sock.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/sched/mm.h>
  104. #include <linux/timer.h>
  105. #include <linux/string.h>
  106. #include <linux/sockios.h>
  107. #include <linux/net.h>
  108. #include <linux/mm.h>
  109. #include <linux/slab.h>
  110. #include <linux/interrupt.h>
  111. #include <linux/poll.h>
  112. #include <linux/tcp.h>
  113. #include <linux/init.h>
  114. #include <linux/highmem.h>
  115. #include <linux/user_namespace.h>
  116. #include <linux/static_key.h>
  117. #include <linux/memcontrol.h>
  118. #include <linux/prefetch.h>
  119. #include <linux/uaccess.h>
  120. #include <linux/netdevice.h>
  121. #include <net/protocol.h>
  122. #include <linux/skbuff.h>
  123. #include <net/net_namespace.h>
  124. #include <net/request_sock.h>
  125. #include <net/sock.h>
  126. #include <linux/net_tstamp.h>
  127. #include <net/xfrm.h>
  128. #include <linux/ipsec.h>
  129. #include <net/cls_cgroup.h>
  130. #include <net/netprio_cgroup.h>
  131. #include <linux/sock_diag.h>
  132. #include <linux/filter.h>
  133. #include <net/sock_reuseport.h>
  134. #include <trace/events/sock.h>
  135. #include <net/tcp.h>
  136. #include <net/busy_poll.h>
  137. static DEFINE_MUTEX(proto_list_mutex);
  138. static LIST_HEAD(proto_list);
  139. /**
  140. * sk_ns_capable - General socket capability test
  141. * @sk: Socket to use a capability on or through
  142. * @user_ns: The user namespace of the capability to use
  143. * @cap: The capability to use
  144. *
  145. * Test to see if the opener of the socket had when the socket was
  146. * created and the current process has the capability @cap in the user
  147. * namespace @user_ns.
  148. */
  149. bool sk_ns_capable(const struct sock *sk,
  150. struct user_namespace *user_ns, int cap)
  151. {
  152. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  153. ns_capable(user_ns, cap);
  154. }
  155. EXPORT_SYMBOL(sk_ns_capable);
  156. /**
  157. * sk_capable - Socket global capability test
  158. * @sk: Socket to use a capability on or through
  159. * @cap: The global capability to use
  160. *
  161. * Test to see if the opener of the socket had when the socket was
  162. * created and the current process has the capability @cap in all user
  163. * namespaces.
  164. */
  165. bool sk_capable(const struct sock *sk, int cap)
  166. {
  167. return sk_ns_capable(sk, &init_user_ns, cap);
  168. }
  169. EXPORT_SYMBOL(sk_capable);
  170. /**
  171. * sk_net_capable - Network namespace socket capability test
  172. * @sk: Socket to use a capability on or through
  173. * @cap: The capability to use
  174. *
  175. * Test to see if the opener of the socket had when the socket was created
  176. * and the current process has the capability @cap over the network namespace
  177. * the socket is a member of.
  178. */
  179. bool sk_net_capable(const struct sock *sk, int cap)
  180. {
  181. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  182. }
  183. EXPORT_SYMBOL(sk_net_capable);
  184. /*
  185. * Each address family might have different locking rules, so we have
  186. * one slock key per address family and separate keys for internal and
  187. * userspace sockets.
  188. */
  189. static struct lock_class_key af_family_keys[AF_MAX];
  190. static struct lock_class_key af_family_kern_keys[AF_MAX];
  191. static struct lock_class_key af_family_slock_keys[AF_MAX];
  192. static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
  193. /*
  194. * Make lock validator output more readable. (we pre-construct these
  195. * strings build-time, so that runtime initialization of socket
  196. * locks is fast):
  197. */
  198. #define _sock_locks(x) \
  199. x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
  200. x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
  201. x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
  202. x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
  203. x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
  204. x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
  205. x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
  206. x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
  207. x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
  208. x "27" , x "28" , x "AF_CAN" , \
  209. x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
  210. x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
  211. x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
  212. x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
  213. x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
  214. static const char *const af_family_key_strings[AF_MAX+1] = {
  215. _sock_locks("sk_lock-")
  216. };
  217. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  218. _sock_locks("slock-")
  219. };
  220. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  221. _sock_locks("clock-")
  222. };
  223. static const char *const af_family_kern_key_strings[AF_MAX+1] = {
  224. _sock_locks("k-sk_lock-")
  225. };
  226. static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
  227. _sock_locks("k-slock-")
  228. };
  229. static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
  230. _sock_locks("k-clock-")
  231. };
  232. static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
  233. "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
  234. "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
  235. "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
  236. "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
  237. "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
  238. "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
  239. "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
  240. "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
  241. "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
  242. "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
  243. "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
  244. "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
  245. "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
  246. "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
  247. "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
  248. };
  249. static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
  250. "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
  251. "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
  252. "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
  253. "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
  254. "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
  255. "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
  256. "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
  257. "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
  258. "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
  259. "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
  260. "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
  261. "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
  262. "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
  263. "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
  264. "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
  265. };
  266. static const char *const af_family_elock_key_strings[AF_MAX+1] = {
  267. "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
  268. "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
  269. "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
  270. "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
  271. "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
  272. "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
  273. "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
  274. "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
  275. "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
  276. "elock-27" , "elock-28" , "elock-AF_CAN" ,
  277. "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
  278. "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
  279. "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
  280. "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
  281. "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
  282. };
  283. /*
  284. * sk_callback_lock and sk queues locking rules are per-address-family,
  285. * so split the lock classes by using a per-AF key:
  286. */
  287. static struct lock_class_key af_callback_keys[AF_MAX];
  288. static struct lock_class_key af_rlock_keys[AF_MAX];
  289. static struct lock_class_key af_wlock_keys[AF_MAX];
  290. static struct lock_class_key af_elock_keys[AF_MAX];
  291. static struct lock_class_key af_kern_callback_keys[AF_MAX];
  292. /* Run time adjustable parameters. */
  293. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  294. EXPORT_SYMBOL(sysctl_wmem_max);
  295. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  296. EXPORT_SYMBOL(sysctl_rmem_max);
  297. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  298. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  299. /* Maximal space eaten by iovec or ancillary data plus some space */
  300. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  301. EXPORT_SYMBOL(sysctl_optmem_max);
  302. int sysctl_tstamp_allow_data __read_mostly = 1;
  303. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  304. EXPORT_SYMBOL_GPL(memalloc_socks);
  305. /**
  306. * sk_set_memalloc - sets %SOCK_MEMALLOC
  307. * @sk: socket to set it on
  308. *
  309. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  310. * It's the responsibility of the admin to adjust min_free_kbytes
  311. * to meet the requirements
  312. */
  313. void sk_set_memalloc(struct sock *sk)
  314. {
  315. sock_set_flag(sk, SOCK_MEMALLOC);
  316. sk->sk_allocation |= __GFP_MEMALLOC;
  317. static_key_slow_inc(&memalloc_socks);
  318. }
  319. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  320. void sk_clear_memalloc(struct sock *sk)
  321. {
  322. sock_reset_flag(sk, SOCK_MEMALLOC);
  323. sk->sk_allocation &= ~__GFP_MEMALLOC;
  324. static_key_slow_dec(&memalloc_socks);
  325. /*
  326. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  327. * progress of swapping. SOCK_MEMALLOC may be cleared while
  328. * it has rmem allocations due to the last swapfile being deactivated
  329. * but there is a risk that the socket is unusable due to exceeding
  330. * the rmem limits. Reclaim the reserves and obey rmem limits again.
  331. */
  332. sk_mem_reclaim(sk);
  333. }
  334. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  335. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  336. {
  337. int ret;
  338. unsigned int noreclaim_flag;
  339. /* these should have been dropped before queueing */
  340. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  341. noreclaim_flag = memalloc_noreclaim_save();
  342. ret = sk->sk_backlog_rcv(sk, skb);
  343. memalloc_noreclaim_restore(noreclaim_flag);
  344. return ret;
  345. }
  346. EXPORT_SYMBOL(__sk_backlog_rcv);
  347. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  348. {
  349. struct timeval tv;
  350. if (optlen < sizeof(tv))
  351. return -EINVAL;
  352. if (copy_from_user(&tv, optval, sizeof(tv)))
  353. return -EFAULT;
  354. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  355. return -EDOM;
  356. if (tv.tv_sec < 0) {
  357. static int warned __read_mostly;
  358. *timeo_p = 0;
  359. if (warned < 10 && net_ratelimit()) {
  360. warned++;
  361. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  362. __func__, current->comm, task_pid_nr(current));
  363. }
  364. return 0;
  365. }
  366. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  367. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  368. return 0;
  369. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  370. *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
  371. return 0;
  372. }
  373. static void sock_warn_obsolete_bsdism(const char *name)
  374. {
  375. static int warned;
  376. static char warncomm[TASK_COMM_LEN];
  377. if (strcmp(warncomm, current->comm) && warned < 5) {
  378. strcpy(warncomm, current->comm);
  379. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  380. warncomm, name);
  381. warned++;
  382. }
  383. }
  384. static bool sock_needs_netstamp(const struct sock *sk)
  385. {
  386. switch (sk->sk_family) {
  387. case AF_UNSPEC:
  388. case AF_UNIX:
  389. return false;
  390. default:
  391. return true;
  392. }
  393. }
  394. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  395. {
  396. if (sk->sk_flags & flags) {
  397. sk->sk_flags &= ~flags;
  398. if (sock_needs_netstamp(sk) &&
  399. !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  400. net_disable_timestamp();
  401. }
  402. }
  403. int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  404. {
  405. unsigned long flags;
  406. struct sk_buff_head *list = &sk->sk_receive_queue;
  407. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  408. atomic_inc(&sk->sk_drops);
  409. trace_sock_rcvqueue_full(sk, skb);
  410. return -ENOMEM;
  411. }
  412. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  413. atomic_inc(&sk->sk_drops);
  414. return -ENOBUFS;
  415. }
  416. skb->dev = NULL;
  417. skb_set_owner_r(skb, sk);
  418. /* we escape from rcu protected region, make sure we dont leak
  419. * a norefcounted dst
  420. */
  421. skb_dst_force(skb);
  422. spin_lock_irqsave(&list->lock, flags);
  423. sock_skb_set_dropcount(sk, skb);
  424. __skb_queue_tail(list, skb);
  425. spin_unlock_irqrestore(&list->lock, flags);
  426. if (!sock_flag(sk, SOCK_DEAD))
  427. sk->sk_data_ready(sk);
  428. return 0;
  429. }
  430. EXPORT_SYMBOL(__sock_queue_rcv_skb);
  431. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  432. {
  433. int err;
  434. err = sk_filter(sk, skb);
  435. if (err)
  436. return err;
  437. return __sock_queue_rcv_skb(sk, skb);
  438. }
  439. EXPORT_SYMBOL(sock_queue_rcv_skb);
  440. int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
  441. const int nested, unsigned int trim_cap, bool refcounted)
  442. {
  443. int rc = NET_RX_SUCCESS;
  444. if (sk_filter_trim_cap(sk, skb, trim_cap))
  445. goto discard_and_relse;
  446. skb->dev = NULL;
  447. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  448. atomic_inc(&sk->sk_drops);
  449. goto discard_and_relse;
  450. }
  451. if (nested)
  452. bh_lock_sock_nested(sk);
  453. else
  454. bh_lock_sock(sk);
  455. if (!sock_owned_by_user(sk)) {
  456. /*
  457. * trylock + unlock semantics:
  458. */
  459. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  460. rc = sk_backlog_rcv(sk, skb);
  461. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  462. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  463. bh_unlock_sock(sk);
  464. atomic_inc(&sk->sk_drops);
  465. goto discard_and_relse;
  466. }
  467. bh_unlock_sock(sk);
  468. out:
  469. if (refcounted)
  470. sock_put(sk);
  471. return rc;
  472. discard_and_relse:
  473. kfree_skb(skb);
  474. goto out;
  475. }
  476. EXPORT_SYMBOL(__sk_receive_skb);
  477. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  478. {
  479. struct dst_entry *dst = __sk_dst_get(sk);
  480. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  481. sk_tx_queue_clear(sk);
  482. sk->sk_dst_pending_confirm = 0;
  483. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  484. dst_release(dst);
  485. return NULL;
  486. }
  487. return dst;
  488. }
  489. EXPORT_SYMBOL(__sk_dst_check);
  490. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  491. {
  492. struct dst_entry *dst = sk_dst_get(sk);
  493. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  494. sk_dst_reset(sk);
  495. dst_release(dst);
  496. return NULL;
  497. }
  498. return dst;
  499. }
  500. EXPORT_SYMBOL(sk_dst_check);
  501. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  502. int optlen)
  503. {
  504. int ret = -ENOPROTOOPT;
  505. #ifdef CONFIG_NETDEVICES
  506. struct net *net = sock_net(sk);
  507. char devname[IFNAMSIZ];
  508. int index;
  509. /* Sorry... */
  510. ret = -EPERM;
  511. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  512. goto out;
  513. ret = -EINVAL;
  514. if (optlen < 0)
  515. goto out;
  516. /* Bind this socket to a particular device like "eth0",
  517. * as specified in the passed interface name. If the
  518. * name is "" or the option length is zero the socket
  519. * is not bound.
