process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/init.h>
  22. #include <linux/elfcore.h>
  23. #include <linux/pm.h>
  24. #include <linux/tick.h>
  25. #include <linux/utsname.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/random.h>
  28. #include <linux/hw_breakpoint.h>
  29. #include <linux/leds.h>
  30. #include <asm/processor.h>
  31. #include <asm/thread_notify.h>
  32. #include <asm/stacktrace.h>
  33. #include <asm/system_misc.h>
  34. #include <asm/mach/time.h>
  35. #include <asm/tls.h>
  36. #include <asm/vdso.h>
  37. #ifdef CONFIG_CC_STACKPROTECTOR
  38. #include <linux/stackprotector.h>
  39. unsigned long __stack_chk_guard __read_mostly;
  40. EXPORT_SYMBOL(__stack_chk_guard);
  41. #endif
  42. static const char *processor_modes[] __maybe_unused = {
  43. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  44. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  45. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
  46. "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  47. };
  48. static const char *isa_modes[] __maybe_unused = {
  49. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  50. };
  51. /*
  52. * This is our default idle handler.
  53. */
  54. void (*arm_pm_idle)(void);
  55. /*
  56. * Called from the core idle loop.
  57. */
  58. void arch_cpu_idle(void)
  59. {
  60. if (arm_pm_idle)
  61. arm_pm_idle();
  62. else
  63. cpu_do_idle();
  64. local_irq_enable();
  65. }
  66. void arch_cpu_idle_prepare(void)
  67. {
  68. local_fiq_enable();
  69. }
  70. void arch_cpu_idle_enter(void)
  71. {
  72. ledtrig_cpu(CPU_LED_IDLE_START);
  73. #ifdef CONFIG_PL310_ERRATA_769419
  74. wmb();
  75. #endif
  76. }
  77. void arch_cpu_idle_exit(void)
  78. {
  79. ledtrig_cpu(CPU_LED_IDLE_END);
  80. }
  81. void __show_regs(struct pt_regs *regs)
  82. {
  83. unsigned long flags;
  84. char buf[64];
  85. show_regs_print_info(KERN_DEFAULT);
  86. print_symbol("PC is at %s\n", instruction_pointer(regs));
  87. print_symbol("LR is at %s\n", regs->ARM_lr);
  88. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  89. "sp : %08lx ip : %08lx fp : %08lx\n",
  90. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  91. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  92. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  93. regs->ARM_r10, regs->ARM_r9,
  94. regs->ARM_r8);
  95. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  96. regs->ARM_r7, regs->ARM_r6,
  97. regs->ARM_r5, regs->ARM_r4);
  98. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  99. regs->ARM_r3, regs->ARM_r2,
  100. regs->ARM_r1, regs->ARM_r0);
  101. flags = regs->ARM_cpsr;
  102. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  103. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  104. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  105. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  106. buf[4] = '\0';
  107. #ifndef CONFIG_CPU_V7M
  108. {
  109. unsigned int domain = get_domain();
  110. const char *segment;
  111. #ifdef CONFIG_CPU_SW_DOMAIN_PAN
  112. /*
  113. * Get the domain register for the parent context. In user
  114. * mode, we don't save the DACR, so lets use what it should
  115. * be. For other modes, we place it after the pt_regs struct.
  116. */
  117. if (user_mode(regs))
  118. domain = DACR_UACCESS_ENABLE;
  119. else
  120. domain = *(unsigned int *)(regs + 1);
  121. #endif
  122. if ((domain & domain_mask(DOMAIN_USER)) ==
  123. domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
  124. segment = "none";
  125. else if (get_fs() == get_ds())
  126. segment = "kernel";
  127. else
  128. segment = "user";
  129. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  130. buf, interrupts_enabled(regs) ? "n" : "ff",
  131. fast_interrupts_enabled(regs) ? "n" : "ff",
  132. processor_modes[processor_mode(regs)],
  133. isa_modes[isa_mode(regs)], segment);
  134. }
  135. #else
  136. printk("xPSR: %08lx\n", regs->ARM_cpsr);
  137. #endif
  138. #ifdef CONFIG_CPU_CP15
  139. {
  140. unsigned int ctrl;
  141. buf[0] = '\0';
  142. #ifdef CONFIG_CPU_CP15_MMU
  143. {
  144. unsigned int transbase, dac = get_domain();
  145. asm("mrc p15, 0, %0, c2, c0\n\t"
  146. : "=r" (transbase));
  147. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  148. transbase, dac);
  149. }
  150. #endif
  151. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  152. printk("Control: %08x%s\n", ctrl, buf);
  153. }
  154. #endif
  155. }
  156. void show_regs(struct pt_regs * regs)
  157. {
  158. __show_regs(regs);
  159. dump_stack();
  160. }
  161. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  162. EXPORT_SYMBOL_GPL(thread_notify_head);
  163. /*
  164. * Free current thread data structures etc..
