intel_ringbuffer.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int ring_space(struct intel_ring_buffer *ring)
  41. {
  42. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += ring->size;
  45. return space;
  46. }
  47. static bool intel_ring_stopped(struct intel_ring_buffer *ring)
  48. {
  49. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  50. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  51. }
  52. void __intel_ring_advance(struct intel_ring_buffer *ring)
  53. {
  54. ring->tail &= ring->size - 1;
  55. if (intel_ring_stopped(ring))
  56. return;
  57. ring->write_tail(ring, ring->tail);
  58. }
  59. static int
  60. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  61. u32 invalidate_domains,
  62. u32 flush_domains)
  63. {
  64. u32 cmd;
  65. int ret;
  66. cmd = MI_FLUSH;
  67. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  68. cmd |= MI_NO_WRITE_FLUSH;
  69. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  70. cmd |= MI_READ_FLUSH;
  71. ret = intel_ring_begin(ring, 2);
  72. if (ret)
  73. return ret;
  74. intel_ring_emit(ring, cmd);
  75. intel_ring_emit(ring, MI_NOOP);
  76. intel_ring_advance(ring);
  77. return 0;
  78. }
  79. static int
  80. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  81. u32 invalidate_domains,
  82. u32 flush_domains)
  83. {
  84. struct drm_device *dev = ring->dev;
  85. u32 cmd;
  86. int ret;
  87. /*
  88. * read/write caches:
  89. *
  90. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  91. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  92. * also flushed at 2d versus 3d pipeline switches.
  93. *
  94. * read-only caches:
  95. *
  96. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  97. * MI_READ_FLUSH is set, and is always flushed on 965.
  98. *
  99. * I915_GEM_DOMAIN_COMMAND may not exist?
  100. *
  101. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  102. * invalidated when MI_EXE_FLUSH is set.
  103. *
  104. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  105. * invalidated with every MI_FLUSH.
  106. *
  107. * TLBs:
  108. *
  109. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  110. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  111. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  112. * are flushed at any MI_FLUSH.
  113. */
  114. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  115. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  116. cmd &= ~MI_NO_WRITE_FLUSH;
  117. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  118. cmd |= MI_EXE_FLUSH;
  119. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  120. (IS_G4X(dev) || IS_GEN5(dev)))
  121. cmd |= MI_INVALIDATE_ISP;
  122. ret = intel_ring_begin(ring, 2);
  123. if (ret)
  124. return ret;
  125. intel_ring_emit(ring, cmd);
  126. intel_ring_emit(ring, MI_NOOP);
  127. intel_ring_advance(ring);
  128. return 0;
  129. }
  130. /**
  131. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  132. * implementing two workarounds on gen6. From section 1.4.7.1
  133. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  134. *
  135. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  136. * produced by non-pipelined state commands), software needs to first
  137. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  138. * 0.
  139. *
  140. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  141. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  142. *
  143. * And the workaround for these two requires this workaround first:
  144. *
  145. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  146. * BEFORE the pipe-control with a post-sync op and no write-cache
  147. * flushes.
  148. *
  149. * And this last workaround is tricky because of the requirements on
  150. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  151. * volume 2 part 1:
  152. *
  153. * "1 of the following must also be set:
  154. * - Render Target Cache Flush Enable ([12] of DW1)
  155. * - Depth Cache Flush Enable ([0] of DW1)
  156. * - Stall at Pixel Scoreboard ([1] of DW1)
  157. * - Depth Stall ([13] of DW1)
  158. * - Post-Sync Operation ([13] of DW1)
  159. * - Notify Enable ([8] of DW1)"
  160. *
  161. * The cache flushes require the workaround flush that triggered this
  162. * one, so we can't use it. Depth stall would trigger the same.
  163. * Post-sync nonzero is what triggered this second workaround, so we
  164. * can't use that one either. Notify enable is IRQs, which aren't
  165. * really our business. That leaves only stall at scoreboard.
  166. */
  167. static int
  168. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  169. {
  170. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  171. int ret;
  172. ret = intel_ring_begin(ring, 6);
  173. if (ret)
  174. return ret;
  175. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  176. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  177. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0); /* low dword */
  180. intel_ring_emit(ring, 0); /* high dword */
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. ret = intel_ring_begin(ring, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  188. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  189. intel_ring_emit(ring, 0);
  190. intel_ring_emit(ring, 0);
  191. intel_ring_emit(ring, MI_NOOP);
  192. intel_ring_advance(ring);
  193. return 0;
  194. }
  195. static int
  196. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  197. u32 invalidate_domains, u32 flush_domains)
  198. {
  199. u32 flags = 0;
  200. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  201. int ret;
  202. /* Force SNB workarounds for PIPE_CONTROL flushes */
  203. ret = intel_emit_post_sync_nonzero_flush(ring);
  204. if (ret)
  205. return ret;
  206. /* Just flush everything. Experiments have shown that reducing the
  207. * number of bits based on the write domains has little performance
  208. * impact.
  209. */
  210. if (flush_domains) {
  211. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  212. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  213. /*
  214. * Ensure that any following seqno writes only happen
  215. * when the render cache is indeed flushed.
  216. */
  217. flags |= PIPE_CONTROL_CS_STALL;
  218. }
  219. if (invalidate_domains) {
  220. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  221. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  222. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  223. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  224. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  225. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  226. /*
  227. * TLB invalidate requires a post-sync write.
  228. */
  229. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  230. }
  231. ret = intel_ring_begin(ring, 4);
  232. if (ret)
  233. return ret;
  234. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  235. intel_ring_emit(ring, flags);
  236. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  237. intel_ring_emit(ring, 0);
  238. intel_ring_advance(ring);
  239. return 0;
  240. }
  241. static int
  242. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  243. {
  244. int ret;
  245. ret = intel_ring_begin(ring, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  250. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_emit(ring, 0);
  253. intel_ring_advance(ring);
  254. return 0;
  255. }
  256. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  257. {
  258. int ret;
  259. if (!ring->fbc_dirty)
  260. return 0;
  261. ret = intel_ring_begin(ring, 6);
  262. if (ret)
  263. return ret;
  264. /* WaFbcNukeOn3DBlt:ivb/hsw */
  265. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  266. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  267. intel_ring_emit(ring, value);
  268. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  269. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  270. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  271. intel_ring_advance(ring);
  272. ring->fbc_dirty = false;
  273. return 0;
  274. }
  275. static int
  276. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  277. u32 invalidate_domains, u32 flush_domains)
  278. {
  279. u32 flags = 0;
  280. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  281. int ret;
  282. /*
  283. * Ensure that any following seqno writes only happen when the render
  284. * cache is indeed flushed.
  285. *
  286. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  287. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  288. * don't try to be clever and just set it unconditionally.
  289. */
  290. flags |= PIPE_CONTROL_CS_STALL;
  291. /* Just flush everything. Experiments have shown that reducing the
  292. * number of bits based on the write domains has little performance
  293. * impact.