  520. */
  521. if (optlen > IFNAMSIZ - 1)
  522. optlen = IFNAMSIZ - 1;
  523. memset(devname, 0, sizeof(devname));
  524. ret = -EFAULT;
  525. if (copy_from_user(devname, optval, optlen))
  526. goto out;
  527. index = 0;
  528. if (devname[0] != '\0') {
  529. struct net_device *dev;
  530. rcu_read_lock();
  531. dev = dev_get_by_name_rcu(net, devname);
  532. if (dev)
  533. index = dev->ifindex;
  534. rcu_read_unlock();
  535. ret = -ENODEV;
  536. if (!dev)
  537. goto out;
  538. }
  539. lock_sock(sk);
  540. sk->sk_bound_dev_if = index;
  541. sk_dst_reset(sk);
  542. release_sock(sk);
  543. ret = 0;
  544. out:
  545. #endif
  546. return ret;
  547. }
  548. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  549. int __user *optlen, int len)
  550. {
  551. int ret = -ENOPROTOOPT;
  552. #ifdef CONFIG_NETDEVICES
  553. struct net *net = sock_net(sk);
  554. char devname[IFNAMSIZ];
  555. if (sk->sk_bound_dev_if == 0) {
  556. len = 0;
  557. goto zero;
  558. }
  559. ret = -EINVAL;
  560. if (len < IFNAMSIZ)
  561. goto out;
  562. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  563. if (ret)
  564. goto out;
  565. len = strlen(devname) + 1;
  566. ret = -EFAULT;
  567. if (copy_to_user(optval, devname, len))
  568. goto out;
  569. zero:
  570. ret = -EFAULT;
  571. if (put_user(len, optlen))
  572. goto out;
  573. ret = 0;
  574. out:
  575. #endif
  576. return ret;
  577. }
  578. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  579. {
  580. if (valbool)
  581. sock_set_flag(sk, bit);
  582. else
  583. sock_reset_flag(sk, bit);
  584. }
  585. bool sk_mc_loop(struct sock *sk)
  586. {
  587. if (dev_recursion_level())
  588. return false;
  589. if (!sk)
  590. return true;
  591. switch (sk->sk_family) {
  592. case AF_INET:
  593. return inet_sk(sk)->mc_loop;
  594. #if IS_ENABLED(CONFIG_IPV6)
  595. case AF_INET6:
  596. return inet6_sk(sk)->mc_loop;
  597. #endif
  598. }
  599. WARN_ON(1);
  600. return true;
  601. }
  602. EXPORT_SYMBOL(sk_mc_loop);
  603. /*
  604. * This is meant for all protocols to use and covers goings on
  605. * at the socket level. Everything here is generic.
  606. */
  607. int sock_setsockopt(struct socket *sock, int level, int optname,
  608. char __user *optval, unsigned int optlen)
  609. {
  610. struct sock *sk = sock->sk;
  611. int val;
  612. int valbool;
  613. struct linger ling;
  614. int ret = 0;
  615. /*
  616. * Options without arguments
  617. */
  618. if (optname == SO_BINDTODEVICE)
  619. return sock_setbindtodevice(sk, optval, optlen);
  620. if (optlen < sizeof(int))
  621. return -EINVAL;
  622. if (get_user(val, (int __user *)optval))
  623. return -EFAULT;
  624. valbool = val ? 1 : 0;
  625. lock_sock(sk);
  626. switch (optname) {
  627. case SO_DEBUG:
  628. if (val && !capable(CAP_NET_ADMIN))
  629. ret = -EACCES;
  630. else
  631. sock_valbool_flag(sk, SOCK_DBG, valbool);
  632. break;
  633. case SO_REUSEADDR:
  634. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  635. break;
  636. case SO_REUSEPORT:
  637. sk->sk_reuseport = valbool;
  638. break;
  639. case SO_TYPE:
  640. case SO_PROTOCOL:
  641. case SO_DOMAIN:
  642. case SO_ERROR:
  643. ret = -ENOPROTOOPT;
  644. break;
  645. case SO_DONTROUTE:
  646. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  647. break;
  648. case SO_BROADCAST:
  649. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  650. break;
  651. case SO_SNDBUF:
  652. /* Don't error on this BSD doesn't and if you think
  653. * about it this is right. Otherwise apps have to
  654. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  655. * are treated in BSD as hints
  656. */
  657. val = min_t(u32, val, sysctl_wmem_max);
  658. set_sndbuf:
  659. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  660. sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
  661. /* Wake up sending tasks if we upped the value. */
  662. sk->sk_write_space(sk);
  663. break;
  664. case SO_SNDBUFFORCE:
  665. if (!capable(CAP_NET_ADMIN)) {
  666. ret = -EPERM;
  667. break;
  668. }
  669. goto set_sndbuf;
  670. case SO_RCVBUF:
  671. /* Don't error on this BSD doesn't and if you think
  672. * about it this is right. Otherwise apps have to
  673. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  674. * are treated in BSD as hints
  675. */
  676. val = min_t(u32, val, sysctl_rmem_max);
  677. set_rcvbuf:
  678. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  679. /*
  680. * We double it on the way in to account for
  681. * "struct sk_buff" etc. overhead. Applications
  682. * assume that the SO_RCVBUF setting they make will
  683. * allow that much actual data to be received on that
  684. * socket.
  685. *
  686. * Applications are unaware that "struct sk_buff" and
  687. * other overheads allocate from the receive buffer
  688. * during socket buffer allocation.
  689. *
  690. * And after considering the possible alternatives,
  691. * returning the value we actually used in getsockopt
  692. * is the most desirable behavior.
  693. */
  694. sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
  695. break;
  696. case SO_RCVBUFFORCE:
  697. if (!capable(CAP_NET_ADMIN)) {
  698. ret = -EPERM;
  699. break;
  700. }
  701. goto set_rcvbuf;
  702. case SO_KEEPALIVE:
  703. if (sk->sk_prot->keepalive)
  704. sk->sk_prot->keepalive(sk, valbool);
  705. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  706. break;
  707. case SO_OOBINLINE:
  708. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  709. break;
  710. case SO_NO_CHECK:
  711. sk->sk_no_check_tx = valbool;
  712. break;
  713. case SO_PRIORITY:
  714. if ((val >= 0 && val <= 6) ||
  715. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  716. sk->sk_priority = val;
  717. else
  718. ret = -EPERM;
  719. break;
  720. case SO_LINGER:
  721. if (optlen < sizeof(ling)) {
  722. ret = -EINVAL; /* 1003.1g */
  723. break;
  724. }
  725. if (copy_from_user(&ling, optval, sizeof(ling))) {
  726. ret = -EFAULT;
  727. break;
  728. }
  729. if (!ling.l_onoff)
  730. sock_reset_flag(sk, SOCK_LINGER);
  731. else {
  732. #if (BITS_PER_LONG == 32)
  733. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  734. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  735. else
  736. #endif
  737. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  738. sock_set_flag(sk, SOCK_LINGER);
  739. }
  740. break;
  741. case SO_BSDCOMPAT:
  742. sock_warn_obsolete_bsdism("setsockopt");
  743. break;
  744. case SO_PASSCRED:
  745. if (valbool)
  746. set_bit(SOCK_PASSCRED, &sock->flags);
  747. else
  748. clear_bit(SOCK_PASSCRED, &sock->flags);
  749. break;
  750. case SO_TIMESTAMP:
  751. case SO_TIMESTAMPNS:
  752. if (valbool) {
  753. if (optname == SO_TIMESTAMP)
  754. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  755. else
  756. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  757. sock_set_flag(sk, SOCK_RCVTSTAMP);
  758. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  759. } else {
  760. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  761. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  762. }
  763. break;
  764. case SO_TIMESTAMPING:
  765. if (val & ~SOF_TIMESTAMPING_MASK) {
  766. ret = -EINVAL;
  767. break;
  768. }
  769. if (val & SOF_TIMESTAMPING_OPT_ID &&
  770. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  771. if (sk->sk_protocol == IPPROTO_TCP &&
  772. sk->sk_type == SOCK_STREAM) {
  773. if ((1 << sk->sk_state) &
  774. (TCPF_CLOSE | TCPF_LISTEN)) {
  775. ret = -EINVAL;
  776. break;
  777. }
  778. sk->sk_tskey = tcp_sk(sk)->snd_una;
  779. } else {
  780. sk->sk_tskey = 0;
  781. }
  782. }
  783. if (val & SOF_TIMESTAMPING_OPT_STATS &&
  784. !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
  785. ret = -EINVAL;
  786. break;
  787. }
  788. sk->sk_tsflags = val;
  789. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  790. sock_enable_timestamp(sk,
  791. SOCK_TIMESTAMPING_RX_SOFTWARE);
  792. else
  793. sock_disable_timestamp(sk,
  794. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  795. break;
  796. case SO_RCVLOWAT:
  797. if (val < 0)
  798. val = INT_MAX;
  799. sk->sk_rcvlowat = val ? : 1;
  800. break;
  801. case SO_RCVTIMEO:
  802. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  803. break;
  804. case SO_SNDTIMEO:
  805. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  806. break;
  807. case SO_ATTACH_FILTER:
  808. ret = -EINVAL;
  809. if (optlen == sizeof(struct sock_fprog)) {
  810. struct sock_fprog fprog;
  811. ret = -EFAULT;
  812. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  813. break;
  814. ret = sk_attach_filter(&fprog, sk);
  815. }
  816. break;
  817. case SO_ATTACH_BPF:
  818. ret = -EINVAL;
  819. if (optlen == sizeof(u32)) {
  820. u32 ufd;
  821. ret = -EFAULT;
  822. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  823. break;
  824. ret = sk_attach_bpf(ufd, sk);
  825. }
  826. break;
  827. case SO_ATTACH_REUSEPORT_CBPF:
  828. ret = -EINVAL;
  829. if (optlen == sizeof(struct sock_fprog)) {
  830. struct sock_fprog fprog;
  831. ret = -EFAULT;
  832. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  833. break;
  834. ret = sk_reuseport_attach_filter(&fprog, sk);
  835. }
  836. break;
  837. case SO_ATTACH_REUSEPORT_EBPF:
  838. ret = -EINVAL;
  839. if (optlen == sizeof(u32)) {
  840. u32 ufd;
  841. ret = -EFAULT;
  842. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  843. break;
  844. ret = sk_reuseport_attach_bpf(ufd, sk);
  845. }
  846. break;
  847. case SO_DETACH_FILTER:
  848. ret = sk_detach_filter(sk);
  849. break;
  850. case SO_LOCK_FILTER:
  851. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  852. ret = -EPERM;
  853. else
  854. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  855. break;
  856. case SO_PASSSEC:
  857. if (valbool)
  858. set_bit(SOCK_PASSSEC, &sock->flags);
  859. else
  860. clear_bit(SOCK_PASSSEC, &sock->flags);
  861. break;
  862. case SO_MARK:
