tcp_input.c 182 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. int sysctl_tcp_fack __read_mostly;
  77. int sysctl_tcp_max_reordering __read_mostly = 300;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  81. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  82. /* rfc5961 challenge ack rate limiting */
  83. int sysctl_tcp_challenge_ack_limit = 1000;
  84. int sysctl_tcp_stdurg __read_mostly;
  85. int sysctl_tcp_rfc1337 __read_mostly;
  86. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  87. int sysctl_tcp_frto __read_mostly = 2;
  88. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  89. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  90. int sysctl_tcp_early_retrans __read_mostly = 3;
  91. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  92. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  93. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  94. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  95. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  96. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  97. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  98. #define FLAG_ECE 0x40 /* ECE in this ACK */
  99. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  105. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  106. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  107. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. #define REXMIT_NONE 0 /* no loss recovery to do */
  115. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  116. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  117. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  118. unsigned int len)
  119. {
  120. static bool __once __read_mostly;
  121. if (!__once) {
  122. struct net_device *dev;
  123. __once = true;
  124. rcu_read_lock();
  125. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  126. if (!dev || len >= dev->mtu)
  127. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  128. dev ? dev->name : "Unknown driver");
  129. rcu_read_unlock();
  130. }
  131. }
  132. /* Adapt the MSS value used to make delayed ack decision to the
  133. * real world.
  134. */
  135. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  139. unsigned int len;
  140. icsk->icsk_ack.last_seg_size = 0;
  141. /* skb->len may jitter because of SACKs, even if peer
  142. * sends good full-sized frames.
  143. */
  144. len = skb_shinfo(skb)->gso_size ? : skb->len;
  145. if (len >= icsk->icsk_ack.rcv_mss) {
  146. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  147. tcp_sk(sk)->advmss);
  148. /* Account for possibly-removed options */
  149. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  150. MAX_TCP_OPTION_SPACE))
  151. tcp_gro_dev_warn(sk, skb, len);
  152. } else {
  153. /* Otherwise, we make more careful check taking into account,
  154. * that SACKs block is variable.
  155. *
  156. * "len" is invariant segment length, including TCP header.
  157. */
  158. len += skb->data - skb_transport_header(skb);
  159. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  160. /* If PSH is not set, packet should be
  161. * full sized, provided peer TCP is not badly broken.
  162. * This observation (if it is correct 8)) allows
  163. * to handle super-low mtu links fairly.
  164. */
  165. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  166. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  167. /* Subtract also invariant (if peer is RFC compliant),
  168. * tcp header plus fixed timestamp option length.
  169. * Resulting "len" is MSS free of SACK jitter.
  170. */
  171. len -= tcp_sk(sk)->tcp_header_len;
  172. icsk->icsk_ack.last_seg_size = len;
  173. if (len == lss) {
  174. icsk->icsk_ack.rcv_mss = len;
  175. return;
  176. }
  177. }
  178. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  179. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  180. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  181. }
  182. }
  183. static void tcp_incr_quickack(struct sock *sk)
  184. {
  185. struct inet_connection_sock *icsk = inet_csk(sk);
  186. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  187. if (quickacks == 0)
  188. quickacks = 2;
  189. if (quickacks > icsk->icsk_ack.quick)
  190. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  191. }
  192. static void tcp_enter_quickack_mode(struct sock *sk)
  193. {
  194. struct inet_connection_sock *icsk = inet_csk(sk);
  195. tcp_incr_quickack(sk);
  196. icsk->icsk_ack.pingpong = 0;
  197. icsk->icsk_ack.ato = TCP_ATO_MIN;
  198. }
  199. /* Send ACKs quickly, if "quick" count is not exhausted
  200. * and the session is not interactive.
  201. */
  202. static bool tcp_in_quickack_mode(struct sock *sk)
  203. {
  204. const struct inet_connection_sock *icsk = inet_csk(sk);
  205. const struct dst_entry *dst = __sk_dst_get(sk);
  206. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  207. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  208. }
  209. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  210. {
  211. if (tp->ecn_flags & TCP_ECN_OK)
  212. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  213. }
  214. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  215. {
  216. if (tcp_hdr(skb)->cwr)
  217. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  218. }
  219. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  220. {
  221. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  222. }
  223. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  224. {
  225. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  226. case INET_ECN_NOT_ECT:
  227. /* Funny extension: if ECT is not set on a segment,
  228. * and we already seen ECT on a previous segment,
  229. * it is probably a retransmit.
  230. */
  231. if (tp->ecn_flags & TCP_ECN_SEEN)
  232. tcp_enter_quickack_mode((struct sock *)tp);
  233. break;
  234. case INET_ECN_CE:
  235. if (tcp_ca_needs_ecn((struct sock *)tp))
  236. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  237. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  238. /* Better not delay acks, sender can have a very low cwnd */
  239. tcp_enter_quickack_mode((struct sock *)tp);
  240. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  241. }
  242. tp->ecn_flags |= TCP_ECN_SEEN;
  243. break;
  244. default:
  245. if (tcp_ca_needs_ecn((struct sock *)tp))
  246. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  247. tp->ecn_flags |= TCP_ECN_SEEN;
  248. break;
  249. }
  250. }
  251. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  252. {
  253. if (tp->ecn_flags & TCP_ECN_OK)
  254. __tcp_ecn_check_ce(tp, skb);
  255. }
  256. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  257. {
  258. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  259. tp->ecn_flags &= ~TCP_ECN_OK;
  260. }
  261. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  262. {
  263. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  264. tp->ecn_flags &= ~TCP_ECN_OK;
  265. }
  266. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  267. {
  268. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  269. return true;
  270. return false;
  271. }
  272. /* Buffer size and advertised window tuning.
  273. *
  274. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  275. */
  276. static void tcp_sndbuf_expand(struct sock *sk)
  277. {
  278. const struct tcp_sock *tp = tcp_sk(sk);
  279. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  280. int sndmem, per_mss;
  281. u32 nr_segs;
  282. /* Worst case is non GSO/TSO : each frame consumes one skb
  283. * and skb->head is kmalloced using power of two area of memory
  284. */
  285. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  286. MAX_TCP_HEADER +
  287. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  288. per_mss = roundup_pow_of_two(per_mss) +
  289. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  290. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  291. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  292. /* Fast Recovery (RFC 5681 3.2) :
  293. * Cubic needs 1.7 factor, rounded to 2 to include
  294. * extra cushion (application might react slowly to POLLOUT)
  295. */
  296. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  297. sndmem *= nr_segs * per_mss;
  298. if (sk->sk_sndbuf < sndmem)
  299. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  300. }
  301. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  302. *
  303. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  304. * forward and advertised in receiver window (tp->rcv_wnd) and
  305. * "application buffer", required to isolate scheduling/application
  306. * latencies from network.
  307. * window_clamp is maximal advertised window. It can be less than
  308. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  309. * is reserved for "application" buffer. The less window_clamp is
  310. * the smoother our behaviour from viewpoint of network, but the lower
  311. * throughput and the higher sensitivity of the connection to losses. 8)
  312. *
  313. * rcv_ssthresh is more strict window_clamp used at "slow start"
  314. * phase to predict further behaviour of this connection.
  315. * It is used for two goals:
  316. * - to enforce header prediction at sender, even when application
  317. * requires some significant "application buffer". It is check #1.
  318. * - to prevent pruning of receive queue because of misprediction
  319. * of receiver window. Check #2.
  320. *
  321. * The scheme does not work when sender sends good segments opening
  322. * window and then starts to feed us spaghetti. But it should work
  323. * in common situations. Otherwise, we have to rely on queue collapsing.
  324. */
  325. /* Slow part of check#2. */
  326. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  327. {
  328. struct tcp_sock *tp = tcp_sk(sk);
  329. /* Optimize this! */
  330. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  331. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  332. while (tp->rcv_ssthresh <= window) {
  333. if (truesize <= skb->len)
  334. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  335. truesize >>= 1;
  336. window >>= 1;
  337. }
  338. return 0;
  339. }
  340. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  341. {
  342. struct tcp_sock *tp = tcp_sk(sk);
  343. /* Check #1 */
  344. if (tp->rcv_ssthresh < tp->window_clamp &&
  345. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  346. !tcp_under_memory_pressure(sk)) {
  347. int incr;
  348. /* Check #2. Increase window, if skb with such overhead
  349. * will fit to rcvbuf in future.
  350. */
  351. if (tcp_win_from_space(skb->truesize) <= skb->len)
  352. incr = 2 * tp->advmss;
  353. else
  354. incr = __tcp_grow_window(sk, skb);
  355. if (incr) {
  356. incr = max_t(int, incr, 2 * skb->len);
  357. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  358. tp->window_clamp);
  359. inet_csk(sk)->icsk_ack.quick |= 1;
  360. }
  361. }
  362. }
  363. /* 3. Tuning rcvbuf, when connection enters established state. */
  364. static void tcp_fixup_rcvbuf(struct sock *sk)
  365. {
  366. u32 mss = tcp_sk(sk)->advmss;
  367. int rcvmem;
  368. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  369. tcp_default_init_rwnd(mss);
  370. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  371. * Allow enough cushion so that sender is not limited by our window
  372. */
  373. if (sysctl_tcp_moderate_rcvbuf)
  374. rcvmem <<= 2;
  375. if (sk->sk_rcvbuf < rcvmem)
  376. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  377. }
  378. /* 4. Try to fixup all. It is made immediately after connection enters
  379. * established state.
  380. */
  381. void tcp_init_buffer_space(struct sock *sk)
  382. {
  383. struct tcp_sock *tp = tcp_sk(sk);
  384. int maxwin;
  385. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  386. tcp_fixup_rcvbuf(sk);
  387. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  388. tcp_sndbuf_expand(sk);
  389. tp->rcvq_space.space = tp->rcv_wnd;
  390. tcp_mstamp_refresh(tp);
  391. tp->rcvq_space.time = tp->tcp_mstamp;
  392. tp->rcvq_space.seq = tp->copied_seq;
  393. maxwin = tcp_full_space(sk);
  394. if (tp->window_clamp >= maxwin) {
  395. tp->window_clamp = maxwin;
  396. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  397. tp->window_clamp = max(maxwin -
  398. (maxwin >> sysctl_tcp_app_win),
  399. 4 * tp->advmss);
  400. }
  401. /* Force reservation of one segment. */
  402. if (sysctl_tcp_app_win &&
  403. tp->window_clamp > 2 * tp->advmss &&
  404. tp->window_clamp + tp->advmss > maxwin)
  405. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  406. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  407. tp->snd_cwnd_stamp = tcp_jiffies32;
  408. }
  409. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  410. static void tcp_clamp_window(struct sock *sk)
  411. {
  412. struct tcp_sock *tp = tcp_sk(sk);
  413. struct inet_connection_sock *icsk = inet_csk(sk);
  414. icsk->icsk_ack.quick = 0;
  415. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  416. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  417. !tcp_under_memory_pressure(sk) &&
  418. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  419. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  420. sysctl_tcp_rmem[2]);
  421. }
  422. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  423. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  424. }
  425. /* Initialize RCV_MSS value.
  426. * RCV_MSS is an our guess about MSS used by the peer.
  427. * We haven't any direct information about the MSS.
  428. * It's better to underestimate the RCV_MSS rather than overestimate.
  429. * Overestimations make us ACKing less frequently than needed.
  430. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  431. */
  432. void tcp_initialize_rcv_mss(struct sock *sk)
  433. {
  434. const struct tcp_sock *tp = tcp_sk(sk);
  435. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  436. hint = min(hint, tp->rcv_wnd / 2);
  437. hint = min(hint, TCP_MSS_DEFAULT);
  438. hint = max(hint, TCP_MIN_MSS);
  439. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  440. }
  441. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  442. /* Receiver "autotuning" code.
  443. *
  444. * The algorithm for RTT estimation w/o timestamps is based on
  445. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  446. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  447. *
  448. * More detail on this code can be found at
  449. * <http://staff.psc.edu/jheffner/>,
  450. * though this reference is out of date. A new paper
  451. * is pending.
  452. */
  453. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  454. {
  455. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  456. long m = sample;
  457. if (m == 0)
  458. m = 1;
  459. if (new_sample != 0) {
  460. /* If we sample in larger samples in the non-timestamp
  461. * case, we could grossly overestimate the RTT especially
  462. * with chatty applications or bulk transfer apps which
  463. * are stalled on filesystem I/O.
  464. *
  465. * Also, since we are only going for a minimum in the
  466. * non-timestamp case, we do not smooth things out
  467. * else with timestamps disabled convergence takes too
  468. * long.
  469. */
  470. if (!win_dep) {
  471. m -= (new_sample >> 3);
  472. new_sample += m;
  473. } else {
  474. m <<= 3;
  475. if (m < new_sample)
  476. new_sample = m;
  477. }
  478. } else {
  479. /* No previous measure. */
  480. new_sample = m << 3;
  481. }
  482. tp->rcv_rtt_est.rtt_us = new_sample;
  483. }
  484. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  485. {
  486. u32 delta_us;
  487. if (tp->rcv_rtt_est.time == 0)
  488. goto new_measure;
  489. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  490. return;
  491. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  492. tcp_rcv_rtt_update(tp, delta_us, 1);
  493. new_measure:
  494. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  495. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  496. }
  497. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  498. const struct sk_buff *skb)
  499. {
  500. struct tcp_sock *tp = tcp_sk(sk);
  501. if (tp->rx_opt.rcv_tsecr &&
  502. (TCP_SKB_CB(skb)->end_seq -
  503. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  504. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  505. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  506. tcp_rcv_rtt_update(tp, delta_us, 0);
  507. }
  508. }
  509. /*
  510. * This function should be called every time data is copied to user space.
  511. * It calculates the appropriate TCP receive buffer space.
  512. */
  513. void tcp_rcv_space_adjust(struct sock *sk)
  514. {
  515. struct tcp_sock *tp = tcp_sk(sk);
  516. int time;
  517. int copied;
  518. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  519. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  520. return;
  521. /* Number of bytes copied to user in last RTT */
  522. copied = tp->copied_seq - tp->rcvq_space.seq;
  523. if (copied <= tp->rcvq_space.space)
  524. goto new_measure;
  525. /* A bit of theory :
  526. * copied = bytes received in previous RTT, our base window
  527. * To cope with packet losses, we need a 2x factor
  528. * To cope with slow start, and sender growing its cwin by 100 %
  529. * every RTT, we need a 4x factor, because the ACK we are sending
  530. * now is for the next RTT, not the current one :
  531. * <prev RTT . ><current RTT .. ><next RTT .... >
  532. */
  533. if (sysctl_tcp_moderate_rcvbuf &&
  534. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  535. int rcvwin, rcvmem, rcvbuf;
  536. /* minimal window to cope with packet losses, assuming
  537. * steady state. Add some cushion because of small variations.
  538. */
  539. rcvwin = (copied << 1) + 16 * tp->advmss;
  540. /* If rate increased by 25%,
  541. * assume slow start, rcvwin = 3 * copied
  542. * If rate increased by 50%,
  543. * assume sender can use 2x growth, rcvwin = 4 * copied
  544. */
  545. if (copied >=
  546. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  547. if (copied >=
  548. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  549. rcvwin <<= 1;
  550. else
  551. rcvwin += (rcvwin >> 1);
  552. }
  553. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  554. while (tcp_win_from_space(rcvmem) < tp->advmss)
  555. rcvmem += 128;
  556. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  557. if (rcvbuf > sk->sk_rcvbuf) {
  558. sk->sk_rcvbuf = rcvbuf;
  559. /* Make the window clamp follow along. */
  560. tp->window_clamp = rcvwin;
  561. }
  562. }
  563. tp->rcvq_space.space = copied;
  564. new_measure:
  565. tp->rcvq_space.seq = tp->copied_seq;
  566. tp->rcvq_space.time = tp->tcp_mstamp;
  567. }
  568. /* There is something which you must keep in mind when you analyze the
  569. * behavior of the tp->ato delayed ack timeout interval. When a
  570. * connection starts up, we want to ack as quickly as possible. The
  571. * problem is that "good" TCP's do slow start at the beginning of data
  572. * transmission. The means that until we send the first few ACK's the
  573. * sender will sit on his end and only queue most of his data, because
  574. * he can only send snd_cwnd unacked packets at any given time. For
  575. * each ACK we send, he increments snd_cwnd and transmits more of his
  576. * queue. -DaveM
  577. */
  578. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  579. {
  580. struct tcp_sock *tp = tcp_sk(sk);
  581. struct inet_connection_sock *icsk = inet_csk(sk);
  582. u32 now;
  583. inet_csk_schedule_ack(sk);
  584. tcp_measure_rcv_mss(sk, skb);
  585. tcp_rcv_rtt_measure(tp);
  586. now = tcp_jiffies32;
  587. if (!icsk->icsk_ack.ato) {
  588. /* The _first_ data packet received, initialize
  589. * delayed ACK engine.
  590. */
  591. tcp_incr_quickack(sk);
  592. icsk->icsk_ack.ato = TCP_ATO_MIN;
  593. } else {
  594. int m = now - icsk->icsk_ack.lrcvtime;
  595. if (m <= TCP_ATO_MIN / 2) {
  596. /* The fastest case is the first. */
  597. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  598. } else if (m < icsk->icsk_ack.ato) {
  599. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  600. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  601. icsk->icsk_ack.ato = icsk->icsk_rto;
  602. } else if (m > icsk->icsk_rto) {
  603. /* Too long gap. Apparently sender failed to
  604. * restart window, so that we send ACKs quickly.
  605. */
  606. tcp_incr_quickack(sk);
  607. sk_mem_reclaim(sk);
  608. }
  609. }
  610. icsk->icsk_ack.lrcvtime = now;
  611. tcp_ecn_check_ce(tp, skb);
  612. if (skb->len >= 128)
  613. tcp_grow_window(sk, skb);
  614. }
  615. /* Called to compute a smoothed rtt estimate. The data fed to this
  616. * routine either comes from timestamps, or from segments that were
  617. * known _not_ to have been retransmitted [see Karn/Partridge
  618. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  619. * piece by Van Jacobson.
  620. * NOTE: the next three routines used to be one big routine.
  621. * To save cycles in the RFC 1323 implementation it was better to break
  622. * it up into three procedures. -- erics
  623. */
  624. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  625. {
  626. struct tcp_sock *tp = tcp_sk(sk);
  627. long m = mrtt_us; /* RTT */
  628. u32 srtt = tp->srtt_us;
  629. /* The following amusing code comes from Jacobson's
  630. * article in SIGCOMM '88. Note that rtt and mdev
  631. * are scaled versions of rtt and mean deviation.
  632. * This is designed to be as fast as possible
  633. * m stands for "measurement".
  634. *
  635. * On a 1990 paper the rto value is changed to:
  636. * RTO = rtt + 4 * mdev
  637. *
  638. * Funny. This algorithm seems to be very broken.
  639. * These formulae increase RTO, when it should be decreased, increase
  640. * too slowly, when it should be increased quickly, decrease too quickly
  641. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  642. * does not matter how to _calculate_ it. Seems, it was trap
  643. * that VJ failed to avoid. 8)
  644. */
  645. if (srtt != 0) {
  646. m -= (srtt >> 3); /* m is now error in rtt est */
  647. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  648. if (m < 0) {
  649. m = -m; /* m is now abs(error) */
  650. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  651. /* This is similar to one of Eifel findings.
  652. * Eifel blocks mdev updates when rtt decreases.
  653. * This solution is a bit different: we use finer gain
  654. * for mdev in this case (alpha*beta).
  655. * Like Eifel it also prevents growth of rto,
  656. * but also it limits too fast rto decreases,
  657. * happening in pure Eifel.
  658. */
  659. if (m > 0)
  660. m >>= 3;
  661. } else {
  662. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  663. }
  664. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  665. if (tp->mdev_us > tp->mdev_max_us) {
  666. tp->mdev_max_us = tp->mdev_us;
  667. if (tp->mdev_max_us > tp->rttvar_us)
  668. tp->rttvar_us = tp->mdev_max_us;
  669. }
  670. if (after(tp->snd_una, tp->rtt_seq)) {
  671. if (tp->mdev_max_us < tp->rttvar_us)
  672. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  673. tp->rtt_seq = tp->snd_nxt;
  674. tp->mdev_max_us = tcp_rto_min_us(sk);
  675. }
  676. } else {
  677. /* no previous measure. */
  678. srtt = m << 3; /* take the measured time to be rtt */
  679. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  680. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  681. tp->mdev_max_us = tp->rttvar_us;
  682. tp->rtt_seq = tp->snd_nxt;
  683. }
  684. tp->srtt_us = max(1U, srtt);
  685. }
  686. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  687. * Note: TCP stack does not yet implement pacing.
  688. * FQ packet scheduler can be used to implement cheap but effective
  689. * TCP pacing, to smooth the burst on large writes when packets
  690. * in flight is significantly lower than cwnd (or rwin)
  691. */
  692. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  693. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  694. static void tcp_update_pacing_rate(struct sock *sk)
  695. {
  696. const struct tcp_sock *tp = tcp_sk(sk);
  697. u64 rate;
  698. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  699. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  700. /* current rate is (cwnd * mss) / srtt
  701. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  702. * In Congestion Avoidance phase, set it to 120 % the current rate.
  703. *
  704. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  705. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  706. * end of slow start and should slow down.
  707. */
  708. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  709. rate *= sysctl_tcp_pacing_ss_ratio;
  710. else
  711. rate *= sysctl_tcp_pacing_ca_ratio;
  712. rate *= max(tp->snd_cwnd, tp->packets_out);
  713. if (likely(tp->srtt_us))
  714. do_div(rate, tp->srtt_us);
  715. /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
  716. * without any lock. We want to make sure compiler wont store
  717. * intermediate values in this location.
  718. */
  719. WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
  720. sk->sk_max_pacing_rate));
  721. }
  722. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  723. * routine referred to above.
  724. */
  725. static void tcp_set_rto(struct sock *sk)
  726. {
  727. const struct tcp_sock *tp = tcp_sk(sk);
  728. /* Old crap is replaced with new one. 8)
  729. *
  730. * More seriously:
  731. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  732. * It cannot be less due to utterly erratic ACK generation made
  733. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  734. * to do with delayed acks, because at cwnd>2 true delack timeout
  735. * is invisible. Actually, Linux-2.4 also generates erratic
  736. * ACKs in some circumstances.
  737. */
  738. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  739. /* 2. Fixups made earlier cannot be right.
  740. * If we do not estimate RTO correctly without them,
  741. * all the algo is pure shit and should be replaced
  742. * with correct one. It is exactly, which we pretend to do.
  743. */
  744. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  745. * guarantees that rto is higher.
  746. */
  747. tcp_bound_rto(sk);
  748. }
  749. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  750. {
  751. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  752. if (!cwnd)
  753. cwnd = TCP_INIT_CWND;
  754. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  755. }
  756. /*
  757. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  758. * disables it when reordering is detected
  759. */
  760. void tcp_disable_fack(struct tcp_sock *tp)
  761. {
  762. /* RFC3517 uses different metric in lost marker => reset on change */
  763. if (tcp_is_fack(tp))
  764. tp->lost_skb_hint = NULL;
  765. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  766. }
  767. /* Take a notice that peer is sending D-SACKs */
  768. static void tcp_dsack_seen(struct tcp_sock *tp)
  769. {
  770. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  771. }
  772. static void tcp_update_reordering(struct sock *sk, const int metric,
  773. const int ts)
  774. {
  775. struct tcp_sock *tp = tcp_sk(sk);
  776. int mib_idx;
  777. if (WARN_ON_ONCE(metric < 0))
  778. return;
  779. if (metric > tp->reordering) {
  780. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  781. #if FASTRETRANS_DEBUG > 1
  782. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  783. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  784. tp->reordering,
  785. tp->fackets_out,
  786. tp->sacked_out,
  787. tp->undo_marker ? tp->undo_retrans : 0);
  788. #endif
  789. tcp_disable_fack(tp);
  790. }
  791. tp->rack.reord = 1;
  792. /* This exciting event is worth to be remembered. 8) */
  793. if (ts)
  794. mib_idx = LINUX_MIB_TCPTSREORDER;
  795. else if (tcp_is_reno(tp))
  796. mib_idx = LINUX_MIB_TCPRENOREORDER;
  797. else if (tcp_is_fack(tp))
  798. mib_idx = LINUX_MIB_TCPFACKREORDER;
  799. else
  800. mib_idx = LINUX_MIB_TCPSACKREORDER;
  801. NET_INC_STATS(sock_net(sk), mib_idx);
  802. }
  803. /* This must be called before lost_out is incremented */
  804. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  805. {
  806. if (!tp->retransmit_skb_hint ||
  807. before(TCP_SKB_CB(skb)->seq,
  808. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  809. tp->retransmit_skb_hint = skb;
  810. }
  811. /* Sum the number of packets on the wire we have marked as lost.