  294. */
  295. if (flush_domains) {
  296. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  297. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  298. }
  299. if (invalidate_domains) {
  300. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  301. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. /* Workaround: we must issue a pipe_control with CS-stall bit
  312. * set before a pipe_control command that has the state cache
  313. * invalidate bit set. */
  314. gen7_render_ring_cs_stall_wa(ring);
  315. }
  316. ret = intel_ring_begin(ring, 4);
  317. if (ret)
  318. return ret;
  319. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  320. intel_ring_emit(ring, flags);
  321. intel_ring_emit(ring, scratch_addr);
  322. intel_ring_emit(ring, 0);
  323. intel_ring_advance(ring);
  324. if (!invalidate_domains && flush_domains)
  325. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  326. return 0;
  327. }
  328. static int
  329. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  330. u32 invalidate_domains, u32 flush_domains)
  331. {
  332. u32 flags = 0;
  333. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  334. int ret;
  335. flags |= PIPE_CONTROL_CS_STALL;
  336. if (flush_domains) {
  337. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  338. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  339. }
  340. if (invalidate_domains) {
  341. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  342. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  346. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  347. flags |= PIPE_CONTROL_QW_WRITE;
  348. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  349. }
  350. ret = intel_ring_begin(ring, 6);
  351. if (ret)
  352. return ret;
  353. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  354. intel_ring_emit(ring, flags);
  355. intel_ring_emit(ring, scratch_addr);
  356. intel_ring_emit(ring, 0);
  357. intel_ring_emit(ring, 0);
  358. intel_ring_emit(ring, 0);
  359. intel_ring_advance(ring);
  360. return 0;
  361. }
  362. static void ring_write_tail(struct intel_ring_buffer *ring,
  363. u32 value)
  364. {
  365. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  366. I915_WRITE_TAIL(ring, value);
  367. }
  368. u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  369. {
  370. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  371. u64 acthd;
  372. if (INTEL_INFO(ring->dev)->gen >= 8)
  373. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  374. RING_ACTHD_UDW(ring->mmio_base));
  375. else if (INTEL_INFO(ring->dev)->gen >= 4)
  376. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  377. else
  378. acthd = I915_READ(ACTHD);
  379. return acthd;
  380. }
  381. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  382. {
  383. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  384. u32 addr;
  385. addr = dev_priv->status_page_dmah->busaddr;
  386. if (INTEL_INFO(ring->dev)->gen >= 4)
  387. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  388. I915_WRITE(HWS_PGA, addr);
  389. }
  390. static bool stop_ring(struct intel_ring_buffer *ring)
  391. {
  392. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  393. if (!IS_GEN2(ring->dev)) {
  394. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  395. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  396. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  397. return false;
  398. }
  399. }
  400. I915_WRITE_CTL(ring, 0);
  401. I915_WRITE_HEAD(ring, 0);
  402. ring->write_tail(ring, 0);
  403. if (!IS_GEN2(ring->dev)) {
  404. (void)I915_READ_CTL(ring);
  405. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  406. }
  407. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  408. }
  409. static int init_ring_common(struct intel_ring_buffer *ring)
  410. {
  411. struct drm_device *dev = ring->dev;
  412. struct drm_i915_private *dev_priv = dev->dev_private;
  413. struct drm_i915_gem_object *obj = ring->obj;
  414. int ret = 0;
  415. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  416. if (!stop_ring(ring)) {
  417. /* G45 ring initialization often fails to reset head to zero */
  418. DRM_DEBUG_KMS("%s head not reset to zero "
  419. "ctl %08x head %08x tail %08x start %08x\n",
  420. ring->name,
  421. I915_READ_CTL(ring),
  422. I915_READ_HEAD(ring),
  423. I915_READ_TAIL(ring),
  424. I915_READ_START(ring));
  425. if (!stop_ring(ring)) {
  426. DRM_ERROR("failed to set %s head to zero "
  427. "ctl %08x head %08x tail %08x start %08x\n",
  428. ring->name,
  429. I915_READ_CTL(ring),
  430. I915_READ_HEAD(ring),
  431. I915_READ_TAIL(ring),
  432. I915_READ_START(ring));
  433. ret = -EIO;
  434. goto out;
  435. }
  436. }
  437. if (I915_NEED_GFX_HWS(dev))
  438. intel_ring_setup_status_page(ring);
  439. else
  440. ring_setup_phys_status_page(ring);
  441. /* Initialize the ring. This must happen _after_ we've cleared the ring
  442. * registers with the above sequence (the readback of the HEAD registers
  443. * also enforces ordering), otherwise the hw might lose the new ring
  444. * register values. */
  445. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  446. I915_WRITE_CTL(ring,
  447. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  448. | RING_VALID);
  449. /* If the head is still not zero, the ring is dead */
  450. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  451. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  452. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  453. DRM_ERROR("%s initialization failed "
  454. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  455. ring->name,
  456. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  457. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  458. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  459. ret = -EIO;
  460. goto out;
  461. }
  462. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  463. i915_kernel_lost_context(ring->dev);
  464. else {
  465. ring->head = I915_READ_HEAD(ring);
  466. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  467. ring->space = ring_space(ring);
  468. ring->last_retired_head = -1;
  469. }
  470. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  471. out:
  472. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  473. return ret;
  474. }
  475. static int
  476. init_pipe_control(struct intel_ring_buffer *ring)
  477. {
  478. int ret;
  479. if (ring->scratch.obj)
  480. return 0;
  481. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  482. if (ring->scratch.obj == NULL) {
  483. DRM_ERROR("Failed to allocate seqno page\n");
  484. ret = -ENOMEM;
  485. goto err;
  486. }
  487. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  488. if (ret)
  489. goto err_unref;
  490. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  491. if (ret)
  492. goto err_unref;
  493. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  494. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  495. if (ring->scratch.cpu_page == NULL) {
  496. ret = -ENOMEM;
  497. goto err_unpin;
  498. }
  499. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  500. ring->name, ring->scratch.gtt_offset);
  501. return 0;
  502. err_unpin:
  503. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  504. err_unref:
  505. drm_gem_object_unreference(&ring->scratch.obj->base);
  506. err:
  507. return ret;
  508. }
  509. static int init_render_ring(struct intel_ring_buffer *ring)
  510. {
  511. struct drm_device *dev = ring->dev;
  512. struct drm_i915_private *dev_priv = dev->dev_private;
  513. int ret = init_ring_common(ring);
  514. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  515. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  516. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  517. /* We need to disable the AsyncFlip performance optimisations in order
  518. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  519. * programmed to '1' on all products.
  520. *
  521. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  522. */
  523. if (INTEL_INFO(dev)->gen >= 6)
  524. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  525. /* Required for the hardware to program scanline values for waiting */
  526. /* WaEnableFlushTlbInvalidationMode:snb */
  527. if (INTEL_INFO(dev)->gen == 6)
  528. I915_WRITE(GFX_MODE,
  529. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  530. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  531. if (IS_GEN7(dev))
  532. I915_WRITE(GFX_MODE_GEN7,
  533. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  534. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  535. if (INTEL_INFO(dev)->gen >= 5) {
  536. ret = init_pipe_control(ring);
  537. if (ret)
  538. return ret;
  539. }
  540. if (IS_GEN6(dev)) {
  541. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  542. * "If this bit is set, STCunit will have LRA as replacement
  543. * policy. [...] This bit must be reset. LRA replacement
  544. * policy is not supported."