  863. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  864. ret = -EPERM;
  865. else
  866. sk->sk_mark = val;
  867. break;
  868. case SO_RXQ_OVFL:
  869. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  870. break;
  871. case SO_WIFI_STATUS:
  872. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  873. break;
  874. case SO_PEEK_OFF:
  875. if (sock->ops->set_peek_off)
  876. ret = sock->ops->set_peek_off(sk, val);
  877. else
  878. ret = -EOPNOTSUPP;
  879. break;
  880. case SO_NOFCS:
  881. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  882. break;
  883. case SO_SELECT_ERR_QUEUE:
  884. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  885. break;
  886. #ifdef CONFIG_NET_RX_BUSY_POLL
  887. case SO_BUSY_POLL:
  888. /* allow unprivileged users to decrease the value */
  889. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  890. ret = -EPERM;
  891. else {
  892. if (val < 0)
  893. ret = -EINVAL;
  894. else
  895. sk->sk_ll_usec = val;
  896. }
  897. break;
  898. #endif
  899. case SO_MAX_PACING_RATE:
  900. if (val != ~0U)
  901. cmpxchg(&sk->sk_pacing_status,
  902. SK_PACING_NONE,
  903. SK_PACING_NEEDED);
  904. sk->sk_max_pacing_rate = val;
  905. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  906. sk->sk_max_pacing_rate);
  907. break;
  908. case SO_INCOMING_CPU:
  909. sk->sk_incoming_cpu = val;
  910. break;
  911. case SO_CNX_ADVICE:
  912. if (val == 1)
  913. dst_negative_advice(sk);
  914. break;
  915. case SO_ZEROCOPY:
  916. if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
  917. ret = -ENOTSUPP;
  918. else if (sk->sk_protocol != IPPROTO_TCP)
  919. ret = -ENOTSUPP;
  920. else if (sk->sk_state != TCP_CLOSE)
  921. ret = -EBUSY;
  922. else if (val < 0 || val > 1)
  923. ret = -EINVAL;
  924. else
  925. sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
  926. break;
  927. default:
  928. ret = -ENOPROTOOPT;
  929. break;
  930. }
  931. release_sock(sk);
  932. return ret;
  933. }
  934. EXPORT_SYMBOL(sock_setsockopt);
  935. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  936. struct ucred *ucred)
  937. {
  938. ucred->pid = pid_vnr(pid);
  939. ucred->uid = ucred->gid = -1;
  940. if (cred) {
  941. struct user_namespace *current_ns = current_user_ns();
  942. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  943. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  944. }
  945. }
  946. static int groups_to_user(gid_t __user *dst, const struct group_info *src)
  947. {
  948. struct user_namespace *user_ns = current_user_ns();
  949. int i;
  950. for (i = 0; i < src->ngroups; i++)
  951. if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
  952. return -EFAULT;
  953. return 0;
  954. }
  955. int sock_getsockopt(struct socket *sock, int level, int optname,
  956. char __user *optval, int __user *optlen)
  957. {
  958. struct sock *sk = sock->sk;
  959. union {
  960. int val;
  961. u64 val64;
  962. struct linger ling;
  963. struct timeval tm;
  964. } v;
  965. int lv = sizeof(int);
  966. int len;
  967. if (get_user(len, optlen))
  968. return -EFAULT;
  969. if (len < 0)
  970. return -EINVAL;
  971. memset(&v, 0, sizeof(v));
  972. switch (optname) {
  973. case SO_DEBUG:
  974. v.val = sock_flag(sk, SOCK_DBG);
  975. break;
  976. case SO_DONTROUTE:
  977. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  978. break;
  979. case SO_BROADCAST:
  980. v.val = sock_flag(sk, SOCK_BROADCAST);
  981. break;
  982. case SO_SNDBUF:
  983. v.val = sk->sk_sndbuf;
  984. break;
  985. case SO_RCVBUF:
  986. v.val = sk->sk_rcvbuf;
  987. break;
  988. case SO_REUSEADDR:
  989. v.val = sk->sk_reuse;
  990. break;
  991. case SO_REUSEPORT:
  992. v.val = sk->sk_reuseport;
  993. break;
  994. case SO_KEEPALIVE:
  995. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  996. break;
  997. case SO_TYPE:
  998. v.val = sk->sk_type;
  999. break;
  1000. case SO_PROTOCOL:
  1001. v.val = sk->sk_protocol;
  1002. break;
  1003. case SO_DOMAIN:
  1004. v.val = sk->sk_family;
  1005. break;
  1006. case SO_ERROR:
  1007. v.val = -sock_error(sk);
  1008. if (v.val == 0)
  1009. v.val = xchg(&sk->sk_err_soft, 0);
  1010. break;
  1011. case SO_OOBINLINE:
  1012. v.val = sock_flag(sk, SOCK_URGINLINE);
  1013. break;
  1014. case SO_NO_CHECK:
  1015. v.val = sk->sk_no_check_tx;
  1016. break;
  1017. case SO_PRIORITY:
  1018. v.val = sk->sk_priority;
  1019. break;
  1020. case SO_LINGER:
  1021. lv = sizeof(v.ling);
  1022. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  1023. v.ling.l_linger = sk->sk_lingertime / HZ;
  1024. break;
  1025. case SO_BSDCOMPAT:
  1026. sock_warn_obsolete_bsdism("getsockopt");
  1027. break;
  1028. case SO_TIMESTAMP:
  1029. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  1030. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  1031. break;
  1032. case SO_TIMESTAMPNS:
  1033. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  1034. break;
  1035. case SO_TIMESTAMPING:
  1036. v.val = sk->sk_tsflags;
  1037. break;
  1038. case SO_RCVTIMEO:
  1039. lv = sizeof(struct timeval);
  1040. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  1041. v.tm.tv_sec = 0;
  1042. v.tm.tv_usec = 0;
  1043. } else {
  1044. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  1045. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
  1046. }
  1047. break;
  1048. case SO_SNDTIMEO:
  1049. lv = sizeof(struct timeval);
  1050. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  1051. v.tm.tv_sec = 0;
  1052. v.tm.tv_usec = 0;
  1053. } else {
  1054. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  1055. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
  1056. }
  1057. break;
  1058. case SO_RCVLOWAT:
  1059. v.val = sk->sk_rcvlowat;
  1060. break;
  1061. case SO_SNDLOWAT:
  1062. v.val = 1;
  1063. break;
  1064. case SO_PASSCRED:
  1065. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  1066. break;
  1067. case SO_PEERCRED:
  1068. {
  1069. struct ucred peercred;
  1070. if (len > sizeof(peercred))
  1071. len = sizeof(peercred);
  1072. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  1073. if (copy_to_user(optval, &peercred, len))
  1074. return -EFAULT;
  1075. goto lenout;
  1076. }
  1077. case SO_PEERGROUPS:
  1078. {
  1079. int ret, n;
  1080. if (!sk->sk_peer_cred)
  1081. return -ENODATA;
  1082. n = sk->sk_peer_cred->group_info->ngroups;
  1083. if (len < n * sizeof(gid_t)) {
  1084. len = n * sizeof(gid_t);
  1085. return put_user(len, optlen) ? -EFAULT : -ERANGE;
  1086. }
  1087. len = n * sizeof(gid_t);
  1088. ret = groups_to_user((gid_t __user *)optval,
  1089. sk->sk_peer_cred->group_info);
  1090. if (ret)
  1091. return ret;
  1092. goto lenout;
  1093. }
  1094. case SO_PEERNAME:
  1095. {
  1096. char address[128];
  1097. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1098. return -ENOTCONN;
  1099. if (lv < len)
  1100. return -EINVAL;
  1101. if (copy_to_user(optval, address, len))
  1102. return -EFAULT;
  1103. goto lenout;
  1104. }
  1105. /* Dubious BSD thing... Probably nobody even uses it, but
  1106. * the UNIX standard wants it for whatever reason... -DaveM
  1107. */
  1108. case SO_ACCEPTCONN:
  1109. v.val = sk->sk_state == TCP_LISTEN;
  1110. break;
  1111. case SO_PASSSEC:
  1112. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1113. break;
  1114. case SO_PEERSEC:
  1115. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1116. case SO_MARK:
  1117. v.val = sk->sk_mark;
  1118. break;
  1119. case SO_RXQ_OVFL:
  1120. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1121. break;
  1122. case SO_WIFI_STATUS:
  1123. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1124. break;
  1125. case SO_PEEK_OFF:
  1126. if (!sock->ops->set_peek_off)
  1127. return -EOPNOTSUPP;
  1128. v.val = sk->sk_peek_off;
  1129. break;
  1130. case SO_NOFCS:
  1131. v.val = sock_flag(sk, SOCK_NOFCS);
  1132. break;
  1133. case SO_BINDTODEVICE:
  1134. return sock_getbindtodevice(sk, optval, optlen, len);
  1135. case SO_GET_FILTER:
  1136. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1137. if (len < 0)
  1138. return len;
  1139. goto lenout;
  1140. case SO_LOCK_FILTER:
  1141. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1142. break;
  1143. case SO_BPF_EXTENSIONS:
  1144. v.val = bpf_tell_extensions();
  1145. break;
  1146. case SO_SELECT_ERR_QUEUE:
  1147. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1148. break;
  1149. #ifdef CONFIG_NET_RX_BUSY_POLL
  1150. case SO_BUSY_POLL:
  1151. v.val = sk->sk_ll_usec;
  1152. break;
  1153. #endif
  1154. case SO_MAX_PACING_RATE:
  1155. v.val = sk->sk_max_pacing_rate;
  1156. break;
  1157. case SO_INCOMING_CPU:
  1158. v.val = sk->sk_incoming_cpu;
  1159. break;
  1160. case SO_MEMINFO:
  1161. {
  1162. u32 meminfo[SK_MEMINFO_VARS];
  1163. if (get_user(len, optlen))
  1164. return -EFAULT;
  1165. sk_get_meminfo(sk, meminfo);
  1166. len = min_t(unsigned int, len, sizeof(meminfo));
  1167. if (copy_to_user(optval, &meminfo, len))
  1168. return -EFAULT;
  1169. goto lenout;
  1170. }
  1171. #ifdef CONFIG_NET_RX_BUSY_POLL
  1172. case SO_INCOMING_NAPI_ID:
  1173. v.val = READ_ONCE(sk->sk_napi_id);
  1174. /* aggregate non-NAPI IDs down to 0 */
  1175. if (v.val < MIN_NAPI_ID)
  1176. v.val = 0;
  1177. break;
  1178. #endif
  1179. case SO_COOKIE:
  1180. lv = sizeof(u64);
  1181. if (len < lv)
  1182. return -EINVAL;
  1183. v.val64 = sock_gen_cookie(sk);
  1184. break;
  1185. case SO_ZEROCOPY:
  1186. v.val = sock_flag(sk, SOCK_ZEROCOPY);
  1187. break;
  1188. default:
  1189. /* We implement the SO_SNDLOWAT etc to not be settable
  1190. * (1003.1g 7).
  1191. */
  1192. return -ENOPROTOOPT;
  1193. }
  1194. if (len > lv)
  1195. len = lv;
  1196. if (copy_to_user(optval, &v, len))
  1197. return -EFAULT;
  1198. lenout:
  1199. if (put_user(len, optlen))
  1200. return -EFAULT;
  1201. return 0;
  1202. }
  1203. /*
  1204. * Initialize an sk_lock.
  1205. *
  1206. * (We also register the sk_lock with the lock validator.)