  165. */
  166. void exit_thread(void)
  167. {
  168. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  169. }
  170. void flush_thread(void)
  171. {
  172. struct thread_info *thread = current_thread_info();
  173. struct task_struct *tsk = current;
  174. flush_ptrace_hw_breakpoint(tsk);
  175. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  176. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  177. memset(&thread->fpstate, 0, sizeof(union fp_state));
  178. flush_tls();
  179. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  180. }
  181. void release_thread(struct task_struct *dead_task)
  182. {
  183. }
  184. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  185. int
  186. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  187. unsigned long stk_sz, struct task_struct *p)
  188. {
  189. struct thread_info *thread = task_thread_info(p);
  190. struct pt_regs *childregs = task_pt_regs(p);
  191. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  192. #ifdef CONFIG_CPU_USE_DOMAINS
  193. /*
  194. * Copy the initial value of the domain access control register
  195. * from the current thread: thread->addr_limit will have been
  196. * copied from the current thread via setup_thread_stack() in
  197. * kernel/fork.c
  198. */
  199. thread->cpu_domain = get_domain();
  200. #endif
  201. if (likely(!(p->flags & PF_KTHREAD))) {
  202. *childregs = *current_pt_regs();
  203. childregs->ARM_r0 = 0;
  204. if (stack_start)
  205. childregs->ARM_sp = stack_start;
  206. } else {
  207. memset(childregs, 0, sizeof(struct pt_regs));
  208. thread->cpu_context.r4 = stk_sz;
  209. thread->cpu_context.r5 = stack_start;
  210. childregs->ARM_cpsr = SVC_MODE;
  211. }
  212. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  213. thread->cpu_context.sp = (unsigned long)childregs;
  214. clear_ptrace_hw_breakpoint(p);
  215. if (clone_flags & CLONE_SETTLS)
  216. thread->tp_value[0] = childregs->ARM_r3;
  217. thread->tp_value[1] = get_tpuser();
  218. thread_notify(THREAD_NOTIFY_COPY, thread);
  219. return 0;
  220. }
  221. /*
  222. * Fill in the task's elfregs structure for a core dump.
  223. */
  224. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  225. {
  226. elf_core_copy_regs(elfregs, task_pt_regs(t));
  227. return 1;
  228. }
  229. /*
  230. * fill in the fpe structure for a core dump...
  231. */
  232. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  233. {
  234. struct thread_info *thread = current_thread_info();
  235. int used_math = thread->used_cp[1] | thread->used_cp[2];
  236. if (used_math)
  237. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  238. return used_math != 0;
  239. }
  240. EXPORT_SYMBOL(dump_fpu);
  241. unsigned long get_wchan(struct task_struct *p)
  242. {
  243. struct stackframe frame;
  244. unsigned long stack_page;
  245. int count = 0;
  246. if (!p || p == current || p->state == TASK_RUNNING)
  247. return 0;
  248. frame.fp = thread_saved_fp(p);
  249. frame.sp = thread_saved_sp(p);
  250. frame.lr = 0; /* recovered from the stack */
  251. frame.pc = thread_saved_pc(p);
  252. stack_page = (unsigned long)task_stack_page(p);
  253. do {
  254. if (frame.sp < stack_page ||
  255. frame.sp >= stack_page + THREAD_SIZE ||
  256. unwind_frame(&frame) < 0)
  257. return 0;
  258. if (!in_sched_functions(frame.pc))
  259. return frame.pc;
  260. } while (count ++ < 16);
  261. return 0;
  262. }
  263. unsigned long arch_randomize_brk(struct mm_struct *mm)
  264. {
  265. unsigned long range_end = mm->brk + 0x02000000;
  266. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  267. }
  268. #ifdef CONFIG_MMU
  269. #ifdef CONFIG_KUSER_HELPERS
  270. /*
  271. * The vectors page is always readable from user space for the
  272. * atomic helpers. Insert it into the gate_vma so that it is visible
  273. * through ptrace and /proc/<pid>/mem.