  545. */
  546. I915_WRITE(CACHE_MODE_0,
  547. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  548. }
  549. if (INTEL_INFO(dev)->gen >= 6)
  550. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  551. if (HAS_L3_DPF(dev))
  552. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  553. return ret;
  554. }
  555. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  556. {
  557. struct drm_device *dev = ring->dev;
  558. if (ring->scratch.obj == NULL)
  559. return;
  560. if (INTEL_INFO(dev)->gen >= 5) {
  561. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  562. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  563. }
  564. drm_gem_object_unreference(&ring->scratch.obj->base);
  565. ring->scratch.obj = NULL;
  566. }
  567. static void
  568. update_mboxes(struct intel_ring_buffer *ring,
  569. u32 mmio_offset)
  570. {
  571. /* NB: In order to be able to do semaphore MBOX updates for varying number
  572. * of rings, it's easiest if we round up each individual update to a
  573. * multiple of 2 (since ring updates must always be a multiple of 2)
  574. * even though the actual update only requires 3 dwords.
  575. */
  576. #define MBOX_UPDATE_DWORDS 4
  577. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  578. intel_ring_emit(ring, mmio_offset);
  579. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  580. intel_ring_emit(ring, MI_NOOP);
  581. }
  582. /**
  583. * gen6_add_request - Update the semaphore mailbox registers
  584. *
  585. * @ring - ring that is adding a request
  586. * @seqno - return seqno stuck into the ring
  587. *
  588. * Update the mailbox registers in the *other* rings with the current seqno.
  589. * This acts like a signal in the canonical semaphore.
  590. */
  591. static int
  592. gen6_add_request(struct intel_ring_buffer *ring)
  593. {
  594. struct drm_device *dev = ring->dev;
  595. struct drm_i915_private *dev_priv = dev->dev_private;
  596. struct intel_ring_buffer *useless;
  597. int i, ret, num_dwords = 4;
  598. if (i915_semaphore_is_enabled(dev))
  599. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  600. #undef MBOX_UPDATE_DWORDS
  601. ret = intel_ring_begin(ring, num_dwords);
  602. if (ret)
  603. return ret;
  604. if (i915_semaphore_is_enabled(dev)) {
  605. for_each_ring(useless, dev_priv, i) {
  606. u32 mbox_reg = ring->signal_mbox[i];
  607. if (mbox_reg != GEN6_NOSYNC)
  608. update_mboxes(ring, mbox_reg);
  609. }
  610. }
  611. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  612. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  613. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  614. intel_ring_emit(ring, MI_USER_INTERRUPT);
  615. __intel_ring_advance(ring);
  616. return 0;
  617. }
  618. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  619. u32 seqno)
  620. {
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. return dev_priv->last_seqno < seqno;
  623. }
  624. /**
  625. * intel_ring_sync - sync the waiter to the signaller on seqno
  626. *
  627. * @waiter - ring that is waiting
  628. * @signaller - ring which has, or will signal
  629. * @seqno - seqno which the waiter will block on
  630. */
  631. static int
  632. gen6_ring_sync(struct intel_ring_buffer *waiter,
  633. struct intel_ring_buffer *signaller,
  634. u32 seqno)
  635. {
  636. int ret;
  637. u32 dw1 = MI_SEMAPHORE_MBOX |
  638. MI_SEMAPHORE_COMPARE |
  639. MI_SEMAPHORE_REGISTER;
  640. /* Throughout all of the GEM code, seqno passed implies our current
  641. * seqno is >= the last seqno executed. However for hardware the
  642. * comparison is strictly greater than.
  643. */
  644. seqno -= 1;
  645. WARN_ON(signaller->semaphore_register[waiter->id] ==
  646. MI_SEMAPHORE_SYNC_INVALID);
  647. ret = intel_ring_begin(waiter, 4);
  648. if (ret)
  649. return ret;
  650. /* If seqno wrap happened, omit the wait with no-ops */
  651. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  652. intel_ring_emit(waiter,
  653. dw1 |
  654. signaller->semaphore_register[waiter->id]);
  655. intel_ring_emit(waiter, seqno);
  656. intel_ring_emit(waiter, 0);
  657. intel_ring_emit(waiter, MI_NOOP);
  658. } else {
  659. intel_ring_emit(waiter, MI_NOOP);
  660. intel_ring_emit(waiter, MI_NOOP);
  661. intel_ring_emit(waiter, MI_NOOP);
  662. intel_ring_emit(waiter, MI_NOOP);
  663. }
  664. intel_ring_advance(waiter);
  665. return 0;
  666. }
  667. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  668. do { \
  669. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  670. PIPE_CONTROL_DEPTH_STALL); \
  671. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  672. intel_ring_emit(ring__, 0); \
  673. intel_ring_emit(ring__, 0); \
  674. } while (0)
  675. static int
  676. pc_render_add_request(struct intel_ring_buffer *ring)
  677. {
  678. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  679. int ret;
  680. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  681. * incoherent with writes to memory, i.e. completely fubar,
  682. * so we need to use PIPE_NOTIFY instead.
  683. *
  684. * However, we also need to workaround the qword write
  685. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  686. * memory before requesting an interrupt.