  1207. */
  1208. static inline void sock_lock_init(struct sock *sk)
  1209. {
  1210. if (sk->sk_kern_sock)
  1211. sock_lock_init_class_and_name(
  1212. sk,
  1213. af_family_kern_slock_key_strings[sk->sk_family],
  1214. af_family_kern_slock_keys + sk->sk_family,
  1215. af_family_kern_key_strings[sk->sk_family],
  1216. af_family_kern_keys + sk->sk_family);
  1217. else
  1218. sock_lock_init_class_and_name(
  1219. sk,
  1220. af_family_slock_key_strings[sk->sk_family],
  1221. af_family_slock_keys + sk->sk_family,
  1222. af_family_key_strings[sk->sk_family],
  1223. af_family_keys + sk->sk_family);
  1224. }
  1225. /*
  1226. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1227. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1228. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1229. */
  1230. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1231. {
  1232. #ifdef CONFIG_SECURITY_NETWORK
  1233. void *sptr = nsk->sk_security;
  1234. #endif
  1235. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1236. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1237. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1238. #ifdef CONFIG_SECURITY_NETWORK
  1239. nsk->sk_security = sptr;
  1240. security_sk_clone(osk, nsk);
  1241. #endif
  1242. }
  1243. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1244. int family)
  1245. {
  1246. struct sock *sk;
  1247. struct kmem_cache *slab;
  1248. slab = prot->slab;
  1249. if (slab != NULL) {
  1250. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1251. if (!sk)
  1252. return sk;
  1253. if (priority & __GFP_ZERO)
  1254. sk_prot_clear_nulls(sk, prot->obj_size);
  1255. } else
  1256. sk = kmalloc(prot->obj_size, priority);
  1257. if (sk != NULL) {
  1258. if (security_sk_alloc(sk, family, priority))
  1259. goto out_free;
  1260. if (!try_module_get(prot->owner))
  1261. goto out_free_sec;
  1262. sk_tx_queue_clear(sk);
  1263. }
  1264. return sk;
  1265. out_free_sec:
  1266. security_sk_free(sk);
  1267. out_free:
  1268. if (slab != NULL)
  1269. kmem_cache_free(slab, sk);
  1270. else
  1271. kfree(sk);
  1272. return NULL;
  1273. }
  1274. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1275. {
  1276. struct kmem_cache *slab;
  1277. struct module *owner;
  1278. owner = prot->owner;
  1279. slab = prot->slab;
  1280. cgroup_sk_free(&sk->sk_cgrp_data);
  1281. mem_cgroup_sk_free(sk);
  1282. security_sk_free(sk);
  1283. if (slab != NULL)
  1284. kmem_cache_free(slab, sk);
  1285. else
  1286. kfree(sk);
  1287. module_put(owner);
  1288. }
  1289. /**
  1290. * sk_alloc - All socket objects are allocated here
  1291. * @net: the applicable net namespace
  1292. * @family: protocol family
  1293. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1294. * @prot: struct proto associated with this new sock instance
  1295. * @kern: is this to be a kernel socket?
  1296. */
  1297. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1298. struct proto *prot, int kern)
  1299. {
  1300. struct sock *sk;
  1301. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1302. if (sk) {
  1303. sk->sk_family = family;
  1304. /*
  1305. * See comment in struct sock definition to understand
  1306. * why we need sk_prot_creator -acme
  1307. */
  1308. sk->sk_prot = sk->sk_prot_creator = prot;
  1309. sk->sk_kern_sock = kern;
  1310. sock_lock_init(sk);
  1311. sk->sk_net_refcnt = kern ? 0 : 1;
  1312. if (likely(sk->sk_net_refcnt))
  1313. get_net(net);
  1314. sock_net_set(sk, net);
  1315. refcount_set(&sk->sk_wmem_alloc, 1);
  1316. mem_cgroup_sk_alloc(sk);
  1317. cgroup_sk_alloc(&sk->sk_cgrp_data);
  1318. sock_update_classid(&sk->sk_cgrp_data);
  1319. sock_update_netprioidx(&sk->sk_cgrp_data);
  1320. }
  1321. return sk;
  1322. }
  1323. EXPORT_SYMBOL(sk_alloc);
  1324. /* Sockets having SOCK_RCU_FREE will call this function after one RCU
  1325. * grace period. This is the case for UDP sockets and TCP listeners.
  1326. */
  1327. static void __sk_destruct(struct rcu_head *head)
  1328. {
  1329. struct sock *sk = container_of(head, struct sock, sk_rcu);
  1330. struct sk_filter *filter;
  1331. if (sk->sk_destruct)
  1332. sk->sk_destruct(sk);
  1333. filter = rcu_dereference_check(sk->sk_filter,
  1334. refcount_read(&sk->sk_wmem_alloc) == 0);
  1335. if (filter) {
  1336. sk_filter_uncharge(sk, filter);
  1337. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1338. }
  1339. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1340. reuseport_detach_sock(sk);
  1341. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1342. if (atomic_read(&sk->sk_omem_alloc))
  1343. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1344. __func__, atomic_read(&sk->sk_omem_alloc));
  1345. if (sk->sk_frag.page) {
  1346. put_page(sk->sk_frag.page);
  1347. sk->sk_frag.page = NULL;
  1348. }
  1349. if (sk->sk_peer_cred)
  1350. put_cred(sk->sk_peer_cred);
  1351. put_pid(sk->sk_peer_pid);
  1352. if (likely(sk->sk_net_refcnt))
  1353. put_net(sock_net(sk));
  1354. sk_prot_free(sk->sk_prot_creator, sk);
  1355. }
  1356. void sk_destruct(struct sock *sk)
  1357. {
  1358. if (sock_flag(sk, SOCK_RCU_FREE))
  1359. call_rcu(&sk->sk_rcu, __sk_destruct);
  1360. else
  1361. __sk_destruct(&sk->sk_rcu);
  1362. }
  1363. static void __sk_free(struct sock *sk)
  1364. {
  1365. if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
  1366. sock_diag_broadcast_destroy(sk);
  1367. else
  1368. sk_destruct(sk);
  1369. }
  1370. void sk_free(struct sock *sk)
  1371. {
  1372. /*
  1373. * We subtract one from sk_wmem_alloc and can know if
  1374. * some packets are still in some tx queue.
  1375. * If not null, sock_wfree() will call __sk_free(sk) later
  1376. */
  1377. if (refcount_dec_and_test(&sk->sk_wmem_alloc))
  1378. __sk_free(sk);
  1379. }
  1380. EXPORT_SYMBOL(sk_free);
  1381. static void sk_init_common(struct sock *sk)
  1382. {
  1383. skb_queue_head_init(&sk->sk_receive_queue);
  1384. skb_queue_head_init(&sk->sk_write_queue);
  1385. skb_queue_head_init(&sk->sk_error_queue);
  1386. rwlock_init(&sk->sk_callback_lock);
  1387. lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
  1388. af_rlock_keys + sk->sk_family,
  1389. af_family_rlock_key_strings[sk->sk_family]);
  1390. lockdep_set_class_and_name(&sk->sk_write_queue.lock,
  1391. af_wlock_keys + sk->sk_family,
  1392. af_family_wlock_key_strings[sk->sk_family]);
  1393. lockdep_set_class_and_name(&sk->sk_error_queue.lock,
  1394. af_elock_keys + sk->sk_family,
  1395. af_family_elock_key_strings[sk->sk_family]);
  1396. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1397. af_callback_keys + sk->sk_family,
  1398. af_family_clock_key_strings[sk->sk_family]);
  1399. }
  1400. /**
  1401. * sk_clone_lock - clone a socket, and lock its clone
  1402. * @sk: the socket to clone
  1403. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1404. *
  1405. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1406. */
  1407. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1408. {
  1409. struct sock *newsk;
  1410. bool is_charged = true;
  1411. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1412. if (newsk != NULL) {
  1413. struct sk_filter *filter;
  1414. sock_copy(newsk, sk);
  1415. newsk->sk_prot_creator = sk->sk_prot;
  1416. /* SANITY */
  1417. if (likely(newsk->sk_net_refcnt))
  1418. get_net(sock_net(newsk));
  1419. sk_node_init(&newsk->sk_node);
  1420. sock_lock_init(newsk);
  1421. bh_lock_sock(newsk);
  1422. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1423. newsk->sk_backlog.len = 0;
  1424. atomic_set(&newsk->sk_rmem_alloc, 0);
  1425. /*
  1426. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1427. */
  1428. refcount_set(&newsk->sk_wmem_alloc, 1);
  1429. atomic_set(&newsk->sk_omem_alloc, 0);
  1430. sk_init_common(newsk);
  1431. newsk->sk_dst_cache = NULL;
  1432. newsk->sk_dst_pending_confirm = 0;
  1433. newsk->sk_wmem_queued = 0;
  1434. newsk->sk_forward_alloc = 0;
  1435. /* sk->sk_memcg will be populated at accept() time */
  1436. newsk->sk_memcg = NULL;
  1437. atomic_set(&newsk->sk_drops, 0);
  1438. newsk->sk_send_head = NULL;
  1439. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1440. atomic_set(&newsk->sk_zckey, 0);
  1441. sock_reset_flag(newsk, SOCK_DONE);
  1442. cgroup_sk_alloc(&newsk->sk_cgrp_data);
  1443. rcu_read_lock();
  1444. filter = rcu_dereference(sk->sk_filter);
  1445. if (filter != NULL)
  1446. /* though it's an empty new sock, the charging may fail
  1447. * if sysctl_optmem_max was changed between creation of
  1448. * original socket and cloning
  1449. */
  1450. is_charged = sk_filter_charge(newsk, filter);
  1451. RCU_INIT_POINTER(newsk->sk_filter, filter);
  1452. rcu_read_unlock();
  1453. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
  1454. /* We need to make sure that we don't uncharge the new
  1455. * socket if we couldn't charge it in the first place
  1456. * as otherwise we uncharge the parent's filter.
  1457. */
  1458. if (!is_charged)
  1459. RCU_INIT_POINTER(newsk->sk_filter, NULL);
  1460. sk_free_unlock_clone(newsk);
  1461. newsk = NULL;
  1462. goto out;
  1463. }
  1464. RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
  1465. newsk->sk_err = 0;
  1466. newsk->sk_err_soft = 0;
  1467. newsk->sk_priority = 0;
  1468. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1469. atomic64_set(&newsk->sk_cookie, 0);
  1470. /*
  1471. * Before updating sk_refcnt, we must commit prior changes to memory
  1472. * (Documentation/RCU/rculist_nulls.txt for details)
  1473. */
  1474. smp_wmb();
  1475. refcount_set(&newsk->sk_refcnt, 2);
  1476. /*
  1477. * Increment the counter in the same struct proto as the master
  1478. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1479. * is the same as sk->sk_prot->socks, as this field was copied
  1480. * with memcpy).
  1481. *
  1482. * This _changes_ the previous behaviour, where
  1483. * tcp_create_openreq_child always was incrementing the
  1484. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1485. * to be taken into account in all callers. -acme
  1486. */
  1487. sk_refcnt_debug_inc(newsk);
  1488. sk_set_socket(newsk, NULL);
  1489. newsk->sk_wq = NULL;
  1490. if (newsk->sk_prot->sockets_allocated)
  1491. sk_sockets_allocated_inc(newsk);
  1492. if (sock_needs_netstamp(sk) &&
  1493. newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1494. net_enable_timestamp();
  1495. }
  1496. out:
  1497. return newsk;
  1498. }
  1499. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1500. void sk_free_unlock_clone(struct sock *sk)
  1501. {
  1502. /* It is still raw copy of parent, so invalidate
  1503. * destructor and make plain sk_free() */
  1504. sk->sk_destruct = NULL;
  1505. bh_unlock_sock(sk);
  1506. sk_free(sk);
  1507. }
  1508. EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
  1509. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1510. {
  1511. u32 max_segs = 1;
  1512. sk_dst_set(sk, dst);
  1513. sk->sk_route_caps = dst->dev->features;
  1514. if (sk->sk_route_caps & NETIF_F_GSO)
  1515. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1516. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1517. if (sk_can_gso(sk)) {
  1518. if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
  1519. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1520. } else {
  1521. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1522. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1523. max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
  1524. }
  1525. }
  1526. sk->sk_gso_max_segs = max_segs;
  1527. }
  1528. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1529. /*
  1530. * Simple resource managers for sockets.
  1531. */
  1532. /*
  1533. * Write buffer destructor automatically called from kfree_skb.
