NULL) {
  314. *prev = rb_entry(node, struct btrfs_delayed_item,
  315. rb_node);
  316. } else
  317. *prev = NULL;
  318. }
  319. if (next) {
  320. if (!prev_node)
  321. *next = NULL;
  322. else if (ret > 0)
  323. *next = delayed_item;
  324. else if ((node = rb_next(prev_node)) != NULL) {
  325. *next = rb_entry(node, struct btrfs_delayed_item,
  326. rb_node);
  327. } else
  328. *next = NULL;
  329. }
  330. return NULL;
  331. }
  332. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  333. struct btrfs_delayed_node *delayed_node,
  334. struct btrfs_key *key)
  335. {
  336. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  337. NULL, NULL);
  338. }
  339. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_delayed_item *ins,
  341. int action)
  342. {
  343. struct rb_node **p, *node;
  344. struct rb_node *parent_node = NULL;
  345. struct rb_root *root;
  346. struct btrfs_delayed_item *item;
  347. int cmp;
  348. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  349. root = &delayed_node->ins_root;
  350. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  351. root = &delayed_node->del_root;
  352. else
  353. BUG();
  354. p = &root->rb_node;
  355. node = &ins->rb_node;
  356. while (*p) {
  357. parent_node = *p;
  358. item = rb_entry(parent_node, struct btrfs_delayed_item,
  359. rb_node);
  360. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  361. if (cmp < 0)
  362. p = &(*p)->rb_right;
  363. else if (cmp > 0)
  364. p = &(*p)->rb_left;
  365. else
  366. return -EEXIST;
  367. }
  368. rb_link_node(node, parent_node, p);
  369. rb_insert_color(node, root);
  370. ins->delayed_node = delayed_node;
  371. ins->ins_or_del = action;
  372. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  373. action == BTRFS_DELAYED_INSERTION_ITEM &&
  374. ins->key.offset >= delayed_node->index_cnt)
  375. delayed_node->index_cnt = ins->key.offset + 1;
  376. delayed_node->count++;
  377. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  378. return 0;
  379. }
  380. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  381. struct btrfs_delayed_item *item)
  382. {
  383. return __btrfs_add_delayed_item(node, item,
  384. BTRFS_DELAYED_INSERTION_ITEM);
  385. }
  386. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  387. struct btrfs_delayed_item *item)
  388. {
  389. return __btrfs_add_delayed_item(node, item,
  390. BTRFS_DELAYED_DELETION_ITEM);
  391. }
  392. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  393. {
  394. int seq = atomic_inc_return(&delayed_root->items_seq);
  395. /*
  396. * atomic_dec_return implies a barrier for waitqueue_active
  397. */
  398. if ((atomic_dec_return(&delayed_root->items) <
  399. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  400. waitqueue_active(&delayed_root->wait))
  401. wake_up(&delayed_root->wait);
  402. }
  403. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  404. {
  405. struct rb_root *root;
  406. struct btrfs_delayed_root *delayed_root;
  407. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  408. BUG_ON(!delayed_root);
  409. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  410. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  411. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  412. root = &delayed_item->delayed_node->ins_root;
  413. else
  414. root = &delayed_item->delayed_node->del_root;
  415. rb_erase(&delayed_item->rb_node, root);
  416. delayed_item->delayed_node->count--;
  417. finish_one_item(delayed_root);
  418. }
  419. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  420. {
  421. if (item) {
  422. __btrfs_remove_delayed_item(item);
  423. if (atomic_dec_and_test(&item->refs))
  424. kfree(item);
  425. }
  426. }
  427. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  428. struct btrfs_delayed_node *delayed_node)
  429. {
  430. struct rb_node *p;
  431. struct btrfs_delayed_item *item = NULL;
  432. p = rb_first(&delayed_node->ins_root);
  433. if (p)
  434. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  435. return item;
  436. }
  437. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  438. struct btrfs_delayed_node *delayed_node)
  439. {
  440. struct rb_node *p;
  441. struct btrfs_delayed_item *item = NULL;
  442. p = rb_first(&delayed_node->del_root);
  443. if (p)
  444. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  445. return item;
  446. }
  447. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  448. struct btrfs_delayed_item *item)
  449. {
  450. struct rb_node *p;
  451. struct btrfs_delayed_item *next = NULL;
  452. p = rb_next(&item->rb_node);
  453. if (p)
  454. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  455. return next;
  456. }
  457. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  458. struct btrfs_fs_info *fs_info,
  459. struct btrfs_delayed_item *item)
  460. {
  461. struct btrfs_block_rsv *src_rsv;
  462. struct btrfs_block_rsv *dst_rsv;
  463. u64 num_bytes;
  464. int ret;
  465. if (!trans->bytes_reserved)
  466. return 0;
  467. src_rsv = trans->block_rsv;
  468. dst_rsv = &fs_info->delayed_block_rsv;
  469. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  470. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  471. if (!ret) {
  472. trace_btrfs_space_reservation(fs_info, "delayed_item",
  473. item->key.objectid,
  474. num_bytes, 1);
  475. item->bytes_reserved = num_bytes;
  476. }
  477. return ret;
  478. }
  479. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  480. struct btrfs_delayed_item *item)
  481. {
  482. struct btrfs_block_rsv *rsv;
  483. if (!item->bytes_reserved)
  484. return;
  485. rsv = &fs_info->delayed_block_rsv;
  486. trace_btrfs_space_reservation(fs_info, "delayed_item",
  487. item->key.objectid, item->bytes_reserved,
  488. 0);
  489. btrfs_block_rsv_release(fs_info, rsv,
  490. item->bytes_reserved);
  491. }
  492. static int btrfs_delayed_inode_reserve_metadata(
  493. struct btrfs_trans_handle *trans,
  494. struct btrfs_root *root,
  495. struct inode *inode,
  496. struct btrfs_delayed_node *node)
  497. {
  498. struct btrfs_fs_info *fs_info = root->fs_info;
  499. struct btrfs_block_rsv *src_rsv;
  500. struct btrfs_block_rsv *dst_rsv;
  501. u64 num_bytes;
  502. int ret;
  503. bool release = false;
  504. src_rsv = trans->block_rsv;
  505. dst_rsv = &fs_info->delayed_block_rsv;
  506. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  507. /*
  508. * If our block_rsv is the delalloc block reserve then check and see if
  509. * we have our extra reservation for updating the inode. If not fall
  510. * through and try to reserve space quickly.