  687. */
  688. ret = intel_ring_begin(ring, 32);
  689. if (ret)
  690. return ret;
  691. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  692. PIPE_CONTROL_WRITE_FLUSH |
  693. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  694. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  695. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  696. intel_ring_emit(ring, 0);
  697. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  698. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  699. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  700. scratch_addr += 2 * CACHELINE_BYTES;
  701. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  702. scratch_addr += 2 * CACHELINE_BYTES;
  703. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  704. scratch_addr += 2 * CACHELINE_BYTES;
  705. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  706. scratch_addr += 2 * CACHELINE_BYTES;
  707. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  708. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  709. PIPE_CONTROL_WRITE_FLUSH |
  710. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  711. PIPE_CONTROL_NOTIFY);
  712. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  713. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  714. intel_ring_emit(ring, 0);
  715. __intel_ring_advance(ring);
  716. return 0;
  717. }
  718. static u32
  719. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  720. {
  721. /* Workaround to force correct ordering between irq and seqno writes on
  722. * ivb (and maybe also on snb) by reading from a CS register (like
  723. * ACTHD) before reading the status page. */
  724. if (!lazy_coherency) {
  725. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  726. POSTING_READ(RING_ACTHD(ring->mmio_base));
  727. }
  728. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  729. }
  730. static u32
  731. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  732. {
  733. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  734. }
  735. static void
  736. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  737. {
  738. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  739. }
  740. static u32
  741. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  742. {
  743. return ring->scratch.cpu_page[0];
  744. }
  745. static void
  746. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  747. {
  748. ring->scratch.cpu_page[0] = seqno;
  749. }
  750. static bool
  751. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  752. {
  753. struct drm_device *dev = ring->dev;
  754. struct drm_i915_private *dev_priv = dev->dev_private;
  755. unsigned long flags;
  756. if (!dev->irq_enabled)
  757. return false;
  758. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  759. if (ring->irq_refcount++ == 0)
  760. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  761. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  762. return true;
  763. }
  764. static void
  765. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  766. {
  767. struct drm_device *dev = ring->dev;
  768. struct drm_i915_private *dev_priv = dev->dev_private;
  769. unsigned long flags;
  770. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  771. if (--ring->irq_refcount == 0)
  772. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  773. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  774. }
  775. static bool
  776. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. unsigned long flags;
  781. if (!dev->irq_enabled)
  782. return false;
  783. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  784. if (ring->irq_refcount++ == 0) {
  785. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  786. I915_WRITE(IMR, dev_priv->irq_mask);
  787. POSTING_READ(IMR);
  788. }
  789. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  790. return true;
  791. }
  792. static void
  793. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  794. {
  795. struct drm_device *dev = ring->dev;
  796. struct drm_i915_private *dev_priv = dev->dev_private;
  797. unsigned long flags;
  798. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  799. if (--ring->irq_refcount == 0) {
  800. dev_priv->irq_mask |= ring->irq_enable_mask;
  801. I915_WRITE(IMR, dev_priv->irq_mask);
  802. POSTING_READ(IMR);
  803. }
  804. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  805. }
  806. static bool
  807. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  808. {
  809. struct drm_device *dev = ring->dev;
  810. struct drm_i915_private *dev_priv = dev->dev_private;
  811. unsigned long flags;
  812. if (!dev->irq_enabled)
  813. return false;
  814. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  815. if (ring->irq_refcount++ == 0) {
  816. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  817. I915_WRITE16(IMR, dev_priv->irq_mask);
  818. POSTING_READ16(IMR);
  819. }
  820. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  821. return true;
  822. }
  823. static void
  824. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  825. {
  826. struct drm_device *dev = ring->dev;
  827. struct drm_i915_private *dev_priv = dev->dev_private;
  828. unsigned long flags;
  829. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  830. if (--ring->irq_refcount == 0) {
  831. dev_priv->irq_mask |= ring->irq_enable_mask;
  832. I915_WRITE16(IMR, dev_priv->irq_mask);
  833. POSTING_READ16(IMR);
  834. }
  835. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  836. }
  837. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  838. {
  839. struct drm_device *dev = ring->dev;
  840. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  841. u32 mmio = 0;
  842. /* The ring status page addresses are no longer next to the rest of
  843. * the ring registers as of gen7.
  844. */
  845. if (IS_GEN7(dev)) {
  846. switch (ring->id) {
  847. case RCS:
  848. mmio = RENDER_HWS_PGA_GEN7;
  849. break;
  850. case BCS:
  851. mmio = BLT_HWS_PGA_GEN7;
  852. break;
  853. case VCS:
  854. mmio = BSD_HWS_PGA_GEN7;
  855. break;
  856. case VECS:
  857. mmio = VEBOX_HWS_PGA_GEN7;
  858. break;
  859. }
  860. } else if (IS_GEN6(ring->dev)) {
  861. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  862. } else {
  863. /* XXX: gen8 returns to sanity */
  864. mmio = RING_HWS_PGA(ring->mmio_base);
  865. }
  866. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  867. POSTING_READ(mmio);
  868. /*
  869. * Flush the TLB for this page
  870. *
  871. * FIXME: These two bits have disappeared on gen8, so a question
  872. * arises: do we still need this and if so how should we go about
  873. * invalidating the TLB?
  874. */
  875. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  876. u32 reg = RING_INSTPM(ring->mmio_base);
  877. /* ring should be idle before issuing a sync flush*/
  878. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  879. I915_WRITE(reg,
  880. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  881. INSTPM_SYNC_FLUSH));
  882. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  883. 1000))
  884. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  885. ring->name);
  886. }
  887. }
  888. static int
  889. bsd_ring_flush(struct intel_ring_buffer *ring,
  890. u32 invalidate_domains,
  891. u32 flush_domains)
  892. {
  893. int ret;
  894. ret = intel_ring_begin(ring, 2);
  895. if (ret)
  896. return ret;
  897. intel_ring_emit(ring, MI_FLUSH);
  898. intel_ring_emit(ring, MI_NOOP);
  899. intel_ring_advance(ring);
  900. return 0;
  901. }
  902. static int
  903. i9xx_add_request(struct intel_ring_buffer *ring)
  904. {
  905. int ret;
  906. ret = intel_ring_begin(ring, 4);
  907. if (ret)
  908. return ret;
  909. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  910. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  911. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  912. intel_ring_emit(ring, MI_USER_INTERRUPT);
  913. __intel_ring_advance(ring);
  914. return 0;
  915. }
  916. static bool
  917. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  918. {
  919. struct drm_device *dev = ring->dev;
  920. struct drm_i915_private *dev_priv = dev->dev_private;
  921. unsigned long flags;
  922. if (!dev->irq_enabled)
  923. return false;
  924. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  925. if (ring->irq_refcount++ == 0) {
  926. if (HAS_L3_DPF(dev) && ring->id == RCS)
  927. I915_WRITE_IMR(ring,
  928. ~(ring->irq_enable_mask |
  929. GT_PARITY_ERROR(dev)));
  930. else
  931. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  932. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  933. }
  934. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  935. return true;
  936. }
  937. static void
  938. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  939. {
  940. struct drm_device *dev = ring->dev;
  941. struct drm_i915_private *dev_priv = dev->dev_private;
  942. unsigned long flags;
  943. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  944. if (--ring->irq_refcount == 0) {
  945. if (HAS_L3_DPF(dev) && ring->id == RCS)
  946. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  947. else
  948. I915_WRITE_IMR(ring, ~0);