  1534. */
  1535. void sock_wfree(struct sk_buff *skb)
  1536. {
  1537. struct sock *sk = skb->sk;
  1538. unsigned int len = skb->truesize;
  1539. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1540. /*
  1541. * Keep a reference on sk_wmem_alloc, this will be released
  1542. * after sk_write_space() call
  1543. */
  1544. WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
  1545. sk->sk_write_space(sk);
  1546. len = 1;
  1547. }
  1548. /*
  1549. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1550. * could not do because of in-flight packets
  1551. */
  1552. if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
  1553. __sk_free(sk);
  1554. }
  1555. EXPORT_SYMBOL(sock_wfree);
  1556. /* This variant of sock_wfree() is used by TCP,
  1557. * since it sets SOCK_USE_WRITE_QUEUE.
  1558. */
  1559. void __sock_wfree(struct sk_buff *skb)
  1560. {
  1561. struct sock *sk = skb->sk;
  1562. if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
  1563. __sk_free(sk);
  1564. }
  1565. void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
  1566. {
  1567. skb_orphan(skb);
  1568. skb->sk = sk;
  1569. #ifdef CONFIG_INET
  1570. if (unlikely(!sk_fullsock(sk))) {
  1571. skb->destructor = sock_edemux;
  1572. sock_hold(sk);
  1573. return;
  1574. }
  1575. #endif
  1576. skb->destructor = sock_wfree;
  1577. skb_set_hash_from_sk(skb, sk);
  1578. /*
  1579. * We used to take a refcount on sk, but following operation
  1580. * is enough to guarantee sk_free() wont free this sock until
  1581. * all in-flight packets are completed
  1582. */
  1583. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  1584. }
  1585. EXPORT_SYMBOL(skb_set_owner_w);
  1586. /* This helper is used by netem, as it can hold packets in its
  1587. * delay queue. We want to allow the owner socket to send more
  1588. * packets, as if they were already TX completed by a typical driver.
  1589. * But we also want to keep skb->sk set because some packet schedulers
  1590. * rely on it (sch_fq for example).
  1591. */
  1592. void skb_orphan_partial(struct sk_buff *skb)
  1593. {
  1594. if (skb_is_tcp_pure_ack(skb))
  1595. return;
  1596. if (skb->destructor == sock_wfree
  1597. #ifdef CONFIG_INET
  1598. || skb->destructor == tcp_wfree
  1599. #endif
  1600. ) {
  1601. struct sock *sk = skb->sk;
  1602. if (refcount_inc_not_zero(&sk->sk_refcnt)) {
  1603. WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
  1604. skb->destructor = sock_efree;
  1605. }
  1606. } else {
  1607. skb_orphan(skb);
  1608. }
  1609. }
  1610. EXPORT_SYMBOL(skb_orphan_partial);
  1611. /*
  1612. * Read buffer destructor automatically called from kfree_skb.
  1613. */
  1614. void sock_rfree(struct sk_buff *skb)
  1615. {
  1616. struct sock *sk = skb->sk;
  1617. unsigned int len = skb->truesize;
  1618. atomic_sub(len, &sk->sk_rmem_alloc);
  1619. sk_mem_uncharge(sk, len);
  1620. }
  1621. EXPORT_SYMBOL(sock_rfree);
  1622. /*
  1623. * Buffer destructor for skbs that are not used directly in read or write
  1624. * path, e.g. for error handler skbs. Automatically called from kfree_skb.
  1625. */
  1626. void sock_efree(struct sk_buff *skb)
  1627. {
  1628. sock_put(skb->sk);
  1629. }
  1630. EXPORT_SYMBOL(sock_efree);
  1631. kuid_t sock_i_uid(struct sock *sk)
  1632. {
  1633. kuid_t uid;
  1634. read_lock_bh(&sk->sk_callback_lock);
  1635. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1636. read_unlock_bh(&sk->sk_callback_lock);
  1637. return uid;
  1638. }
  1639. EXPORT_SYMBOL(sock_i_uid);
  1640. unsigned long sock_i_ino(struct sock *sk)
  1641. {
  1642. unsigned long ino;
  1643. read_lock_bh(&sk->sk_callback_lock);
  1644. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1645. read_unlock_bh(&sk->sk_callback_lock);
  1646. return ino;
  1647. }
  1648. EXPORT_SYMBOL(sock_i_ino);
  1649. /*
  1650. * Allocate a skb from the socket's send buffer.
  1651. */
  1652. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1653. gfp_t priority)
  1654. {
  1655. if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1656. struct sk_buff *skb = alloc_skb(size, priority);
  1657. if (skb) {
  1658. skb_set_owner_w(skb, sk);
  1659. return skb;
  1660. }
  1661. }
  1662. return NULL;
  1663. }
  1664. EXPORT_SYMBOL(sock_wmalloc);
  1665. static void sock_ofree(struct sk_buff *skb)
  1666. {
  1667. struct sock *sk = skb->sk;
  1668. atomic_sub(skb->truesize, &sk->sk_omem_alloc);
  1669. }
  1670. struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
  1671. gfp_t priority)
  1672. {
  1673. struct sk_buff *skb;
  1674. /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
  1675. if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
  1676. sysctl_optmem_max)
  1677. return NULL;
  1678. skb = alloc_skb(size, priority);
  1679. if (!skb)
  1680. return NULL;
  1681. atomic_add(skb->truesize, &sk->sk_omem_alloc);
  1682. skb->sk = sk;
  1683. skb->destructor = sock_ofree;
  1684. return skb;
  1685. }
  1686. /*
  1687. * Allocate a memory block from the socket's option memory buffer.
  1688. */
  1689. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1690. {
  1691. if ((unsigned int)size <= sysctl_optmem_max &&
  1692. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1693. void *mem;
  1694. /* First do the add, to avoid the race if kmalloc
  1695. * might sleep.
  1696. */
  1697. atomic_add(size, &sk->sk_omem_alloc);
  1698. mem = kmalloc(size, priority);
  1699. if (mem)
  1700. return mem;
  1701. atomic_sub(size, &sk->sk_omem_alloc);
  1702. }
  1703. return NULL;
  1704. }
  1705. EXPORT_SYMBOL(sock_kmalloc);
  1706. /* Free an option memory block. Note, we actually want the inline
  1707. * here as this allows gcc to detect the nullify and fold away the
  1708. * condition entirely.
  1709. */
  1710. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1711. const bool nullify)
  1712. {
  1713. if (WARN_ON_ONCE(!mem))
  1714. return;
  1715. if (nullify)
  1716. kzfree(mem);
  1717. else
  1718. kfree(mem);
  1719. atomic_sub(size, &sk->sk_omem_alloc);
  1720. }
  1721. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1722. {
  1723. __sock_kfree_s(sk, mem, size, false);
  1724. }
  1725. EXPORT_SYMBOL(sock_kfree_s);
  1726. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1727. {
  1728. __sock_kfree_s(sk, mem, size, true);
  1729. }
  1730. EXPORT_SYMBOL(sock_kzfree_s);
  1731. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1732. I think, these locks should be removed for datagram sockets.
  1733. */
  1734. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1735. {
  1736. DEFINE_WAIT(wait);
  1737. sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1738. for (;;) {
  1739. if (!timeo)
  1740. break;
  1741. if (signal_pending(current))
  1742. break;
  1743. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1744. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1745. if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1746. break;
  1747. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1748. break;
  1749. if (sk->sk_err)
  1750. break;
  1751. timeo = schedule_timeout(timeo);
  1752. }
  1753. finish_wait(sk_sleep(sk), &wait);
  1754. return timeo;
  1755. }
  1756. /*
  1757. * Generic send/receive buffer handlers
  1758. */
  1759. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1760. unsigned long data_len, int noblock,
  1761. int *errcode, int max_page_order)
  1762. {
  1763. struct sk_buff *skb;
  1764. long timeo;
  1765. int err;
  1766. timeo = sock_sndtimeo(sk, noblock);
  1767. for (;;) {
  1768. err = sock_error(sk);
  1769. if (err != 0)
  1770. goto failure;
  1771. err = -EPIPE;
  1772. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1773. goto failure;
  1774. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1775. break;
  1776. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1777. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1778. err = -EAGAIN;
  1779. if (!timeo)
  1780. goto failure;
  1781. if (signal_pending(current))
  1782. goto interrupted;
  1783. timeo = sock_wait_for_wmem(sk, timeo);
  1784. }
  1785. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1786. errcode, sk->sk_allocation);
  1787. if (skb)
  1788. skb_set_owner_w(skb, sk);
  1789. return skb;
  1790. interrupted:
  1791. err = sock_intr_errno(timeo);
  1792. failure:
  1793. *errcode = err;
  1794. return NULL;
  1795. }
  1796. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1797. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1798. int noblock, int *errcode)
  1799. {
  1800. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1801. }
  1802. EXPORT_SYMBOL(sock_alloc_send_skb);
  1803. int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
  1804. struct sockcm_cookie *sockc)
  1805. {
  1806. u32 tsflags;
  1807. switch (cmsg->cmsg_type) {
  1808. case SO_MARK:
  1809. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  1810. return -EPERM;
  1811. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1812. return -EINVAL;
  1813. sockc->mark = *(u32 *)CMSG_DATA(cmsg);
  1814. break;
  1815. case SO_TIMESTAMPING:
  1816. if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
  1817. return -EINVAL;
  1818. tsflags = *(u32 *)CMSG_DATA(cmsg);
  1819. if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
  1820. return -EINVAL;
  1821. sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
  1822. sockc->tsflags |= tsflags;
  1823. break;
  1824. /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
  1825. case SCM_RIGHTS:
  1826. case SCM_CREDENTIALS:
  1827. break;
  1828. default:
  1829. return -EINVAL;
  1830. }
  1831. return 0;
  1832. }
  1833. EXPORT_SYMBOL(__sock_cmsg_send);
  1834. int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
  1835. struct sockcm_cookie *sockc)
  1836. {
  1837. struct cmsghdr *cmsg;
  1838. int ret;
  1839. for_each_cmsghdr(cmsg, msg) {
  1840. if (!CMSG_OK(msg, cmsg))
  1841. return -EINVAL;
  1842. if (cmsg->cmsg_level != SOL_SOCKET)
  1843. continue;
  1844. ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
  1845. if (ret)
  1846. return ret;
  1847. }
  1848. return 0;
  1849. }
  1850. EXPORT_SYMBOL(sock_cmsg_send);
  1851. static void sk_enter_memory_pressure(struct sock *sk)
  1852. {
  1853. if (!sk->sk_prot->enter_memory_pressure)
  1854. return;
  1855. sk->sk_prot->enter_memory_pressure(sk);
  1856. }
  1857. static void sk_leave_memory_pressure(struct sock *sk)
  1858. {
  1859. if (sk->sk_prot->leave_memory_pressure) {
  1860. sk->sk_prot->leave_memory_pressure(sk);
  1861. } else {
  1862. unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
  1863. if (memory_pressure && *memory_pressure)
  1864. *memory_pressure = 0;
  1865. }
  1866. }
  1867. /* On 32bit arches, an skb frag is limited to 2^15 */
  1868. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1869. /**
  1870. * skb_page_frag_refill - check that a page_frag contains enough room
  1871. * @sz: minimum size of the fragment we want to get
  1872. * @pfrag: pointer to page_frag
  1873. * @gfp: priority for memory allocation
  1874. *
  1875. * Note: While this allocator tries to use high order pages, there is
  1876. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1877. * less or equal than PAGE_SIZE.