  511. *
  512. * We used to try and steal from the delalloc block rsv or the global
  513. * reserve, but we'd steal a full reservation, which isn't kind. We are
  514. * here through delalloc which means we've likely just cowed down close
  515. * to the leaf that contains the inode, so we would steal less just
  516. * doing the fallback inode update, so if we do end up having to steal
  517. * from the global block rsv we hopefully only steal one or two blocks
  518. * worth which is less likely to hurt us.
  519. */
  520. if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  521. spin_lock(&BTRFS_I(inode)->lock);
  522. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  523. &BTRFS_I(inode)->runtime_flags))
  524. release = true;
  525. else
  526. src_rsv = NULL;
  527. spin_unlock(&BTRFS_I(inode)->lock);
  528. }
  529. /*
  530. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  531. * which doesn't reserve space for speed. This is a problem since we
  532. * still need to reserve space for this update, so try to reserve the
  533. * space.
  534. *
  535. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  536. * we're accounted for.
  537. */
  538. if (!src_rsv || (!trans->bytes_reserved &&
  539. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  540. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  541. BTRFS_RESERVE_NO_FLUSH);
  542. /*
  543. * Since we're under a transaction reserve_metadata_bytes could
  544. * try to commit the transaction which will make it return
  545. * EAGAIN to make us stop the transaction we have, so return
  546. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  547. */
  548. if (ret == -EAGAIN)
  549. ret = -ENOSPC;
  550. if (!ret) {
  551. node->bytes_reserved = num_bytes;
  552. trace_btrfs_space_reservation(fs_info,
  553. "delayed_inode",
  554. btrfs_ino(BTRFS_I(inode)),
  555. num_bytes, 1);
  556. }
  557. return ret;
  558. }
  559. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  560. /*
  561. * Migrate only takes a reservation, it doesn't touch the size of the
  562. * block_rsv. This is to simplify people who don't normally have things
  563. * migrated from their block rsv. If they go to release their
  564. * reservation, that will decrease the size as well, so if migrate
  565. * reduced size we'd end up with a negative size. But for the
  566. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  567. * but we could in fact do this reserve/migrate dance several times
  568. * between the time we did the original reservation and we'd clean it
  569. * up. So to take care of this, release the space for the meta
  570. * reservation here. I think it may be time for a documentation page on
  571. * how block rsvs. work.
  572. */
  573. if (!ret) {
  574. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  575. btrfs_ino(BTRFS_I(inode)), num_bytes, 1);
  576. node->bytes_reserved = num_bytes;
  577. }
  578. if (release) {
  579. trace_btrfs_space_reservation(fs_info, "delalloc",
  580. btrfs_ino(BTRFS_I(inode)), num_bytes, 0);
  581. btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
  582. }
  583. return ret;
  584. }
  585. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  586. struct btrfs_delayed_node *node)
  587. {
  588. struct btrfs_block_rsv *rsv;
  589. if (!node->bytes_reserved)
  590. return;
  591. rsv = &fs_info->delayed_block_rsv;
  592. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  593. node->inode_id, node->bytes_reserved, 0);
  594. btrfs_block_rsv_release(fs_info, rsv,
  595. node->bytes_reserved);
  596. node->bytes_reserved = 0;
  597. }
  598. /*
  599. * This helper will insert some continuous items into the same leaf according
  600. * to the free space of the leaf.
  601. */
  602. static int btrfs_batch_insert_items(struct btrfs_root *root,
  603. struct btrfs_path *path,
  604. struct btrfs_delayed_item *item)
  605. {
  606. struct btrfs_fs_info *fs_info = root->fs_info;
  607. struct btrfs_delayed_item *curr, *next;
  608. int free_space;
  609. int total_data_size = 0, total_size = 0;
  610. struct extent_buffer *leaf;
  611. char *data_ptr;
  612. struct btrfs_key *keys;
  613. u32 *data_size;
  614. struct list_head head;
  615. int slot;
  616. int nitems;
  617. int i;
  618. int ret = 0;
  619. BUG_ON(!path->nodes[0]);
  620. leaf = path->nodes[0];
  621. free_space = btrfs_leaf_free_space(fs_info, leaf);
  622. INIT_LIST_HEAD(&head);
  623. next = item;
  624. nitems = 0;
  625. /*
  626. * count the number of the continuous items that we can insert in batch
  627. */
  628. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  629. free_space) {
  630. total_data_size += next->data_len;
  631. total_size += next->data_len + sizeof(struct btrfs_item);
  632. list_add_tail(&next->tree_list, &head);
  633. nitems++;
  634. curr = next;
  635. next = __btrfs_next_delayed_item(curr);
  636. if (!next)
  637. break;
  638. if (!btrfs_is_continuous_delayed_item(curr, next))
  639. break;
  640. }
  641. if (!nitems) {
  642. ret = 0;
  643. goto out;
  644. }
  645. /*
  646. * we need allocate some memory space, but it might cause the task
  647. * to sleep, so we set all locked nodes in the path to blocking locks
  648. * first.