  949. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  950. }
  951. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  952. }
  953. static bool
  954. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  955. {
  956. struct drm_device *dev = ring->dev;
  957. struct drm_i915_private *dev_priv = dev->dev_private;
  958. unsigned long flags;
  959. if (!dev->irq_enabled)
  960. return false;
  961. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  962. if (ring->irq_refcount++ == 0) {
  963. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  964. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  965. }
  966. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  967. return true;
  968. }
  969. static void
  970. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  971. {
  972. struct drm_device *dev = ring->dev;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. unsigned long flags;
  975. if (!dev->irq_enabled)
  976. return;
  977. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  978. if (--ring->irq_refcount == 0) {
  979. I915_WRITE_IMR(ring, ~0);
  980. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  981. }
  982. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  983. }
  984. static bool
  985. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  986. {
  987. struct drm_device *dev = ring->dev;
  988. struct drm_i915_private *dev_priv = dev->dev_private;
  989. unsigned long flags;
  990. if (!dev->irq_enabled)
  991. return false;
  992. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  993. if (ring->irq_refcount++ == 0) {
  994. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  995. I915_WRITE_IMR(ring,
  996. ~(ring->irq_enable_mask |
  997. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  998. } else {
  999. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1000. }
  1001. POSTING_READ(RING_IMR(ring->mmio_base));
  1002. }
  1003. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1004. return true;
  1005. }
  1006. static void
  1007. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  1008. {
  1009. struct drm_device *dev = ring->dev;
  1010. struct drm_i915_private *dev_priv = dev->dev_private;
  1011. unsigned long flags;
  1012. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1013. if (--ring->irq_refcount == 0) {
  1014. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1015. I915_WRITE_IMR(ring,
  1016. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1017. } else {
  1018. I915_WRITE_IMR(ring, ~0);
  1019. }
  1020. POSTING_READ(RING_IMR(ring->mmio_base));
  1021. }
  1022. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1023. }
  1024. static int
  1025. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1026. u32 offset, u32 length,
  1027. unsigned flags)
  1028. {
  1029. int ret;
  1030. ret = intel_ring_begin(ring, 2);
  1031. if (ret)
  1032. return ret;
  1033. intel_ring_emit(ring,
  1034. MI_BATCH_BUFFER_START |
  1035. MI_BATCH_GTT |
  1036. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1037. intel_ring_emit(ring, offset);
  1038. intel_ring_advance(ring);
  1039. return 0;
  1040. }
  1041. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1042. #define I830_BATCH_LIMIT (256*1024)
  1043. static int
  1044. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1045. u32 offset, u32 len,
  1046. unsigned flags)
  1047. {
  1048. int ret;
  1049. if (flags & I915_DISPATCH_PINNED) {
  1050. ret = intel_ring_begin(ring, 4);
  1051. if (ret)
  1052. return ret;
  1053. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1054. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1055. intel_ring_emit(ring, offset + len - 8);
  1056. intel_ring_emit(ring, MI_NOOP);
  1057. intel_ring_advance(ring);
  1058. } else {
  1059. u32 cs_offset = ring->scratch.gtt_offset;
  1060. if (len > I830_BATCH_LIMIT)
  1061. return -ENOSPC;
  1062. ret = intel_ring_begin(ring, 9+3);
  1063. if (ret)
  1064. return ret;
  1065. /* Blit the batch (which has now all relocs applied) to the stable batch
  1066. * scratch bo area (so that the CS never stumbles over its tlb
  1067. * invalidation bug) ... */
  1068. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1069. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1070. XY_SRC_COPY_BLT_WRITE_RGB);
  1071. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1072. intel_ring_emit(ring, 0);
  1073. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1074. intel_ring_emit(ring, cs_offset);
  1075. intel_ring_emit(ring, 0);
  1076. intel_ring_emit(ring, 4096);
  1077. intel_ring_emit(ring, offset);
  1078. intel_ring_emit(ring, MI_FLUSH);
  1079. /* ... and execute it. */
  1080. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1081. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1082. intel_ring_emit(ring, cs_offset + len - 8);
  1083. intel_ring_advance(ring);
  1084. }
  1085. return 0;
  1086. }
  1087. static int
  1088. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1089. u32 offset, u32 len,
  1090. unsigned flags)
  1091. {
  1092. int ret;
  1093. ret = intel_ring_begin(ring, 2);
  1094. if (ret)
  1095. return ret;
  1096. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1097. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1098. intel_ring_advance(ring);
  1099. return 0;
  1100. }
  1101. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1102. {
  1103. struct drm_i915_gem_object *obj;
  1104. obj = ring->status_page.obj;
  1105. if (obj == NULL)
  1106. return;
  1107. kunmap(sg_page(obj->pages->sgl));
  1108. i915_gem_object_ggtt_unpin(obj);
  1109. drm_gem_object_unreference(&obj->base);
  1110. ring->status_page.obj = NULL;
  1111. }
  1112. static int init_status_page(struct intel_ring_buffer *ring)
  1113. {
  1114. struct drm_i915_gem_object *obj;
  1115. if ((obj = ring->status_page.obj) == NULL) {
  1116. int ret;
  1117. obj = i915_gem_alloc_object(ring->dev, 4096);
  1118. if (obj == NULL) {
  1119. DRM_ERROR("Failed to allocate status page\n");
  1120. return -ENOMEM;
  1121. }
  1122. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1123. if (ret)
  1124. goto err_unref;
  1125. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1126. if (ret) {
  1127. err_unref:
  1128. drm_gem_object_unreference(&obj->base);
  1129. return ret;
  1130. }
  1131. ring->status_page.obj = obj;
  1132. }
  1133. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1134. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1135. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1136. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1137. ring->name, ring->status_page.gfx_addr);
  1138. return 0;
  1139. }
  1140. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1141. {
  1142. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1143. if (!dev_priv->status_page_dmah) {
  1144. dev_priv->status_page_dmah =
  1145. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1146. if (!dev_priv->status_page_dmah)
  1147. return -ENOMEM;
  1148. }
  1149. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1150. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1151. return 0;
  1152. }
  1153. static int allocate_ring_buffer(struct intel_ring_buffer *ring)
  1154. {
  1155. struct drm_device *dev = ring->dev;
  1156. struct drm_i915_private *dev_priv = to_i915(dev);
  1157. struct drm_i915_gem_object *obj;
  1158. int ret;
  1159. if (ring->obj)
  1160. return 0;
  1161. obj = NULL;
  1162. if (!HAS_LLC(dev))
  1163. obj = i915_gem_object_create_stolen(dev, ring->size);
  1164. if (obj == NULL)
  1165. obj = i915_gem_alloc_object(dev, ring->size);
  1166. if (obj == NULL)
  1167. return -ENOMEM;
  1168. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1169. if (ret)
  1170. goto err_unref;
  1171. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1172. if (ret)
  1173. goto err_unpin;
  1174. ring->virtual_start =
  1175. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1176. ring->size);
  1177. if (ring->virtual_start == NULL) {
  1178. ret = -EINVAL;
  1179. goto err_unpin;
  1180. }
  1181. ring->obj = obj;
  1182. return 0;
  1183. err_unpin:
  1184. i915_gem_object_ggtt_unpin(obj);
  1185. err_unref:
  1186. drm_gem_object_unreference(&obj->base);
  1187. return ret;
  1188. }
  1189. static int intel_init_ring_buffer(struct drm_device *dev,
  1190. struct intel_ring_buffer *ring)
  1191. {
  1192. int ret;
  1193. ring->dev = dev;
  1194. INIT_LIST_HEAD(&ring->active_list);
  1195. INIT_LIST_HEAD(&ring->request_list);
  1196. ring->size = 32 * PAGE_SIZE;
  1197. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1198. init_waitqueue_head(&ring->irq_queue);
  1199. if (I915_NEED_GFX_HWS(dev)) {
  1200. ret = init_status_page(ring);
  1201. if (ret)
  1202. return ret;
  1203. } else {
  1204. BUG_ON(ring->id != RCS);
  1205. ret = init_phys_status_page(ring);
  1206. if (ret)
  1207. return ret;
  1208. }
  1209. ret = allocate_ring_buffer(ring);
  1210. if (ret) {
  1211. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1212. return ret;
  1213. }
  1214. /* Workaround an erratum on the i830 which causes a hang if
  1215. * the TAIL pointer points to within the last 2 cachelines
  1216. * of the buffer.