  1878. */
  1879. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1880. {
  1881. if (pfrag->page) {
  1882. if (page_ref_count(pfrag->page) == 1) {
  1883. pfrag->offset = 0;
  1884. return true;
  1885. }
  1886. if (pfrag->offset + sz <= pfrag->size)
  1887. return true;
  1888. put_page(pfrag->page);
  1889. }
  1890. pfrag->offset = 0;
  1891. if (SKB_FRAG_PAGE_ORDER) {
  1892. /* Avoid direct reclaim but allow kswapd to wake */
  1893. pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
  1894. __GFP_COMP | __GFP_NOWARN |
  1895. __GFP_NORETRY,
  1896. SKB_FRAG_PAGE_ORDER);
  1897. if (likely(pfrag->page)) {
  1898. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1899. return true;
  1900. }
  1901. }
  1902. pfrag->page = alloc_page(gfp);
  1903. if (likely(pfrag->page)) {
  1904. pfrag->size = PAGE_SIZE;
  1905. return true;
  1906. }
  1907. return false;
  1908. }
  1909. EXPORT_SYMBOL(skb_page_frag_refill);
  1910. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1911. {
  1912. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1913. return true;
  1914. sk_enter_memory_pressure(sk);
  1915. sk_stream_moderate_sndbuf(sk);
  1916. return false;
  1917. }
  1918. EXPORT_SYMBOL(sk_page_frag_refill);
  1919. static void __lock_sock(struct sock *sk)
  1920. __releases(&sk->sk_lock.slock)
  1921. __acquires(&sk->sk_lock.slock)
  1922. {
  1923. DEFINE_WAIT(wait);
  1924. for (;;) {
  1925. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1926. TASK_UNINTERRUPTIBLE);
  1927. spin_unlock_bh(&sk->sk_lock.slock);
  1928. schedule();
  1929. spin_lock_bh(&sk->sk_lock.slock);
  1930. if (!sock_owned_by_user(sk))
  1931. break;
  1932. }
  1933. finish_wait(&sk->sk_lock.wq, &wait);
  1934. }
  1935. static void __release_sock(struct sock *sk)
  1936. __releases(&sk->sk_lock.slock)
  1937. __acquires(&sk->sk_lock.slock)
  1938. {
  1939. struct sk_buff *skb, *next;
  1940. while ((skb = sk->sk_backlog.head) != NULL) {
  1941. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1942. spin_unlock_bh(&sk->sk_lock.slock);
  1943. do {
  1944. next = skb->next;
  1945. prefetch(next);
  1946. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1947. skb->next = NULL;
  1948. sk_backlog_rcv(sk, skb);
  1949. cond_resched();
  1950. skb = next;
  1951. } while (skb != NULL);
  1952. spin_lock_bh(&sk->sk_lock.slock);
  1953. }
  1954. /*
  1955. * Doing the zeroing here guarantee we can not loop forever
  1956. * while a wild producer attempts to flood us.
  1957. */
  1958. sk->sk_backlog.len = 0;
  1959. }
  1960. void __sk_flush_backlog(struct sock *sk)
  1961. {
  1962. spin_lock_bh(&sk->sk_lock.slock);
  1963. __release_sock(sk);
  1964. spin_unlock_bh(&sk->sk_lock.slock);
  1965. }
  1966. /**
  1967. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1968. * @sk: sock to wait on
  1969. * @timeo: for how long
  1970. * @skb: last skb seen on sk_receive_queue
  1971. *
  1972. * Now socket state including sk->sk_err is changed only under lock,
  1973. * hence we may omit checks after joining wait queue.
  1974. * We check receive queue before schedule() only as optimization;
  1975. * it is very likely that release_sock() added new data.
  1976. */
  1977. int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
  1978. {
  1979. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  1980. int rc;
  1981. add_wait_queue(sk_sleep(sk), &wait);
  1982. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1983. rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
  1984. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  1985. remove_wait_queue(sk_sleep(sk), &wait);
  1986. return rc;
  1987. }
  1988. EXPORT_SYMBOL(sk_wait_data);
  1989. /**
  1990. * __sk_mem_raise_allocated - increase memory_allocated
  1991. * @sk: socket
  1992. * @size: memory size to allocate
  1993. * @amt: pages to allocate
  1994. * @kind: allocation type
  1995. *
  1996. * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
  1997. */
  1998. int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
  1999. {
  2000. struct proto *prot = sk->sk_prot;
  2001. long allocated = sk_memory_allocated_add(sk, amt);
  2002. if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
  2003. !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
  2004. goto suppress_allocation;
  2005. /* Under limit. */
  2006. if (allocated <= sk_prot_mem_limits(sk, 0)) {
  2007. sk_leave_memory_pressure(sk);
  2008. return 1;
  2009. }
  2010. /* Under pressure. */
  2011. if (allocated > sk_prot_mem_limits(sk, 1))
  2012. sk_enter_memory_pressure(sk);
  2013. /* Over hard limit. */
  2014. if (allocated > sk_prot_mem_limits(sk, 2))
  2015. goto suppress_allocation;
  2016. /* guarantee minimum buffer size under pressure */
  2017. if (kind == SK_MEM_RECV) {
  2018. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  2019. return 1;
  2020. } else { /* SK_MEM_SEND */
  2021. if (sk->sk_type == SOCK_STREAM) {
  2022. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  2023. return 1;
  2024. } else if (refcount_read(&sk->sk_wmem_alloc) <
  2025. prot->sysctl_wmem[0])
  2026. return 1;
  2027. }
  2028. if (sk_has_memory_pressure(sk)) {
  2029. int alloc;
  2030. if (!sk_under_memory_pressure(sk))
  2031. return 1;
  2032. alloc = sk_sockets_allocated_read_positive(sk);
  2033. if (sk_prot_mem_limits(sk, 2) > alloc *
  2034. sk_mem_pages(sk->sk_wmem_queued +
  2035. atomic_read(&sk->sk_rmem_alloc) +
  2036. sk->sk_forward_alloc))
  2037. return 1;
  2038. }
  2039. suppress_allocation:
  2040. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  2041. sk_stream_moderate_sndbuf(sk);
  2042. /* Fail only if socket is _under_ its sndbuf.
  2043. * In this case we cannot block, so that we have to fail.
  2044. */
  2045. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  2046. return 1;
  2047. }
  2048. trace_sock_exceed_buf_limit(sk, prot, allocated);
  2049. sk_memory_allocated_sub(sk, amt);
  2050. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2051. mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
  2052. return 0;
  2053. }
  2054. EXPORT_SYMBOL(__sk_mem_raise_allocated);
  2055. /**
  2056. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  2057. * @sk: socket
  2058. * @size: memory size to allocate
  2059. * @kind: allocation type
  2060. *
  2061. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  2062. * rmem allocation. This function assumes that protocols which have
  2063. * memory_pressure use sk_wmem_queued as write buffer accounting.
  2064. */
  2065. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  2066. {
  2067. int ret, amt = sk_mem_pages(size);
  2068. sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
  2069. ret = __sk_mem_raise_allocated(sk, size, amt, kind);
  2070. if (!ret)
  2071. sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
  2072. return ret;
  2073. }
  2074. EXPORT_SYMBOL(__sk_mem_schedule);
  2075. /**
  2076. * __sk_mem_reduce_allocated - reclaim memory_allocated
  2077. * @sk: socket
  2078. * @amount: number of quanta
  2079. *
  2080. * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
  2081. */
  2082. void __sk_mem_reduce_allocated(struct sock *sk, int amount)
  2083. {
  2084. sk_memory_allocated_sub(sk, amount);
  2085. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2086. mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
  2087. if (sk_under_memory_pressure(sk) &&
  2088. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  2089. sk_leave_memory_pressure(sk);
  2090. }
  2091. EXPORT_SYMBOL(__sk_mem_reduce_allocated);
  2092. /**
  2093. * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
  2094. * @sk: socket
  2095. * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
  2096. */
  2097. void __sk_mem_reclaim(struct sock *sk, int amount)
  2098. {
  2099. amount >>= SK_MEM_QUANTUM_SHIFT;
  2100. sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
  2101. __sk_mem_reduce_allocated(sk, amount);
  2102. }
  2103. EXPORT_SYMBOL(__sk_mem_reclaim);
  2104. int sk_set_peek_off(struct sock *sk, int val)
  2105. {
  2106. sk->sk_peek_off = val;
  2107. return 0;
  2108. }
  2109. EXPORT_SYMBOL_GPL(sk_set_peek_off);
  2110. /*
  2111. * Set of default routines for initialising struct proto_ops when
  2112. * the protocol does not support a particular function. In certain
  2113. * cases where it makes no sense for a protocol to have a "do nothing"
  2114. * function, some default processing is provided.
  2115. */
  2116. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  2117. {
  2118. return -EOPNOTSUPP;
  2119. }
  2120. EXPORT_SYMBOL(sock_no_bind);
  2121. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  2122. int len, int flags)
  2123. {
  2124. return -EOPNOTSUPP;
  2125. }
  2126. EXPORT_SYMBOL(sock_no_connect);
  2127. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  2128. {
  2129. return -EOPNOTSUPP;
  2130. }
  2131. EXPORT_SYMBOL(sock_no_socketpair);
  2132. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
  2133. bool kern)
  2134. {
  2135. return -EOPNOTSUPP;
  2136. }
  2137. EXPORT_SYMBOL(sock_no_accept);
  2138. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  2139. int *len, int peer)
  2140. {
  2141. return -EOPNOTSUPP;
  2142. }
  2143. EXPORT_SYMBOL(sock_no_getname);
  2144. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  2145. {
  2146. return 0;
  2147. }
  2148. EXPORT_SYMBOL(sock_no_poll);
  2149. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  2150. {
  2151. return -EOPNOTSUPP;
  2152. }
  2153. EXPORT_SYMBOL(sock_no_ioctl);
  2154. int sock_no_listen(struct socket *sock, int backlog)
  2155. {
  2156. return -EOPNOTSUPP;
  2157. }
  2158. EXPORT_SYMBOL(sock_no_listen);
  2159. int sock_no_shutdown(struct socket *sock, int how)
  2160. {
  2161. return -EOPNOTSUPP;
  2162. }
  2163. EXPORT_SYMBOL(sock_no_shutdown);
  2164. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  2165. char __user *optval, unsigned int optlen)
  2166. {
  2167. return -EOPNOTSUPP;
  2168. }
  2169. EXPORT_SYMBOL(sock_no_setsockopt);
  2170. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  2171. char __user *optval, int __user *optlen)
  2172. {
  2173. return -EOPNOTSUPP;
  2174. }
  2175. EXPORT_SYMBOL(sock_no_getsockopt);
  2176. int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
  2177. {
  2178. return -EOPNOTSUPP;
  2179. }
  2180. EXPORT_SYMBOL(sock_no_sendmsg);
  2181. int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
  2182. {
  2183. return -EOPNOTSUPP;
  2184. }
  2185. EXPORT_SYMBOL(sock_no_sendmsg_locked);
  2186. int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
  2187. int flags)
  2188. {
  2189. return -EOPNOTSUPP;
  2190. }
  2191. EXPORT_SYMBOL(sock_no_recvmsg);
  2192. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  2193. {
  2194. /* Mirror missing mmap method error code */
  2195. return -ENODEV;
  2196. }
  2197. EXPORT_SYMBOL(sock_no_mmap);
  2198. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  2199. {
  2200. ssize_t res;
  2201. struct msghdr msg = {.msg_flags = flags};
  2202. struct kvec iov;
  2203. char *kaddr = kmap(page);
  2204. iov.iov_base = kaddr + offset;
  2205. iov.iov_len = size;
  2206. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  2207. kunmap(page);