  649. */
  650. btrfs_set_path_blocking(path);
  651. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  652. if (!keys) {
  653. ret = -ENOMEM;
  654. goto out;
  655. }
  656. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  657. if (!data_size) {
  658. ret = -ENOMEM;
  659. goto error;
  660. }
  661. /* get keys of all the delayed items */
  662. i = 0;
  663. list_for_each_entry(next, &head, tree_list) {
  664. keys[i] = next->key;
  665. data_size[i] = next->data_len;
  666. i++;
  667. }
  668. /* reset all the locked nodes in the patch to spinning locks. */
  669. btrfs_clear_path_blocking(path, NULL, 0);
  670. /* insert the keys of the items */
  671. setup_items_for_insert(root, path, keys, data_size,
  672. total_data_size, total_size, nitems);
  673. /* insert the dir index items */
  674. slot = path->slots[0];
  675. list_for_each_entry_safe(curr, next, &head, tree_list) {
  676. data_ptr = btrfs_item_ptr(leaf, slot, char);
  677. write_extent_buffer(leaf, &curr->data,
  678. (unsigned long)data_ptr,
  679. curr->data_len);
  680. slot++;
  681. btrfs_delayed_item_release_metadata(fs_info, curr);
  682. list_del(&curr->tree_list);
  683. btrfs_release_delayed_item(curr);
  684. }
  685. error:
  686. kfree(data_size);
  687. kfree(keys);
  688. out:
  689. return ret;
  690. }
  691. /*
  692. * This helper can just do simple insertion that needn't extend item for new
  693. * data, such as directory name index insertion, inode insertion.
  694. */
  695. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  696. struct btrfs_root *root,
  697. struct btrfs_path *path,
  698. struct btrfs_delayed_item *delayed_item)
  699. {
  700. struct btrfs_fs_info *fs_info = root->fs_info;
  701. struct extent_buffer *leaf;
  702. char *ptr;
  703. int ret;
  704. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  705. delayed_item->data_len);
  706. if (ret < 0 && ret != -EEXIST)
  707. return ret;
  708. leaf = path->nodes[0];
  709. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  710. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  711. delayed_item->data_len);
  712. btrfs_mark_buffer_dirty(leaf);
  713. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  714. return 0;
  715. }
  716. /*
  717. * we insert an item first, then if there are some continuous items, we try
  718. * to insert those items into the same leaf.
  719. */
  720. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  721. struct btrfs_path *path,
  722. struct btrfs_root *root,
  723. struct btrfs_delayed_node *node)
  724. {
  725. struct btrfs_delayed_item *curr, *prev;
  726. int ret = 0;
  727. do_again:
  728. mutex_lock(&node->mutex);
  729. curr = __btrfs_first_delayed_insertion_item(node);
  730. if (!curr)
  731. goto insert_end;
  732. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  733. if (ret < 0) {
  734. btrfs_release_path(path);
  735. goto insert_end;
  736. }
  737. prev = curr;
  738. curr = __btrfs_next_delayed_item(prev);
  739. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  740. /* insert the continuous items into the same leaf */
  741. path->slots[0]++;
  742. btrfs_batch_insert_items(root, path, curr);
  743. }
  744. btrfs_release_delayed_item(prev);
  745. btrfs_mark_buffer_dirty(path->nodes[0]);
  746. btrfs_release_path(path);
  747. mutex_unlock(&node->mutex);
  748. goto do_again;
  749. insert_end:
  750. mutex_unlock(&node->mutex);
  751. return ret;
  752. }
  753. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  754. struct btrfs_root *root,
  755. struct btrfs_path *path,
  756. struct btrfs_delayed_item *item)
  757. {
  758. struct btrfs_fs_info *fs_info = root->fs_info;
  759. struct btrfs_delayed_item *curr, *next;
  760. struct extent_buffer *leaf;
  761. struct btrfs_key key;
  762. struct list_head head;
  763. int nitems, i, last_item;
  764. int ret = 0;
  765. BUG_ON(!path->nodes[0]);
  766. leaf = path->nodes[0];
  767. i = path->slots[0];
  768. last_item = btrfs_header_nritems(leaf) - 1;
  769. if (i > last_item)
  770. return -ENOENT; /* FIXME: Is errno suitable? */
  771. next = item;
  772. INIT_LIST_HEAD(&head);
  773. btrfs_item_key_to_cpu(leaf, &key, i);
  774. nitems = 0;
  775. /*
  776. * count the number of the dir index items that we can delete in batch
  777. */
  778. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  779. list_add_tail(&next->tree_list, &head);
  780. nitems++;
  781. curr = next;
  782. next = __btrfs_next_delayed_item(curr);
  783. if (!next)
  784. break;
  785. if (!btrfs_is_continuous_delayed_item(curr, next))
  786. break;
  787. i++;
  788. if (i > last_item)
  789. break;
  790. btrfs_item_key_to_cpu(leaf, &key, i);
  791. }
  792. if (!nitems)
  793. return 0;
  794. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  795. if (ret)
  796. goto out;
  797. list_for_each_entry_safe(curr, next, &head, tree_list) {
  798. btrfs_delayed_item_release_metadata(fs_info, curr);
  799. list_del(&curr->tree_list);
  800. btrfs_release_delayed_item(curr);
  801. }
  802. out:
  803. return ret;
  804. }
  805. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  806. struct btrfs_path *path,
  807. struct btrfs_root *root,
  808. struct btrfs_delayed_node *node)
  809. {
  810. struct btrfs_delayed_item *curr, *prev;
  811. int ret = 0;
  812. do_again:
  813. mutex_lock(&node->mutex);
  814. curr = __btrfs_first_delayed_deletion_item(node);
  815. if (!curr)
  816. goto delete_fail;
  817. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  818. if (ret < 0)
  819. goto delete_fail;
  820. else if (ret > 0) {
  821. /*
  822. * can't find the item which the node points to, so this node
  823. * is invalid, just drop it.