  1217. */
  1218. ring->effective_size = ring->size;
  1219. if (IS_I830(dev) || IS_845G(dev))
  1220. ring->effective_size -= 2 * CACHELINE_BYTES;
  1221. i915_cmd_parser_init_ring(ring);
  1222. return ring->init(ring);
  1223. }
  1224. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1225. {
  1226. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1227. if (ring->obj == NULL)
  1228. return;
  1229. intel_stop_ring_buffer(ring);
  1230. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1231. iounmap(ring->virtual_start);
  1232. i915_gem_object_ggtt_unpin(ring->obj);
  1233. drm_gem_object_unreference(&ring->obj->base);
  1234. ring->obj = NULL;
  1235. ring->preallocated_lazy_request = NULL;
  1236. ring->outstanding_lazy_seqno = 0;
  1237. if (ring->cleanup)
  1238. ring->cleanup(ring);
  1239. cleanup_status_page(ring);
  1240. }
  1241. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1242. {
  1243. struct drm_i915_gem_request *request;
  1244. u32 seqno = 0, tail;
  1245. int ret;
  1246. if (ring->last_retired_head != -1) {
  1247. ring->head = ring->last_retired_head;
  1248. ring->last_retired_head = -1;
  1249. ring->space = ring_space(ring);
  1250. if (ring->space >= n)
  1251. return 0;
  1252. }
  1253. list_for_each_entry(request, &ring->request_list, list) {
  1254. int space;
  1255. if (request->tail == -1)
  1256. continue;
  1257. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1258. if (space < 0)
  1259. space += ring->size;
  1260. if (space >= n) {
  1261. seqno = request->seqno;
  1262. tail = request->tail;
  1263. break;
  1264. }
  1265. /* Consume this request in case we need more space than
  1266. * is available and so need to prevent a race between
  1267. * updating last_retired_head and direct reads of
  1268. * I915_RING_HEAD. It also provides a nice sanity check.
  1269. */
  1270. request->tail = -1;
  1271. }
  1272. if (seqno == 0)
  1273. return -ENOSPC;
  1274. ret = i915_wait_seqno(ring, seqno);
  1275. if (ret)
  1276. return ret;
  1277. ring->head = tail;
  1278. ring->space = ring_space(ring);
  1279. if (WARN_ON(ring->space < n))
  1280. return -ENOSPC;
  1281. return 0;
  1282. }
  1283. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1284. {
  1285. struct drm_device *dev = ring->dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. unsigned long end;
  1288. int ret;
  1289. ret = intel_ring_wait_request(ring, n);
  1290. if (ret != -ENOSPC)
  1291. return ret;
  1292. /* force the tail write in case we have been skipping them */
  1293. __intel_ring_advance(ring);
  1294. trace_i915_ring_wait_begin(ring);
  1295. /* With GEM the hangcheck timer should kick us out of the loop,
  1296. * leaving it early runs the risk of corrupting GEM state (due
  1297. * to running on almost untested codepaths). But on resume
  1298. * timers don't work yet, so prevent a complete hang in that
  1299. * case by choosing an insanely large timeout. */
  1300. end = jiffies + 60 * HZ;
  1301. do {
  1302. ring->head = I915_READ_HEAD(ring);
  1303. ring->space = ring_space(ring);
  1304. if (ring->space >= n) {
  1305. trace_i915_ring_wait_end(ring);
  1306. return 0;
  1307. }
  1308. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1309. dev->primary->master) {
  1310. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1311. if (master_priv->sarea_priv)
  1312. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1313. }
  1314. msleep(1);
  1315. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1316. dev_priv->mm.interruptible);
  1317. if (ret)
  1318. return ret;
  1319. } while (!time_after(jiffies, end));
  1320. trace_i915_ring_wait_end(ring);
  1321. return -EBUSY;
  1322. }
  1323. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1324. {
  1325. uint32_t __iomem *virt;
  1326. int rem = ring->size - ring->tail;
  1327. if (ring->space < rem) {
  1328. int ret = ring_wait_for_space(ring, rem);
  1329. if (ret)
  1330. return ret;
  1331. }
  1332. virt = ring->virtual_start + ring->tail;
  1333. rem /= 4;
  1334. while (rem--)
  1335. iowrite32(MI_NOOP, virt++);
  1336. ring->tail = 0;
  1337. ring->space = ring_space(ring);
  1338. return 0;
  1339. }
  1340. int intel_ring_idle(struct intel_ring_buffer *ring)
  1341. {
  1342. u32 seqno;
  1343. int ret;
  1344. /* We need to add any requests required to flush the objects and ring */
  1345. if (ring->outstanding_lazy_seqno) {
  1346. ret = i915_add_request(ring, NULL);
  1347. if (ret)
  1348. return ret;
  1349. }
  1350. /* Wait upon the last request to be completed */
  1351. if (list_empty(&ring->request_list))
  1352. return 0;
  1353. seqno = list_entry(ring->request_list.prev,
  1354. struct drm_i915_gem_request,
  1355. list)->seqno;
  1356. return i915_wait_seqno(ring, seqno);
  1357. }
  1358. static int
  1359. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1360. {
  1361. if (ring->outstanding_lazy_seqno)
  1362. return 0;
  1363. if (ring->preallocated_lazy_request == NULL) {
  1364. struct drm_i915_gem_request *request;
  1365. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1366. if (request == NULL)
  1367. return -ENOMEM;
  1368. ring->preallocated_lazy_request = request;
  1369. }
  1370. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1371. }
  1372. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1373. int bytes)
  1374. {
  1375. int ret;
  1376. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1377. ret = intel_wrap_ring_buffer(ring);
  1378. if (unlikely(ret))
  1379. return ret;
  1380. }
  1381. if (unlikely(ring->space < bytes)) {
  1382. ret = ring_wait_for_space(ring, bytes);
  1383. if (unlikely(ret))
  1384. return ret;
  1385. }
  1386. return 0;
  1387. }
  1388. int intel_ring_begin(struct intel_ring_buffer *ring,
  1389. int num_dwords)
  1390. {
  1391. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1392. int ret;
  1393. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1394. dev_priv->mm.interruptible);
  1395. if (ret)
  1396. return ret;
  1397. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1398. if (ret)
  1399. return ret;
  1400. /* Preallocate the olr before touching the ring */
  1401. ret = intel_ring_alloc_seqno(ring);
  1402. if (ret)
  1403. return ret;
  1404. ring->space -= num_dwords * sizeof(uint32_t);
  1405. return 0;
  1406. }
  1407. /* Align the ring tail to a cacheline boundary */
  1408. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1409. {
  1410. int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1411. int ret;
  1412. if (num_dwords == 0)
  1413. return 0;
  1414. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1415. ret = intel_ring_begin(ring, num_dwords);
  1416. if (ret)
  1417. return ret;
  1418. while (num_dwords--)
  1419. intel_ring_emit(ring, MI_NOOP);
  1420. intel_ring_advance(ring);
  1421. return 0;
  1422. }
  1423. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1424. {
  1425. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1426. BUG_ON(ring->outstanding_lazy_seqno);
  1427. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1428. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1429. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1430. if (HAS_VEBOX(ring->dev))
  1431. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1432. }
  1433. ring->set_seqno(ring, seqno);
  1434. ring->hangcheck.seqno = seqno;
  1435. }
  1436. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1437. u32 value)
  1438. {
  1439. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1440. /* Every tail move must follow the sequence below */
  1441. /* Disable notification that the ring is IDLE. The GT
  1442. * will then assume that it is busy and bring it out of rc6.