  812. * There are two cases we care about here:
  813. * a) Packet hasn't been marked lost (nor retransmitted),
  814. * and this is the first loss.
  815. * b) Packet has been marked both lost and retransmitted,
  816. * and this means we think it was lost again.
  817. */
  818. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  819. {
  820. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  821. if (!(sacked & TCPCB_LOST) ||
  822. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  823. tp->lost += tcp_skb_pcount(skb);
  824. }
  825. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  826. {
  827. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  828. tcp_verify_retransmit_hint(tp, skb);
  829. tp->lost_out += tcp_skb_pcount(skb);
  830. tcp_sum_lost(tp, skb);
  831. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  832. }
  833. }
  834. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  835. {
  836. tcp_verify_retransmit_hint(tp, skb);
  837. tcp_sum_lost(tp, skb);
  838. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  839. tp->lost_out += tcp_skb_pcount(skb);
  840. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  841. }
  842. }
  843. /* This procedure tags the retransmission queue when SACKs arrive.
  844. *
  845. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  846. * Packets in queue with these bits set are counted in variables
  847. * sacked_out, retrans_out and lost_out, correspondingly.
  848. *
  849. * Valid combinations are:
  850. * Tag InFlight Description
  851. * 0 1 - orig segment is in flight.
  852. * S 0 - nothing flies, orig reached receiver.
  853. * L 0 - nothing flies, orig lost by net.
  854. * R 2 - both orig and retransmit are in flight.
  855. * L|R 1 - orig is lost, retransmit is in flight.
  856. * S|R 1 - orig reached receiver, retrans is still in flight.
  857. * (L|S|R is logically valid, it could occur when L|R is sacked,
  858. * but it is equivalent to plain S and code short-curcuits it to S.
  859. * L|S is logically invalid, it would mean -1 packet in flight 8))
  860. *
  861. * These 6 states form finite state machine, controlled by the following events:
  862. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  863. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  864. * 3. Loss detection event of two flavors:
  865. * A. Scoreboard estimator decided the packet is lost.
  866. * A'. Reno "three dupacks" marks head of queue lost.
  867. * A''. Its FACK modification, head until snd.fack is lost.
  868. * B. SACK arrives sacking SND.NXT at the moment, when the
  869. * segment was retransmitted.
  870. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  871. *
  872. * It is pleasant to note, that state diagram turns out to be commutative,
  873. * so that we are allowed not to be bothered by order of our actions,
  874. * when multiple events arrive simultaneously. (see the function below).
  875. *
  876. * Reordering detection.
  877. * --------------------
  878. * Reordering metric is maximal distance, which a packet can be displaced
  879. * in packet stream. With SACKs we can estimate it:
  880. *
  881. * 1. SACK fills old hole and the corresponding segment was not
  882. * ever retransmitted -> reordering. Alas, we cannot use it
  883. * when segment was retransmitted.
  884. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  885. * for retransmitted and already SACKed segment -> reordering..
  886. * Both of these heuristics are not used in Loss state, when we cannot
  887. * account for retransmits accurately.
  888. *
  889. * SACK block validation.
  890. * ----------------------
  891. *
  892. * SACK block range validation checks that the received SACK block fits to
  893. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  894. * Note that SND.UNA is not included to the range though being valid because
  895. * it means that the receiver is rather inconsistent with itself reporting
  896. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  897. * perfectly valid, however, in light of RFC2018 which explicitly states
  898. * that "SACK block MUST reflect the newest segment. Even if the newest
  899. * segment is going to be discarded ...", not that it looks very clever
  900. * in case of head skb. Due to potentional receiver driven attacks, we
  901. * choose to avoid immediate execution of a walk in write queue due to
  902. * reneging and defer head skb's loss recovery to standard loss recovery
  903. * procedure that will eventually trigger (nothing forbids us doing this).
  904. *
  905. * Implements also blockage to start_seq wrap-around. Problem lies in the
  906. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  907. * there's no guarantee that it will be before snd_nxt (n). The problem
  908. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  909. * wrap (s_w):
  910. *
  911. * <- outs wnd -> <- wrapzone ->
  912. * u e n u_w e_w s n_w
  913. * | | | | | | |
  914. * |<------------+------+----- TCP seqno space --------------+---------->|
  915. * ...-- <2^31 ->| |<--------...
  916. * ...---- >2^31 ------>| |<--------...
  917. *
  918. * Current code wouldn't be vulnerable but it's better still to discard such
  919. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  920. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  921. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  922. * equal to the ideal case (infinite seqno space without wrap caused issues).
  923. *
  924. * With D-SACK the lower bound is extended to cover sequence space below
  925. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  926. * again, D-SACK block must not to go across snd_una (for the same reason as
  927. * for the normal SACK blocks, explained above). But there all simplicity
  928. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  929. * fully below undo_marker they do not affect behavior in anyway and can
  930. * therefore be safely ignored. In rare cases (which are more or less
  931. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  932. * fragmentation and packet reordering past skb's retransmission. To consider
  933. * them correctly, the acceptable range must be extended even more though
  934. * the exact amount is rather hard to quantify. However, tp->max_window can
  935. * be used as an exaggerated estimate.
  936. */
  937. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  938. u32 start_seq, u32 end_seq)
  939. {
  940. /* Too far in future, or reversed (interpretation is ambiguous) */
  941. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  942. return false;
  943. /* Nasty start_seq wrap-around check (see comments above) */
  944. if (!before(start_seq, tp->snd_nxt))
  945. return false;
  946. /* In outstanding window? ...This is valid exit for D-SACKs too.
  947. * start_seq == snd_una is non-sensical (see comments above)
  948. */
  949. if (after(start_seq, tp->snd_una))
  950. return true;
  951. if (!is_dsack || !tp->undo_marker)
  952. return false;
  953. /* ...Then it's D-SACK, and must reside below snd_una completely */
  954. if (after(end_seq, tp->snd_una))
  955. return false;
  956. if (!before(start_seq, tp->undo_marker))
  957. return true;
  958. /* Too old */
  959. if (!after(end_seq, tp->undo_marker))
  960. return false;
  961. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  962. * start_seq < undo_marker and end_seq >= undo_marker.
  963. */
  964. return !before(start_seq, end_seq - tp->max_window);
  965. }
  966. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  967. struct tcp_sack_block_wire *sp, int num_sacks,
  968. u32 prior_snd_una)
  969. {
  970. struct tcp_sock *tp = tcp_sk(sk);
  971. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  972. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  973. bool dup_sack = false;
  974. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  975. dup_sack = true;
  976. tcp_dsack_seen(tp);
  977. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  978. } else if (num_sacks > 1) {
  979. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  980. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  981. if (!after(end_seq_0, end_seq_1) &&
  982. !before(start_seq_0, start_seq_1)) {
  983. dup_sack = true;
  984. tcp_dsack_seen(tp);
  985. NET_INC_STATS(sock_net(sk),
  986. LINUX_MIB_TCPDSACKOFORECV);
  987. }
  988. }
  989. /* D-SACK for already forgotten data... Do dumb counting. */
  990. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  991. !after(end_seq_0, prior_snd_una) &&
  992. after(end_seq_0, tp->undo_marker))
  993. tp->undo_retrans--;
  994. return dup_sack;
  995. }
  996. struct tcp_sacktag_state {
  997. int reord;
  998. int fack_count;
  999. /* Timestamps for earliest and latest never-retransmitted segment
  1000. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1001. * but congestion control should still get an accurate delay signal.
  1002. */
  1003. u64 first_sackt;
  1004. u64 last_sackt;
  1005. struct rate_sample *rate;
  1006. int flag;
  1007. };
  1008. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1009. * the incoming SACK may not exactly match but we can find smaller MSS
  1010. * aligned portion of it that matches. Therefore we might need to fragment
  1011. * which may fail and creates some hassle (caller must handle error case
  1012. * returns).
  1013. *
  1014. * FIXME: this could be merged to shift decision code
  1015. */
  1016. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1017. u32 start_seq, u32 end_seq)
  1018. {
  1019. int err;
  1020. bool in_sack;
  1021. unsigned int pkt_len;
  1022. unsigned int mss;
  1023. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1024. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1025. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1026. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1027. mss = tcp_skb_mss(skb);
  1028. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1029. if (!in_sack) {
  1030. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1031. if (pkt_len < mss)
  1032. pkt_len = mss;
  1033. } else {
  1034. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1035. if (pkt_len < mss)
  1036. return -EINVAL;
  1037. }
  1038. /* Round if necessary so that SACKs cover only full MSSes
  1039. * and/or the remaining small portion (if present)
  1040. */
  1041. if (pkt_len > mss) {
  1042. unsigned int new_len = (pkt_len / mss) * mss;
  1043. if (!in_sack && new_len < pkt_len)
  1044. new_len += mss;
  1045. pkt_len = new_len;
  1046. }
  1047. if (pkt_len >= skb->len && !in_sack)
  1048. return 0;
  1049. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1050. if (err < 0)
  1051. return err;
  1052. }
  1053. return in_sack;
  1054. }
  1055. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1056. static u8 tcp_sacktag_one(struct sock *sk,
  1057. struct tcp_sacktag_state *state, u8 sacked,
  1058. u32 start_seq, u32 end_seq,
  1059. int dup_sack, int pcount,
  1060. u64 xmit_time)
  1061. {
  1062. struct tcp_sock *tp = tcp_sk(sk);
  1063. int fack_count = state->fack_count;
  1064. /* Account D-SACK for retransmitted packet. */
  1065. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1066. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1067. after(end_seq, tp->undo_marker))
  1068. tp->undo_retrans--;
  1069. if (sacked & TCPCB_SACKED_ACKED)
  1070. state->reord = min(fack_count, state->reord);
  1071. }
  1072. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1073. if (!after(end_seq, tp->snd_una))
  1074. return sacked;
  1075. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1076. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1077. if (sacked & TCPCB_SACKED_RETRANS) {
  1078. /* If the segment is not tagged as lost,
  1079. * we do not clear RETRANS, believing
  1080. * that retransmission is still in flight.
  1081. */
  1082. if (sacked & TCPCB_LOST) {
  1083. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1084. tp->lost_out -= pcount;
  1085. tp->retrans_out -= pcount;
  1086. }
  1087. } else {
  1088. if (!(sacked & TCPCB_RETRANS)) {
  1089. /* New sack for not retransmitted frame,
  1090. * which was in hole. It is reordering.
  1091. */
  1092. if (before(start_seq,
  1093. tcp_highest_sack_seq(tp)))
  1094. state->reord = min(fack_count,
  1095. state->reord);
  1096. if (!after(end_seq, tp->high_seq))
  1097. state->flag |= FLAG_ORIG_SACK_ACKED;
  1098. if (state->first_sackt == 0)
  1099. state->first_sackt = xmit_time;
  1100. state->last_sackt = xmit_time;
  1101. }
  1102. if (sacked & TCPCB_LOST) {
  1103. sacked &= ~TCPCB_LOST;
  1104. tp->lost_out -= pcount;
  1105. }
  1106. }
  1107. sacked |= TCPCB_SACKED_ACKED;
  1108. state->flag |= FLAG_DATA_SACKED;
  1109. tp->sacked_out += pcount;
  1110. tp->delivered += pcount; /* Out-of-order packets delivered */
  1111. fack_count += pcount;
  1112. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1113. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1114. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1115. tp->lost_cnt_hint += pcount;
  1116. if (fack_count > tp->fackets_out)
  1117. tp->fackets_out = fack_count;
  1118. }
  1119. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1120. * frames and clear it. undo_retrans is decreased above, L|R frames
  1121. * are accounted above as well.
  1122. */
  1123. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1124. sacked &= ~TCPCB_SACKED_RETRANS;
  1125. tp->retrans_out -= pcount;
  1126. }
  1127. return sacked;
  1128. }
  1129. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1130. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1131. */
  1132. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1133. struct tcp_sacktag_state *state,
  1134. unsigned int pcount, int shifted, int mss,
  1135. bool dup_sack)
  1136. {
  1137. struct tcp_sock *tp = tcp_sk(sk);
  1138. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1139. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1140. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1141. BUG_ON(!pcount);
  1142. /* Adjust counters and hints for the newly sacked sequence
  1143. * range but discard the return value since prev is already
  1144. * marked. We must tag the range first because the seq
  1145. * advancement below implicitly advances
  1146. * tcp_highest_sack_seq() when skb is highest_sack.
  1147. */
  1148. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1149. start_seq, end_seq, dup_sack, pcount,
  1150. skb->skb_mstamp);
  1151. tcp_rate_skb_delivered(sk, skb, state->rate);
  1152. if (skb == tp->lost_skb_hint)
  1153. tp->lost_cnt_hint += pcount;
  1154. TCP_SKB_CB(prev)->end_seq += shifted;
  1155. TCP_SKB_CB(skb)->seq += shifted;
  1156. tcp_skb_pcount_add(prev, pcount);
  1157. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1158. tcp_skb_pcount_add(skb, -pcount);
  1159. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1160. * in theory this shouldn't be necessary but as long as DSACK
  1161. * code can come after this skb later on it's better to keep
  1162. * setting gso_size to something.
  1163. */
  1164. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1165. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1166. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1167. if (tcp_skb_pcount(skb) <= 1)
  1168. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1169. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1170. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1171. if (skb->len > 0) {
  1172. BUG_ON(!tcp_skb_pcount(skb));
  1173. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1174. return false;
  1175. }
  1176. /* Whole SKB was eaten :-) */
  1177. if (skb == tp->retransmit_skb_hint)
  1178. tp->retransmit_skb_hint = prev;
  1179. if (skb == tp->lost_skb_hint) {
  1180. tp->lost_skb_hint = prev;
  1181. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1182. }
  1183. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1184. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1185. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1186. TCP_SKB_CB(prev)->end_seq++;
  1187. if (skb == tcp_highest_sack(sk))
  1188. tcp_advance_highest_sack(sk, skb);
  1189. tcp_skb_collapse_tstamp(prev, skb);
  1190. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1191. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1192. tcp_unlink_write_queue(skb, sk);
  1193. sk_wmem_free_skb(sk, skb);
  1194. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1195. return true;
  1196. }
  1197. /* I wish gso_size would have a bit more sane initialization than
  1198. * something-or-zero which complicates things
  1199. */
  1200. static int tcp_skb_seglen(const struct sk_buff *skb)
  1201. {
  1202. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1203. }
  1204. /* Shifting pages past head area doesn't work */
  1205. static int skb_can_shift(const struct sk_buff *skb)
  1206. {
  1207. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1208. }
  1209. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1210. * skb.
  1211. */
  1212. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1213. struct tcp_sacktag_state *state,
  1214. u32 start_seq, u32 end_seq,
  1215. bool dup_sack)
  1216. {
  1217. struct tcp_sock *tp = tcp_sk(sk);
  1218. struct sk_buff *prev;
  1219. int mss;
  1220. int pcount = 0;
  1221. int len;
  1222. int in_sack;
  1223. if (!sk_can_gso(sk))
  1224. goto fallback;
  1225. /* Normally R but no L won't result in plain S */
  1226. if (!dup_sack &&
  1227. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1228. goto fallback;
  1229. if (!skb_can_shift(skb))
  1230. goto fallback;
  1231. /* This frame is about to be dropped (was ACKed). */
  1232. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1233. goto fallback;
  1234. /* Can only happen with delayed DSACK + discard craziness */
  1235. if (unlikely(skb == tcp_write_queue_head(sk)))
  1236. goto fallback;
  1237. prev = tcp_write_queue_prev(sk, skb);
  1238. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1239. goto fallback;
  1240. if (!tcp_skb_can_collapse_to(prev))
  1241. goto fallback;
  1242. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1243. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1244. if (in_sack) {
  1245. len = skb->len;
  1246. pcount = tcp_skb_pcount(skb);
  1247. mss = tcp_skb_seglen(skb);
  1248. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1249. * drop this restriction as unnecessary
  1250. */
  1251. if (mss != tcp_skb_seglen(prev))
  1252. goto fallback;
  1253. } else {
  1254. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1255. goto noop;
  1256. /* CHECKME: This is non-MSS split case only?, this will
  1257. * cause skipped skbs due to advancing loop btw, original
  1258. * has that feature too
  1259. */
  1260. if (tcp_skb_pcount(skb) <= 1)
  1261. goto noop;
  1262. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1263. if (!in_sack) {
  1264. /* TODO: head merge to next could be attempted here
  1265. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1266. * though it might not be worth of the additional hassle
  1267. *
  1268. * ...we can probably just fallback to what was done
  1269. * previously. We could try merging non-SACKed ones
  1270. * as well but it probably isn't going to buy off
  1271. * because later SACKs might again split them, and
  1272. * it would make skb timestamp tracking considerably
  1273. * harder problem.
  1274. */
  1275. goto fallback;
  1276. }
  1277. len = end_seq - TCP_SKB_CB(skb)->seq;
  1278. BUG_ON(len < 0);
  1279. BUG_ON(len > skb->len);
  1280. /* MSS boundaries should be honoured or else pcount will
  1281. * severely break even though it makes things bit trickier.
  1282. * Optimize common case to avoid most of the divides
  1283. */
  1284. mss = tcp_skb_mss(skb);
  1285. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1286. * drop this restriction as unnecessary
  1287. */
  1288. if (mss != tcp_skb_seglen(prev))
  1289. goto fallback;
  1290. if (len == mss) {
  1291. pcount = 1;
  1292. } else if (len < mss) {
  1293. goto noop;
  1294. } else {
  1295. pcount = len / mss;
  1296. len = pcount * mss;
  1297. }
  1298. }
  1299. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1300. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1301. goto fallback;
  1302. if (!skb_shift(prev, skb, len))
  1303. goto fallback;
  1304. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1305. goto out;
  1306. /* Hole filled allows collapsing with the next as well, this is very
  1307. * useful when hole on every nth skb pattern happens
  1308. */
  1309. if (prev == tcp_write_queue_tail(sk))
  1310. goto out;
  1311. skb = tcp_write_queue_next(sk, prev);
  1312. if (!skb_can_shift(skb) ||
  1313. (skb == tcp_send_head(sk)) ||
  1314. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1315. (mss != tcp_skb_seglen(skb)))
  1316. goto out;
  1317. len = skb->len;
  1318. if (skb_shift(prev, skb, len)) {
  1319. pcount += tcp_skb_pcount(skb);
  1320. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1321. }
  1322. out:
  1323. state->fack_count += pcount;
  1324. return prev;
  1325. noop:
  1326. return skb;
  1327. fallback:
  1328. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1329. return NULL;
  1330. }
  1331. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1332. struct tcp_sack_block *next_dup,
  1333. struct tcp_sacktag_state *state,
  1334. u32 start_seq, u32 end_seq,
  1335. bool dup_sack_in)
  1336. {
  1337. struct tcp_sock *tp = tcp_sk(sk);
  1338. struct sk_buff *tmp;
  1339. tcp_for_write_queue_from(skb, sk) {
  1340. int in_sack = 0;
  1341. bool dup_sack = dup_sack_in;
  1342. if (skb == tcp_send_head(sk))
  1343. break;
  1344. /* queue is in-order => we can short-circuit the walk early */
  1345. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1346. break;
  1347. if (next_dup &&
  1348. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1349. in_sack = tcp_match_skb_to_sack(sk, skb,
  1350. next_dup->start_seq,
  1351. next_dup->end_seq);
  1352. if (in_sack > 0)
  1353. dup_sack = true;
  1354. }
  1355. /* skb reference here is a bit tricky to get right, since
  1356. * shifting can eat and free both this skb and the next,
  1357. * so not even _safe variant of the loop is enough.
  1358. */
  1359. if (in_sack <= 0) {
  1360. tmp = tcp_shift_skb_data(sk, skb, state,
  1361. start_seq, end_seq, dup_sack);
  1362. if (tmp) {
  1363. if (tmp != skb) {
  1364. skb = tmp;
  1365. continue;
  1366. }
  1367. in_sack = 0;
  1368. } else {
  1369. in_sack = tcp_match_skb_to_sack(sk, skb,
  1370. start_seq,
  1371. end_seq);
  1372. }
  1373. }
  1374. if (unlikely(in_sack < 0))
  1375. break;
  1376. if (in_sack) {
  1377. TCP_SKB_CB(skb)->sacked =
  1378. tcp_sacktag_one(sk,
  1379. state,
  1380. TCP_SKB_CB(skb)->sacked,
  1381. TCP_SKB_CB(skb)->seq,
  1382. TCP_SKB_CB(skb)->end_seq,
  1383. dup_sack,
  1384. tcp_skb_pcount(skb),
  1385. skb->skb_mstamp);
  1386. tcp_rate_skb_delivered(sk, skb, state->rate);
  1387. if (!before(TCP_SKB_CB(skb)->seq,
  1388. tcp_highest_sack_seq(tp)))
  1389. tcp_advance_highest_sack(sk, skb);
  1390. }
  1391. state->fack_count += tcp_skb_pcount(skb);
  1392. }
  1393. return skb;
  1394. }
  1395. /* Avoid all extra work that is being done by sacktag while walking in
  1396. * a normal way
  1397. */
  1398. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1399. struct tcp_sacktag_state *state,
  1400. u32 skip_to_seq)
  1401. {
  1402. tcp_for_write_queue_from(skb, sk) {
  1403. if (skb == tcp_send_head(sk))
  1404. break;
  1405. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1406. break;
  1407. state->fack_count += tcp_skb_pcount(skb);
  1408. }
  1409. return skb;
  1410. }
  1411. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1412. struct sock *sk,
  1413. struct tcp_sack_block *next_dup,
  1414. struct tcp_sacktag_state *state,
  1415. u32 skip_to_seq)
  1416. {
  1417. if (!next_dup)
  1418. return skb;
  1419. if (before(next_dup->start_seq, skip_to_seq)) {
  1420. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1421. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1422. next_dup->start_seq, next_dup->end_seq,
  1423. 1);
  1424. }
  1425. return skb;
  1426. }
  1427. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1428. {
  1429. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1430. }
  1431. static int
  1432. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1433. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1434. {
  1435. struct tcp_sock *tp = tcp_sk(sk);
  1436. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1437. TCP_SKB_CB(ack_skb)->sacked);
  1438. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1439. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1440. struct tcp_sack_block *cache;
  1441. struct sk_buff *skb;
  1442. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1443. int used_sacks;
  1444. bool found_dup_sack = false;
  1445. int i, j;
  1446. int first_sack_index;
  1447. state->flag = 0;
  1448. state->reord = tp->packets_out;
  1449. if (!tp->sacked_out) {
  1450. if (WARN_ON(tp->fackets_out))
  1451. tp->fackets_out = 0;
  1452. tcp_highest_sack_reset(sk);
  1453. }
  1454. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1455. num_sacks, prior_snd_una);
  1456. if (found_dup_sack) {
  1457. state->flag |= FLAG_DSACKING_ACK;
  1458. tp->delivered++; /* A spurious retransmission is delivered */
  1459. }
  1460. /* Eliminate too old ACKs, but take into
  1461. * account more or less fresh ones, they can
  1462. * contain valid SACK info.