  2208. return res;
  2209. }
  2210. EXPORT_SYMBOL(sock_no_sendpage);
  2211. ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
  2212. int offset, size_t size, int flags)
  2213. {
  2214. ssize_t res;
  2215. struct msghdr msg = {.msg_flags = flags};
  2216. struct kvec iov;
  2217. char *kaddr = kmap(page);
  2218. iov.iov_base = kaddr + offset;
  2219. iov.iov_len = size;
  2220. res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
  2221. kunmap(page);
  2222. return res;
  2223. }
  2224. EXPORT_SYMBOL(sock_no_sendpage_locked);
  2225. /*
  2226. * Default Socket Callbacks
  2227. */
  2228. static void sock_def_wakeup(struct sock *sk)
  2229. {
  2230. struct socket_wq *wq;
  2231. rcu_read_lock();
  2232. wq = rcu_dereference(sk->sk_wq);
  2233. if (skwq_has_sleeper(wq))
  2234. wake_up_interruptible_all(&wq->wait);
  2235. rcu_read_unlock();
  2236. }
  2237. static void sock_def_error_report(struct sock *sk)
  2238. {
  2239. struct socket_wq *wq;
  2240. rcu_read_lock();
  2241. wq = rcu_dereference(sk->sk_wq);
  2242. if (skwq_has_sleeper(wq))
  2243. wake_up_interruptible_poll(&wq->wait, POLLERR);
  2244. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  2245. rcu_read_unlock();
  2246. }
  2247. static void sock_def_readable(struct sock *sk)
  2248. {
  2249. struct socket_wq *wq;
  2250. rcu_read_lock();
  2251. wq = rcu_dereference(sk->sk_wq);
  2252. if (skwq_has_sleeper(wq))
  2253. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  2254. POLLRDNORM | POLLRDBAND);
  2255. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  2256. rcu_read_unlock();
  2257. }
  2258. static void sock_def_write_space(struct sock *sk)
  2259. {
  2260. struct socket_wq *wq;
  2261. rcu_read_lock();
  2262. /* Do not wake up a writer until he can make "significant"
  2263. * progress. --DaveM
  2264. */
  2265. if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  2266. wq = rcu_dereference(sk->sk_wq);
  2267. if (skwq_has_sleeper(wq))
  2268. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  2269. POLLWRNORM | POLLWRBAND);
  2270. /* Should agree with poll, otherwise some programs break */
  2271. if (sock_writeable(sk))
  2272. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  2273. }
  2274. rcu_read_unlock();
  2275. }
  2276. static void sock_def_destruct(struct sock *sk)
  2277. {
  2278. }
  2279. void sk_send_sigurg(struct sock *sk)
  2280. {
  2281. if (sk->sk_socket && sk->sk_socket->file)
  2282. if (send_sigurg(&sk->sk_socket->file->f_owner))
  2283. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  2284. }
  2285. EXPORT_SYMBOL(sk_send_sigurg);
  2286. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  2287. unsigned long expires)
  2288. {
  2289. if (!mod_timer(timer, expires))
  2290. sock_hold(sk);
  2291. }
  2292. EXPORT_SYMBOL(sk_reset_timer);
  2293. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  2294. {
  2295. if (del_timer(timer))
  2296. __sock_put(sk);
  2297. }
  2298. EXPORT_SYMBOL(sk_stop_timer);
  2299. void sock_init_data(struct socket *sock, struct sock *sk)
  2300. {
  2301. sk_init_common(sk);
  2302. sk->sk_send_head = NULL;
  2303. init_timer(&sk->sk_timer);
  2304. sk->sk_allocation = GFP_KERNEL;
  2305. sk->sk_rcvbuf = sysctl_rmem_default;
  2306. sk->sk_sndbuf = sysctl_wmem_default;
  2307. sk->sk_state = TCP_CLOSE;
  2308. sk_set_socket(sk, sock);
  2309. sock_set_flag(sk, SOCK_ZAPPED);
  2310. if (sock) {
  2311. sk->sk_type = sock->type;
  2312. sk->sk_wq = sock->wq;
  2313. sock->sk = sk;
  2314. sk->sk_uid = SOCK_INODE(sock)->i_uid;
  2315. } else {
  2316. sk->sk_wq = NULL;
  2317. sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
  2318. }
  2319. rwlock_init(&sk->sk_callback_lock);
  2320. if (sk->sk_kern_sock)
  2321. lockdep_set_class_and_name(
  2322. &sk->sk_callback_lock,
  2323. af_kern_callback_keys + sk->sk_family,
  2324. af_family_kern_clock_key_strings[sk->sk_family]);
  2325. else
  2326. lockdep_set_class_and_name(
  2327. &sk->sk_callback_lock,
  2328. af_callback_keys + sk->sk_family,
  2329. af_family_clock_key_strings[sk->sk_family]);
  2330. sk->sk_state_change = sock_def_wakeup;
  2331. sk->sk_data_ready = sock_def_readable;
  2332. sk->sk_write_space = sock_def_write_space;
  2333. sk->sk_error_report = sock_def_error_report;
  2334. sk->sk_destruct = sock_def_destruct;
  2335. sk->sk_frag.page = NULL;
  2336. sk->sk_frag.offset = 0;
  2337. sk->sk_peek_off = -1;
  2338. sk->sk_peer_pid = NULL;
  2339. sk->sk_peer_cred = NULL;
  2340. sk->sk_write_pending = 0;
  2341. sk->sk_rcvlowat = 1;
  2342. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2343. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2344. sk->sk_stamp = SK_DEFAULT_STAMP;
  2345. atomic_set(&sk->sk_zckey, 0);
  2346. #ifdef CONFIG_NET_RX_BUSY_POLL
  2347. sk->sk_napi_id = 0;
  2348. sk->sk_ll_usec = sysctl_net_busy_read;
  2349. #endif
  2350. sk->sk_max_pacing_rate = ~0U;
  2351. sk->sk_pacing_rate = ~0U;
  2352. sk->sk_incoming_cpu = -1;
  2353. /*
  2354. * Before updating sk_refcnt, we must commit prior changes to memory
  2355. * (Documentation/RCU/rculist_nulls.txt for details)
  2356. */
  2357. smp_wmb();
  2358. refcount_set(&sk->sk_refcnt, 1);
  2359. atomic_set(&sk->sk_drops, 0);
  2360. }
  2361. EXPORT_SYMBOL(sock_init_data);
  2362. void lock_sock_nested(struct sock *sk, int subclass)
  2363. {
  2364. might_sleep();
  2365. spin_lock_bh(&sk->sk_lock.slock);
  2366. if (sk->sk_lock.owned)
  2367. __lock_sock(sk);
  2368. sk->sk_lock.owned = 1;
  2369. spin_unlock(&sk->sk_lock.slock);
  2370. /*
  2371. * The sk_lock has mutex_lock() semantics here:
  2372. */
  2373. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2374. local_bh_enable();
  2375. }
  2376. EXPORT_SYMBOL(lock_sock_nested);
  2377. void release_sock(struct sock *sk)
  2378. {
  2379. spin_lock_bh(&sk->sk_lock.slock);
  2380. if (sk->sk_backlog.tail)
  2381. __release_sock(sk);
  2382. /* Warning : release_cb() might need to release sk ownership,
  2383. * ie call sock_release_ownership(sk) before us.
  2384. */
  2385. if (sk->sk_prot->release_cb)
  2386. sk->sk_prot->release_cb(sk);
  2387. sock_release_ownership(sk);
  2388. if (waitqueue_active(&sk->sk_lock.wq))
  2389. wake_up(&sk->sk_lock.wq);
  2390. spin_unlock_bh(&sk->sk_lock.slock);
  2391. }
  2392. EXPORT_SYMBOL(release_sock);
  2393. /**
  2394. * lock_sock_fast - fast version of lock_sock
  2395. * @sk: socket
  2396. *
  2397. * This version should be used for very small section, where process wont block
  2398. * return false if fast path is taken:
  2399. *
  2400. * sk_lock.slock locked, owned = 0, BH disabled
  2401. *
  2402. * return true if slow path is taken:
  2403. *
  2404. * sk_lock.slock unlocked, owned = 1, BH enabled
  2405. */
  2406. bool lock_sock_fast(struct sock *sk)
  2407. {
  2408. might_sleep();
  2409. spin_lock_bh(&sk->sk_lock.slock);
  2410. if (!sk->sk_lock.owned)
  2411. /*
  2412. * Note : We must disable BH
  2413. */
  2414. return false;
  2415. __lock_sock(sk);
  2416. sk->sk_lock.owned = 1;
  2417. spin_unlock(&sk->sk_lock.slock);
  2418. /*
  2419. * The sk_lock has mutex_lock() semantics here:
  2420. */
  2421. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2422. local_bh_enable();
  2423. return true;
  2424. }
  2425. EXPORT_SYMBOL(lock_sock_fast);
  2426. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2427. {
  2428. struct timeval tv;
  2429. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2430. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2431. tv = ktime_to_timeval(sk->sk_stamp);
  2432. if (tv.tv_sec == -1)
  2433. return -ENOENT;
  2434. if (tv.tv_sec == 0) {
  2435. sk->sk_stamp = ktime_get_real();
  2436. tv = ktime_to_timeval(sk->sk_stamp);
  2437. }
  2438. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2439. }
  2440. EXPORT_SYMBOL(sock_get_timestamp);
  2441. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2442. {
  2443. struct timespec ts;
  2444. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2445. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2446. ts = ktime_to_timespec(sk->sk_stamp);
  2447. if (ts.tv_sec == -1)
  2448. return -ENOENT;
  2449. if (ts.tv_sec == 0) {
  2450. sk->sk_stamp = ktime_get_real();
  2451. ts = ktime_to_timespec(sk->sk_stamp);
  2452. }
  2453. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2454. }
  2455. EXPORT_SYMBOL(sock_get_timestampns);
  2456. void sock_enable_timestamp(struct sock *sk, int flag)
  2457. {
  2458. if (!sock_flag(sk, flag)) {
  2459. unsigned long previous_flags = sk->sk_flags;
  2460. sock_set_flag(sk, flag);
  2461. /*
  2462. * we just set one of the two flags which require net
  2463. * time stamping, but time stamping might have been on
  2464. * already because of the other one
  2465. */
  2466. if (sock_needs_netstamp(sk) &&
  2467. !(previous_flags & SK_FLAGS_TIMESTAMP))
  2468. net_enable_timestamp();
  2469. }
  2470. }
  2471. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2472. int level, int type)
  2473. {
  2474. struct sock_exterr_skb *serr;
  2475. struct sk_buff *skb;
  2476. int copied, err;
  2477. err = -EAGAIN;
  2478. skb = sock_dequeue_err_skb(sk);
  2479. if (skb == NULL)
  2480. goto out;
  2481. copied = skb->len;
  2482. if (copied > len) {
  2483. msg->msg_flags |= MSG_TRUNC;
  2484. copied = len;
  2485. }
  2486. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2487. if (err)
  2488. goto out_free_skb;
  2489. sock_recv_timestamp(msg, sk, skb);
  2490. serr = SKB_EXT_ERR(skb);
  2491. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2492. msg->msg_flags |= MSG_ERRQUEUE;
  2493. err = copied;
  2494. out_free_skb:
  2495. kfree_skb(skb);
  2496. out:
  2497. return err;
  2498. }
  2499. EXPORT_SYMBOL(sock_recv_errqueue);
  2500. /*
  2501. * Get a socket option on an socket.
  2502. *
  2503. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2504. * asynchronous errors should be reported by getsockopt. We assume
  2505. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2506. */
  2507. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2508. char __user *optval, int __user *optlen)
  2509. {
  2510. struct sock *sk = sock->sk;
  2511. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2512. }
  2513. EXPORT_SYMBOL(sock_common_getsockopt);
  2514. #ifdef CONFIG_COMPAT
  2515. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2516. char __user *optval, int __user *optlen)
  2517. {
  2518. struct sock *sk = sock->sk;
  2519. if (sk->sk_prot->compat_getsockopt != NULL)
  2520. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2521. optval, optlen);
  2522. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2523. }
  2524. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2525. #endif
  2526. int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  2527. int flags)
  2528. {
  2529. struct sock *sk = sock->sk;
  2530. int addr_len = 0;
  2531. int err;
  2532. err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
  2533. flags & ~MSG_DONTWAIT, &addr_len);
  2534. if (err >= 0)
  2535. msg->msg_namelen = addr_len;
  2536. return err;
  2537. }
  2538. EXPORT_SYMBOL(sock_common_recvmsg);
  2539. /*
  2540. * Set socket options on an inet socket.