  1443. */
  1444. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1445. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1446. /* Clear the context id. Here be magic! */
  1447. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1448. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1449. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1450. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1451. 50))
  1452. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1453. /* Now that the ring is fully powered up, update the tail */
  1454. I915_WRITE_TAIL(ring, value);
  1455. POSTING_READ(RING_TAIL(ring->mmio_base));
  1456. /* Let the ring send IDLE messages to the GT again,
  1457. * and so let it sleep to conserve power when idle.
  1458. */
  1459. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1460. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1461. }
  1462. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1463. u32 invalidate, u32 flush)
  1464. {
  1465. uint32_t cmd;
  1466. int ret;
  1467. ret = intel_ring_begin(ring, 4);
  1468. if (ret)
  1469. return ret;
  1470. cmd = MI_FLUSH_DW;
  1471. if (INTEL_INFO(ring->dev)->gen >= 8)
  1472. cmd += 1;
  1473. /*
  1474. * Bspec vol 1c.5 - video engine command streamer:
  1475. * "If ENABLED, all TLBs will be invalidated once the flush
  1476. * operation is complete. This bit is only valid when the
  1477. * Post-Sync Operation field is a value of 1h or 3h."
  1478. */
  1479. if (invalidate & I915_GEM_GPU_DOMAINS)
  1480. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1481. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1482. intel_ring_emit(ring, cmd);
  1483. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1484. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1485. intel_ring_emit(ring, 0); /* upper addr */
  1486. intel_ring_emit(ring, 0); /* value */
  1487. } else {
  1488. intel_ring_emit(ring, 0);
  1489. intel_ring_emit(ring, MI_NOOP);
  1490. }
  1491. intel_ring_advance(ring);
  1492. return 0;
  1493. }
  1494. static int
  1495. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1496. u32 offset, u32 len,
  1497. unsigned flags)
  1498. {
  1499. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1500. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1501. !(flags & I915_DISPATCH_SECURE);
  1502. int ret;
  1503. ret = intel_ring_begin(ring, 4);
  1504. if (ret)
  1505. return ret;
  1506. /* FIXME(BDW): Address space and security selectors. */
  1507. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1508. intel_ring_emit(ring, offset);
  1509. intel_ring_emit(ring, 0);
  1510. intel_ring_emit(ring, MI_NOOP);
  1511. intel_ring_advance(ring);
  1512. return 0;
  1513. }
  1514. static int
  1515. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1516. u32 offset, u32 len,
  1517. unsigned flags)
  1518. {
  1519. int ret;
  1520. ret = intel_ring_begin(ring, 2);
  1521. if (ret)
  1522. return ret;
  1523. intel_ring_emit(ring,
  1524. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1525. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1526. /* bit0-7 is the length on GEN6+ */
  1527. intel_ring_emit(ring, offset);
  1528. intel_ring_advance(ring);
  1529. return 0;
  1530. }
  1531. static int
  1532. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1533. u32 offset, u32 len,
  1534. unsigned flags)
  1535. {
  1536. int ret;
  1537. ret = intel_ring_begin(ring, 2);
  1538. if (ret)
  1539. return ret;
  1540. intel_ring_emit(ring,
  1541. MI_BATCH_BUFFER_START |
  1542. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1543. /* bit0-7 is the length on GEN6+ */
  1544. intel_ring_emit(ring, offset);
  1545. intel_ring_advance(ring);
  1546. return 0;
  1547. }
  1548. /* Blitter support (SandyBridge+) */
  1549. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1550. u32 invalidate, u32 flush)
  1551. {
  1552. struct drm_device *dev = ring->dev;
  1553. uint32_t cmd;
  1554. int ret;
  1555. ret = intel_ring_begin(ring, 4);
  1556. if (ret)
  1557. return ret;
  1558. cmd = MI_FLUSH_DW;
  1559. if (INTEL_INFO(ring->dev)->gen >= 8)
  1560. cmd += 1;
  1561. /*
  1562. * Bspec vol 1c.3 - blitter engine command streamer:
  1563. * "If ENABLED, all TLBs will be invalidated once the flush
  1564. * operation is complete. This bit is only valid when the
  1565. * Post-Sync Operation field is a value of 1h or 3h."