  1463. */
  1464. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1465. return 0;
  1466. if (!tp->packets_out)
  1467. goto out;
  1468. used_sacks = 0;
  1469. first_sack_index = 0;
  1470. for (i = 0; i < num_sacks; i++) {
  1471. bool dup_sack = !i && found_dup_sack;
  1472. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1473. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1474. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1475. sp[used_sacks].start_seq,
  1476. sp[used_sacks].end_seq)) {
  1477. int mib_idx;
  1478. if (dup_sack) {
  1479. if (!tp->undo_marker)
  1480. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1481. else
  1482. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1483. } else {
  1484. /* Don't count olds caused by ACK reordering */
  1485. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1486. !after(sp[used_sacks].end_seq, tp->snd_una))
  1487. continue;
  1488. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1489. }
  1490. NET_INC_STATS(sock_net(sk), mib_idx);
  1491. if (i == 0)
  1492. first_sack_index = -1;
  1493. continue;
  1494. }
  1495. /* Ignore very old stuff early */
  1496. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1497. continue;
  1498. used_sacks++;
  1499. }
  1500. /* order SACK blocks to allow in order walk of the retrans queue */
  1501. for (i = used_sacks - 1; i > 0; i--) {
  1502. for (j = 0; j < i; j++) {
  1503. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1504. swap(sp[j], sp[j + 1]);
  1505. /* Track where the first SACK block goes to */
  1506. if (j == first_sack_index)
  1507. first_sack_index = j + 1;
  1508. }
  1509. }
  1510. }
  1511. skb = tcp_write_queue_head(sk);
  1512. state->fack_count = 0;
  1513. i = 0;
  1514. if (!tp->sacked_out) {
  1515. /* It's already past, so skip checking against it */
  1516. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1517. } else {
  1518. cache = tp->recv_sack_cache;
  1519. /* Skip empty blocks in at head of the cache */
  1520. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1521. !cache->end_seq)
  1522. cache++;
  1523. }
  1524. while (i < used_sacks) {
  1525. u32 start_seq = sp[i].start_seq;
  1526. u32 end_seq = sp[i].end_seq;
  1527. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1528. struct tcp_sack_block *next_dup = NULL;
  1529. if (found_dup_sack && ((i + 1) == first_sack_index))
  1530. next_dup = &sp[i + 1];
  1531. /* Skip too early cached blocks */
  1532. while (tcp_sack_cache_ok(tp, cache) &&
  1533. !before(start_seq, cache->end_seq))
  1534. cache++;
  1535. /* Can skip some work by looking recv_sack_cache? */
  1536. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1537. after(end_seq, cache->start_seq)) {
  1538. /* Head todo? */
  1539. if (before(start_seq, cache->start_seq)) {
  1540. skb = tcp_sacktag_skip(skb, sk, state,
  1541. start_seq);
  1542. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1543. state,
  1544. start_seq,
  1545. cache->start_seq,
  1546. dup_sack);
  1547. }
  1548. /* Rest of the block already fully processed? */
  1549. if (!after(end_seq, cache->end_seq))
  1550. goto advance_sp;
  1551. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1552. state,
  1553. cache->end_seq);
  1554. /* ...tail remains todo... */
  1555. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1556. /* ...but better entrypoint exists! */
  1557. skb = tcp_highest_sack(sk);
  1558. if (!skb)
  1559. break;
  1560. state->fack_count = tp->fackets_out;
  1561. cache++;
  1562. goto walk;
  1563. }
  1564. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1565. /* Check overlap against next cached too (past this one already) */
  1566. cache++;
  1567. continue;
  1568. }
  1569. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1570. skb = tcp_highest_sack(sk);
  1571. if (!skb)
  1572. break;
  1573. state->fack_count = tp->fackets_out;
  1574. }
  1575. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1576. walk:
  1577. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1578. start_seq, end_seq, dup_sack);
  1579. advance_sp:
  1580. i++;
  1581. }
  1582. /* Clear the head of the cache sack blocks so we can skip it next time */
  1583. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1584. tp->recv_sack_cache[i].start_seq = 0;
  1585. tp->recv_sack_cache[i].end_seq = 0;
  1586. }
  1587. for (j = 0; j < used_sacks; j++)
  1588. tp->recv_sack_cache[i++] = sp[j];
  1589. if ((state->reord < tp->fackets_out) &&
  1590. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1591. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1592. tcp_verify_left_out(tp);
  1593. out:
  1594. #if FASTRETRANS_DEBUG > 0
  1595. WARN_ON((int)tp->sacked_out < 0);
  1596. WARN_ON((int)tp->lost_out < 0);
  1597. WARN_ON((int)tp->retrans_out < 0);
  1598. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1599. #endif
  1600. return state->flag;
  1601. }
  1602. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1603. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1604. */
  1605. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1606. {
  1607. u32 holes;
  1608. holes = max(tp->lost_out, 1U);
  1609. holes = min(holes, tp->packets_out);
  1610. if ((tp->sacked_out + holes) > tp->packets_out) {
  1611. tp->sacked_out = tp->packets_out - holes;
  1612. return true;
  1613. }
  1614. return false;
  1615. }
  1616. /* If we receive more dupacks than we expected counting segments
  1617. * in assumption of absent reordering, interpret this as reordering.
  1618. * The only another reason could be bug in receiver TCP.
  1619. */
  1620. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1621. {
  1622. struct tcp_sock *tp = tcp_sk(sk);
  1623. if (tcp_limit_reno_sacked(tp))
  1624. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1625. }
  1626. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1627. static void tcp_add_reno_sack(struct sock *sk)
  1628. {
  1629. struct tcp_sock *tp = tcp_sk(sk);
  1630. u32 prior_sacked = tp->sacked_out;
  1631. tp->sacked_out++;
  1632. tcp_check_reno_reordering(sk, 0);
  1633. if (tp->sacked_out > prior_sacked)
  1634. tp->delivered++; /* Some out-of-order packet is delivered */
  1635. tcp_verify_left_out(tp);
  1636. }
  1637. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1638. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1639. {
  1640. struct tcp_sock *tp = tcp_sk(sk);
  1641. if (acked > 0) {
  1642. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1643. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1644. if (acked - 1 >= tp->sacked_out)
  1645. tp->sacked_out = 0;
  1646. else
  1647. tp->sacked_out -= acked - 1;
  1648. }
  1649. tcp_check_reno_reordering(sk, acked);
  1650. tcp_verify_left_out(tp);
  1651. }
  1652. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1653. {
  1654. tp->sacked_out = 0;
  1655. }
  1656. void tcp_clear_retrans(struct tcp_sock *tp)
  1657. {
  1658. tp->retrans_out = 0;
  1659. tp->lost_out = 0;
  1660. tp->undo_marker = 0;
  1661. tp->undo_retrans = -1;
  1662. tp->fackets_out = 0;
  1663. tp->sacked_out = 0;
  1664. }
  1665. static inline void tcp_init_undo(struct tcp_sock *tp)
  1666. {
  1667. tp->undo_marker = tp->snd_una;
  1668. /* Retransmission still in flight may cause DSACKs later. */
  1669. tp->undo_retrans = tp->retrans_out ? : -1;
  1670. }
  1671. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1672. * and reset tags completely, otherwise preserve SACKs. If receiver
  1673. * dropped its ofo queue, we will know this due to reneging detection.
  1674. */
  1675. void tcp_enter_loss(struct sock *sk)
  1676. {
  1677. const struct inet_connection_sock *icsk = inet_csk(sk);
  1678. struct tcp_sock *tp = tcp_sk(sk);
  1679. struct net *net = sock_net(sk);
  1680. struct sk_buff *skb;
  1681. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1682. bool is_reneg; /* is receiver reneging on SACKs? */
  1683. bool mark_lost;
  1684. /* Reduce ssthresh if it has not yet been made inside this window. */
  1685. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1686. !after(tp->high_seq, tp->snd_una) ||
  1687. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1688. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1689. tp->prior_cwnd = tp->snd_cwnd;
  1690. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1691. tcp_ca_event(sk, CA_EVENT_LOSS);
  1692. tcp_init_undo(tp);
  1693. }
  1694. tp->snd_cwnd = 1;
  1695. tp->snd_cwnd_cnt = 0;
  1696. tp->snd_cwnd_stamp = tcp_jiffies32;
  1697. tp->retrans_out = 0;
  1698. tp->lost_out = 0;
  1699. if (tcp_is_reno(tp))
  1700. tcp_reset_reno_sack(tp);
  1701. skb = tcp_write_queue_head(sk);
  1702. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1703. if (is_reneg) {
  1704. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1705. tp->sacked_out = 0;
  1706. tp->fackets_out = 0;
  1707. }
  1708. tcp_clear_all_retrans_hints(tp);
  1709. tcp_for_write_queue(skb, sk) {
  1710. if (skb == tcp_send_head(sk))
  1711. break;
  1712. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1713. is_reneg);
  1714. if (mark_lost)
  1715. tcp_sum_lost(tp, skb);
  1716. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1717. if (mark_lost) {
  1718. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1719. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1720. tp->lost_out += tcp_skb_pcount(skb);
  1721. }
  1722. }
  1723. tcp_verify_left_out(tp);
  1724. /* Timeout in disordered state after receiving substantial DUPACKs
  1725. * suggests that the degree of reordering is over-estimated.
  1726. */
  1727. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1728. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1729. tp->reordering = min_t(unsigned int, tp->reordering,
  1730. net->ipv4.sysctl_tcp_reordering);
  1731. tcp_set_ca_state(sk, TCP_CA_Loss);
  1732. tp->high_seq = tp->snd_nxt;
  1733. tcp_ecn_queue_cwr(tp);
  1734. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1735. * loss recovery is underway except recurring timeout(s) on
  1736. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1737. *
  1738. * In theory F-RTO can be used repeatedly during loss recovery.
  1739. * In practice this interacts badly with broken middle-boxes that
  1740. * falsely raise the receive window, which results in repeated
  1741. * timeouts and stop-and-go behavior.
  1742. */
  1743. tp->frto = sysctl_tcp_frto &&
  1744. (new_recovery || icsk->icsk_retransmits) &&
  1745. !inet_csk(sk)->icsk_mtup.probe_size;
  1746. }
  1747. /* If ACK arrived pointing to a remembered SACK, it means that our
  1748. * remembered SACKs do not reflect real state of receiver i.e.
  1749. * receiver _host_ is heavily congested (or buggy).
  1750. *
  1751. * To avoid big spurious retransmission bursts due to transient SACK
  1752. * scoreboard oddities that look like reneging, we give the receiver a
  1753. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1754. * restore sanity to the SACK scoreboard. If the apparent reneging
  1755. * persists until this RTO then we'll clear the SACK scoreboard.
  1756. */
  1757. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1758. {
  1759. if (flag & FLAG_SACK_RENEGING) {
  1760. struct tcp_sock *tp = tcp_sk(sk);
  1761. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1762. msecs_to_jiffies(10));
  1763. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1764. delay, TCP_RTO_MAX);
  1765. return true;
  1766. }
  1767. return false;
  1768. }
  1769. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1770. {
  1771. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1772. }
  1773. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1774. * counter when SACK is enabled (without SACK, sacked_out is used for
  1775. * that purpose).
  1776. *
  1777. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1778. * segments up to the highest received SACK block so far and holes in
  1779. * between them.
  1780. *
  1781. * With reordering, holes may still be in flight, so RFC3517 recovery
  1782. * uses pure sacked_out (total number of SACKed segments) even though
  1783. * it violates the RFC that uses duplicate ACKs, often these are equal
  1784. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1785. * they differ. Since neither occurs due to loss, TCP should really
  1786. * ignore them.
  1787. */
  1788. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1789. {
  1790. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1791. }
  1792. /* Linux NewReno/SACK/FACK/ECN state machine.
  1793. * --------------------------------------
  1794. *
  1795. * "Open" Normal state, no dubious events, fast path.
  1796. * "Disorder" In all the respects it is "Open",
  1797. * but requires a bit more attention. It is entered when
  1798. * we see some SACKs or dupacks. It is split of "Open"
  1799. * mainly to move some processing from fast path to slow one.
  1800. * "CWR" CWND was reduced due to some Congestion Notification event.
  1801. * It can be ECN, ICMP source quench, local device congestion.
  1802. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1803. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1804. *
  1805. * tcp_fastretrans_alert() is entered:
  1806. * - each incoming ACK, if state is not "Open"
  1807. * - when arrived ACK is unusual, namely:
  1808. * * SACK
  1809. * * Duplicate ACK.
  1810. * * ECN ECE.
  1811. *
  1812. * Counting packets in flight is pretty simple.
  1813. *
  1814. * in_flight = packets_out - left_out + retrans_out
  1815. *
  1816. * packets_out is SND.NXT-SND.UNA counted in packets.
  1817. *
  1818. * retrans_out is number of retransmitted segments.
  1819. *
  1820. * left_out is number of segments left network, but not ACKed yet.
  1821. *
  1822. * left_out = sacked_out + lost_out
  1823. *
  1824. * sacked_out: Packets, which arrived to receiver out of order
  1825. * and hence not ACKed. With SACKs this number is simply
  1826. * amount of SACKed data. Even without SACKs
  1827. * it is easy to give pretty reliable estimate of this number,
  1828. * counting duplicate ACKs.
  1829. *
  1830. * lost_out: Packets lost by network. TCP has no explicit
  1831. * "loss notification" feedback from network (for now).
  1832. * It means that this number can be only _guessed_.
  1833. * Actually, it is the heuristics to predict lossage that
  1834. * distinguishes different algorithms.
  1835. *
  1836. * F.e. after RTO, when all the queue is considered as lost,
  1837. * lost_out = packets_out and in_flight = retrans_out.
  1838. *
  1839. * Essentially, we have now a few algorithms detecting
  1840. * lost packets.
  1841. *
  1842. * If the receiver supports SACK:
  1843. *
  1844. * RFC6675/3517: It is the conventional algorithm. A packet is
  1845. * considered lost if the number of higher sequence packets
  1846. * SACKed is greater than or equal the DUPACK thoreshold
  1847. * (reordering). This is implemented in tcp_mark_head_lost and
  1848. * tcp_update_scoreboard.
  1849. *
  1850. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1851. * (2017-) that checks timing instead of counting DUPACKs.
  1852. * Essentially a packet is considered lost if it's not S/ACKed
  1853. * after RTT + reordering_window, where both metrics are
  1854. * dynamically measured and adjusted. This is implemented in
  1855. * tcp_rack_mark_lost.
  1856. *
  1857. * FACK (Disabled by default. Subsumbed by RACK):
  1858. * It is the simplest heuristics. As soon as we decided
  1859. * that something is lost, we decide that _all_ not SACKed
  1860. * packets until the most forward SACK are lost. I.e.
  1861. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1862. * It is absolutely correct estimate, if network does not reorder
  1863. * packets. And it loses any connection to reality when reordering
  1864. * takes place. We use FACK by default until reordering
  1865. * is suspected on the path to this destination.
  1866. *
  1867. * If the receiver does not support SACK:
  1868. *
  1869. * NewReno (RFC6582): in Recovery we assume that one segment
  1870. * is lost (classic Reno). While we are in Recovery and
  1871. * a partial ACK arrives, we assume that one more packet
  1872. * is lost (NewReno). This heuristics are the same in NewReno
  1873. * and SACK.
  1874. *
  1875. * Really tricky (and requiring careful tuning) part of algorithm
  1876. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1877. * The first determines the moment _when_ we should reduce CWND and,
  1878. * hence, slow down forward transmission. In fact, it determines the moment
  1879. * when we decide that hole is caused by loss, rather than by a reorder.
  1880. *
  1881. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1882. * holes, caused by lost packets.
  1883. *
  1884. * And the most logically complicated part of algorithm is undo
  1885. * heuristics. We detect false retransmits due to both too early
  1886. * fast retransmit (reordering) and underestimated RTO, analyzing
  1887. * timestamps and D-SACKs. When we detect that some segments were
  1888. * retransmitted by mistake and CWND reduction was wrong, we undo
  1889. * window reduction and abort recovery phase. This logic is hidden
  1890. * inside several functions named tcp_try_undo_<something>.
  1891. */
  1892. /* This function decides, when we should leave Disordered state
  1893. * and enter Recovery phase, reducing congestion window.
  1894. *
  1895. * Main question: may we further continue forward transmission
  1896. * with the same cwnd?
  1897. */
  1898. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1899. {
  1900. struct tcp_sock *tp = tcp_sk(sk);
  1901. /* Trick#1: The loss is proven. */
  1902. if (tp->lost_out)
  1903. return true;
  1904. /* Not-A-Trick#2 : Classic rule... */
  1905. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1906. return true;
  1907. return false;
  1908. }
  1909. /* Detect loss in event "A" above by marking head of queue up as lost.
  1910. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1911. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1912. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1913. * the maximum SACKed segments to pass before reaching this limit.
  1914. */
  1915. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1916. {
  1917. struct tcp_sock *tp = tcp_sk(sk);
  1918. struct sk_buff *skb;
  1919. int cnt, oldcnt, lost;
  1920. unsigned int mss;
  1921. /* Use SACK to deduce losses of new sequences sent during recovery */
  1922. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1923. WARN_ON(packets > tp->packets_out);
  1924. if (tp->lost_skb_hint) {
  1925. skb = tp->lost_skb_hint;
  1926. cnt = tp->lost_cnt_hint;
  1927. /* Head already handled? */
  1928. if (mark_head && skb != tcp_write_queue_head(sk))
  1929. return;
  1930. } else {
  1931. skb = tcp_write_queue_head(sk);
  1932. cnt = 0;
  1933. }
  1934. tcp_for_write_queue_from(skb, sk) {
  1935. if (skb == tcp_send_head(sk))
  1936. break;
  1937. /* TODO: do this better */
  1938. /* this is not the most efficient way to do this... */
  1939. tp->lost_skb_hint = skb;
  1940. tp->lost_cnt_hint = cnt;
  1941. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1942. break;
  1943. oldcnt = cnt;
  1944. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1945. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1946. cnt += tcp_skb_pcount(skb);
  1947. if (cnt > packets) {
  1948. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1949. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1950. (oldcnt >= packets))
  1951. break;
  1952. mss = tcp_skb_mss(skb);
  1953. /* If needed, chop off the prefix to mark as lost. */
  1954. lost = (packets - oldcnt) * mss;
  1955. if (lost < skb->len &&
  1956. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1957. break;
  1958. cnt = packets;
  1959. }
  1960. tcp_skb_mark_lost(tp, skb);
  1961. if (mark_head)
  1962. break;
  1963. }
  1964. tcp_verify_left_out(tp);
  1965. }
  1966. /* Account newly detected lost packet(s) */
  1967. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1968. {
  1969. struct tcp_sock *tp = tcp_sk(sk);
  1970. if (tcp_is_reno(tp)) {
  1971. tcp_mark_head_lost(sk, 1, 1);
  1972. } else if (tcp_is_fack(tp)) {
  1973. int lost = tp->fackets_out - tp->reordering;
  1974. if (lost <= 0)
  1975. lost = 1;
  1976. tcp_mark_head_lost(sk, lost, 0);
  1977. } else {
  1978. int sacked_upto = tp->sacked_out - tp->reordering;
  1979. if (sacked_upto >= 0)
  1980. tcp_mark_head_lost(sk, sacked_upto, 0);
  1981. else if (fast_rexmit)
  1982. tcp_mark_head_lost(sk, 1, 1);
  1983. }
  1984. }
  1985. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1986. {
  1987. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1988. before(tp->rx_opt.rcv_tsecr, when);
  1989. }
  1990. /* skb is spurious retransmitted if the returned timestamp echo
  1991. * reply is prior to the skb transmission time
  1992. */
  1993. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1994. const struct sk_buff *skb)
  1995. {
  1996. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1997. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1998. }
  1999. /* Nothing was retransmitted or returned timestamp is less
  2000. * than timestamp of the first retransmission.
  2001. */
  2002. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2003. {
  2004. return !tp->retrans_stamp ||
  2005. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2006. }
  2007. /* Undo procedures. */
  2008. /* We can clear retrans_stamp when there are no retransmissions in the
  2009. * window. It would seem that it is trivially available for us in
  2010. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2011. * what will happen if errors occur when sending retransmission for the
  2012. * second time. ...It could the that such segment has only
  2013. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2014. * the head skb is enough except for some reneging corner cases that
  2015. * are not worth the effort.
  2016. *
  2017. * Main reason for all this complexity is the fact that connection dying
  2018. * time now depends on the validity of the retrans_stamp, in particular,
  2019. * that successive retransmissions of a segment must not advance
  2020. * retrans_stamp under any conditions.
  2021. */
  2022. static bool tcp_any_retrans_done(const struct sock *sk)
  2023. {
  2024. const struct tcp_sock *tp = tcp_sk(sk);
  2025. struct sk_buff *skb;
  2026. if (tp->retrans_out)
  2027. return true;
  2028. skb = tcp_write_queue_head(sk);
  2029. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2030. return true;
  2031. return false;
  2032. }
  2033. #if FASTRETRANS_DEBUG > 1
  2034. static void DBGUNDO(struct sock *sk, const char *msg)
  2035. {
  2036. struct tcp_sock *tp = tcp_sk(sk);
  2037. struct inet_sock *inet = inet_sk(sk);
  2038. if (sk->sk_family == AF_INET) {
  2039. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2040. msg,
  2041. &inet->inet_daddr, ntohs(inet->inet_dport),
  2042. tp->snd_cwnd, tcp_left_out(tp),
  2043. tp->snd_ssthresh, tp->prior_ssthresh,
  2044. tp->packets_out);
  2045. }
  2046. #if IS_ENABLED(CONFIG_IPV6)
  2047. else if (sk->sk_family == AF_INET6) {
  2048. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2049. msg,
  2050. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2051. tp->snd_cwnd, tcp_left_out(tp),
  2052. tp->snd_ssthresh, tp->prior_ssthresh,
  2053. tp->packets_out);
  2054. }
  2055. #endif
  2056. }
  2057. #else
  2058. #define DBGUNDO(x...) do { } while (0)
  2059. #endif
  2060. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2061. {
  2062. struct tcp_sock *tp = tcp_sk(sk);
  2063. if (unmark_loss) {
  2064. struct sk_buff *skb;
  2065. tcp_for_write_queue(skb, sk) {
  2066. if (skb == tcp_send_head(sk))
  2067. break;
  2068. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2069. }
  2070. tp->lost_out = 0;
  2071. tcp_clear_all_retrans_hints(tp);
  2072. }
  2073. if (tp->prior_ssthresh) {
  2074. const struct inet_connection_sock *icsk = inet_csk(sk);
  2075. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2076. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2077. tp->snd_ssthresh = tp->prior_ssthresh;
  2078. tcp_ecn_withdraw_cwr(tp);
  2079. }
  2080. }
  2081. tp->snd_cwnd_stamp = tcp_jiffies32;
  2082. tp->undo_marker = 0;
  2083. }
  2084. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2085. {
  2086. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2087. }
  2088. /* People celebrate: "We love our President!" */
  2089. static bool tcp_try_undo_recovery(struct sock *sk)
  2090. {
  2091. struct tcp_sock *tp = tcp_sk(sk);
  2092. if (tcp_may_undo(tp)) {
  2093. int mib_idx;
  2094. /* Happy end! We did not retransmit anything
  2095. * or our original transmission succeeded.