  2541. */
  2542. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2543. char __user *optval, unsigned int optlen)
  2544. {
  2545. struct sock *sk = sock->sk;
  2546. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2547. }
  2548. EXPORT_SYMBOL(sock_common_setsockopt);
  2549. #ifdef CONFIG_COMPAT
  2550. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2551. char __user *optval, unsigned int optlen)
  2552. {
  2553. struct sock *sk = sock->sk;
  2554. if (sk->sk_prot->compat_setsockopt != NULL)
  2555. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2556. optval, optlen);
  2557. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2558. }
  2559. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2560. #endif
  2561. void sk_common_release(struct sock *sk)
  2562. {
  2563. if (sk->sk_prot->destroy)
  2564. sk->sk_prot->destroy(sk);
  2565. /*
  2566. * Observation: when sock_common_release is called, processes have
  2567. * no access to socket. But net still has.
  2568. * Step one, detach it from networking:
  2569. *
  2570. * A. Remove from hash tables.
  2571. */
  2572. sk->sk_prot->unhash(sk);
  2573. /*
  2574. * In this point socket cannot receive new packets, but it is possible
  2575. * that some packets are in flight because some CPU runs receiver and
  2576. * did hash table lookup before we unhashed socket. They will achieve
  2577. * receive queue and will be purged by socket destructor.
  2578. *
  2579. * Also we still have packets pending on receive queue and probably,
  2580. * our own packets waiting in device queues. sock_destroy will drain
  2581. * receive queue, but transmitted packets will delay socket destruction
  2582. * until the last reference will be released.
  2583. */
  2584. sock_orphan(sk);
  2585. xfrm_sk_free_policy(sk);
  2586. sk_refcnt_debug_release(sk);
  2587. sock_put(sk);
  2588. }
  2589. EXPORT_SYMBOL(sk_common_release);
  2590. void sk_get_meminfo(const struct sock *sk, u32 *mem)
  2591. {
  2592. memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
  2593. mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
  2594. mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
  2595. mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
  2596. mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
  2597. mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
  2598. mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
  2599. mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
  2600. mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
  2601. mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
  2602. }
  2603. #ifdef CONFIG_PROC_FS
  2604. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2605. struct prot_inuse {
  2606. int val[PROTO_INUSE_NR];
  2607. };
  2608. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2609. #ifdef CONFIG_NET_NS
  2610. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2611. {
  2612. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2613. }
  2614. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2615. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2616. {
  2617. int cpu, idx = prot->inuse_idx;
  2618. int res = 0;
  2619. for_each_possible_cpu(cpu)
  2620. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2621. return res >= 0 ? res : 0;
  2622. }
  2623. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2624. static int __net_init sock_inuse_init_net(struct net *net)
  2625. {
  2626. net->core.inuse = alloc_percpu(struct prot_inuse);
  2627. return net->core.inuse ? 0 : -ENOMEM;
  2628. }
  2629. static void __net_exit sock_inuse_exit_net(struct net *net)
  2630. {
  2631. free_percpu(net->core.inuse);
  2632. }
  2633. static struct pernet_operations net_inuse_ops = {
  2634. .init = sock_inuse_init_net,
  2635. .exit = sock_inuse_exit_net,
  2636. };
  2637. static __init int net_inuse_init(void)
  2638. {
  2639. if (register_pernet_subsys(&net_inuse_ops))
  2640. panic("Cannot initialize net inuse counters");
  2641. return 0;
  2642. }
  2643. core_initcall(net_inuse_init);
  2644. #else
  2645. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2646. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2647. {
  2648. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2649. }
  2650. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2651. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2652. {
  2653. int cpu, idx = prot->inuse_idx;
  2654. int res = 0;
  2655. for_each_possible_cpu(cpu)
  2656. res += per_cpu(prot_inuse, cpu).val[idx];
  2657. return res >= 0 ? res : 0;
  2658. }
  2659. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2660. #endif
  2661. static void assign_proto_idx(struct proto *prot)
  2662. {
  2663. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2664. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2665. pr_err("PROTO_INUSE_NR exhausted\n");
  2666. return;
  2667. }
  2668. set_bit(prot->inuse_idx, proto_inuse_idx);
  2669. }
  2670. static void release_proto_idx(struct proto *prot)
  2671. {
  2672. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2673. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2674. }
  2675. #else
  2676. static inline void assign_proto_idx(struct proto *prot)
  2677. {
  2678. }
  2679. static inline void release_proto_idx(struct proto *prot)
  2680. {
  2681. }
  2682. #endif
  2683. static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
  2684. {
  2685. if (!rsk_prot)
  2686. return;
  2687. kfree(rsk_prot->slab_name);
  2688. rsk_prot->slab_name = NULL;
  2689. kmem_cache_destroy(rsk_prot->slab);
  2690. rsk_prot->slab = NULL;
  2691. }
  2692. static int req_prot_init(const struct proto *prot)
  2693. {
  2694. struct request_sock_ops *rsk_prot = prot->rsk_prot;
  2695. if (!rsk_prot)
  2696. return 0;
  2697. rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
  2698. prot->name);
  2699. if (!rsk_prot->slab_name)
  2700. return -ENOMEM;
  2701. rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
  2702. rsk_prot->obj_size, 0,
  2703. prot->slab_flags, NULL);
  2704. if (!rsk_prot->slab) {
  2705. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2706. prot->name);
  2707. return -ENOMEM;
  2708. }
  2709. return 0;
  2710. }
  2711. int proto_register(struct proto *prot, int alloc_slab)
  2712. {
  2713. if (alloc_slab) {
  2714. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2715. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2716. NULL);
  2717. if (prot->slab == NULL) {
  2718. pr_crit("%s: Can't create sock SLAB cache!\n",
  2719. prot->name);
  2720. goto out;
  2721. }
  2722. if (req_prot_init(prot))
  2723. goto out_free_request_sock_slab;
  2724. if (prot->twsk_prot != NULL) {
  2725. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2726. if (prot->twsk_prot->twsk_slab_name == NULL)
  2727. goto out_free_request_sock_slab;
  2728. prot->twsk_prot->twsk_slab =
  2729. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2730. prot->twsk_prot->twsk_obj_size,
  2731. 0,
  2732. prot->slab_flags,
  2733. NULL);
  2734. if (prot->twsk_prot->twsk_slab == NULL)
  2735. goto out_free_timewait_sock_slab_name;
  2736. }
  2737. }
  2738. mutex_lock(&proto_list_mutex);
  2739. list_add(&prot->node, &proto_list);
  2740. assign_proto_idx(prot);
  2741. mutex_unlock(&proto_list_mutex);
  2742. return 0;
  2743. out_free_timewait_sock_slab_name:
  2744. kfree(prot->twsk_prot->twsk_slab_name);
  2745. out_free_request_sock_slab:
  2746. req_prot_cleanup(prot->rsk_prot);
  2747. kmem_cache_destroy(prot->slab);
  2748. prot->slab = NULL;
  2749. out:
  2750. return -ENOBUFS;
  2751. }
  2752. EXPORT_SYMBOL(proto_register);
  2753. void proto_unregister(struct proto *prot)
  2754. {
  2755. mutex_lock(&proto_list_mutex);
  2756. release_proto_idx(prot);
  2757. list_del(&prot->node);
  2758. mutex_unlock(&proto_list_mutex);
  2759. kmem_cache_destroy(prot->slab);
  2760. prot->slab = NULL;
  2761. req_prot_cleanup(prot->rsk_prot);
  2762. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2763. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2764. kfree(prot->twsk_prot->twsk_slab_name);
  2765. prot->twsk_prot->twsk_slab = NULL;
  2766. }
  2767. }
  2768. EXPORT_SYMBOL(proto_unregister);
  2769. #ifdef CONFIG_PROC_FS
  2770. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2771. __acquires(proto_list_mutex)
  2772. {
  2773. mutex_lock(&proto_list_mutex);
  2774. return seq_list_start_head(&proto_list, *pos);
  2775. }
  2776. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2777. {
  2778. return seq_list_next(v, &proto_list, pos);
  2779. }
  2780. static void proto_seq_stop(struct seq_file *seq, void *v)
  2781. __releases(proto_list_mutex)
  2782. {
  2783. mutex_unlock(&proto_list_mutex);
  2784. }
  2785. static char proto_method_implemented(const void *method)
  2786. {
  2787. return method == NULL ? 'n' : 'y';
  2788. }
  2789. static long sock_prot_memory_allocated(struct proto *proto)
  2790. {
  2791. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2792. }
  2793. static char *sock_prot_memory_pressure(struct proto *proto)
  2794. {
  2795. return proto->memory_pressure != NULL ?
  2796. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2797. }
  2798. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2799. {
  2800. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2801. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2802. proto->name,
  2803. proto->obj_size,
  2804. sock_prot_inuse_get(seq_file_net(seq), proto),
  2805. sock_prot_memory_allocated(proto),
  2806. sock_prot_memory_pressure(proto),
  2807. proto->max_header,
  2808. proto->slab == NULL ? "no" : "yes",
  2809. module_name(proto->owner),
  2810. proto_method_implemented(proto->close),
  2811. proto_method_implemented(proto->connect),
  2812. proto_method_implemented(proto->disconnect),
  2813. proto_method_implemented(proto->accept),
  2814. proto_method_implemented(proto->ioctl),
  2815. proto_method_implemented(proto->init),
  2816. proto_method_implemented(proto->destroy),
  2817. proto_method_implemented(proto->shutdown),
  2818. proto_method_implemented(proto->setsockopt),
  2819. proto_method_implemented(proto->getsockopt),
  2820. proto_method_implemented(proto->sendmsg),
  2821. proto_method_implemented(proto->recvmsg),
  2822. proto_method_implemented(proto->sendpage),
  2823. proto_method_implemented(proto->bind),
  2824. proto_method_implemented(proto->backlog_rcv),
  2825. proto_method_implemented(proto->hash),
  2826. proto_method_implemented(proto->unhash),
  2827. proto_method_implemented(proto->get_port),
  2828. proto_method_implemented(proto->enter_memory_pressure));
  2829. }
  2830. static int proto_seq_show(struct seq_file *seq, void *v)
  2831. {
  2832. if (v == &proto_list)
  2833. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2834. "protocol",
  2835. "size",
  2836. "sockets",
  2837. "memory",
  2838. "press",
  2839. "maxhdr",
  2840. "slab",
  2841. "module",
  2842. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2843. else
  2844. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2845. return 0;
  2846. }
  2847. static const struct seq_operations proto_seq_ops = {
  2848. .start = proto_seq_start,
  2849. .next = proto_seq_next,
  2850. .stop = proto_seq_stop,
  2851. .show = proto_seq_show,
  2852. };
  2853. static int proto_seq_open(struct inode *inode, struct file *file)
  2854. {
  2855. return seq_open_net(inode, file, &proto_seq_ops,
  2856. sizeof(struct seq_net_private));
  2857. }
  2858. static const struct file_operations proto_seq_fops = {
  2859. .owner = THIS_MODULE,
  2860. .open = proto_seq_open,
  2861. .read = seq_read,
  2862. .llseek = seq_lseek,
  2863. .release = seq_release_net,
  2864. };
  2865. static __net_init int proto_init_net(struct net *net)
  2866. {
  2867. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2868. return -ENOMEM;
  2869. return 0;
  2870. }
  2871. static __net_exit void proto_exit_net(struct net *net)
  2872. {
  2873. remove_proc_entry("protocols", net->proc_net);
  2874. }
  2875. static __net_initdata struct pernet_operations proto_net_ops = {
  2876. .init = proto_init_net,
  2877. .exit = proto_exit_net,
  2878. };
  2879. static int __init proto_init(void)
  2880. {
  2881. return register_pernet_subsys(&proto_net_ops);
  2882. }
  2883. subsys_initcall(proto_init);
  2884. #endif /* PROC_FS */
  2885. #ifdef CONFIG_NET_RX_BUSY_POLL
  2886. bool sk_busy_loop_end(void *p, unsigned long start_time)
  2887. {
  2888. struct sock *sk = p;
  2889. return !skb_queue_empty(&sk->sk_receive_queue) ||
  2890. sk_busy_loop_timeout(sk, start_time);
  2891. }
  2892. EXPORT_SYMBOL(sk_busy_loop_end);
  2893. #endif /* CONFIG_NET_RX_BUSY_POLL */