  274. */
  275. static struct vm_area_struct gate_vma = {
  276. .vm_start = 0xffff0000,
  277. .vm_end = 0xffff0000 + PAGE_SIZE,
  278. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  279. };
  280. static int __init gate_vma_init(void)
  281. {
  282. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  283. return 0;
  284. }
  285. arch_initcall(gate_vma_init);
  286. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  287. {
  288. return &gate_vma;
  289. }
  290. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  291. {
  292. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  293. }
  294. int in_gate_area_no_mm(unsigned long addr)
  295. {
  296. return in_gate_area(NULL, addr);
  297. }
  298. #define is_gate_vma(vma) ((vma) == &gate_vma)
  299. #else
  300. #define is_gate_vma(vma) 0
  301. #endif
  302. const char *arch_vma_name(struct vm_area_struct *vma)
  303. {
  304. return is_gate_vma(vma) ? "[vectors]" : NULL;
  305. }
  306. /* If possible, provide a placement hint at a random offset from the
  307. * stack for the sigpage and vdso pages.
  308. */
  309. static unsigned long sigpage_addr(const struct mm_struct *mm,
  310. unsigned int npages)
  311. {
  312. unsigned long offset;
  313. unsigned long first;
  314. unsigned long last;
  315. unsigned long addr;
  316. unsigned int slots;
  317. first = PAGE_ALIGN(mm->start_stack);
  318. last = TASK_SIZE - (npages << PAGE_SHIFT);
  319. /* No room after stack? */
  320. if (first > last)
  321. return 0;
  322. /* Just enough room? */
  323. if (first == last)
  324. return first;
  325. slots = ((last - first) >> PAGE_SHIFT) + 1;
  326. offset = get_random_int() % slots;
  327. addr = first + (offset << PAGE_SHIFT);
  328. return addr;
  329. }
  330. static struct page *signal_page;
  331. extern struct page *get_signal_page(void);
  332. static const struct vm_special_mapping sigpage_mapping = {
  333. .name = "[sigpage]",
  334. .pages = &signal_page,
  335. };
  336. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  337. {
  338. struct mm_struct *mm = current->mm;
  339. struct vm_area_struct *vma;
  340. unsigned long npages;
  341. unsigned long addr;
  342. unsigned long hint;
  343. int ret = 0;
  344. if (!signal_page)
  345. signal_page = get_signal_page();
  346. if (!signal_page)
  347. return -ENOMEM;
  348. npages = 1; /* for sigpage */
  349. npages += vdso_total_pages;
  350. down_write(&mm->mmap_sem);
  351. hint = sigpage_addr(mm, npages);
  352. addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
  353. if (IS_ERR_VALUE(addr)) {
  354. ret = addr;
  355. goto up_fail;
  356. }
  357. vma = _install_special_mapping(mm, addr, PAGE_SIZE,
  358. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  359. &sigpage_mapping);
  360. if (IS_ERR(vma)) {
  361. ret = PTR_ERR(vma);
  362. goto up_fail;
  363. }
  364. mm->context.sigpage = addr;
  365. /* Unlike the sigpage, failure to install the vdso is unlikely
  366. * to be fatal to the process, so no error check needed
  367. * here.
  368. */
  369. arm_install_vdso(mm, addr + PAGE_SIZE);
  370. up_fail:
  371. up_write(&mm->mmap_sem);
  372. return ret;
  373. }
  374. #endif