  2096. */
  2097. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2098. tcp_undo_cwnd_reduction(sk, false);
  2099. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2100. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2101. else
  2102. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2103. NET_INC_STATS(sock_net(sk), mib_idx);
  2104. }
  2105. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2106. /* Hold old state until something *above* high_seq
  2107. * is ACKed. For Reno it is MUST to prevent false
  2108. * fast retransmits (RFC2582). SACK TCP is safe. */
  2109. if (!tcp_any_retrans_done(sk))
  2110. tp->retrans_stamp = 0;
  2111. return true;
  2112. }
  2113. tcp_set_ca_state(sk, TCP_CA_Open);
  2114. return false;
  2115. }
  2116. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2117. static bool tcp_try_undo_dsack(struct sock *sk)
  2118. {
  2119. struct tcp_sock *tp = tcp_sk(sk);
  2120. if (tp->undo_marker && !tp->undo_retrans) {
  2121. DBGUNDO(sk, "D-SACK");
  2122. tcp_undo_cwnd_reduction(sk, false);
  2123. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2124. return true;
  2125. }
  2126. return false;
  2127. }
  2128. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2129. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2130. {
  2131. struct tcp_sock *tp = tcp_sk(sk);
  2132. if (frto_undo || tcp_may_undo(tp)) {
  2133. tcp_undo_cwnd_reduction(sk, true);
  2134. DBGUNDO(sk, "partial loss");
  2135. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2136. if (frto_undo)
  2137. NET_INC_STATS(sock_net(sk),
  2138. LINUX_MIB_TCPSPURIOUSRTOS);
  2139. inet_csk(sk)->icsk_retransmits = 0;
  2140. if (frto_undo || tcp_is_sack(tp))
  2141. tcp_set_ca_state(sk, TCP_CA_Open);
  2142. return true;
  2143. }
  2144. return false;
  2145. }
  2146. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2147. * It computes the number of packets to send (sndcnt) based on packets newly
  2148. * delivered:
  2149. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2150. * cwnd reductions across a full RTT.
  2151. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2152. * But when the retransmits are acked without further losses, PRR
  2153. * slow starts cwnd up to ssthresh to speed up the recovery.
  2154. */
  2155. static void tcp_init_cwnd_reduction(struct sock *sk)
  2156. {
  2157. struct tcp_sock *tp = tcp_sk(sk);
  2158. tp->high_seq = tp->snd_nxt;
  2159. tp->tlp_high_seq = 0;
  2160. tp->snd_cwnd_cnt = 0;
  2161. tp->prior_cwnd = tp->snd_cwnd;
  2162. tp->prr_delivered = 0;
  2163. tp->prr_out = 0;
  2164. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2165. tcp_ecn_queue_cwr(tp);
  2166. }
  2167. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. int sndcnt = 0;
  2171. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2172. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2173. return;
  2174. tp->prr_delivered += newly_acked_sacked;
  2175. if (delta < 0) {
  2176. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2177. tp->prior_cwnd - 1;
  2178. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2179. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2180. !(flag & FLAG_LOST_RETRANS)) {
  2181. sndcnt = min_t(int, delta,
  2182. max_t(int, tp->prr_delivered - tp->prr_out,
  2183. newly_acked_sacked) + 1);
  2184. } else {
  2185. sndcnt = min(delta, newly_acked_sacked);
  2186. }
  2187. /* Force a fast retransmit upon entering fast recovery */
  2188. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2189. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2190. }
  2191. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2192. {
  2193. struct tcp_sock *tp = tcp_sk(sk);
  2194. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2195. return;
  2196. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2197. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2198. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2199. tp->snd_cwnd = tp->snd_ssthresh;
  2200. tp->snd_cwnd_stamp = tcp_jiffies32;
  2201. }
  2202. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2203. }
  2204. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2205. void tcp_enter_cwr(struct sock *sk)
  2206. {
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. tp->prior_ssthresh = 0;
  2209. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2210. tp->undo_marker = 0;
  2211. tcp_init_cwnd_reduction(sk);
  2212. tcp_set_ca_state(sk, TCP_CA_CWR);
  2213. }
  2214. }
  2215. EXPORT_SYMBOL(tcp_enter_cwr);
  2216. static void tcp_try_keep_open(struct sock *sk)
  2217. {
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. int state = TCP_CA_Open;
  2220. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2221. state = TCP_CA_Disorder;
  2222. if (inet_csk(sk)->icsk_ca_state != state) {
  2223. tcp_set_ca_state(sk, state);
  2224. tp->high_seq = tp->snd_nxt;
  2225. }
  2226. }
  2227. static void tcp_try_to_open(struct sock *sk, int flag)
  2228. {
  2229. struct tcp_sock *tp = tcp_sk(sk);
  2230. tcp_verify_left_out(tp);
  2231. if (!tcp_any_retrans_done(sk))
  2232. tp->retrans_stamp = 0;
  2233. if (flag & FLAG_ECE)
  2234. tcp_enter_cwr(sk);
  2235. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2236. tcp_try_keep_open(sk);
  2237. }
  2238. }
  2239. static void tcp_mtup_probe_failed(struct sock *sk)
  2240. {
  2241. struct inet_connection_sock *icsk = inet_csk(sk);
  2242. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2243. icsk->icsk_mtup.probe_size = 0;
  2244. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2245. }
  2246. static void tcp_mtup_probe_success(struct sock *sk)
  2247. {
  2248. struct tcp_sock *tp = tcp_sk(sk);
  2249. struct inet_connection_sock *icsk = inet_csk(sk);
  2250. /* FIXME: breaks with very large cwnd */
  2251. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2252. tp->snd_cwnd = tp->snd_cwnd *
  2253. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2254. icsk->icsk_mtup.probe_size;
  2255. tp->snd_cwnd_cnt = 0;
  2256. tp->snd_cwnd_stamp = tcp_jiffies32;
  2257. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2258. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2259. icsk->icsk_mtup.probe_size = 0;
  2260. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2261. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2262. }
  2263. /* Do a simple retransmit without using the backoff mechanisms in
  2264. * tcp_timer. This is used for path mtu discovery.
  2265. * The socket is already locked here.
  2266. */
  2267. void tcp_simple_retransmit(struct sock *sk)
  2268. {
  2269. const struct inet_connection_sock *icsk = inet_csk(sk);
  2270. struct tcp_sock *tp = tcp_sk(sk);
  2271. struct sk_buff *skb;
  2272. unsigned int mss = tcp_current_mss(sk);
  2273. tcp_for_write_queue(skb, sk) {
  2274. if (skb == tcp_send_head(sk))
  2275. break;
  2276. if (tcp_skb_seglen(skb) > mss &&
  2277. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2278. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2279. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2280. tp->retrans_out -= tcp_skb_pcount(skb);
  2281. }
  2282. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2283. }
  2284. }
  2285. tcp_clear_retrans_hints_partial(tp);
  2286. if (!tp->lost_out)
  2287. return;
  2288. if (tcp_is_reno(tp))
  2289. tcp_limit_reno_sacked(tp);
  2290. tcp_verify_left_out(tp);
  2291. /* Don't muck with the congestion window here.
  2292. * Reason is that we do not increase amount of _data_
  2293. * in network, but units changed and effective
  2294. * cwnd/ssthresh really reduced now.
  2295. */
  2296. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2297. tp->high_seq = tp->snd_nxt;
  2298. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2299. tp->prior_ssthresh = 0;
  2300. tp->undo_marker = 0;
  2301. tcp_set_ca_state(sk, TCP_CA_Loss);
  2302. }
  2303. tcp_xmit_retransmit_queue(sk);
  2304. }
  2305. EXPORT_SYMBOL(tcp_simple_retransmit);
  2306. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2307. {
  2308. struct tcp_sock *tp = tcp_sk(sk);
  2309. int mib_idx;
  2310. if (tcp_is_reno(tp))
  2311. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2312. else
  2313. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2314. NET_INC_STATS(sock_net(sk), mib_idx);
  2315. tp->prior_ssthresh = 0;
  2316. tcp_init_undo(tp);
  2317. if (!tcp_in_cwnd_reduction(sk)) {
  2318. if (!ece_ack)
  2319. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2320. tcp_init_cwnd_reduction(sk);
  2321. }
  2322. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2323. }
  2324. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2325. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2326. */
  2327. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2328. int *rexmit)
  2329. {
  2330. struct tcp_sock *tp = tcp_sk(sk);
  2331. bool recovered = !before(tp->snd_una, tp->high_seq);
  2332. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2333. tcp_try_undo_loss(sk, false))
  2334. return;
  2335. /* The ACK (s)acks some never-retransmitted data meaning not all
  2336. * the data packets before the timeout were lost. Therefore we
  2337. * undo the congestion window and state. This is essentially
  2338. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2339. * a retransmitted skb is permantly marked, we can apply such an
  2340. * operation even if F-RTO was not used.
  2341. */
  2342. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2343. tcp_try_undo_loss(sk, tp->undo_marker))
  2344. return;
  2345. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2346. if (after(tp->snd_nxt, tp->high_seq)) {
  2347. if (flag & FLAG_DATA_SACKED || is_dupack)
  2348. tp->frto = 0; /* Step 3.a. loss was real */
  2349. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2350. tp->high_seq = tp->snd_nxt;
  2351. /* Step 2.b. Try send new data (but deferred until cwnd
  2352. * is updated in tcp_ack()). Otherwise fall back to
  2353. * the conventional recovery.
  2354. */
  2355. if (tcp_send_head(sk) &&
  2356. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2357. *rexmit = REXMIT_NEW;
  2358. return;
  2359. }
  2360. tp->frto = 0;
  2361. }
  2362. }
  2363. if (recovered) {
  2364. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2365. tcp_try_undo_recovery(sk);
  2366. return;
  2367. }
  2368. if (tcp_is_reno(tp)) {
  2369. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2370. * delivered. Lower inflight to clock out (re)tranmissions.
  2371. */
  2372. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2373. tcp_add_reno_sack(sk);
  2374. else if (flag & FLAG_SND_UNA_ADVANCED)
  2375. tcp_reset_reno_sack(tp);
  2376. }
  2377. *rexmit = REXMIT_LOST;
  2378. }
  2379. /* Undo during fast recovery after partial ACK. */
  2380. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2381. {
  2382. struct tcp_sock *tp = tcp_sk(sk);
  2383. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2384. /* Plain luck! Hole if filled with delayed
  2385. * packet, rather than with a retransmit.
  2386. */
  2387. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2388. /* We are getting evidence that the reordering degree is higher
  2389. * than we realized. If there are no retransmits out then we
  2390. * can undo. Otherwise we clock out new packets but do not
  2391. * mark more packets lost or retransmit more.
  2392. */
  2393. if (tp->retrans_out)
  2394. return true;
  2395. if (!tcp_any_retrans_done(sk))
  2396. tp->retrans_stamp = 0;
  2397. DBGUNDO(sk, "partial recovery");
  2398. tcp_undo_cwnd_reduction(sk, true);
  2399. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2400. tcp_try_keep_open(sk);
  2401. return true;
  2402. }
  2403. return false;
  2404. }
  2405. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2406. {
  2407. struct tcp_sock *tp = tcp_sk(sk);
  2408. /* Use RACK to detect loss */
  2409. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2410. u32 prior_retrans = tp->retrans_out;
  2411. tcp_rack_mark_lost(sk);
  2412. if (prior_retrans > tp->retrans_out)
  2413. *ack_flag |= FLAG_LOST_RETRANS;
  2414. }
  2415. }
  2416. /* Process an event, which can update packets-in-flight not trivially.
  2417. * Main goal of this function is to calculate new estimate for left_out,
  2418. * taking into account both packets sitting in receiver's buffer and
  2419. * packets lost by network.
  2420. *
  2421. * Besides that it updates the congestion state when packet loss or ECN
  2422. * is detected. But it does not reduce the cwnd, it is done by the
  2423. * congestion control later.
  2424. *
  2425. * It does _not_ decide what to send, it is made in function
  2426. * tcp_xmit_retransmit_queue().
  2427. */
  2428. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2429. bool is_dupack, int *ack_flag, int *rexmit)
  2430. {
  2431. struct inet_connection_sock *icsk = inet_csk(sk);
  2432. struct tcp_sock *tp = tcp_sk(sk);
  2433. int fast_rexmit = 0, flag = *ack_flag;
  2434. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2435. (tcp_fackets_out(tp) > tp->reordering));
  2436. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2437. tp->sacked_out = 0;
  2438. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2439. tp->fackets_out = 0;
  2440. /* Now state machine starts.
  2441. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2442. if (flag & FLAG_ECE)
  2443. tp->prior_ssthresh = 0;
  2444. /* B. In all the states check for reneging SACKs. */
  2445. if (tcp_check_sack_reneging(sk, flag))
  2446. return;
  2447. /* C. Check consistency of the current state. */
  2448. tcp_verify_left_out(tp);
  2449. /* D. Check state exit conditions. State can be terminated
  2450. * when high_seq is ACKed. */
  2451. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2452. WARN_ON(tp->retrans_out != 0);
  2453. tp->retrans_stamp = 0;
  2454. } else if (!before(tp->snd_una, tp->high_seq)) {
  2455. switch (icsk->icsk_ca_state) {
  2456. case TCP_CA_CWR:
  2457. /* CWR is to be held something *above* high_seq
  2458. * is ACKed for CWR bit to reach receiver. */
  2459. if (tp->snd_una != tp->high_seq) {
  2460. tcp_end_cwnd_reduction(sk);
  2461. tcp_set_ca_state(sk, TCP_CA_Open);
  2462. }
  2463. break;
  2464. case TCP_CA_Recovery:
  2465. if (tcp_is_reno(tp))
  2466. tcp_reset_reno_sack(tp);
  2467. if (tcp_try_undo_recovery(sk))
  2468. return;
  2469. tcp_end_cwnd_reduction(sk);
  2470. break;
  2471. }
  2472. }
  2473. /* E. Process state. */
  2474. switch (icsk->icsk_ca_state) {
  2475. case TCP_CA_Recovery:
  2476. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2477. if (tcp_is_reno(tp) && is_dupack)
  2478. tcp_add_reno_sack(sk);
  2479. } else {
  2480. if (tcp_try_undo_partial(sk, acked))
  2481. return;
  2482. /* Partial ACK arrived. Force fast retransmit. */
  2483. do_lost = tcp_is_reno(tp) ||
  2484. tcp_fackets_out(tp) > tp->reordering;
  2485. }
  2486. if (tcp_try_undo_dsack(sk)) {
  2487. tcp_try_keep_open(sk);
  2488. return;
  2489. }
  2490. tcp_rack_identify_loss(sk, ack_flag);
  2491. break;
  2492. case TCP_CA_Loss:
  2493. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2494. tcp_rack_identify_loss(sk, ack_flag);
  2495. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2496. (*ack_flag & FLAG_LOST_RETRANS)))
  2497. return;
  2498. /* Change state if cwnd is undone or retransmits are lost */
  2499. default:
  2500. if (tcp_is_reno(tp)) {
  2501. if (flag & FLAG_SND_UNA_ADVANCED)
  2502. tcp_reset_reno_sack(tp);
  2503. if (is_dupack)
  2504. tcp_add_reno_sack(sk);
  2505. }
  2506. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2507. tcp_try_undo_dsack(sk);
  2508. tcp_rack_identify_loss(sk, ack_flag);
  2509. if (!tcp_time_to_recover(sk, flag)) {
  2510. tcp_try_to_open(sk, flag);
  2511. return;
  2512. }
  2513. /* MTU probe failure: don't reduce cwnd */
  2514. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2515. icsk->icsk_mtup.probe_size &&
  2516. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2517. tcp_mtup_probe_failed(sk);
  2518. /* Restores the reduction we did in tcp_mtup_probe() */
  2519. tp->snd_cwnd++;
  2520. tcp_simple_retransmit(sk);
  2521. return;
  2522. }
  2523. /* Otherwise enter Recovery state */
  2524. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2525. fast_rexmit = 1;
  2526. }
  2527. if (do_lost)
  2528. tcp_update_scoreboard(sk, fast_rexmit);
  2529. *rexmit = REXMIT_LOST;
  2530. }
  2531. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2532. {
  2533. struct tcp_sock *tp = tcp_sk(sk);
  2534. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2535. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2536. rtt_us ? : jiffies_to_usecs(1));
  2537. }
  2538. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2539. long seq_rtt_us, long sack_rtt_us,
  2540. long ca_rtt_us, struct rate_sample *rs)
  2541. {
  2542. const struct tcp_sock *tp = tcp_sk(sk);
  2543. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2544. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2545. * Karn's algorithm forbids taking RTT if some retransmitted data
  2546. * is acked (RFC6298).
  2547. */
  2548. if (seq_rtt_us < 0)
  2549. seq_rtt_us = sack_rtt_us;
  2550. /* RTTM Rule: A TSecr value received in a segment is used to
  2551. * update the averaged RTT measurement only if the segment
  2552. * acknowledges some new data, i.e., only if it advances the
  2553. * left edge of the send window.
  2554. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2555. */
  2556. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2557. flag & FLAG_ACKED) {
  2558. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2559. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2560. seq_rtt_us = ca_rtt_us = delta_us;
  2561. }
  2562. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2563. if (seq_rtt_us < 0)
  2564. return false;
  2565. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2566. * always taken together with ACK, SACK, or TS-opts. Any negative
  2567. * values will be skipped with the seq_rtt_us < 0 check above.
  2568. */
  2569. tcp_update_rtt_min(sk, ca_rtt_us);
  2570. tcp_rtt_estimator(sk, seq_rtt_us);
  2571. tcp_set_rto(sk);
  2572. /* RFC6298: only reset backoff on valid RTT measurement. */
  2573. inet_csk(sk)->icsk_backoff = 0;
  2574. return true;
  2575. }
  2576. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2577. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2578. {
  2579. struct rate_sample rs;
  2580. long rtt_us = -1L;
  2581. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2582. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2583. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2584. }
  2585. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2586. {
  2587. const struct inet_connection_sock *icsk = inet_csk(sk);
  2588. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2589. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2590. }
  2591. /* Restart timer after forward progress on connection.
  2592. * RFC2988 recommends to restart timer to now+rto.
  2593. */
  2594. void tcp_rearm_rto(struct sock *sk)
  2595. {
  2596. const struct inet_connection_sock *icsk = inet_csk(sk);
  2597. struct tcp_sock *tp = tcp_sk(sk);
  2598. /* If the retrans timer is currently being used by Fast Open
  2599. * for SYN-ACK retrans purpose, stay put.
  2600. */
  2601. if (tp->fastopen_rsk)
  2602. return;
  2603. if (!tp->packets_out) {
  2604. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2605. } else {
  2606. u32 rto = inet_csk(sk)->icsk_rto;
  2607. /* Offset the time elapsed after installing regular RTO */
  2608. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2609. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2610. s64 delta_us = tcp_rto_delta_us(sk);
  2611. /* delta_us may not be positive if the socket is locked
  2612. * when the retrans timer fires and is rescheduled.
  2613. */
  2614. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2615. }
  2616. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2617. TCP_RTO_MAX);
  2618. }
  2619. }
  2620. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2621. static void tcp_set_xmit_timer(struct sock *sk)
  2622. {
  2623. if (!tcp_schedule_loss_probe(sk))
  2624. tcp_rearm_rto(sk);
  2625. }
  2626. /* If we get here, the whole TSO packet has not been acked. */
  2627. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2628. {
  2629. struct tcp_sock *tp = tcp_sk(sk);
  2630. u32 packets_acked;
  2631. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2632. packets_acked = tcp_skb_pcount(skb);
  2633. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2634. return 0;
  2635. packets_acked -= tcp_skb_pcount(skb);
  2636. if (packets_acked) {
  2637. BUG_ON(tcp_skb_pcount(skb) == 0);
  2638. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2639. }
  2640. return packets_acked;
  2641. }
  2642. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2643. u32 prior_snd_una)
  2644. {
  2645. const struct skb_shared_info *shinfo;
  2646. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2647. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2648. return;
  2649. shinfo = skb_shinfo(skb);
  2650. if (!before(shinfo->tskey, prior_snd_una) &&
  2651. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2652. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2653. }
  2654. /* Remove acknowledged frames from the retransmission queue. If our packet
  2655. * is before the ack sequence we can discard it as it's confirmed to have
  2656. * arrived at the other end.
  2657. */
  2658. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2659. u32 prior_snd_una, int *acked,
  2660. struct tcp_sacktag_state *sack)
  2661. {
  2662. const struct inet_connection_sock *icsk = inet_csk(sk);
  2663. u64 first_ackt, last_ackt;
  2664. struct tcp_sock *tp = tcp_sk(sk);
  2665. u32 prior_sacked = tp->sacked_out;
  2666. u32 reord = tp->packets_out;
  2667. bool fully_acked = true;
  2668. long sack_rtt_us = -1L;
  2669. long seq_rtt_us = -1L;
  2670. long ca_rtt_us = -1L;
  2671. struct sk_buff *skb;
  2672. u32 pkts_acked = 0;
  2673. u32 last_in_flight = 0;
  2674. bool rtt_update;
  2675. int flag = 0;
  2676. first_ackt = 0;
  2677. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2678. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2679. u8 sacked = scb->sacked;
  2680. u32 acked_pcount;
  2681. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2682. /* Determine how many packets and what bytes were acked, tso and else */
  2683. if (after(scb->end_seq, tp->snd_una)) {
  2684. if (tcp_skb_pcount(skb) == 1 ||
  2685. !after(tp->snd_una, scb->seq))
  2686. break;
  2687. acked_pcount = tcp_tso_acked(sk, skb);
  2688. if (!acked_pcount)
  2689. break;
  2690. fully_acked = false;
  2691. } else {
  2692. /* Speedup tcp_unlink_write_queue() and next loop */
  2693. prefetchw(skb->next);
  2694. acked_pcount = tcp_skb_pcount(skb);
  2695. }
  2696. if (unlikely(sacked & TCPCB_RETRANS)) {
  2697. if (sacked & TCPCB_SACKED_RETRANS)
  2698. tp->retrans_out -= acked_pcount;
  2699. flag |= FLAG_RETRANS_DATA_ACKED;
  2700. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2701. last_ackt = skb->skb_mstamp;
  2702. WARN_ON_ONCE(last_ackt == 0);
  2703. if (!first_ackt)
  2704. first_ackt = last_ackt;
  2705. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2706. reord = min(pkts_acked, reord);
  2707. if (!after(scb->end_seq, tp->high_seq))
  2708. flag |= FLAG_ORIG_SACK_ACKED;
  2709. }
  2710. if (sacked & TCPCB_SACKED_ACKED) {
  2711. tp->sacked_out -= acked_pcount;
  2712. } else if (tcp_is_sack(tp)) {
  2713. tp->delivered += acked_pcount;
  2714. if (!tcp_skb_spurious_retrans(tp, skb))
  2715. tcp_rack_advance(tp, sacked, scb->end_seq,
  2716. skb->skb_mstamp);
  2717. }
  2718. if (sacked & TCPCB_LOST)
  2719. tp->lost_out -= acked_pcount;
  2720. tp->packets_out -= acked_pcount;
  2721. pkts_acked += acked_pcount;
  2722. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2723. /* Initial outgoing SYN's get put onto the write_queue
  2724. * just like anything else we transmit. It is not
  2725. * true data, and if we misinform our callers that
  2726. * this ACK acks real data, we will erroneously exit
  2727. * connection startup slow start one packet too
  2728. * quickly. This is severely frowned upon behavior.