  824. */
  825. prev = curr;
  826. curr = __btrfs_next_delayed_item(prev);
  827. btrfs_release_delayed_item(prev);
  828. ret = 0;
  829. btrfs_release_path(path);
  830. if (curr) {
  831. mutex_unlock(&node->mutex);
  832. goto do_again;
  833. } else
  834. goto delete_fail;
  835. }
  836. btrfs_batch_delete_items(trans, root, path, curr);
  837. btrfs_release_path(path);
  838. mutex_unlock(&node->mutex);
  839. goto do_again;
  840. delete_fail:
  841. btrfs_release_path(path);
  842. mutex_unlock(&node->mutex);
  843. return ret;
  844. }
  845. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  846. {
  847. struct btrfs_delayed_root *delayed_root;
  848. if (delayed_node &&
  849. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  850. BUG_ON(!delayed_node->root);
  851. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  852. delayed_node->count--;
  853. delayed_root = delayed_node->root->fs_info->delayed_root;
  854. finish_one_item(delayed_root);
  855. }
  856. }
  857. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  858. {
  859. struct btrfs_delayed_root *delayed_root;
  860. ASSERT(delayed_node->root);
  861. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  862. delayed_node->count--;
  863. delayed_root = delayed_node->root->fs_info->delayed_root;
  864. finish_one_item(delayed_root);
  865. }
  866. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  867. struct btrfs_root *root,
  868. struct btrfs_path *path,
  869. struct btrfs_delayed_node *node)
  870. {
  871. struct btrfs_fs_info *fs_info = root->fs_info;
  872. struct btrfs_key key;
  873. struct btrfs_inode_item *inode_item;
  874. struct extent_buffer *leaf;
  875. int mod;
  876. int ret;
  877. key.objectid = node->inode_id;
  878. key.type = BTRFS_INODE_ITEM_KEY;
  879. key.offset = 0;
  880. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  881. mod = -1;
  882. else
  883. mod = 1;
  884. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  885. if (ret > 0) {
  886. btrfs_release_path(path);
  887. return -ENOENT;
  888. } else if (ret < 0) {
  889. return ret;
  890. }
  891. leaf = path->nodes[0];
  892. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  893. struct btrfs_inode_item);
  894. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  895. sizeof(struct btrfs_inode_item));
  896. btrfs_mark_buffer_dirty(leaf);
  897. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  898. goto no_iref;
  899. path->slots[0]++;
  900. if (path->slots[0] >= btrfs_header_nritems(leaf))
  901. goto search;
  902. again:
  903. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  904. if (key.objectid != node->inode_id)
  905. goto out;
  906. if (key.type != BTRFS_INODE_REF_KEY &&
  907. key.type != BTRFS_INODE_EXTREF_KEY)
  908. goto out;
  909. /*
  910. * Delayed iref deletion is for the inode who has only one link,
  911. * so there is only one iref. The case that several irefs are
  912. * in the same item doesn't exist.
  913. */
  914. btrfs_del_item(trans, root, path);
  915. out:
  916. btrfs_release_delayed_iref(node);
  917. no_iref:
  918. btrfs_release_path(path);
  919. err_out:
  920. btrfs_delayed_inode_release_metadata(fs_info, node);
  921. btrfs_release_delayed_inode(node);
  922. return ret;
  923. search:
  924. btrfs_release_path(path);
  925. key.type = BTRFS_INODE_EXTREF_KEY;
  926. key.offset = -1;
  927. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  928. if (ret < 0)
  929. goto err_out;
  930. ASSERT(ret);
  931. ret = 0;
  932. leaf = path->nodes[0];
  933. path->slots[0]--;
  934. goto again;
  935. }
  936. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  937. struct btrfs_root *root,
  938. struct btrfs_path *path,
  939. struct btrfs_delayed_node *node)
  940. {
  941. int ret;
  942. mutex_lock(&node->mutex);
  943. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  944. mutex_unlock(&node->mutex);
  945. return 0;
  946. }
  947. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  948. mutex_unlock(&node->mutex);
  949. return ret;
  950. }
  951. static inline int
  952. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  953. struct btrfs_path *path,
  954. struct btrfs_delayed_node *node)
  955. {
  956. int ret;
  957. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  958. if (ret)
  959. return ret;
  960. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  961. if (ret)
  962. return ret;
  963. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  964. return ret;
  965. }
  966. /*
  967. * Called when committing the transaction.
  968. * Returns 0 on success.
  969. * Returns < 0 on error and returns with an aborted transaction with any
  970. * outstanding delayed items cleaned up.