  2729. */
  2730. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2731. flag |= FLAG_DATA_ACKED;
  2732. } else {
  2733. flag |= FLAG_SYN_ACKED;
  2734. tp->retrans_stamp = 0;
  2735. }
  2736. if (!fully_acked)
  2737. break;
  2738. tcp_unlink_write_queue(skb, sk);
  2739. sk_wmem_free_skb(sk, skb);
  2740. if (unlikely(skb == tp->retransmit_skb_hint))
  2741. tp->retransmit_skb_hint = NULL;
  2742. if (unlikely(skb == tp->lost_skb_hint))
  2743. tp->lost_skb_hint = NULL;
  2744. }
  2745. if (!skb)
  2746. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2747. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2748. tp->snd_up = tp->snd_una;
  2749. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2750. flag |= FLAG_SACK_RENEGING;
  2751. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2752. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2753. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2754. }
  2755. if (sack->first_sackt) {
  2756. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2757. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2758. }
  2759. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2760. ca_rtt_us, sack->rate);
  2761. if (flag & FLAG_ACKED) {
  2762. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2763. if (unlikely(icsk->icsk_mtup.probe_size &&
  2764. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2765. tcp_mtup_probe_success(sk);
  2766. }
  2767. if (tcp_is_reno(tp)) {
  2768. tcp_remove_reno_sacks(sk, pkts_acked);
  2769. } else {
  2770. int delta;
  2771. /* Non-retransmitted hole got filled? That's reordering */
  2772. if (reord < prior_fackets && reord <= tp->fackets_out)
  2773. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2774. delta = tcp_is_fack(tp) ? pkts_acked :
  2775. prior_sacked - tp->sacked_out;
  2776. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2777. }
  2778. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2779. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2780. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2781. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2782. * after when the head was last (re)transmitted. Otherwise the
  2783. * timeout may continue to extend in loss recovery.
  2784. */
  2785. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2786. }
  2787. if (icsk->icsk_ca_ops->pkts_acked) {
  2788. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2789. .rtt_us = sack->rate->rtt_us,
  2790. .in_flight = last_in_flight };
  2791. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2792. }
  2793. #if FASTRETRANS_DEBUG > 0
  2794. WARN_ON((int)tp->sacked_out < 0);
  2795. WARN_ON((int)tp->lost_out < 0);
  2796. WARN_ON((int)tp->retrans_out < 0);
  2797. if (!tp->packets_out && tcp_is_sack(tp)) {
  2798. icsk = inet_csk(sk);
  2799. if (tp->lost_out) {
  2800. pr_debug("Leak l=%u %d\n",
  2801. tp->lost_out, icsk->icsk_ca_state);
  2802. tp->lost_out = 0;
  2803. }
  2804. if (tp->sacked_out) {
  2805. pr_debug("Leak s=%u %d\n",
  2806. tp->sacked_out, icsk->icsk_ca_state);
  2807. tp->sacked_out = 0;
  2808. }
  2809. if (tp->retrans_out) {
  2810. pr_debug("Leak r=%u %d\n",
  2811. tp->retrans_out, icsk->icsk_ca_state);
  2812. tp->retrans_out = 0;
  2813. }
  2814. }
  2815. #endif
  2816. *acked = pkts_acked;
  2817. return flag;
  2818. }
  2819. static void tcp_ack_probe(struct sock *sk)
  2820. {
  2821. const struct tcp_sock *tp = tcp_sk(sk);
  2822. struct inet_connection_sock *icsk = inet_csk(sk);
  2823. /* Was it a usable window open? */
  2824. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2825. icsk->icsk_backoff = 0;
  2826. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2827. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2828. * This function is not for random using!
  2829. */
  2830. } else {
  2831. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2832. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2833. when, TCP_RTO_MAX);
  2834. }
  2835. }
  2836. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2837. {
  2838. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2839. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2840. }
  2841. /* Decide wheather to run the increase function of congestion control. */
  2842. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2843. {
  2844. /* If reordering is high then always grow cwnd whenever data is
  2845. * delivered regardless of its ordering. Otherwise stay conservative
  2846. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2847. * new SACK or ECE mark may first advance cwnd here and later reduce
  2848. * cwnd in tcp_fastretrans_alert() based on more states.
  2849. */
  2850. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2851. return flag & FLAG_FORWARD_PROGRESS;
  2852. return flag & FLAG_DATA_ACKED;
  2853. }
  2854. /* The "ultimate" congestion control function that aims to replace the rigid
  2855. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2856. * It's called toward the end of processing an ACK with precise rate
  2857. * information. All transmission or retransmission are delayed afterwards.
  2858. */
  2859. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2860. int flag, const struct rate_sample *rs)
  2861. {
  2862. const struct inet_connection_sock *icsk = inet_csk(sk);
  2863. if (icsk->icsk_ca_ops->cong_control) {
  2864. icsk->icsk_ca_ops->cong_control(sk, rs);
  2865. return;
  2866. }
  2867. if (tcp_in_cwnd_reduction(sk)) {
  2868. /* Reduce cwnd if state mandates */
  2869. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2870. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2871. /* Advance cwnd if state allows */
  2872. tcp_cong_avoid(sk, ack, acked_sacked);
  2873. }
  2874. tcp_update_pacing_rate(sk);
  2875. }
  2876. /* Check that window update is acceptable.
  2877. * The function assumes that snd_una<=ack<=snd_next.
  2878. */
  2879. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2880. const u32 ack, const u32 ack_seq,
  2881. const u32 nwin)
  2882. {
  2883. return after(ack, tp->snd_una) ||
  2884. after(ack_seq, tp->snd_wl1) ||
  2885. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2886. }
  2887. /* If we update tp->snd_una, also update tp->bytes_acked */
  2888. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2889. {
  2890. u32 delta = ack - tp->snd_una;
  2891. sock_owned_by_me((struct sock *)tp);
  2892. tp->bytes_acked += delta;
  2893. tp->snd_una = ack;
  2894. }
  2895. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2896. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2897. {
  2898. u32 delta = seq - tp->rcv_nxt;
  2899. sock_owned_by_me((struct sock *)tp);
  2900. tp->bytes_received += delta;
  2901. tp->rcv_nxt = seq;
  2902. }
  2903. /* Update our send window.
  2904. *
  2905. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2906. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2907. */
  2908. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2909. u32 ack_seq)
  2910. {
  2911. struct tcp_sock *tp = tcp_sk(sk);
  2912. int flag = 0;
  2913. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2914. if (likely(!tcp_hdr(skb)->syn))
  2915. nwin <<= tp->rx_opt.snd_wscale;
  2916. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2917. flag |= FLAG_WIN_UPDATE;
  2918. tcp_update_wl(tp, ack_seq);
  2919. if (tp->snd_wnd != nwin) {
  2920. tp->snd_wnd = nwin;
  2921. /* Note, it is the only place, where
  2922. * fast path is recovered for sending TCP.
  2923. */
  2924. tp->pred_flags = 0;
  2925. tcp_fast_path_check(sk);
  2926. if (tcp_send_head(sk))
  2927. tcp_slow_start_after_idle_check(sk);
  2928. if (nwin > tp->max_window) {
  2929. tp->max_window = nwin;
  2930. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2931. }
  2932. }
  2933. }
  2934. tcp_snd_una_update(tp, ack);
  2935. return flag;
  2936. }
  2937. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2938. u32 *last_oow_ack_time)
  2939. {
  2940. if (*last_oow_ack_time) {
  2941. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2942. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2943. NET_INC_STATS(net, mib_idx);
  2944. return true; /* rate-limited: don't send yet! */
  2945. }
  2946. }
  2947. *last_oow_ack_time = tcp_jiffies32;
  2948. return false; /* not rate-limited: go ahead, send dupack now! */
  2949. }
  2950. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2951. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2952. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2953. * attacks that send repeated SYNs or ACKs for the same connection. To
  2954. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2955. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2956. */
  2957. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2958. int mib_idx, u32 *last_oow_ack_time)
  2959. {
  2960. /* Data packets without SYNs are not likely part of an ACK loop. */
  2961. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2962. !tcp_hdr(skb)->syn)
  2963. return false;
  2964. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2965. }
  2966. /* RFC 5961 7 [ACK Throttling] */
  2967. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2968. {
  2969. /* unprotected vars, we dont care of overwrites */
  2970. static u32 challenge_timestamp;
  2971. static unsigned int challenge_count;
  2972. struct tcp_sock *tp = tcp_sk(sk);
  2973. u32 count, now;
  2974. /* First check our per-socket dupack rate limit. */
  2975. if (__tcp_oow_rate_limited(sock_net(sk),
  2976. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2977. &tp->last_oow_ack_time))
  2978. return;
  2979. /* Then check host-wide RFC 5961 rate limit. */
  2980. now = jiffies / HZ;
  2981. if (now != challenge_timestamp) {
  2982. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2983. challenge_timestamp = now;
  2984. WRITE_ONCE(challenge_count, half +
  2985. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2986. }
  2987. count = READ_ONCE(challenge_count);
  2988. if (count > 0) {
  2989. WRITE_ONCE(challenge_count, count - 1);
  2990. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2991. tcp_send_ack(sk);
  2992. }
  2993. }
  2994. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2995. {
  2996. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2997. tp->rx_opt.ts_recent_stamp = get_seconds();
  2998. }
  2999. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3000. {
  3001. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3002. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3003. * extra check below makes sure this can only happen
  3004. * for pure ACK frames. -DaveM
  3005. *
  3006. * Not only, also it occurs for expired timestamps.
  3007. */
  3008. if (tcp_paws_check(&tp->rx_opt, 0))
  3009. tcp_store_ts_recent(tp);
  3010. }
  3011. }
  3012. /* This routine deals with acks during a TLP episode.
  3013. * We mark the end of a TLP episode on receiving TLP dupack or when
  3014. * ack is after tlp_high_seq.
  3015. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3016. */
  3017. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3018. {
  3019. struct tcp_sock *tp = tcp_sk(sk);
  3020. if (before(ack, tp->tlp_high_seq))
  3021. return;
  3022. if (flag & FLAG_DSACKING_ACK) {
  3023. /* This DSACK means original and TLP probe arrived; no loss */
  3024. tp->tlp_high_seq = 0;
  3025. } else if (after(ack, tp->tlp_high_seq)) {
  3026. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3027. * tlp_high_seq in tcp_init_cwnd_reduction()
  3028. */
  3029. tcp_init_cwnd_reduction(sk);
  3030. tcp_set_ca_state(sk, TCP_CA_CWR);
  3031. tcp_end_cwnd_reduction(sk);
  3032. tcp_try_keep_open(sk);
  3033. NET_INC_STATS(sock_net(sk),
  3034. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3035. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3036. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3037. /* Pure dupack: original and TLP probe arrived; no loss */
  3038. tp->tlp_high_seq = 0;
  3039. }
  3040. }
  3041. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3042. {
  3043. const struct inet_connection_sock *icsk = inet_csk(sk);
  3044. if (icsk->icsk_ca_ops->in_ack_event)
  3045. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3046. }
  3047. /* Congestion control has updated the cwnd already. So if we're in
  3048. * loss recovery then now we do any new sends (for FRTO) or
  3049. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3050. */
  3051. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3052. {
  3053. struct tcp_sock *tp = tcp_sk(sk);
  3054. if (rexmit == REXMIT_NONE)
  3055. return;
  3056. if (unlikely(rexmit == 2)) {
  3057. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3058. TCP_NAGLE_OFF);
  3059. if (after(tp->snd_nxt, tp->high_seq))
  3060. return;
  3061. tp->frto = 0;
  3062. }
  3063. tcp_xmit_retransmit_queue(sk);
  3064. }
  3065. /* This routine deals with incoming acks, but not outgoing ones. */
  3066. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3067. {
  3068. struct inet_connection_sock *icsk = inet_csk(sk);
  3069. struct tcp_sock *tp = tcp_sk(sk);
  3070. struct tcp_sacktag_state sack_state;
  3071. struct rate_sample rs = { .prior_delivered = 0 };
  3072. u32 prior_snd_una = tp->snd_una;
  3073. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3074. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3075. bool is_dupack = false;
  3076. u32 prior_fackets;
  3077. int prior_packets = tp->packets_out;
  3078. u32 delivered = tp->delivered;
  3079. u32 lost = tp->lost;
  3080. int acked = 0; /* Number of packets newly acked */
  3081. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3082. sack_state.first_sackt = 0;
  3083. sack_state.rate = &rs;
  3084. /* We very likely will need to access write queue head. */
  3085. prefetchw(sk->sk_write_queue.next);
  3086. /* If the ack is older than previous acks
  3087. * then we can probably ignore it.
  3088. */
  3089. if (before(ack, prior_snd_una)) {
  3090. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3091. if (before(ack, prior_snd_una - tp->max_window)) {
  3092. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3093. tcp_send_challenge_ack(sk, skb);
  3094. return -1;
  3095. }
  3096. goto old_ack;
  3097. }
  3098. /* If the ack includes data we haven't sent yet, discard
  3099. * this segment (RFC793 Section 3.9).
  3100. */
  3101. if (after(ack, tp->snd_nxt))
  3102. goto invalid_ack;
  3103. if (after(ack, prior_snd_una)) {
  3104. flag |= FLAG_SND_UNA_ADVANCED;
  3105. icsk->icsk_retransmits = 0;
  3106. }
  3107. prior_fackets = tp->fackets_out;
  3108. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3109. /* ts_recent update must be made after we are sure that the packet
  3110. * is in window.
  3111. */
  3112. if (flag & FLAG_UPDATE_TS_RECENT)
  3113. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3114. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3115. /* Window is constant, pure forward advance.
  3116. * No more checks are required.
  3117. * Note, we use the fact that SND.UNA>=SND.WL2.
  3118. */
  3119. tcp_update_wl(tp, ack_seq);
  3120. tcp_snd_una_update(tp, ack);
  3121. flag |= FLAG_WIN_UPDATE;
  3122. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3123. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3124. } else {
  3125. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3126. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3127. flag |= FLAG_DATA;
  3128. else
  3129. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3130. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3131. if (TCP_SKB_CB(skb)->sacked)
  3132. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3133. &sack_state);
  3134. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3135. flag |= FLAG_ECE;
  3136. ack_ev_flags |= CA_ACK_ECE;
  3137. }
  3138. if (flag & FLAG_WIN_UPDATE)
  3139. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3140. tcp_in_ack_event(sk, ack_ev_flags);
  3141. }
  3142. /* We passed data and got it acked, remove any soft error
  3143. * log. Something worked...
  3144. */
  3145. sk->sk_err_soft = 0;
  3146. icsk->icsk_probes_out = 0;
  3147. tp->rcv_tstamp = tcp_jiffies32;
  3148. if (!prior_packets)
  3149. goto no_queue;
  3150. /* See if we can take anything off of the retransmit queue. */
  3151. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3152. &sack_state);
  3153. if (tp->tlp_high_seq)
  3154. tcp_process_tlp_ack(sk, ack, flag);
  3155. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3156. if (flag & FLAG_SET_XMIT_TIMER)
  3157. tcp_set_xmit_timer(sk);
  3158. if (tcp_ack_is_dubious(sk, flag)) {
  3159. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3160. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3161. }
  3162. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3163. sk_dst_confirm(sk);
  3164. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3165. lost = tp->lost - lost; /* freshly marked lost */
  3166. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3167. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3168. tcp_xmit_recovery(sk, rexmit);
  3169. return 1;
  3170. no_queue:
  3171. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3172. if (flag & FLAG_DSACKING_ACK)
  3173. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3174. /* If this ack opens up a zero window, clear backoff. It was
  3175. * being used to time the probes, and is probably far higher than
  3176. * it needs to be for normal retransmission.
  3177. */
  3178. if (tcp_send_head(sk))
  3179. tcp_ack_probe(sk);
  3180. if (tp->tlp_high_seq)
  3181. tcp_process_tlp_ack(sk, ack, flag);
  3182. return 1;
  3183. invalid_ack:
  3184. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3185. return -1;
  3186. old_ack:
  3187. /* If data was SACKed, tag it and see if we should send more data.
  3188. * If data was DSACKed, see if we can undo a cwnd reduction.
  3189. */
  3190. if (TCP_SKB_CB(skb)->sacked) {
  3191. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3192. &sack_state);
  3193. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3194. tcp_xmit_recovery(sk, rexmit);
  3195. }
  3196. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3197. return 0;
  3198. }
  3199. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3200. bool syn, struct tcp_fastopen_cookie *foc,
  3201. bool exp_opt)
  3202. {
  3203. /* Valid only in SYN or SYN-ACK with an even length. */
  3204. if (!foc || !syn || len < 0 || (len & 1))
  3205. return;
  3206. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3207. len <= TCP_FASTOPEN_COOKIE_MAX)
  3208. memcpy(foc->val, cookie, len);
  3209. else if (len != 0)
  3210. len = -1;
  3211. foc->len = len;
  3212. foc->exp = exp_opt;
  3213. }
  3214. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3215. * But, this can also be called on packets in the established flow when
  3216. * the fast version below fails.
  3217. */
  3218. void tcp_parse_options(const struct net *net,
  3219. const struct sk_buff *skb,
  3220. struct tcp_options_received *opt_rx, int estab,
  3221. struct tcp_fastopen_cookie *foc)
  3222. {
  3223. const unsigned char *ptr;
  3224. const struct tcphdr *th = tcp_hdr(skb);
  3225. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3226. ptr = (const unsigned char *)(th + 1);
  3227. opt_rx->saw_tstamp = 0;
  3228. while (length > 0) {
  3229. int opcode = *ptr++;
  3230. int opsize;
  3231. switch (opcode) {
  3232. case TCPOPT_EOL:
  3233. return;
  3234. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3235. length--;
  3236. continue;
  3237. default:
  3238. opsize = *ptr++;
  3239. if (opsize < 2) /* "silly options" */
  3240. return;
  3241. if (opsize > length)
  3242. return; /* don't parse partial options */
  3243. switch (opcode) {
  3244. case TCPOPT_MSS:
  3245. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3246. u16 in_mss = get_unaligned_be16(ptr);
  3247. if (in_mss) {
  3248. if (opt_rx->user_mss &&
  3249. opt_rx->user_mss < in_mss)
  3250. in_mss = opt_rx->user_mss;
  3251. opt_rx->mss_clamp = in_mss;
  3252. }
  3253. }
  3254. break;
  3255. case TCPOPT_WINDOW:
  3256. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3257. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3258. __u8 snd_wscale = *(__u8 *)ptr;
  3259. opt_rx->wscale_ok = 1;
  3260. if (snd_wscale > TCP_MAX_WSCALE) {
  3261. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3262. __func__,
  3263. snd_wscale,
  3264. TCP_MAX_WSCALE);
  3265. snd_wscale = TCP_MAX_WSCALE;
  3266. }
  3267. opt_rx->snd_wscale = snd_wscale;
  3268. }
  3269. break;
  3270. case TCPOPT_TIMESTAMP:
  3271. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3272. ((estab && opt_rx->tstamp_ok) ||
  3273. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3274. opt_rx->saw_tstamp = 1;
  3275. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3276. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3277. }
  3278. break;
  3279. case TCPOPT_SACK_PERM:
  3280. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3281. !estab && net->ipv4.sysctl_tcp_sack) {
  3282. opt_rx->sack_ok = TCP_SACK_SEEN;
  3283. tcp_sack_reset(opt_rx);
  3284. }
  3285. break;
  3286. case TCPOPT_SACK:
  3287. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3288. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3289. opt_rx->sack_ok) {
  3290. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3291. }
  3292. break;
  3293. #ifdef CONFIG_TCP_MD5SIG
  3294. case TCPOPT_MD5SIG:
  3295. /*
  3296. * The MD5 Hash has already been
  3297. * checked (see tcp_v{4,6}_do_rcv()).
  3298. */
  3299. break;
  3300. #endif
  3301. case TCPOPT_FASTOPEN:
  3302. tcp_parse_fastopen_option(
  3303. opsize - TCPOLEN_FASTOPEN_BASE,
  3304. ptr, th->syn, foc, false);
  3305. break;
  3306. case TCPOPT_EXP:
  3307. /* Fast Open option shares code 254 using a
  3308. * 16 bits magic number.
  3309. */
  3310. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3311. get_unaligned_be16(ptr) ==
  3312. TCPOPT_FASTOPEN_MAGIC)
  3313. tcp_parse_fastopen_option(opsize -
  3314. TCPOLEN_EXP_FASTOPEN_BASE,
  3315. ptr + 2, th->syn, foc, true);
  3316. break;
  3317. }
  3318. ptr += opsize-2;
  3319. length -= opsize;
  3320. }
  3321. }
  3322. }
  3323. EXPORT_SYMBOL(tcp_parse_options);
  3324. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3325. {
  3326. const __be32 *ptr = (const __be32 *)(th + 1);
  3327. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3328. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3329. tp->rx_opt.saw_tstamp = 1;
  3330. ++ptr;
  3331. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3332. ++ptr;
  3333. if (*ptr)
  3334. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3335. else
  3336. tp->rx_opt.rcv_tsecr = 0;
  3337. return true;
  3338. }
  3339. return false;
  3340. }
  3341. /* Fast parse options. This hopes to only see timestamps.
  3342. * If it is wrong it falls back on tcp_parse_options().
  3343. */
  3344. static bool tcp_fast_parse_options(const struct net *net,
  3345. const struct sk_buff *skb,
  3346. const struct tcphdr *th, struct tcp_sock *tp)
  3347. {
  3348. /* In the spirit of fast parsing, compare doff directly to constant
  3349. * values. Because equality is used, short doff can be ignored here.
  3350. */
  3351. if (th->doff == (sizeof(*th) / 4)) {
  3352. tp->rx_opt.saw_tstamp = 0;
  3353. return false;
  3354. } else if (tp->rx_opt.tstamp_ok &&
  3355. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3356. if (tcp_parse_aligned_timestamp(tp, th))
  3357. return true;
  3358. }
  3359. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3360. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3361. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3362. return true;
  3363. }
  3364. #ifdef CONFIG_TCP_MD5SIG
  3365. /*
  3366. * Parse MD5 Signature option
  3367. */
  3368. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3369. {
  3370. int length = (th->doff << 2) - sizeof(*th);
  3371. const u8 *ptr = (const u8 *)(th + 1);
  3372. /* If the TCP option is too short, we can short cut */
  3373. if (length < TCPOLEN_MD5SIG)
  3374. return NULL;
  3375. while (length > 0) {
  3376. int opcode = *ptr++;
  3377. int opsize;
  3378. switch (opcode) {
  3379. case TCPOPT_EOL:
  3380. return NULL;
  3381. case TCPOPT_NOP:
  3382. length--;
  3383. continue;
  3384. default:
  3385. opsize = *ptr++;
  3386. if (opsize < 2 || opsize > length)
  3387. return NULL;
  3388. if (opcode == TCPOPT_MD5SIG)
  3389. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3390. }
  3391. ptr += opsize - 2;
  3392. length -= opsize;
  3393. }
  3394. return NULL;
  3395. }
  3396. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3397. #endif
  3398. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3399. *
  3400. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3401. * it can pass through stack. So, the following predicate verifies that
  3402. * this segment is not used for anything but congestion avoidance or
  3403. * fast retransmit. Moreover, we even are able to eliminate most of such
  3404. * second order effects, if we apply some small "replay" window (~RTO)
  3405. * to timestamp space.
  3406. *
  3407. * All these measures still do not guarantee that we reject wrapped ACKs
  3408. * on networks with high bandwidth, when sequence space is recycled fastly,
  3409. * but it guarantees that such events will be very rare and do not affect
  3410. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3411. * buggy extension.
  3412. *
  3413. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3414. * states that events when retransmit arrives after original data are rare.
  3415. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3416. * the biggest problem on large power networks even with minor reordering.
  3417. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3418. * up to bandwidth of 18Gigabit/sec. 8) ]
  3419. */
  3420. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3421. {
  3422. const struct tcp_sock *tp = tcp_sk(sk);
  3423. const struct tcphdr *th = tcp_hdr(skb);
  3424. u32 seq = TCP_SKB_CB(skb)->seq;
  3425. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3426. return (/* 1. Pure ACK with correct sequence number. */
  3427. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3428. /* 2. ... and duplicate ACK. */
  3429. ack == tp->snd_una &&
  3430. /* 3. ... and does not update window. */
  3431. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3432. /* 4. ... and sits in replay window. */
  3433. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3434. }
  3435. static inline bool tcp_paws_discard(const struct sock *sk,
  3436. const struct sk_buff *skb)
  3437. {
  3438. const struct tcp_sock *tp = tcp_sk(sk);
  3439. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3440. !tcp_disordered_ack(sk, skb);
  3441. }
  3442. /* Check segment sequence number for validity.
  3443. *
  3444. * Segment controls are considered valid, if the segment
  3445. * fits to the window after truncation to the window. Acceptability
  3446. * of data (and SYN, FIN, of course) is checked separately.
  3447. * See tcp_data_queue(), for example.
  3448. *
  3449. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3450. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3451. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3452. * (borrowed from freebsd)
  3453. */
  3454. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3455. {
  3456. return !before(end_seq, tp->rcv_wup) &&
  3457. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3458. }
  3459. /* When we get a reset we do this. */
  3460. void tcp_reset(struct sock *sk)
  3461. {
  3462. /* We want the right error as BSD sees it (and indeed as we do). */
  3463. switch (sk->sk_state) {
  3464. case TCP_SYN_SENT:
  3465. sk->sk_err = ECONNREFUSED;
  3466. break;
  3467. case TCP_CLOSE_WAIT:
  3468. sk->sk_err = EPIPE;
  3469. break;
  3470. case TCP_CLOSE:
  3471. return;
  3472. default:
  3473. sk->sk_err = ECONNRESET;
  3474. }
  3475. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3476. smp_wmb();
  3477. tcp_done(sk);
  3478. if (!sock_flag(sk, SOCK_DEAD))
  3479. sk->sk_error_report(sk);
  3480. }
  3481. /*
  3482. * Process the FIN bit. This now behaves as it is supposed to work
  3483. * and the FIN takes effect when it is validly part of sequence
  3484. * space. Not before when we get holes.
  3485. *
  3486. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3487. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3488. * TIME-WAIT)
  3489. *
  3490. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3491. * close and we go into CLOSING (and later onto TIME-WAIT)
  3492. *
  3493. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3494. */
  3495. void tcp_fin(struct sock *sk)
  3496. {
  3497. struct tcp_sock *tp = tcp_sk(sk);
  3498. inet_csk_schedule_ack(sk);
  3499. sk->sk_shutdown |= RCV_SHUTDOWN;
  3500. sock_set_flag(sk, SOCK_DONE);
  3501. switch (sk->sk_state) {
  3502. case TCP_SYN_RECV:
  3503. case TCP_ESTABLISHED:
  3504. /* Move to CLOSE_WAIT */
  3505. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3506. inet_csk(sk)->icsk_ack.pingpong = 1;
  3507. break;
  3508. case TCP_CLOSE_WAIT:
  3509. case TCP_CLOSING:
  3510. /* Received a retransmission of the FIN, do
  3511. * nothing.
  3512. */
  3513. break;
  3514. case TCP_LAST_ACK:
  3515. /* RFC793: Remain in the LAST-ACK state. */
  3516. break;
  3517. case TCP_FIN_WAIT1:
  3518. /* This case occurs when a simultaneous close
  3519. * happens, we must ack the received FIN and
  3520. * enter the CLOSING state.
  3521. */
  3522. tcp_send_ack(sk);
  3523. tcp_set_state(sk, TCP_CLOSING);
  3524. break;
  3525. case TCP_FIN_WAIT2:
  3526. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3527. tcp_send_ack(sk);
  3528. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3529. break;
  3530. default:
  3531. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3532. * cases we should never reach this piece of code.
  3533. */
  3534. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3535. __func__, sk->sk_state);
  3536. break;
  3537. }
  3538. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3539. * Probably, we should reset in this case. For now drop them.
  3540. */
  3541. skb_rbtree_purge(&tp->out_of_order_queue);
  3542. if (tcp_is_sack(tp))
  3543. tcp_sack_reset(&tp->rx_opt);
  3544. sk_mem_reclaim(sk);
  3545. if (!sock_flag(sk, SOCK_DEAD)) {
  3546. sk->sk_state_change(sk);
  3547. /* Do not send POLL_HUP for half duplex close. */
  3548. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3549. sk->sk_state == TCP_CLOSE)
  3550. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3551. else
  3552. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3553. }
  3554. }
  3555. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3556. u32 end_seq)
  3557. {
  3558. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3559. if (before(seq, sp->start_seq))
  3560. sp->start_seq = seq;
  3561. if (after(end_seq, sp->end_seq))
  3562. sp->end_seq = end_seq;
  3563. return true;
  3564. }
  3565. return false;
  3566. }
  3567. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3568. {
  3569. struct tcp_sock *tp = tcp_sk(sk);
  3570. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3571. int mib_idx;
  3572. if (before(seq, tp->rcv_nxt))
  3573. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3574. else
  3575. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3576. NET_INC_STATS(sock_net(sk), mib_idx);
  3577. tp->rx_opt.dsack = 1;
  3578. tp->duplicate_sack[0].start_seq = seq;
  3579. tp->duplicate_sack[0].end_seq = end_seq;
  3580. }
  3581. }
  3582. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3583. {
  3584. struct tcp_sock *tp = tcp_sk(sk);
  3585. if (!tp->rx_opt.dsack)
  3586. tcp_dsack_set(sk, seq, end_seq);
  3587. else
  3588. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3589. }
  3590. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3591. {
  3592. struct tcp_sock *tp = tcp_sk(sk);
  3593. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3594. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3595. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3596. tcp_enter_quickack_mode(sk);
  3597. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3598. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3599. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3600. end_seq = tp->rcv_nxt;
  3601. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3602. }
  3603. }
  3604. tcp_send_ack(sk);
  3605. }
  3606. /* These routines update the SACK block as out-of-order packets arrive or
  3607. * in-order packets close up the sequence space.
  3608. */
  3609. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3610. {
  3611. int this_sack;
  3612. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3613. struct tcp_sack_block *swalk = sp + 1;
  3614. /* See if the recent change to the first SACK eats into
  3615. * or hits the sequence space of other SACK blocks, if so coalesce.
  3616. */
  3617. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3618. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3619. int i;
  3620. /* Zap SWALK, by moving every further SACK up by one slot.
  3621. * Decrease num_sacks.
  3622. */
  3623. tp->rx_opt.num_sacks--;
  3624. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3625. sp[i] = sp[i + 1];
  3626. continue;
  3627. }
  3628. this_sack++, swalk++;
  3629. }
  3630. }
  3631. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3632. {
  3633. struct tcp_sock *tp = tcp_sk(sk);
  3634. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3635. int cur_sacks = tp->rx_opt.num_sacks;
  3636. int this_sack;
  3637. if (!cur_sacks)
  3638. goto new_sack;
  3639. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3640. if (tcp_sack_extend(sp, seq, end_seq)) {
  3641. /* Rotate this_sack to the first one. */
  3642. for (; this_sack > 0; this_sack--, sp--)
  3643. swap(*sp, *(sp - 1));
  3644. if (cur_sacks > 1)
  3645. tcp_sack_maybe_coalesce(tp);
  3646. return;
  3647. }
  3648. }
  3649. /* Could not find an adjacent existing SACK, build a new one,
  3650. * put it at the front, and shift everyone else down. We
  3651. * always know there is at least one SACK present already here.
  3652. *
  3653. * If the sack array is full, forget about the last one.
  3654. */
  3655. if (this_sack >= TCP_NUM_SACKS) {
  3656. this_sack--;
  3657. tp->rx_opt.num_sacks--;
  3658. sp--;
  3659. }
  3660. for (; this_sack > 0; this_sack--, sp--)
  3661. *sp = *(sp - 1);
  3662. new_sack:
  3663. /* Build the new head SACK, and we're done. */
  3664. sp->start_seq = seq;
  3665. sp->end_seq = end_seq;
  3666. tp->rx_opt.num_sacks++;
  3667. }
  3668. /* RCV.NXT advances, some SACKs should be eaten. */
  3669. static void tcp_sack_remove(struct tcp_sock *tp)
  3670. {
  3671. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3672. int num_sacks = tp->rx_opt.num_sacks;
  3673. int this_sack;
  3674. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3675. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3676. tp->rx_opt.num_sacks = 0;
  3677. return;
  3678. }
  3679. for (this_sack = 0; this_sack < num_sacks;) {
  3680. /* Check if the start of the sack is covered by RCV.NXT. */
  3681. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3682. int i;
  3683. /* RCV.NXT must cover all the block! */
  3684. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3685. /* Zap this SACK, by moving forward any other SACKS. */
  3686. for (i = this_sack+1; i < num_sacks; i++)
  3687. tp->selective_acks[i-1] = tp->selective_acks[i];
  3688. num_sacks--;
  3689. continue;
  3690. }
  3691. this_sack++;
  3692. sp++;
  3693. }
  3694. tp->rx_opt.num_sacks = num_sacks;
  3695. }
  3696. enum tcp_queue {
  3697. OOO_QUEUE,
  3698. RCV_QUEUE,
  3699. };
  3700. /**
  3701. * tcp_try_coalesce - try to merge skb to prior one
  3702. * @sk: socket
  3703. * @dest: destination queue
  3704. * @to: prior buffer
  3705. * @from: buffer to add in queue
  3706. * @fragstolen: pointer to boolean
  3707. *
  3708. * Before queueing skb @from after @to, try to merge them
  3709. * to reduce overall memory use and queue lengths, if cost is small.
  3710. * Packets in ofo or receive queues can stay a long time.
  3711. * Better try to coalesce them right now to avoid future collapses.
  3712. * Returns true if caller should free @from instead of queueing it
  3713. */
  3714. static bool tcp_try_coalesce(struct sock *sk,
  3715. enum tcp_queue dest,
  3716. struct sk_buff *to,
  3717. struct sk_buff *from,
  3718. bool *fragstolen)
  3719. {
  3720. int delta;
  3721. *fragstolen = false;
  3722. /* Its possible this segment overlaps with prior segment in queue */
  3723. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3724. return false;
  3725. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3726. return false;
  3727. atomic_add(delta, &sk->sk_rmem_alloc);
  3728. sk_mem_charge(sk, delta);
  3729. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3730. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3731. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3732. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3733. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3734. TCP_SKB_CB(to)->has_rxtstamp = true;
  3735. if (dest == OOO_QUEUE)
  3736. TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
  3737. else
  3738. to->tstamp = from->tstamp;
  3739. }
  3740. return true;
  3741. }
  3742. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3743. {
  3744. sk_drops_add(sk, skb);
  3745. __kfree_skb(skb);
  3746. }
  3747. /* This one checks to see if we can put data from the
  3748. * out_of_order queue into the receive_queue.
  3749. */
  3750. static void tcp_ofo_queue(struct sock *sk)
  3751. {
  3752. struct tcp_sock *tp = tcp_sk(sk);
  3753. __u32 dsack_high = tp->rcv_nxt;
  3754. bool fin, fragstolen, eaten;
  3755. struct sk_buff *skb, *tail;
  3756. struct rb_node *p;
  3757. p = rb_first(&tp->out_of_order_queue);
  3758. while (p) {
  3759. skb = rb_entry(p, struct sk_buff, rbnode);
  3760. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3761. break;
  3762. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3763. __u32 dsack = dsack_high;
  3764. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3765. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3766. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3767. }
  3768. p = rb_next(p);
  3769. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3770. /* Replace tstamp which was stomped by rbnode */
  3771. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3772. skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
  3773. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3774. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3775. tcp_drop(sk, skb);
  3776. continue;
  3777. }
  3778. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3779. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3780. TCP_SKB_CB(skb)->end_seq);
  3781. tail = skb_peek_tail(&sk->sk_receive_queue);
  3782. eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
  3783. tail, skb, &fragstolen);
  3784. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3785. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3786. if (!eaten)
  3787. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3788. else
  3789. kfree_skb_partial(skb, fragstolen);
  3790. if (unlikely(fin)) {
  3791. tcp_fin(sk);
  3792. /* tcp_fin() purges tp->out_of_order_queue,
  3793. * so we must end this loop right now.
  3794. */
  3795. break;
  3796. }
  3797. }
  3798. }
  3799. static bool tcp_prune_ofo_queue(struct sock *sk);
  3800. static int tcp_prune_queue(struct sock *sk);
  3801. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3802. unsigned int size)
  3803. {
  3804. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3805. !sk_rmem_schedule(sk, skb, size)) {
  3806. if (tcp_prune_queue(sk) < 0)
  3807. return -1;
  3808. while (!sk_rmem_schedule(sk, skb, size)) {
  3809. if (!tcp_prune_ofo_queue(sk))
  3810. return -1;
  3811. }
  3812. }
  3813. return 0;
  3814. }
  3815. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3816. {
  3817. struct tcp_sock *tp = tcp_sk(sk);
  3818. struct rb_node **p, *q, *parent;
  3819. struct sk_buff *skb1;
  3820. u32 seq, end_seq;
  3821. bool fragstolen;
  3822. tcp_ecn_check_ce(tp, skb);
  3823. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3824. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3825. tcp_drop(sk, skb);
  3826. return;
  3827. }
  3828. /* Stash tstamp to avoid being stomped on by rbnode */
  3829. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3830. TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
  3831. /* Disable header prediction. */
  3832. tp->pred_flags = 0;
  3833. inet_csk_schedule_ack(sk);
  3834. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3835. seq = TCP_SKB_CB(skb)->seq;
  3836. end_seq = TCP_SKB_CB(skb)->end_seq;
  3837. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3838. tp->rcv_nxt, seq, end_seq);
  3839. p = &tp->out_of_order_queue.rb_node;
  3840. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3841. /* Initial out of order segment, build 1 SACK. */
  3842. if (tcp_is_sack(tp)) {
  3843. tp->rx_opt.num_sacks = 1;
  3844. tp->selective_acks[0].start_seq = seq;
  3845. tp->selective_acks[0].end_seq = end_seq;
  3846. }
  3847. rb_link_node(&skb->rbnode, NULL, p);
  3848. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3849. tp->ooo_last_skb = skb;
  3850. goto end;
  3851. }
  3852. /* In the typical case, we are adding an skb to the end of the list.
  3853. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3854. */
  3855. if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
  3856. skb, &fragstolen)) {
  3857. coalesce_done:
  3858. tcp_grow_window(sk, skb);
  3859. kfree_skb_partial(skb, fragstolen);
  3860. skb = NULL;
  3861. goto add_sack;
  3862. }
  3863. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3864. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3865. parent = &tp->ooo_last_skb->rbnode;
  3866. p = &parent->rb_right;
  3867. goto insert;
  3868. }
  3869. /* Find place to insert this segment. Handle overlaps on the way. */
  3870. parent = NULL;
  3871. while (*p) {
  3872. parent = *p;
  3873. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3874. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3875. p = &parent->rb_left;
  3876. continue;
  3877. }
  3878. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3879. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3880. /* All the bits are present. Drop. */
  3881. NET_INC_STATS(sock_net(sk),
  3882. LINUX_MIB_TCPOFOMERGE);
  3883. __kfree_skb(skb);
  3884. skb = NULL;
  3885. tcp_dsack_set(sk, seq, end_seq);
  3886. goto add_sack;
  3887. }
  3888. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3889. /* Partial overlap. */
  3890. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3891. } else {
  3892. /* skb's seq == skb1's seq and skb covers skb1.
  3893. * Replace skb1 with skb.
  3894. */
  3895. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3896. &tp->out_of_order_queue);
  3897. tcp_dsack_extend(sk,
  3898. TCP_SKB_CB(skb1)->seq,
  3899. TCP_SKB_CB(skb1)->end_seq);
  3900. NET_INC_STATS(sock_net(sk),
  3901. LINUX_MIB_TCPOFOMERGE);
  3902. __kfree_skb(skb1);
  3903. goto merge_right;
  3904. }
  3905. } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
  3906. skb, &fragstolen)) {
  3907. goto coalesce_done;
  3908. }
  3909. p = &parent->rb_right;
  3910. }
  3911. insert:
  3912. /* Insert segment into RB tree. */
  3913. rb_link_node(&skb->rbnode, parent, p);
  3914. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3915. merge_right:
  3916. /* Remove other segments covered by skb. */
  3917. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3918. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3919. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3920. break;
  3921. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3922. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3923. end_seq);
  3924. break;
  3925. }
  3926. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3927. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3928. TCP_SKB_CB(skb1)->end_seq);
  3929. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3930. tcp_drop(sk, skb1);
  3931. }
  3932. /* If there is no skb after us, we are the last_skb ! */
  3933. if (!q)
  3934. tp->ooo_last_skb = skb;
  3935. add_sack:
  3936. if (tcp_is_sack(tp))
  3937. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3938. end:
  3939. if (skb) {
  3940. tcp_grow_window(sk, skb);
  3941. skb_condense(skb);
  3942. skb_set_owner_r(skb, sk);
  3943. }
  3944. }
  3945. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3946. bool *fragstolen)
  3947. {
  3948. int eaten;
  3949. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3950. __skb_pull(skb, hdrlen);
  3951. eaten = (tail &&
  3952. tcp_try_coalesce(sk, RCV_QUEUE, tail,
  3953. skb, fragstolen)) ? 1 : 0;
  3954. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3955. if (!eaten) {
  3956. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3957. skb_set_owner_r(skb, sk);
  3958. }
  3959. return eaten;
  3960. }
  3961. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3962. {
  3963. struct sk_buff *skb;
  3964. int err = -ENOMEM;
  3965. int data_len = 0;
  3966. bool fragstolen;
  3967. if (size == 0)
  3968. return 0;
  3969. if (size > PAGE_SIZE) {
  3970. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3971. data_len = npages << PAGE_SHIFT;
  3972. size = data_len + (size & ~PAGE_MASK);
  3973. }
  3974. skb = alloc_skb_with_frags(size - data_len, data_len,
  3975. PAGE_ALLOC_COSTLY_ORDER,
  3976. &err, sk->sk_allocation);
  3977. if (!skb)
  3978. goto err;
  3979. skb_put(skb, size - data_len);
  3980. skb->data_len = data_len;
  3981. skb->len = size;
  3982. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3983. goto err_free;
  3984. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3985. if (err)
  3986. goto err_free;
  3987. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3988. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3989. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3990. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3991. WARN_ON_ONCE(fragstolen); /* should not happen */
  3992. __kfree_skb(skb);
  3993. }
  3994. return size;
  3995. err_free:
  3996. kfree_skb(skb);
  3997. err:
  3998. return err;
  3999. }
  4000. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4001. {
  4002. struct tcp_sock *tp = tcp_sk(sk);
  4003. bool fragstolen;
  4004. int eaten;
  4005. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  4006. __kfree_skb(skb);
  4007. return;
  4008. }
  4009. skb_dst_drop(skb);
  4010. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  4011. tcp_ecn_accept_cwr(tp, skb);
  4012. tp->rx_opt.dsack = 0;
  4013. /* Queue data for delivery to the user.
  4014. * Packets in sequence go to the receive queue.
  4015. * Out of sequence packets to the out_of_order_queue.
  4016. */
  4017. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4018. if (tcp_receive_window(tp) == 0)
  4019. goto out_of_window;
  4020. /* Ok. In sequence. In window. */
  4021. queue_and_out:
  4022. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4023. sk_forced_mem_schedule(sk, skb->truesize);
  4024. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4025. goto drop;
  4026. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4027. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4028. if (skb->len)
  4029. tcp_event_data_recv(sk, skb);
  4030. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4031. tcp_fin(sk);
  4032. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4033. tcp_ofo_queue(sk);
  4034. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4035. * gap in queue is filled.
  4036. */
  4037. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4038. inet_csk(sk)->icsk_ack.pingpong = 0;
  4039. }
  4040. if (tp->rx_opt.num_sacks)
  4041. tcp_sack_remove(tp);
  4042. tcp_fast_path_check(sk);
  4043. if (eaten > 0)
  4044. kfree_skb_partial(skb, fragstolen);
  4045. if (!sock_flag(sk, SOCK_DEAD))
  4046. sk->sk_data_ready(sk);
  4047. return;
  4048. }
  4049. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4050. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4051. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4052. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4053. out_of_window:
  4054. tcp_enter_quickack_mode(sk);
  4055. inet_csk_schedule_ack(sk);
  4056. drop:
  4057. tcp_drop(sk, skb);
  4058. return;
  4059. }
  4060. /* Out of window. F.e. zero window probe. */
  4061. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4062. goto out_of_window;
  4063. tcp_enter_quickack_mode(sk);
  4064. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4065. /* Partial packet, seq < rcv_next < end_seq */
  4066. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4067. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4068. TCP_SKB_CB(skb)->end_seq);
  4069. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4070. /* If window is closed, drop tail of packet. But after
  4071. * remembering D-SACK for its head made in previous line.
  4072. */
  4073. if (!tcp_receive_window(tp))
  4074. goto out_of_window;
  4075. goto queue_and_out;
  4076. }
  4077. tcp_data_queue_ofo(sk, skb);
  4078. }
  4079. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4080. {
  4081. if (list)
  4082. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4083. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4084. }
  4085. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4086. struct sk_buff_head *list,
  4087. struct rb_root *root)
  4088. {
  4089. struct sk_buff *next = tcp_skb_next(skb, list);
  4090. if (list)
  4091. __skb_unlink(skb, list);
  4092. else
  4093. rb_erase(&skb->rbnode, root);
  4094. __kfree_skb(skb);
  4095. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4096. return next;
  4097. }
  4098. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4099. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4100. {
  4101. struct rb_node **p = &root->rb_node;
  4102. struct rb_node *parent = NULL;
  4103. struct sk_buff *skb1;
  4104. while (*p) {
  4105. parent = *p;
  4106. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4107. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4108. p = &parent->rb_left;
  4109. else
  4110. p = &parent->rb_right;
  4111. }
  4112. rb_link_node(&skb->rbnode, parent, p);
  4113. rb_insert_color(&skb->rbnode, root);
  4114. }
  4115. /* Collapse contiguous sequence of skbs head..tail with
  4116. * sequence numbers start..end.
  4117. *
  4118. * If tail is NULL, this means until the end of the queue.
  4119. *
  4120. * Segments with FIN/SYN are not collapsed (only because this
  4121. * simplifies code)
  4122. */
  4123. static void
  4124. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4125. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4126. {
  4127. struct sk_buff *skb = head, *n;
  4128. struct sk_buff_head tmp;
  4129. bool end_of_skbs;
  4130. /* First, check that queue is collapsible and find
  4131. * the point where collapsing can be useful.
  4132. */
  4133. restart:
  4134. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4135. n = tcp_skb_next(skb, list);
  4136. /* No new bits? It is possible on ofo queue. */
  4137. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4138. skb = tcp_collapse_one(sk, skb, list, root);
  4139. if (!skb)
  4140. break;
  4141. goto restart;
  4142. }
  4143. /* The first skb to collapse is:
  4144. * - not SYN/FIN and
  4145. * - bloated or contains data before "start" or
  4146. * overlaps to the next one.
  4147. */
  4148. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4149. (tcp_win_from_space(skb->truesize) > skb->len ||
  4150. before(TCP_SKB_CB(skb)->seq, start))) {
  4151. end_of_skbs = false;
  4152. break;
  4153. }
  4154. if (n && n != tail &&
  4155. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4156. end_of_skbs = false;
  4157. break;
  4158. }
  4159. /* Decided to skip this, advance start seq. */
  4160. start = TCP_SKB_CB(skb)->end_seq;
  4161. }
  4162. if (end_of_skbs ||
  4163. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4164. return;
  4165. __skb_queue_head_init(&tmp);
  4166. while (before(start, end)) {
  4167. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4168. struct sk_buff *nskb;
  4169. nskb = alloc_skb(copy, GFP_ATOMIC);
  4170. if (!nskb)
  4171. break;
  4172. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4173. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4174. if (list)
  4175. __skb_queue_before(list, skb, nskb);
  4176. else
  4177. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4178. skb_set_owner_r(nskb, sk);
  4179. /* Copy data, releasing collapsed skbs. */
  4180. while (copy > 0) {
  4181. int offset = start - TCP_SKB_CB(skb)->seq;
  4182. int size = TCP_SKB_CB(skb)->end_seq - start;
  4183. BUG_ON(offset < 0);
  4184. if (size > 0) {
  4185. size = min(copy, size);
  4186. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4187. BUG();
  4188. TCP_SKB_CB(nskb)->end_seq += size;
  4189. copy -= size;
  4190. start += size;
  4191. }
  4192. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4193. skb = tcp_collapse_one(sk, skb, list, root);
  4194. if (!skb ||
  4195. skb == tail ||
  4196. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4197. goto end;
  4198. }
  4199. }
  4200. }
  4201. end:
  4202. skb_queue_walk_safe(&tmp, skb, n)
  4203. tcp_rbtree_insert(root, skb);
  4204. }
  4205. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4206. * and tcp_collapse() them until all the queue is collapsed.