  971. */
  972. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  973. struct btrfs_fs_info *fs_info, int nr)
  974. {
  975. struct btrfs_delayed_root *delayed_root;
  976. struct btrfs_delayed_node *curr_node, *prev_node;
  977. struct btrfs_path *path;
  978. struct btrfs_block_rsv *block_rsv;
  979. int ret = 0;
  980. bool count = (nr > 0);
  981. if (trans->aborted)
  982. return -EIO;
  983. path = btrfs_alloc_path();
  984. if (!path)
  985. return -ENOMEM;
  986. path->leave_spinning = 1;
  987. block_rsv = trans->block_rsv;
  988. trans->block_rsv = &fs_info->delayed_block_rsv;
  989. delayed_root = fs_info->delayed_root;
  990. curr_node = btrfs_first_delayed_node(delayed_root);
  991. while (curr_node && (!count || (count && nr--))) {
  992. ret = __btrfs_commit_inode_delayed_items(trans, path,
  993. curr_node);
  994. if (ret) {
  995. btrfs_release_delayed_node(curr_node);
  996. curr_node = NULL;
  997. btrfs_abort_transaction(trans, ret);
  998. break;
  999. }
  1000. prev_node = curr_node;
  1001. curr_node = btrfs_next_delayed_node(curr_node);
  1002. btrfs_release_delayed_node(prev_node);
  1003. }
  1004. if (curr_node)
  1005. btrfs_release_delayed_node(curr_node);
  1006. btrfs_free_path(path);
  1007. trans->block_rsv = block_rsv;
  1008. return ret;
  1009. }
  1010. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1011. struct btrfs_fs_info *fs_info)
  1012. {
  1013. return __btrfs_run_delayed_items(trans, fs_info, -1);
  1014. }
  1015. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1016. struct btrfs_fs_info *fs_info, int nr)
  1017. {
  1018. return __btrfs_run_delayed_items(trans, fs_info, nr);
  1019. }
  1020. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1021. struct inode *inode)
  1022. {
  1023. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1024. struct btrfs_path *path;
  1025. struct btrfs_block_rsv *block_rsv;
  1026. int ret;
  1027. if (!delayed_node)
  1028. return 0;
  1029. mutex_lock(&delayed_node->mutex);
  1030. if (!delayed_node->count) {
  1031. mutex_unlock(&delayed_node->mutex);
  1032. btrfs_release_delayed_node(delayed_node);
  1033. return 0;
  1034. }
  1035. mutex_unlock(&delayed_node->mutex);
  1036. path = btrfs_alloc_path();
  1037. if (!path) {
  1038. btrfs_release_delayed_node(delayed_node);
  1039. return -ENOMEM;
  1040. }
  1041. path->leave_spinning = 1;
  1042. block_rsv = trans->block_rsv;
  1043. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1044. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1045. btrfs_release_delayed_node(delayed_node);
  1046. btrfs_free_path(path);
  1047. trans->block_rsv = block_rsv;
  1048. return ret;
  1049. }
  1050. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1051. {
  1052. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1053. struct btrfs_trans_handle *trans;
  1054. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1055. struct btrfs_path *path;
  1056. struct btrfs_block_rsv *block_rsv;
  1057. int ret;
  1058. if (!delayed_node)
  1059. return 0;
  1060. mutex_lock(&delayed_node->mutex);
  1061. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1062. mutex_unlock(&delayed_node->mutex);
  1063. btrfs_release_delayed_node(delayed_node);
  1064. return 0;
  1065. }
  1066. mutex_unlock(&delayed_node->mutex);
  1067. trans = btrfs_join_transaction(delayed_node->root);
  1068. if (IS_ERR(trans)) {
  1069. ret = PTR_ERR(trans);
  1070. goto out;
  1071. }
  1072. path = btrfs_alloc_path();
  1073. if (!path) {
  1074. ret = -ENOMEM;
  1075. goto trans_out;
  1076. }
  1077. path->leave_spinning = 1;
  1078. block_rsv = trans->block_rsv;
  1079. trans->block_rsv = &fs_info->delayed_block_rsv;
  1080. mutex_lock(&delayed_node->mutex);
  1081. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1082. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1083. path, delayed_node);
  1084. else
  1085. ret = 0;
  1086. mutex_unlock(&delayed_node->mutex);
  1087. btrfs_free_path(path);
  1088. trans->block_rsv = block_rsv;
  1089. trans_out:
  1090. btrfs_end_transaction(trans);
  1091. btrfs_btree_balance_dirty(fs_info);
  1092. out:
  1093. btrfs_release_delayed_node(delayed_node);
  1094. return ret;
  1095. }
  1096. void btrfs_remove_delayed_node(struct inode *inode)
  1097. {
  1098. struct btrfs_delayed_node *delayed_node;
  1099. delayed_node = READ_ONCE(BTRFS_I(inode)->delayed_node);
  1100. if (!delayed_node)
  1101. return;
  1102. BTRFS_I(inode)->delayed_node = NULL;
  1103. btrfs_release_delayed_node(delayed_node);
  1104. }
  1105. struct btrfs_async_delayed_work {
  1106. struct btrfs_delayed_root *delayed_root;
  1107. int nr;
  1108. struct btrfs_work work;
  1109. };
  1110. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1111. {
  1112. struct btrfs_async_delayed_work *async_work;
  1113. struct btrfs_delayed_root *delayed_root;
  1114. struct btrfs_trans_handle *trans;
  1115. struct btrfs_path *path;
  1116. struct btrfs_delayed_node *delayed_node = NULL;
  1117. struct btrfs_root *root;
  1118. struct btrfs_block_rsv *block_rsv;
  1119. int total_done = 0;
  1120. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1121. delayed_root = async_work->delayed_root;
  1122. path = btrfs_alloc_path();
  1123. if (!path)
  1124. goto out;
  1125. again:
  1126. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1127. goto free_path;
  1128. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1129. if (!delayed_node)
  1130. goto free_path;
  1131. path->leave_spinning = 1;
  1132. root = delayed_node->root;
  1133. trans = btrfs_join_transaction(root);
  1134. if (IS_ERR(trans))
  1135. goto release_path;
  1136. block_rsv = trans->block_rsv;
  1137. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1138. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1139. trans->block_rsv = block_rsv;
  1140. btrfs_end_transaction(trans);
  1141. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1142. release_path:
  1143. btrfs_release_path(path);
  1144. total_done++;
  1145. btrfs_release_prepared_delayed_node(delayed_node);
  1146. if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
  1147. total_done < async_work->nr)
  1148. goto again;
  1149. free_path:
  1150. btrfs_free_path(path);
  1151. out:
  1152. wake_up(&delayed_root->wait);
  1153. kfree(async_work);
  1154. }
  1155. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1156. struct btrfs_fs_info *fs_info, int nr)
  1157. {
  1158. struct btrfs_async_delayed_work *async_work;
  1159. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