  4207. */
  4208. static void tcp_collapse_ofo_queue(struct sock *sk)
  4209. {
  4210. struct tcp_sock *tp = tcp_sk(sk);
  4211. struct sk_buff *skb, *head;
  4212. struct rb_node *p;
  4213. u32 start, end;
  4214. p = rb_first(&tp->out_of_order_queue);
  4215. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4216. new_range:
  4217. if (!skb) {
  4218. p = rb_last(&tp->out_of_order_queue);
  4219. /* Note: This is possible p is NULL here. We do not
  4220. * use rb_entry_safe(), as ooo_last_skb is valid only
  4221. * if rbtree is not empty.
  4222. */
  4223. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4224. return;
  4225. }
  4226. start = TCP_SKB_CB(skb)->seq;
  4227. end = TCP_SKB_CB(skb)->end_seq;
  4228. for (head = skb;;) {
  4229. skb = tcp_skb_next(skb, NULL);
  4230. /* Range is terminated when we see a gap or when
  4231. * we are at the queue end.
  4232. */
  4233. if (!skb ||
  4234. after(TCP_SKB_CB(skb)->seq, end) ||
  4235. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4236. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4237. head, skb, start, end);
  4238. goto new_range;
  4239. }
  4240. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4241. start = TCP_SKB_CB(skb)->seq;
  4242. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4243. end = TCP_SKB_CB(skb)->end_seq;
  4244. }
  4245. }
  4246. /*
  4247. * Clean the out-of-order queue to make room.
  4248. * We drop high sequences packets to :
  4249. * 1) Let a chance for holes to be filled.
  4250. * 2) not add too big latencies if thousands of packets sit there.
  4251. * (But if application shrinks SO_RCVBUF, we could still end up
  4252. * freeing whole queue here)
  4253. *
  4254. * Return true if queue has shrunk.
  4255. */
  4256. static bool tcp_prune_ofo_queue(struct sock *sk)
  4257. {
  4258. struct tcp_sock *tp = tcp_sk(sk);
  4259. struct rb_node *node, *prev;
  4260. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4261. return false;
  4262. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4263. node = &tp->ooo_last_skb->rbnode;
  4264. do {
  4265. prev = rb_prev(node);
  4266. rb_erase(node, &tp->out_of_order_queue);
  4267. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4268. sk_mem_reclaim(sk);
  4269. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4270. !tcp_under_memory_pressure(sk))
  4271. break;
  4272. node = prev;
  4273. } while (node);
  4274. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4275. /* Reset SACK state. A conforming SACK implementation will
  4276. * do the same at a timeout based retransmit. When a connection
  4277. * is in a sad state like this, we care only about integrity
  4278. * of the connection not performance.
  4279. */
  4280. if (tp->rx_opt.sack_ok)
  4281. tcp_sack_reset(&tp->rx_opt);
  4282. return true;
  4283. }
  4284. /* Reduce allocated memory if we can, trying to get
  4285. * the socket within its memory limits again.
  4286. *
  4287. * Return less than zero if we should start dropping frames
  4288. * until the socket owning process reads some of the data
  4289. * to stabilize the situation.
  4290. */
  4291. static int tcp_prune_queue(struct sock *sk)
  4292. {
  4293. struct tcp_sock *tp = tcp_sk(sk);
  4294. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4295. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4296. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4297. tcp_clamp_window(sk);
  4298. else if (tcp_under_memory_pressure(sk))
  4299. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4300. tcp_collapse_ofo_queue(sk);
  4301. if (!skb_queue_empty(&sk->sk_receive_queue))
  4302. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4303. skb_peek(&sk->sk_receive_queue),
  4304. NULL,
  4305. tp->copied_seq, tp->rcv_nxt);
  4306. sk_mem_reclaim(sk);
  4307. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4308. return 0;
  4309. /* Collapsing did not help, destructive actions follow.
  4310. * This must not ever occur. */
  4311. tcp_prune_ofo_queue(sk);
  4312. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4313. return 0;
  4314. /* If we are really being abused, tell the caller to silently
  4315. * drop receive data on the floor. It will get retransmitted
  4316. * and hopefully then we'll have sufficient space.
  4317. */
  4318. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4319. /* Massive buffer overcommit. */
  4320. tp->pred_flags = 0;
  4321. return -1;
  4322. }
  4323. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4324. {
  4325. const struct tcp_sock *tp = tcp_sk(sk);
  4326. /* If the user specified a specific send buffer setting, do
  4327. * not modify it.
  4328. */
  4329. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4330. return false;
  4331. /* If we are under global TCP memory pressure, do not expand. */
  4332. if (tcp_under_memory_pressure(sk))
  4333. return false;
  4334. /* If we are under soft global TCP memory pressure, do not expand. */
  4335. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4336. return false;
  4337. /* If we filled the congestion window, do not expand. */
  4338. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4339. return false;
  4340. return true;
  4341. }
  4342. /* When incoming ACK allowed to free some skb from write_queue,
  4343. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4344. * on the exit from tcp input handler.
  4345. *
  4346. * PROBLEM: sndbuf expansion does not work well with largesend.
  4347. */
  4348. static void tcp_new_space(struct sock *sk)
  4349. {
  4350. struct tcp_sock *tp = tcp_sk(sk);
  4351. if (tcp_should_expand_sndbuf(sk)) {
  4352. tcp_sndbuf_expand(sk);
  4353. tp->snd_cwnd_stamp = tcp_jiffies32;
  4354. }
  4355. sk->sk_write_space(sk);
  4356. }
  4357. static void tcp_check_space(struct sock *sk)
  4358. {
  4359. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4360. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4361. /* pairs with tcp_poll() */
  4362. smp_mb();
  4363. if (sk->sk_socket &&
  4364. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4365. tcp_new_space(sk);
  4366. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4367. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4368. }
  4369. }
  4370. }
  4371. static inline void tcp_data_snd_check(struct sock *sk)
  4372. {
  4373. tcp_push_pending_frames(sk);
  4374. tcp_check_space(sk);
  4375. }
  4376. /*
  4377. * Check if sending an ack is needed.
  4378. */
  4379. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4380. {
  4381. struct tcp_sock *tp = tcp_sk(sk);
  4382. /* More than one full frame received... */
  4383. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4384. /* ... and right edge of window advances far enough.
  4385. * (tcp_recvmsg() will send ACK otherwise). Or...
  4386. */
  4387. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4388. /* We ACK each frame or... */
  4389. tcp_in_quickack_mode(sk) ||
  4390. /* We have out of order data. */
  4391. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4392. /* Then ack it now */
  4393. tcp_send_ack(sk);
  4394. } else {
  4395. /* Else, send delayed ack. */
  4396. tcp_send_delayed_ack(sk);
  4397. }
  4398. }
  4399. static inline void tcp_ack_snd_check(struct sock *sk)
  4400. {
  4401. if (!inet_csk_ack_scheduled(sk)) {
  4402. /* We sent a data segment already. */
  4403. return;
  4404. }
  4405. __tcp_ack_snd_check(sk, 1);
  4406. }
  4407. /*
  4408. * This routine is only called when we have urgent data
  4409. * signaled. Its the 'slow' part of tcp_urg. It could be
  4410. * moved inline now as tcp_urg is only called from one
  4411. * place. We handle URGent data wrong. We have to - as
  4412. * BSD still doesn't use the correction from RFC961.
  4413. * For 1003.1g we should support a new option TCP_STDURG to permit
  4414. * either form (or just set the sysctl tcp_stdurg).
  4415. */
  4416. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4417. {
  4418. struct tcp_sock *tp = tcp_sk(sk);
  4419. u32 ptr = ntohs(th->urg_ptr);
  4420. if (ptr && !sysctl_tcp_stdurg)
  4421. ptr--;
  4422. ptr += ntohl(th->seq);
  4423. /* Ignore urgent data that we've already seen and read. */
  4424. if (after(tp->copied_seq, ptr))
  4425. return;
  4426. /* Do not replay urg ptr.
  4427. *
  4428. * NOTE: interesting situation not covered by specs.
  4429. * Misbehaving sender may send urg ptr, pointing to segment,
  4430. * which we already have in ofo queue. We are not able to fetch
  4431. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4432. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4433. * situations. But it is worth to think about possibility of some
  4434. * DoSes using some hypothetical application level deadlock.
  4435. */
  4436. if (before(ptr, tp->rcv_nxt))
  4437. return;
  4438. /* Do we already have a newer (or duplicate) urgent pointer? */
  4439. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4440. return;
  4441. /* Tell the world about our new urgent pointer. */
  4442. sk_send_sigurg(sk);
  4443. /* We may be adding urgent data when the last byte read was
  4444. * urgent. To do this requires some care. We cannot just ignore
  4445. * tp->copied_seq since we would read the last urgent byte again
  4446. * as data, nor can we alter copied_seq until this data arrives
  4447. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4448. *
  4449. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4450. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4451. * and expect that both A and B disappear from stream. This is _wrong_.
  4452. * Though this happens in BSD with high probability, this is occasional.
  4453. * Any application relying on this is buggy. Note also, that fix "works"
  4454. * only in this artificial test. Insert some normal data between A and B and we will
  4455. * decline of BSD again. Verdict: it is better to remove to trap
  4456. * buggy users.
  4457. */
  4458. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4459. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4460. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4461. tp->copied_seq++;
  4462. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4463. __skb_unlink(skb, &sk->sk_receive_queue);
  4464. __kfree_skb(skb);
  4465. }
  4466. }
  4467. tp->urg_data = TCP_URG_NOTYET;
  4468. tp->urg_seq = ptr;
  4469. /* Disable header prediction. */
  4470. tp->pred_flags = 0;
  4471. }
  4472. /* This is the 'fast' part of urgent handling. */
  4473. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4474. {
  4475. struct tcp_sock *tp = tcp_sk(sk);
  4476. /* Check if we get a new urgent pointer - normally not. */
  4477. if (th->urg)
  4478. tcp_check_urg(sk, th);
  4479. /* Do we wait for any urgent data? - normally not... */
  4480. if (tp->urg_data == TCP_URG_NOTYET) {
  4481. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4482. th->syn;
  4483. /* Is the urgent pointer pointing into this packet? */
  4484. if (ptr < skb->len) {
  4485. u8 tmp;
  4486. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4487. BUG();
  4488. tp->urg_data = TCP_URG_VALID | tmp;
  4489. if (!sock_flag(sk, SOCK_DEAD))
  4490. sk->sk_data_ready(sk);
  4491. }
  4492. }
  4493. }
  4494. /* Accept RST for rcv_nxt - 1 after a FIN.
  4495. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4496. * FIN is sent followed by a RST packet. The RST is sent with the same
  4497. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4498. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4499. * ACKs on the closed socket. In addition middleboxes can drop either the
  4500. * challenge ACK or a subsequent RST.
  4501. */
  4502. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4503. {
  4504. struct tcp_sock *tp = tcp_sk(sk);
  4505. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4506. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4507. TCPF_CLOSING));
  4508. }
  4509. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4510. * play significant role here.
  4511. */
  4512. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4513. const struct tcphdr *th, int syn_inerr)
  4514. {
  4515. struct tcp_sock *tp = tcp_sk(sk);
  4516. bool rst_seq_match = false;
  4517. /* RFC1323: H1. Apply PAWS check first. */
  4518. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4519. tp->rx_opt.saw_tstamp &&
  4520. tcp_paws_discard(sk, skb)) {
  4521. if (!th->rst) {
  4522. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4523. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4524. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4525. &tp->last_oow_ack_time))
  4526. tcp_send_dupack(sk, skb);
  4527. goto discard;
  4528. }
  4529. /* Reset is accepted even if it did not pass PAWS. */
  4530. }
  4531. /* Step 1: check sequence number */
  4532. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4533. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4534. * (RST) segments are validated by checking their SEQ-fields."
  4535. * And page 69: "If an incoming segment is not acceptable,
  4536. * an acknowledgment should be sent in reply (unless the RST
  4537. * bit is set, if so drop the segment and return)".
  4538. */
  4539. if (!th->rst) {
  4540. if (th->syn)
  4541. goto syn_challenge;
  4542. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4543. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4544. &tp->last_oow_ack_time))
  4545. tcp_send_dupack(sk, skb);
  4546. } else if (tcp_reset_check(sk, skb)) {
  4547. tcp_reset(sk);
  4548. }
  4549. goto discard;
  4550. }
  4551. /* Step 2: check RST bit */
  4552. if (th->rst) {
  4553. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4554. * FIN and SACK too if available):
  4555. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4556. * the right-most SACK block,
  4557. * then
  4558. * RESET the connection
  4559. * else
  4560. * Send a challenge ACK
  4561. */
  4562. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4563. tcp_reset_check(sk, skb)) {
  4564. rst_seq_match = true;
  4565. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4566. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4567. int max_sack = sp[0].end_seq;
  4568. int this_sack;
  4569. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4570. ++this_sack) {
  4571. max_sack = after(sp[this_sack].end_seq,
  4572. max_sack) ?
  4573. sp[this_sack].end_seq : max_sack;
  4574. }
  4575. if (TCP_SKB_CB(skb)->seq == max_sack)
  4576. rst_seq_match = true;
  4577. }
  4578. if (rst_seq_match)
  4579. tcp_reset(sk);
  4580. else {
  4581. /* Disable TFO if RST is out-of-order
  4582. * and no data has been received
  4583. * for current active TFO socket
  4584. */
  4585. if (tp->syn_fastopen && !tp->data_segs_in &&
  4586. sk->sk_state == TCP_ESTABLISHED)
  4587. tcp_fastopen_active_disable(sk);
  4588. tcp_send_challenge_ack(sk, skb);
  4589. }
  4590. goto discard;
  4591. }
  4592. /* step 3: check security and precedence [ignored] */
  4593. /* step 4: Check for a SYN
  4594. * RFC 5961 4.2 : Send a challenge ack
  4595. */
  4596. if (th->syn) {
  4597. syn_challenge:
  4598. if (syn_inerr)
  4599. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4600. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4601. tcp_send_challenge_ack(sk, skb);
  4602. goto discard;
  4603. }
  4604. return true;
  4605. discard:
  4606. tcp_drop(sk, skb);
  4607. return false;
  4608. }
  4609. /*
  4610. * TCP receive function for the ESTABLISHED state.
  4611. *
  4612. * It is split into a fast path and a slow path. The fast path is
  4613. * disabled when:
  4614. * - A zero window was announced from us - zero window probing
  4615. * is only handled properly in the slow path.
  4616. * - Out of order segments arrived.
  4617. * - Urgent data is expected.
  4618. * - There is no buffer space left
  4619. * - Unexpected TCP flags/window values/header lengths are received
  4620. * (detected by checking the TCP header against pred_flags)
  4621. * - Data is sent in both directions. Fast path only supports pure senders
  4622. * or pure receivers (this means either the sequence number or the ack
  4623. * value must stay constant)
  4624. * - Unexpected TCP option.
  4625. *
  4626. * When these conditions are not satisfied it drops into a standard
  4627. * receive procedure patterned after RFC793 to handle all cases.
  4628. * The first three cases are guaranteed by proper pred_flags setting,
  4629. * the rest is checked inline. Fast processing is turned on in
  4630. * tcp_data_queue when everything is OK.
  4631. */
  4632. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4633. const struct tcphdr *th)
  4634. {
  4635. unsigned int len = skb->len;
  4636. struct tcp_sock *tp = tcp_sk(sk);
  4637. tcp_mstamp_refresh(tp);
  4638. if (unlikely(!sk->sk_rx_dst))
  4639. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4640. /*
  4641. * Header prediction.
  4642. * The code loosely follows the one in the famous
  4643. * "30 instruction TCP receive" Van Jacobson mail.
  4644. *
  4645. * Van's trick is to deposit buffers into socket queue
  4646. * on a device interrupt, to call tcp_recv function
  4647. * on the receive process context and checksum and copy
  4648. * the buffer to user space. smart...
  4649. *
  4650. * Our current scheme is not silly either but we take the
  4651. * extra cost of the net_bh soft interrupt processing...
  4652. * We do checksum and copy also but from device to kernel.
  4653. */
  4654. tp->rx_opt.saw_tstamp = 0;
  4655. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4656. * if header_prediction is to be made
  4657. * 'S' will always be tp->tcp_header_len >> 2
  4658. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4659. * turn it off (when there are holes in the receive
  4660. * space for instance)
  4661. * PSH flag is ignored.
  4662. */
  4663. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4664. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4665. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4666. int tcp_header_len = tp->tcp_header_len;
  4667. /* Timestamp header prediction: tcp_header_len
  4668. * is automatically equal to th->doff*4 due to pred_flags
  4669. * match.
  4670. */
  4671. /* Check timestamp */
  4672. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4673. /* No? Slow path! */
  4674. if (!tcp_parse_aligned_timestamp(tp, th))
  4675. goto slow_path;
  4676. /* If PAWS failed, check it more carefully in slow path */
  4677. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4678. goto slow_path;
  4679. /* DO NOT update ts_recent here, if checksum fails
  4680. * and timestamp was corrupted part, it will result
  4681. * in a hung connection since we will drop all
  4682. * future packets due to the PAWS test.
  4683. */
  4684. }
  4685. if (len <= tcp_header_len) {
  4686. /* Bulk data transfer: sender */
  4687. if (len == tcp_header_len) {
  4688. /* Predicted packet is in window by definition.
  4689. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4690. * Hence, check seq<=rcv_wup reduces to:
  4691. */
  4692. if (tcp_header_len ==
  4693. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4694. tp->rcv_nxt == tp->rcv_wup)
  4695. tcp_store_ts_recent(tp);
  4696. /* We know that such packets are checksummed
  4697. * on entry.
  4698. */
  4699. tcp_ack(sk, skb, 0);
  4700. __kfree_skb(skb);
  4701. tcp_data_snd_check(sk);
  4702. return;
  4703. } else { /* Header too small */
  4704. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4705. goto discard;
  4706. }
  4707. } else {
  4708. int eaten = 0;
  4709. bool fragstolen = false;
  4710. if (tcp_checksum_complete(skb))
  4711. goto csum_error;
  4712. if ((int)skb->truesize > sk->sk_forward_alloc)
  4713. goto step5;
  4714. /* Predicted packet is in window by definition.
  4715. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4716. * Hence, check seq<=rcv_wup reduces to:
  4717. */
  4718. if (tcp_header_len ==
  4719. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4720. tp->rcv_nxt == tp->rcv_wup)
  4721. tcp_store_ts_recent(tp);
  4722. tcp_rcv_rtt_measure_ts(sk, skb);
  4723. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4724. /* Bulk data transfer: receiver */
  4725. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4726. &fragstolen);
  4727. tcp_event_data_recv(sk, skb);
  4728. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4729. /* Well, only one small jumplet in fast path... */
  4730. tcp_ack(sk, skb, FLAG_DATA);
  4731. tcp_data_snd_check(sk);
  4732. if (!inet_csk_ack_scheduled(sk))
  4733. goto no_ack;
  4734. }
  4735. __tcp_ack_snd_check(sk, 0);
  4736. no_ack:
  4737. if (eaten)
  4738. kfree_skb_partial(skb, fragstolen);
  4739. sk->sk_data_ready(sk);
  4740. return;
  4741. }
  4742. }
  4743. slow_path:
  4744. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4745. goto csum_error;
  4746. if (!th->ack && !th->rst && !th->syn)
  4747. goto discard;
  4748. /*
  4749. * Standard slow path.
  4750. */
  4751. if (!tcp_validate_incoming(sk, skb, th, 1))
  4752. return;
  4753. step5:
  4754. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4755. goto discard;
  4756. tcp_rcv_rtt_measure_ts(sk, skb);
  4757. /* Process urgent data. */
  4758. tcp_urg(sk, skb, th);
  4759. /* step 7: process the segment text */
  4760. tcp_data_queue(sk, skb);
  4761. tcp_data_snd_check(sk);
  4762. tcp_ack_snd_check(sk);
  4763. return;
  4764. csum_error:
  4765. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4766. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4767. discard:
  4768. tcp_drop(sk, skb);
  4769. }
  4770. EXPORT_SYMBOL(tcp_rcv_established);
  4771. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4772. {
  4773. struct tcp_sock *tp = tcp_sk(sk);
  4774. struct inet_connection_sock *icsk = inet_csk(sk);
  4775. tcp_set_state(sk, TCP_ESTABLISHED);
  4776. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4777. if (skb) {
  4778. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4779. security_inet_conn_established(sk, skb);
  4780. }
  4781. /* Make sure socket is routed, for correct metrics. */
  4782. icsk->icsk_af_ops->rebuild_header(sk);
  4783. tcp_init_metrics(sk);
  4784. tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4785. tcp_init_congestion_control(sk);
  4786. /* Prevent spurious tcp_cwnd_restart() on first data
  4787. * packet.
  4788. */
  4789. tp->lsndtime = tcp_jiffies32;
  4790. tcp_init_buffer_space(sk);
  4791. if (sock_flag(sk, SOCK_KEEPOPEN))
  4792. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4793. if (!tp->rx_opt.snd_wscale)
  4794. __tcp_fast_path_on(tp, tp->snd_wnd);
  4795. else
  4796. tp->pred_flags = 0;
  4797. }
  4798. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4799. struct tcp_fastopen_cookie *cookie)
  4800. {
  4801. struct tcp_sock *tp = tcp_sk(sk);
  4802. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4803. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4804. bool syn_drop = false;
  4805. if (mss == tp->rx_opt.user_mss) {
  4806. struct tcp_options_received opt;
  4807. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4808. tcp_clear_options(&opt);
  4809. opt.user_mss = opt.mss_clamp = 0;
  4810. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4811. mss = opt.mss_clamp;
  4812. }
  4813. if (!tp->syn_fastopen) {
  4814. /* Ignore an unsolicited cookie */
  4815. cookie->len = -1;
  4816. } else if (tp->total_retrans) {
  4817. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4818. * acknowledges data. Presumably the remote received only
  4819. * the retransmitted (regular) SYNs: either the original
  4820. * SYN-data or the corresponding SYN-ACK was dropped.
  4821. */
  4822. syn_drop = (cookie->len < 0 && data);
  4823. } else if (cookie->len < 0 && !tp->syn_data) {
  4824. /* We requested a cookie but didn't get it. If we did not use
  4825. * the (old) exp opt format then try so next time (try_exp=1).