  1160. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1161. return 0;
  1162. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1163. if (!async_work)
  1164. return -ENOMEM;
  1165. async_work->delayed_root = delayed_root;
  1166. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1167. btrfs_async_run_delayed_root, NULL, NULL);
  1168. async_work->nr = nr;
  1169. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1170. return 0;
  1171. }
  1172. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1173. {
  1174. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1175. }
  1176. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1177. {
  1178. int val = atomic_read(&delayed_root->items_seq);
  1179. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1180. return 1;
  1181. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1182. return 1;
  1183. return 0;
  1184. }
  1185. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1186. {
  1187. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1188. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1189. return;
  1190. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1191. int seq;
  1192. int ret;
  1193. seq = atomic_read(&delayed_root->items_seq);
  1194. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1195. if (ret)
  1196. return;
  1197. wait_event_interruptible(delayed_root->wait,
  1198. could_end_wait(delayed_root, seq));
  1199. return;
  1200. }
  1201. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1202. }
  1203. /* Will return 0 or -ENOMEM */
  1204. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1205. struct btrfs_fs_info *fs_info,
  1206. const char *name, int name_len,
  1207. struct inode *dir,
  1208. struct btrfs_disk_key *disk_key, u8 type,
  1209. u64 index)
  1210. {
  1211. struct btrfs_delayed_node *delayed_node;
  1212. struct btrfs_delayed_item *delayed_item;
  1213. struct btrfs_dir_item *dir_item;
  1214. int ret;
  1215. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1216. if (IS_ERR(delayed_node))
  1217. return PTR_ERR(delayed_node);
  1218. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1219. if (!delayed_item) {
  1220. ret = -ENOMEM;
  1221. goto release_node;
  1222. }
  1223. delayed_item->key.objectid = btrfs_ino(BTRFS_I(dir));
  1224. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1225. delayed_item->key.offset = index;
  1226. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1227. dir_item->location = *disk_key;
  1228. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1229. btrfs_set_stack_dir_data_len(dir_item, 0);
  1230. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1231. btrfs_set_stack_dir_type(dir_item, type);
  1232. memcpy((char *)(dir_item + 1), name, name_len);
  1233. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1234. /*
  1235. * we have reserved enough space when we start a new transaction,
  1236. * so reserving metadata failure is impossible
  1237. */
  1238. BUG_ON(ret);
  1239. mutex_lock(&delayed_node->mutex);
  1240. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1241. if (unlikely(ret)) {
  1242. btrfs_err(fs_info,
  1243. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1244. name_len, name, delayed_node->root->objectid,
  1245. delayed_node->inode_id, ret);
  1246. BUG();
  1247. }
  1248. mutex_unlock(&delayed_node->mutex);
  1249. release_node:
  1250. btrfs_release_delayed_node(delayed_node);
  1251. return ret;
  1252. }
  1253. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1254. struct btrfs_delayed_node *node,
  1255. struct btrfs_key *key)
  1256. {
  1257. struct btrfs_delayed_item *item;
  1258. mutex_lock(&node->mutex);
  1259. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1260. if (!item) {
  1261. mutex_unlock(&node->mutex);
  1262. return 1;
  1263. }
  1264. btrfs_delayed_item_release_metadata(fs_info, item);
  1265. btrfs_release_delayed_item(item);
  1266. mutex_unlock(&node->mutex);
  1267. return 0;
  1268. }
  1269. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1270. struct btrfs_fs_info *fs_info,
  1271. struct inode *dir, u64 index)
  1272. {
  1273. struct btrfs_delayed_node *node;
  1274. struct btrfs_delayed_item *item;
  1275. struct btrfs_key item_key;
  1276. int ret;
  1277. node = btrfs_get_or_create_delayed_node(dir);
  1278. if (IS_ERR(node))
  1279. return PTR_ERR(node);
  1280. item_key.objectid = btrfs_ino(BTRFS_I(dir));
  1281. item_key.type = BTRFS_DIR_INDEX_KEY;
  1282. item_key.offset = index;
  1283. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1284. if (!ret)
  1285. goto end;
  1286. item = btrfs_alloc_delayed_item(0);
  1287. if (!item) {
  1288. ret = -ENOMEM;
  1289. goto end;
  1290. }
  1291. item->key = item_key;
  1292. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1293. /*
  1294. * we have reserved enough space when we start a new transaction,
  1295. * so reserving metadata failure is impossible.
  1296. */
  1297. BUG_ON(ret);
  1298. mutex_lock(&node->mutex);
  1299. ret = __btrfs_add_delayed_deletion_item(node, item);
  1300. if (unlikely(ret)) {
  1301. btrfs_err(fs_info,
  1302. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1303. index, node->root->objectid, node->inode_id, ret);
  1304. BUG();
  1305. }
  1306. mutex_unlock(&node->mutex);
  1307. end:
  1308. btrfs_release_delayed_node(node);
  1309. return ret;
  1310. }
  1311. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1312. {
  1313. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1314. if (!delayed_node)
  1315. return -ENOENT;
  1316. /*
  1317. * Since we have held i_mutex of this directory, it is impossible that
  1318. * a new directory index is added into the delayed node and index_cnt
  1319. * is updated now. So we needn't lock the delayed node.
  1320. */
  1321. if (!delayed_node->index_cnt) {
  1322. btrfs_release_delayed_node(delayed_node);
  1323. return -EINVAL;
  1324. }
  1325. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1326. btrfs_release_delayed_node(delayed_node);
  1327. return 0;
  1328. }
  1329. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1330. struct list_head *ins_list,
  1331. struct list_head *del_list)
  1332. {
  1333. struct btrfs_delayed_node *delayed_node;
  1334. struct btrfs_delayed_item *item;
  1335. delayed_node = btrfs_get_delayed_node(inode);
  1336. if (!delayed_node)
  1337. return false;
  1338. /*
  1339. * We can only do one readdir with delayed items at a time because of
  1340. * item->readdir_list.
  1341. */
  1342. inode_unlock_shared(inode);
  1343. inode_lock(inode);
  1344. mutex_lock(&delayed_node->mutex);
  1345. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1346. while (item) {
  1347. atomic_inc(&item->refs);
  1348. list_add_tail(&item->readdir_list, ins_list);
  1349. item = __btrfs_next_delayed_item(item);
  1350. }
  1351. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1352. while (item) {
  1353. atomic_inc(&item->refs);
  1354. list_add_tail(&item->readdir_list, del_list);
  1355. item = __btrfs_next_delayed_item(item);
  1356. }
  1357. mutex_unlock(&delayed_node->mutex);
  1358. /*
  1359. * This delayed node is still cached in the btrfs inode, so refs
  1360. * must be > 1 now, and we needn't check it is going to be freed
  1361. * or not.
  1362. *
  1363. * Besides that, this function is used to read dir, we do not
  1364. * insert/delete delayed items in this period. So we also needn't
  1365. * requeue or dequeue this delayed node.
  1366. */
  1367. atomic_dec(&delayed_node->refs);
  1368. return true;
  1369. }
  1370. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1371. struct list_head *ins_list,
  1372. struct list_head *del_list)
  1373. {
  1374. struct btrfs_delayed_item *curr, *next;
  1375. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1376. list_del(&curr->readdir_list);
  1377. if (atomic_dec_and_test(&curr->refs))
  1378. kfree(curr);
  1379. }
  1380. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1381. list_del(&curr->readdir_list);
  1382. if (atomic_dec_and_test(&curr->refs))
  1383. kfree(curr);
  1384. }
  1385. /*
  1386. * The VFS is going to do up_read(), so we need to downgrade back to a
  1387. * read lock.
  1388. */
  1389. downgrade_write(&inode->i_rwsem);
  1390. }
  1391. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1392. u64 index)
  1393. {
  1394. struct btrfs_delayed_item *curr, *next;
  1395. int ret;
  1396. if (list_empty(del_list))
  1397. return 0;
  1398. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1399. if (curr->key.offset > index)
  1400. break;
  1401. list_del(&curr->readdir_list);
  1402. ret = (curr->key.offset == index);
  1403. if (atomic_dec_and_test(&curr->refs))
  1404. kfree(curr);
  1405. if (ret)
  1406. return 1;
  1407. else
  1408. continue;
  1409. }
  1410. return 0;
  1411. }
  1412. /*
  1413. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1414. *
  1415. */
  1416. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1417. struct list_head *ins_list)
  1418. {
  1419. struct btrfs_dir_item *di;
  1420. struct btrfs_delayed_item *curr, *next;
  1421. struct btrfs_key location;
  1422. char *name;
  1423. int name_len;
  1424. int over = 0;
  1425. unsigned char d_type;
  1426. if (list_empty(ins_list))
  1427. return 0;
  1428. /*
  1429. * Changing the data of the delayed item is impossible. So
  1430. * we needn't lock them. And we have held i_mutex of the
  1431. * directory, nobody can delete any directory indexes now.
  1432. */
  1433. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1434. list_del(&curr->readdir_list);
  1435. if (curr->key.offset < ctx->pos) {
  1436. if (atomic_dec_and_test(&curr->refs))
  1437. kfree(curr);
  1438. continue;
  1439. }
  1440. ctx->pos = curr->key.offset;
  1441. di = (struct btrfs_dir_item *)curr->data;
  1442. name = (char *)(di + 1);
  1443. name_len = btrfs_stack_dir_name_len(di);
  1444. d_type = btrfs_filetype_table[di->type];
  1445. btrfs_disk_key_to_cpu(&location, &di->location);
  1446. over = !dir_emit(ctx, name, name_len,
  1447. location.objectid, d_type);
  1448. if (atomic_dec_and_test(&curr->refs))
  1449. kfree(curr);
  1450. if (over)
  1451. return 1;
  1452. }
  1453. return 0;
  1454. }
  1455. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1456. struct btrfs_inode_item *inode_item,
  1457. struct inode *inode)
  1458. {
  1459. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1460. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1461. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1462. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1463. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1464. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1465. btrfs_set_stack_inode_generation(inode_item,
  1466. BTRFS_I(inode)->generation);
  1467. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1468. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1469. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1470. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1471. btrfs_set_stack_inode_block_group(inode_item, 0);
  1472. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1473. inode->i_atime.tv_sec);
  1474. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1475. inode->i_atime.tv_nsec);
  1476. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1477. inode->i_mtime.tv_sec);
  1478. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1479. inode->i_mtime.tv_nsec);
  1480. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1481. inode->i_ctime.tv_sec);
  1482. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1483. inode->i_ctime.tv_nsec);
  1484. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1485. BTRFS_I(inode)->i_otime.tv_sec);
  1486. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1487. BTRFS_I(inode)->i_otime.tv_nsec);
  1488. }
  1489. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1490. {
  1491. struct btrfs_delayed_node *delayed_node;
  1492. struct btrfs_inode_item *inode_item;
  1493. delayed_node = btrfs_get_delayed_node(inode);
  1494. if (!delayed_node)
  1495. return -ENOENT;
  1496. mutex_lock(&delayed_node->mutex);
  1497. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1498. mutex_unlock(&delayed_node->mutex);
  1499. btrfs_release_delayed_node(delayed_node);
  1500. return -ENOENT;
  1501. }
  1502. inode_item = &delayed_node->inode_item;
  1503. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1504. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1505. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1506. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1507. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1508. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1509. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1510. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1511. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1512. inode->i_rdev = 0;