  4826. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4827. */
  4828. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4829. }
  4830. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4831. if (data) { /* Retransmit unacked data in SYN */
  4832. tcp_for_write_queue_from(data, sk) {
  4833. if (data == tcp_send_head(sk) ||
  4834. __tcp_retransmit_skb(sk, data, 1))
  4835. break;
  4836. }
  4837. tcp_rearm_rto(sk);
  4838. NET_INC_STATS(sock_net(sk),
  4839. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4840. return true;
  4841. }
  4842. tp->syn_data_acked = tp->syn_data;
  4843. if (tp->syn_data_acked)
  4844. NET_INC_STATS(sock_net(sk),
  4845. LINUX_MIB_TCPFASTOPENACTIVE);
  4846. tcp_fastopen_add_skb(sk, synack);
  4847. return false;
  4848. }
  4849. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4850. const struct tcphdr *th)
  4851. {
  4852. struct inet_connection_sock *icsk = inet_csk(sk);
  4853. struct tcp_sock *tp = tcp_sk(sk);
  4854. struct tcp_fastopen_cookie foc = { .len = -1 };
  4855. int saved_clamp = tp->rx_opt.mss_clamp;
  4856. bool fastopen_fail;
  4857. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4858. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4859. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4860. if (th->ack) {
  4861. /* rfc793:
  4862. * "If the state is SYN-SENT then
  4863. * first check the ACK bit
  4864. * If the ACK bit is set
  4865. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4866. * a reset (unless the RST bit is set, if so drop
  4867. * the segment and return)"
  4868. */
  4869. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4870. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4871. goto reset_and_undo;
  4872. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4873. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4874. tcp_time_stamp(tp))) {
  4875. NET_INC_STATS(sock_net(sk),
  4876. LINUX_MIB_PAWSACTIVEREJECTED);
  4877. goto reset_and_undo;
  4878. }
  4879. /* Now ACK is acceptable.
  4880. *
  4881. * "If the RST bit is set
  4882. * If the ACK was acceptable then signal the user "error:
  4883. * connection reset", drop the segment, enter CLOSED state,
  4884. * delete TCB, and return."
  4885. */
  4886. if (th->rst) {
  4887. tcp_reset(sk);
  4888. goto discard;
  4889. }
  4890. /* rfc793:
  4891. * "fifth, if neither of the SYN or RST bits is set then
  4892. * drop the segment and return."
  4893. *
  4894. * See note below!
  4895. * --ANK(990513)
  4896. */
  4897. if (!th->syn)
  4898. goto discard_and_undo;
  4899. /* rfc793:
  4900. * "If the SYN bit is on ...
  4901. * are acceptable then ...
  4902. * (our SYN has been ACKed), change the connection
  4903. * state to ESTABLISHED..."
  4904. */
  4905. tcp_ecn_rcv_synack(tp, th);
  4906. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4907. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4908. /* Ok.. it's good. Set up sequence numbers and
  4909. * move to established.
  4910. */
  4911. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4912. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4913. /* RFC1323: The window in SYN & SYN/ACK segments is
  4914. * never scaled.
  4915. */
  4916. tp->snd_wnd = ntohs(th->window);
  4917. if (!tp->rx_opt.wscale_ok) {
  4918. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4919. tp->window_clamp = min(tp->window_clamp, 65535U);
  4920. }
  4921. if (tp->rx_opt.saw_tstamp) {
  4922. tp->rx_opt.tstamp_ok = 1;
  4923. tp->tcp_header_len =
  4924. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4925. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4926. tcp_store_ts_recent(tp);
  4927. } else {
  4928. tp->tcp_header_len = sizeof(struct tcphdr);
  4929. }
  4930. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4931. tcp_enable_fack(tp);
  4932. tcp_mtup_init(sk);
  4933. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4934. tcp_initialize_rcv_mss(sk);
  4935. /* Remember, tcp_poll() does not lock socket!
  4936. * Change state from SYN-SENT only after copied_seq
  4937. * is initialized. */
  4938. tp->copied_seq = tp->rcv_nxt;
  4939. smp_mb();
  4940. tcp_finish_connect(sk, skb);
  4941. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4942. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4943. if (!sock_flag(sk, SOCK_DEAD)) {
  4944. sk->sk_state_change(sk);
  4945. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4946. }
  4947. if (fastopen_fail)
  4948. return -1;
  4949. if (sk->sk_write_pending ||
  4950. icsk->icsk_accept_queue.rskq_defer_accept ||
  4951. icsk->icsk_ack.pingpong) {
  4952. /* Save one ACK. Data will be ready after
  4953. * several ticks, if write_pending is set.
  4954. *
  4955. * It may be deleted, but with this feature tcpdumps
  4956. * look so _wonderfully_ clever, that I was not able
  4957. * to stand against the temptation 8) --ANK
  4958. */
  4959. inet_csk_schedule_ack(sk);
  4960. tcp_enter_quickack_mode(sk);
  4961. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4962. TCP_DELACK_MAX, TCP_RTO_MAX);
  4963. discard:
  4964. tcp_drop(sk, skb);
  4965. return 0;
  4966. } else {
  4967. tcp_send_ack(sk);
  4968. }
  4969. return -1;
  4970. }
  4971. /* No ACK in the segment */
  4972. if (th->rst) {
  4973. /* rfc793:
  4974. * "If the RST bit is set
  4975. *
  4976. * Otherwise (no ACK) drop the segment and return."
  4977. */
  4978. goto discard_and_undo;
  4979. }
  4980. /* PAWS check. */
  4981. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4982. tcp_paws_reject(&tp->rx_opt, 0))
  4983. goto discard_and_undo;
  4984. if (th->syn) {
  4985. /* We see SYN without ACK. It is attempt of
  4986. * simultaneous connect with crossed SYNs.
  4987. * Particularly, it can be connect to self.
  4988. */
  4989. tcp_set_state(sk, TCP_SYN_RECV);
  4990. if (tp->rx_opt.saw_tstamp) {
  4991. tp->rx_opt.tstamp_ok = 1;
  4992. tcp_store_ts_recent(tp);
  4993. tp->tcp_header_len =
  4994. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4995. } else {
  4996. tp->tcp_header_len = sizeof(struct tcphdr);
  4997. }
  4998. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4999. tp->copied_seq = tp->rcv_nxt;
  5000. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5001. /* RFC1323: The window in SYN & SYN/ACK segments is
  5002. * never scaled.
  5003. */
  5004. tp->snd_wnd = ntohs(th->window);
  5005. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5006. tp->max_window = tp->snd_wnd;
  5007. tcp_ecn_rcv_syn(tp, th);
  5008. tcp_mtup_init(sk);
  5009. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5010. tcp_initialize_rcv_mss(sk);
  5011. tcp_send_synack(sk);
  5012. #if 0
  5013. /* Note, we could accept data and URG from this segment.
  5014. * There are no obstacles to make this (except that we must
  5015. * either change tcp_recvmsg() to prevent it from returning data
  5016. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5017. *
  5018. * However, if we ignore data in ACKless segments sometimes,
  5019. * we have no reasons to accept it sometimes.
  5020. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5021. * is not flawless. So, discard packet for sanity.
  5022. * Uncomment this return to process the data.
  5023. */
  5024. return -1;
  5025. #else
  5026. goto discard;
  5027. #endif
  5028. }
  5029. /* "fifth, if neither of the SYN or RST bits is set then
  5030. * drop the segment and return."
  5031. */
  5032. discard_and_undo:
  5033. tcp_clear_options(&tp->rx_opt);
  5034. tp->rx_opt.mss_clamp = saved_clamp;
  5035. goto discard;
  5036. reset_and_undo:
  5037. tcp_clear_options(&tp->rx_opt);
  5038. tp->rx_opt.mss_clamp = saved_clamp;
  5039. return 1;
  5040. }
  5041. /*
  5042. * This function implements the receiving procedure of RFC 793 for
  5043. * all states except ESTABLISHED and TIME_WAIT.
  5044. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5045. * address independent.
  5046. */
  5047. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5048. {
  5049. struct tcp_sock *tp = tcp_sk(sk);
  5050. struct inet_connection_sock *icsk = inet_csk(sk);
  5051. const struct tcphdr *th = tcp_hdr(skb);
  5052. struct request_sock *req;
  5053. int queued = 0;
  5054. bool acceptable;
  5055. switch (sk->sk_state) {
  5056. case TCP_CLOSE:
  5057. goto discard;
  5058. case TCP_LISTEN:
  5059. if (th->ack)
  5060. return 1;
  5061. if (th->rst)
  5062. goto discard;
  5063. if (th->syn) {
  5064. if (th->fin)
  5065. goto discard;
  5066. /* It is possible that we process SYN packets from backlog,
  5067. * so we need to make sure to disable BH right there.
  5068. */
  5069. local_bh_disable();
  5070. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5071. local_bh_enable();
  5072. if (!acceptable)
  5073. return 1;
  5074. consume_skb(skb);
  5075. return 0;
  5076. }
  5077. goto discard;
  5078. case TCP_SYN_SENT:
  5079. tp->rx_opt.saw_tstamp = 0;
  5080. tcp_mstamp_refresh(tp);
  5081. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5082. if (queued >= 0)
  5083. return queued;
  5084. /* Do step6 onward by hand. */
  5085. tcp_urg(sk, skb, th);
  5086. __kfree_skb(skb);
  5087. tcp_data_snd_check(sk);
  5088. return 0;
  5089. }
  5090. tcp_mstamp_refresh(tp);
  5091. tp->rx_opt.saw_tstamp = 0;
  5092. req = tp->fastopen_rsk;
  5093. if (req) {
  5094. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5095. sk->sk_state != TCP_FIN_WAIT1);
  5096. if (!tcp_check_req(sk, skb, req, true))
  5097. goto discard;
  5098. }
  5099. if (!th->ack && !th->rst && !th->syn)
  5100. goto discard;
  5101. if (!tcp_validate_incoming(sk, skb, th, 0))
  5102. return 0;
  5103. /* step 5: check the ACK field */
  5104. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5105. FLAG_UPDATE_TS_RECENT |
  5106. FLAG_NO_CHALLENGE_ACK) > 0;
  5107. if (!acceptable) {
  5108. if (sk->sk_state == TCP_SYN_RECV)
  5109. return 1; /* send one RST */
  5110. tcp_send_challenge_ack(sk, skb);
  5111. goto discard;
  5112. }
  5113. switch (sk->sk_state) {
  5114. case TCP_SYN_RECV:
  5115. if (!tp->srtt_us)
  5116. tcp_synack_rtt_meas(sk, req);
  5117. /* Once we leave TCP_SYN_RECV, we no longer need req
  5118. * so release it.
  5119. */
  5120. if (req) {
  5121. inet_csk(sk)->icsk_retransmits = 0;
  5122. reqsk_fastopen_remove(sk, req, false);
  5123. } else {
  5124. /* Make sure socket is routed, for correct metrics. */
  5125. icsk->icsk_af_ops->rebuild_header(sk);
  5126. tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5127. tcp_init_congestion_control(sk);
  5128. tcp_mtup_init(sk);
  5129. tp->copied_seq = tp->rcv_nxt;
  5130. tcp_init_buffer_space(sk);
  5131. }
  5132. smp_mb();
  5133. tcp_set_state(sk, TCP_ESTABLISHED);
  5134. sk->sk_state_change(sk);
  5135. /* Note, that this wakeup is only for marginal crossed SYN case.
  5136. * Passively open sockets are not waked up, because
  5137. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5138. */
  5139. if (sk->sk_socket)
  5140. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5141. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5142. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5143. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5144. if (tp->rx_opt.tstamp_ok)
  5145. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5146. if (req) {
  5147. /* Re-arm the timer because data may have been sent out.
  5148. * This is similar to the regular data transmission case
  5149. * when new data has just been ack'ed.
  5150. *
  5151. * (TFO) - we could try to be more aggressive and
  5152. * retransmitting any data sooner based on when they
  5153. * are sent out.
  5154. */
  5155. tcp_rearm_rto(sk);
  5156. } else
  5157. tcp_init_metrics(sk);
  5158. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5159. tcp_update_pacing_rate(sk);
  5160. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5161. tp->lsndtime = tcp_jiffies32;
  5162. tcp_initialize_rcv_mss(sk);
  5163. tcp_fast_path_on(tp);
  5164. break;
  5165. case TCP_FIN_WAIT1: {
  5166. int tmo;
  5167. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5168. * Fast Open socket and this is the first acceptable
  5169. * ACK we have received, this would have acknowledged
  5170. * our SYNACK so stop the SYNACK timer.
  5171. */
  5172. if (req) {
  5173. /* We no longer need the request sock. */
  5174. reqsk_fastopen_remove(sk, req, false);
  5175. tcp_rearm_rto(sk);
  5176. }
  5177. if (tp->snd_una != tp->write_seq)
  5178. break;
  5179. tcp_set_state(sk, TCP_FIN_WAIT2);
  5180. sk->sk_shutdown |= SEND_SHUTDOWN;
  5181. sk_dst_confirm(sk);
  5182. if (!sock_flag(sk, SOCK_DEAD)) {
  5183. /* Wake up lingering close() */
  5184. sk->sk_state_change(sk);
  5185. break;
  5186. }
  5187. if (tp->linger2 < 0) {
  5188. tcp_done(sk);
  5189. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5190. return 1;
  5191. }
  5192. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5193. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5194. /* Receive out of order FIN after close() */
  5195. if (tp->syn_fastopen && th->fin)
  5196. tcp_fastopen_active_disable(sk);
  5197. tcp_done(sk);
  5198. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5199. return 1;
  5200. }
  5201. tmo = tcp_fin_time(sk);
  5202. if (tmo > TCP_TIMEWAIT_LEN) {
  5203. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5204. } else if (th->fin || sock_owned_by_user(sk)) {
  5205. /* Bad case. We could lose such FIN otherwise.
  5206. * It is not a big problem, but it looks confusing
  5207. * and not so rare event. We still can lose it now,
  5208. * if it spins in bh_lock_sock(), but it is really
  5209. * marginal case.
  5210. */
  5211. inet_csk_reset_keepalive_timer(sk, tmo);
  5212. } else {
  5213. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5214. goto discard;
  5215. }
  5216. break;
  5217. }
  5218. case TCP_CLOSING:
  5219. if (tp->snd_una == tp->write_seq) {
  5220. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5221. goto discard;
  5222. }
  5223. break;
  5224. case TCP_LAST_ACK:
  5225. if (tp->snd_una == tp->write_seq) {
  5226. tcp_update_metrics(sk);
  5227. tcp_done(sk);
  5228. goto discard;
  5229. }
  5230. break;
  5231. }
  5232. /* step 6: check the URG bit */
  5233. tcp_urg(sk, skb, th);
  5234. /* step 7: process the segment text */
  5235. switch (sk->sk_state) {
  5236. case TCP_CLOSE_WAIT:
  5237. case TCP_CLOSING:
  5238. case TCP_LAST_ACK:
  5239. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5240. break;
  5241. case TCP_FIN_WAIT1:
  5242. case TCP_FIN_WAIT2:
  5243. /* RFC 793 says to queue data in these states,
  5244. * RFC 1122 says we MUST send a reset.
  5245. * BSD 4.4 also does reset.
  5246. */
  5247. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5248. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5249. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5250. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5251. tcp_reset(sk);
  5252. return 1;
  5253. }
  5254. }
  5255. /* Fall through */
  5256. case TCP_ESTABLISHED:
  5257. tcp_data_queue(sk, skb);
  5258. queued = 1;
  5259. break;
  5260. }
  5261. /* tcp_data could move socket to TIME-WAIT */
  5262. if (sk->sk_state != TCP_CLOSE) {
  5263. tcp_data_snd_check(sk);
  5264. tcp_ack_snd_check(sk);
  5265. }
  5266. if (!queued) {
  5267. discard:
  5268. tcp_drop(sk, skb);
  5269. }
  5270. return 0;
  5271. }
  5272. EXPORT_SYMBOL(tcp_rcv_state_process);
  5273. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5274. {
  5275. struct inet_request_sock *ireq = inet_rsk(req);
  5276. if (family == AF_INET)
  5277. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5278. &ireq->ir_rmt_addr, port);
  5279. #if IS_ENABLED(CONFIG_IPV6)
  5280. else if (family == AF_INET6)
  5281. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5282. &ireq->ir_v6_rmt_addr, port);
  5283. #endif
  5284. }
  5285. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5286. *
  5287. * If we receive a SYN packet with these bits set, it means a
  5288. * network is playing bad games with TOS bits. In order to
  5289. * avoid possible false congestion notifications, we disable
  5290. * TCP ECN negotiation.
  5291. *
  5292. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5293. * congestion control: Linux DCTCP asserts ECT on all packets,
  5294. * including SYN, which is most optimal solution; however,
  5295. * others, such as FreeBSD do not.
  5296. */
  5297. static void tcp_ecn_create_request(struct request_sock *req,
  5298. const struct sk_buff *skb,
  5299. const struct sock *listen_sk,
  5300. const struct dst_entry *dst)
  5301. {
  5302. const struct tcphdr *th = tcp_hdr(skb);
  5303. const struct net *net = sock_net(listen_sk);
  5304. bool th_ecn = th->ece && th->cwr;
  5305. bool ect, ecn_ok;
  5306. u32 ecn_ok_dst;
  5307. if (!th_ecn)
  5308. return;
  5309. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5310. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5311. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5312. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5313. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5314. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5315. inet_rsk(req)->ecn_ok = 1;
  5316. }
  5317. static void tcp_openreq_init(struct request_sock *req,
  5318. const struct tcp_options_received *rx_opt,
  5319. struct sk_buff *skb, const struct sock *sk)
  5320. {
  5321. struct inet_request_sock *ireq = inet_rsk(req);
  5322. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5323. req->cookie_ts = 0;
  5324. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5325. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5326. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5327. tcp_rsk(req)->last_oow_ack_time = 0;
  5328. req->mss = rx_opt->mss_clamp;
  5329. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5330. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5331. ireq->sack_ok = rx_opt->sack_ok;
  5332. ireq->snd_wscale = rx_opt->snd_wscale;
  5333. ireq->wscale_ok = rx_opt->wscale_ok;
  5334. ireq->acked = 0;
  5335. ireq->ecn_ok = 0;
  5336. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5337. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5338. ireq->ir_mark = inet_request_mark(sk, skb);
  5339. }
  5340. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5341. struct sock *sk_listener,
  5342. bool attach_listener)
  5343. {
  5344. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5345. attach_listener);
  5346. if (req) {
  5347. struct inet_request_sock *ireq = inet_rsk(req);
  5348. ireq->ireq_opt = NULL;
  5349. #if IS_ENABLED(CONFIG_IPV6)
  5350. ireq->pktopts = NULL;
  5351. #endif
  5352. atomic64_set(&ireq->ir_cookie, 0);
  5353. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5354. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5355. ireq->ireq_family = sk_listener->sk_family;
  5356. }
  5357. return req;
  5358. }
  5359. EXPORT_SYMBOL(inet_reqsk_alloc);
  5360. /*
  5361. * Return true if a syncookie should be sent
  5362. */
  5363. static bool tcp_syn_flood_action(const struct sock *sk,
  5364. const struct sk_buff *skb,
  5365. const char *proto)
  5366. {
  5367. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5368. const char *msg = "Dropping request";
  5369. bool want_cookie = false;
  5370. struct net *net = sock_net(sk);
  5371. #ifdef CONFIG_SYN_COOKIES
  5372. if (net->ipv4.sysctl_tcp_syncookies) {
  5373. msg = "Sending cookies";
  5374. want_cookie = true;
  5375. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5376. } else
  5377. #endif
  5378. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5379. if (!queue->synflood_warned &&
  5380. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5381. xchg(&queue->synflood_warned, 1) == 0)
  5382. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5383. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5384. return want_cookie;
  5385. }
  5386. static void tcp_reqsk_record_syn(const struct sock *sk,
  5387. struct request_sock *req,
  5388. const struct sk_buff *skb)
  5389. {
  5390. if (tcp_sk(sk)->save_syn) {
  5391. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5392. u32 *copy;
  5393. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5394. if (copy) {
  5395. copy[0] = len;
  5396. memcpy(&copy[1], skb_network_header(skb), len);
  5397. req->saved_syn = copy;
  5398. }
  5399. }
  5400. }
  5401. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5402. const struct tcp_request_sock_ops *af_ops,
  5403. struct sock *sk, struct sk_buff *skb)
  5404. {
  5405. struct tcp_fastopen_cookie foc = { .len = -1 };
  5406. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5407. struct tcp_options_received tmp_opt;
  5408. struct tcp_sock *tp = tcp_sk(sk);
  5409. struct net *net = sock_net(sk);
  5410. struct sock *fastopen_sk = NULL;
  5411. struct request_sock *req;
  5412. bool want_cookie = false;
  5413. struct dst_entry *dst;
  5414. struct flowi fl;
  5415. /* TW buckets are converted to open requests without
  5416. * limitations, they conserve resources and peer is
  5417. * evidently real one.
  5418. */
  5419. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5420. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5421. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5422. if (!want_cookie)
  5423. goto drop;
  5424. }
  5425. if (sk_acceptq_is_full(sk)) {
  5426. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5427. goto drop;
  5428. }
  5429. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5430. if (!req)
  5431. goto drop;
  5432. tcp_rsk(req)->af_specific = af_ops;
  5433. tcp_rsk(req)->ts_off = 0;
  5434. tcp_clear_options(&tmp_opt);
  5435. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5436. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5437. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5438. want_cookie ? NULL : &foc);
  5439. if (want_cookie && !tmp_opt.saw_tstamp)
  5440. tcp_clear_options(&tmp_opt);
  5441. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5442. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5443. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5444. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5445. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5446. af_ops->init_req(req, sk, skb);
  5447. if (security_inet_conn_request(sk, skb, req))
  5448. goto drop_and_free;
  5449. if (tmp_opt.tstamp_ok)
  5450. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5451. dst = af_ops->route_req(sk, &fl, req);
  5452. if (!dst)
  5453. goto drop_and_free;
  5454. if (!want_cookie && !isn) {
  5455. /* Kill the following clause, if you dislike this way. */
  5456. if (!net->ipv4.sysctl_tcp_syncookies &&
  5457. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5458. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5459. !tcp_peer_is_proven(req, dst)) {
  5460. /* Without syncookies last quarter of
  5461. * backlog is filled with destinations,
  5462. * proven to be alive.
  5463. * It means that we continue to communicate
  5464. * to destinations, already remembered
  5465. * to the moment of synflood.
  5466. */
  5467. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5468. rsk_ops->family);
  5469. goto drop_and_release;
  5470. }
  5471. isn = af_ops->init_seq(skb);
  5472. }
  5473. tcp_ecn_create_request(req, skb, sk, dst);
  5474. if (want_cookie) {
  5475. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5476. req->cookie_ts = tmp_opt.tstamp_ok;
  5477. if (!tmp_opt.tstamp_ok)
  5478. inet_rsk(req)->ecn_ok = 0;
  5479. }
  5480. tcp_rsk(req)->snt_isn = isn;
  5481. tcp_rsk(req)->txhash = net_tx_rndhash();
  5482. tcp_openreq_init_rwin(req, sk, dst);
  5483. if (!want_cookie) {
  5484. tcp_reqsk_record_syn(sk, req, skb);
  5485. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
  5486. }
  5487. if (fastopen_sk) {
  5488. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5489. &foc, TCP_SYNACK_FASTOPEN);
  5490. /* Add the child socket directly into the accept queue */
  5491. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5492. sk->sk_data_ready(sk);
  5493. bh_unlock_sock(fastopen_sk);
  5494. sock_put(fastopen_sk);
  5495. } else {
  5496. tcp_rsk(req)->tfo_listener = false;
  5497. if (!want_cookie)
  5498. inet_csk_reqsk_queue_hash_add(sk, req,
  5499. tcp_timeout_init((struct sock *)req));
  5500. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5501. !want_cookie ? TCP_SYNACK_NORMAL :
  5502. TCP_SYNACK_COOKIE);
  5503. if (want_cookie) {
  5504. reqsk_free(req);
  5505. return 0;
  5506. }
  5507. }
  5508. reqsk_put(req);
  5509. return 0;
  5510. drop_and_release:
  5511. dst_release(dst);
  5512. drop_and_free:
  5513. reqsk_free(req);
  5514. drop:
  5515. tcp_listendrop(sk);
  5516. return 0;
  5517. }
  5518. EXPORT_SYMBOL(tcp_conn_request);