  1513. *rdev = btrfs_stack_inode_rdev(inode_item);
  1514. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1515. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1516. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1517. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1518. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1519. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1520. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1521. BTRFS_I(inode)->i_otime.tv_sec =
  1522. btrfs_stack_timespec_sec(&inode_item->otime);
  1523. BTRFS_I(inode)->i_otime.tv_nsec =
  1524. btrfs_stack_timespec_nsec(&inode_item->otime);
  1525. inode->i_generation = BTRFS_I(inode)->generation;
  1526. BTRFS_I(inode)->index_cnt = (u64)-1;
  1527. mutex_unlock(&delayed_node->mutex);
  1528. btrfs_release_delayed_node(delayed_node);
  1529. return 0;
  1530. }
  1531. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1532. struct btrfs_root *root, struct inode *inode)
  1533. {
  1534. struct btrfs_delayed_node *delayed_node;
  1535. int ret = 0;
  1536. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1537. if (IS_ERR(delayed_node))
  1538. return PTR_ERR(delayed_node);
  1539. mutex_lock(&delayed_node->mutex);
  1540. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1541. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1542. goto release_node;
  1543. }
  1544. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1545. delayed_node);
  1546. if (ret)
  1547. goto release_node;
  1548. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1549. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1550. delayed_node->count++;
  1551. atomic_inc(&root->fs_info->delayed_root->items);
  1552. release_node:
  1553. mutex_unlock(&delayed_node->mutex);
  1554. btrfs_release_delayed_node(delayed_node);
  1555. return ret;
  1556. }
  1557. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1558. {
  1559. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1560. struct btrfs_delayed_node *delayed_node;
  1561. /*
  1562. * we don't do delayed inode updates during log recovery because it
  1563. * leads to enospc problems. This means we also can't do
  1564. * delayed inode refs
  1565. */
  1566. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1567. return -EAGAIN;
  1568. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1569. if (IS_ERR(delayed_node))
  1570. return PTR_ERR(delayed_node);
  1571. /*
  1572. * We don't reserve space for inode ref deletion is because:
  1573. * - We ONLY do async inode ref deletion for the inode who has only
  1574. * one link(i_nlink == 1), it means there is only one inode ref.
  1575. * And in most case, the inode ref and the inode item are in the
  1576. * same leaf, and we will deal with them at the same time.
  1577. * Since we are sure we will reserve the space for the inode item,
  1578. * it is unnecessary to reserve space for inode ref deletion.
  1579. * - If the inode ref and the inode item are not in the same leaf,
  1580. * We also needn't worry about enospc problem, because we reserve
  1581. * much more space for the inode update than it needs.
  1582. * - At the worst, we can steal some space from the global reservation.
  1583. * It is very rare.
  1584. */
  1585. mutex_lock(&delayed_node->mutex);
  1586. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1587. goto release_node;
  1588. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1589. delayed_node->count++;
  1590. atomic_inc(&fs_info->delayed_root->items);
  1591. release_node:
  1592. mutex_unlock(&delayed_node->mutex);
  1593. btrfs_release_delayed_node(delayed_node);
  1594. return 0;
  1595. }
  1596. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1597. {
  1598. struct btrfs_root *root = delayed_node->root;
  1599. struct btrfs_fs_info *fs_info = root->fs_info;
  1600. struct btrfs_delayed_item *curr_item, *prev_item;
  1601. mutex_lock(&delayed_node->mutex);
  1602. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1603. while (curr_item) {
  1604. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1605. prev_item = curr_item;
  1606. curr_item = __btrfs_next_delayed_item(prev_item);
  1607. btrfs_release_delayed_item(prev_item);
  1608. }
  1609. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1610. while (curr_item) {
  1611. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1612. prev_item = curr_item;
  1613. curr_item = __btrfs_next_delayed_item(prev_item);
  1614. btrfs_release_delayed_item(prev_item);
  1615. }
  1616. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1617. btrfs_release_delayed_iref(delayed_node);
  1618. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1619. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1620. btrfs_release_delayed_inode(delayed_node);
  1621. }
  1622. mutex_unlock(&delayed_node->mutex);
  1623. }
  1624. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1625. {
  1626. struct btrfs_delayed_node *delayed_node;
  1627. delayed_node = btrfs_get_delayed_node(inode);
  1628. if (!delayed_node)
  1629. return;
  1630. __btrfs_kill_delayed_node(delayed_node);
  1631. btrfs_release_delayed_node(delayed_node);
  1632. }
  1633. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1634. {
  1635. u64 inode_id = 0;
  1636. struct btrfs_delayed_node *delayed_nodes[8];
  1637. int i, n;
  1638. while (1) {
  1639. spin_lock(&root->inode_lock);
  1640. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1641. (void **)delayed_nodes, inode_id,
  1642. ARRAY_SIZE(delayed_nodes));
  1643. if (!n) {
  1644. spin_unlock(&root->inode_lock);
  1645. break;
  1646. }
  1647. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1648. for (i = 0; i < n; i++)
  1649. atomic_inc(&delayed_nodes[i]->refs);
  1650. spin_unlock(&root->inode_lock);
  1651. for (i = 0; i < n; i++) {
  1652. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1653. btrfs_release_delayed_node(delayed_nodes[i]);
  1654. }
  1655. }
  1656. }
  1657. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1658. {
  1659. struct btrfs_delayed_node *curr_node, *prev_node;
  1660. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1661. while (curr_node) {
  1662. __btrfs_kill_delayed_node(curr_node);
  1663. prev_node = curr_node;
  1664. curr_node = btrfs_next_delayed_node(curr_node);
  1665. btrfs_release_delayed_node(prev_node);
  1666. }
  1667. }