  1566. */
  1567. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1568. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1569. MI_FLUSH_DW_OP_STOREDW;
  1570. intel_ring_emit(ring, cmd);
  1571. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1572. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1573. intel_ring_emit(ring, 0); /* upper addr */
  1574. intel_ring_emit(ring, 0); /* value */
  1575. } else {
  1576. intel_ring_emit(ring, 0);
  1577. intel_ring_emit(ring, MI_NOOP);
  1578. }
  1579. intel_ring_advance(ring);
  1580. if (IS_GEN7(dev) && !invalidate && flush)
  1581. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1582. return 0;
  1583. }
  1584. int intel_init_render_ring_buffer(struct drm_device *dev)
  1585. {
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1588. ring->name = "render ring";
  1589. ring->id = RCS;
  1590. ring->mmio_base = RENDER_RING_BASE;
  1591. if (INTEL_INFO(dev)->gen >= 6) {
  1592. ring->add_request = gen6_add_request;
  1593. ring->flush = gen7_render_ring_flush;
  1594. if (INTEL_INFO(dev)->gen == 6)
  1595. ring->flush = gen6_render_ring_flush;
  1596. if (INTEL_INFO(dev)->gen >= 8) {
  1597. ring->flush = gen8_render_ring_flush;
  1598. ring->irq_get = gen8_ring_get_irq;
  1599. ring->irq_put = gen8_ring_put_irq;
  1600. } else {
  1601. ring->irq_get = gen6_ring_get_irq;
  1602. ring->irq_put = gen6_ring_put_irq;
  1603. }
  1604. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1605. ring->get_seqno = gen6_ring_get_seqno;
  1606. ring->set_seqno = ring_set_seqno;
  1607. ring->sync_to = gen6_ring_sync;
  1608. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1609. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1610. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1611. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1612. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1613. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1614. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1615. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1616. } else if (IS_GEN5(dev)) {
  1617. ring->add_request = pc_render_add_request;
  1618. ring->flush = gen4_render_ring_flush;
  1619. ring->get_seqno = pc_render_get_seqno;
  1620. ring->set_seqno = pc_render_set_seqno;
  1621. ring->irq_get = gen5_ring_get_irq;
  1622. ring->irq_put = gen5_ring_put_irq;
  1623. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1624. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1625. } else {
  1626. ring->add_request = i9xx_add_request;
  1627. if (INTEL_INFO(dev)->gen < 4)
  1628. ring->flush = gen2_render_ring_flush;
  1629. else
  1630. ring->flush = gen4_render_ring_flush;
  1631. ring->get_seqno = ring_get_seqno;
  1632. ring->set_seqno = ring_set_seqno;
  1633. if (IS_GEN2(dev)) {
  1634. ring->irq_get = i8xx_ring_get_irq;
  1635. ring->irq_put = i8xx_ring_put_irq;
  1636. } else {
  1637. ring->irq_get = i9xx_ring_get_irq;
  1638. ring->irq_put = i9xx_ring_put_irq;
  1639. }
  1640. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1641. }
  1642. ring->write_tail = ring_write_tail;
  1643. if (IS_HASWELL(dev))
  1644. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1645. else if (IS_GEN8(dev))
  1646. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1647. else if (INTEL_INFO(dev)->gen >= 6)
  1648. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1649. else if (INTEL_INFO(dev)->gen >= 4)
  1650. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1651. else if (IS_I830(dev) || IS_845G(dev))
  1652. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1653. else
  1654. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1655. ring->init = init_render_ring;
  1656. ring->cleanup = render_ring_cleanup;
  1657. /* Workaround batchbuffer to combat CS tlb bug. */
  1658. if (HAS_BROKEN_CS_TLB(dev)) {
  1659. struct drm_i915_gem_object *obj;
  1660. int ret;
  1661. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1662. if (obj == NULL) {
  1663. DRM_ERROR("Failed to allocate batch bo\n");
  1664. return -ENOMEM;
  1665. }
  1666. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1667. if (ret != 0) {
  1668. drm_gem_object_unreference(&obj->base);
  1669. DRM_ERROR("Failed to ping batch bo\n");
  1670. return ret;
  1671. }
  1672. ring->scratch.obj = obj;
  1673. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1674. }
  1675. return intel_init_ring_buffer(dev, ring);
  1676. }
  1677. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1678. {
  1679. struct drm_i915_private *dev_priv = dev->dev_private;
  1680. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1681. int ret;
  1682. ring->name = "render ring";
  1683. ring->id = RCS;
  1684. ring->mmio_base = RENDER_RING_BASE;
  1685. if (INTEL_INFO(dev)->gen >= 6) {
  1686. /* non-kms not supported on gen6+ */
  1687. return -ENODEV;
  1688. }
  1689. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1690. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1691. * the special gen5 functions. */
  1692. ring->add_request = i9xx_add_request;
  1693. if (INTEL_INFO(dev)->gen < 4)
  1694. ring->flush = gen2_render_ring_flush;
  1695. else
  1696. ring->flush = gen4_render_ring_flush;
  1697. ring->get_seqno = ring_get_seqno;
  1698. ring->set_seqno = ring_set_seqno;
  1699. if (IS_GEN2(dev)) {
  1700. ring->irq_get = i8xx_ring_get_irq;
  1701. ring->irq_put = i8xx_ring_put_irq;
  1702. } else {
  1703. ring->irq_get = i9xx_ring_get_irq;
  1704. ring->irq_put = i9xx_ring_put_irq;
  1705. }
  1706. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1707. ring->write_tail = ring_write_tail;
  1708. if (INTEL_INFO(dev)->gen >= 4)
  1709. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1710. else if (IS_I830(dev) || IS_845G(dev))
  1711. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1712. else
  1713. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1714. ring->init = init_render_ring;
  1715. ring->cleanup = render_ring_cleanup;
  1716. ring->dev = dev;
  1717. INIT_LIST_HEAD(&ring->active_list);
  1718. INIT_LIST_HEAD(&ring->request_list);
  1719. ring->size = size;
  1720. ring->effective_size = ring->size;
  1721. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1722. ring->effective_size -= 2 * CACHELINE_BYTES;
  1723. ring->virtual_start = ioremap_wc(start, size);
  1724. if (ring->virtual_start == NULL) {
  1725. DRM_ERROR("can not ioremap virtual address for"
  1726. " ring buffer\n");
  1727. return -ENOMEM;
  1728. }
  1729. if (!I915_NEED_GFX_HWS(dev)) {
  1730. ret = init_phys_status_page(ring);
  1731. if (ret)
  1732. return ret;
  1733. }
  1734. return 0;
  1735. }
  1736. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1737. {
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1740. ring->name = "bsd ring";
  1741. ring->id = VCS;
  1742. ring->write_tail = ring_write_tail;
  1743. if (INTEL_INFO(dev)->gen >= 6) {
  1744. ring->mmio_base = GEN6_BSD_RING_BASE;
  1745. /* gen6 bsd needs a special wa for tail updates */
  1746. if (IS_GEN6(dev))
  1747. ring->write_tail = gen6_bsd_ring_write_tail;
  1748. ring->flush = gen6_bsd_ring_flush;
  1749. ring->add_request = gen6_add_request;
  1750. ring->get_seqno = gen6_ring_get_seqno;
  1751. ring->set_seqno = ring_set_seqno;
  1752. if (INTEL_INFO(dev)->gen >= 8) {
  1753. ring->irq_enable_mask =
  1754. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1755. ring->irq_get = gen8_ring_get_irq;
  1756. ring->irq_put = gen8_ring_put_irq;
  1757. ring->dispatch_execbuffer =
  1758. gen8_ring_dispatch_execbuffer;
  1759. } else {
  1760. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1761. ring->irq_get = gen6_ring_get_irq;
  1762. ring->irq_put = gen6_ring_put_irq;
  1763. ring->dispatch_execbuffer =
  1764. gen6_ring_dispatch_execbuffer;
  1765. }
  1766. ring->sync_to = gen6_ring_sync;
  1767. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1768. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1769. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1770. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1771. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1772. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1773. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1774. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1775. } else {
  1776. ring->mmio_base = BSD_RING_BASE;
  1777. ring->flush = bsd_ring_flush;
  1778. ring->add_request = i9xx_add_request;
  1779. ring->get_seqno = ring_get_seqno;
  1780. ring->set_seqno = ring_set_seqno;
  1781. if (IS_GEN5(dev)) {
  1782. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1783. ring->irq_get = gen5_ring_get_irq;
  1784. ring->irq_put = gen5_ring_put_irq;
  1785. } else {
  1786. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1787. ring->irq_get = i9xx_ring_get_irq;
  1788. ring->irq_put = i9xx_ring_put_irq;
  1789. }
  1790. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1791. }
  1792. ring->init = init_ring_common;
  1793. return intel_init_ring_buffer(dev, ring);
  1794. }
  1795. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1796. {
  1797. struct drm_i915_private *dev_priv = dev->dev_private;
  1798. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1799. ring->name = "blitter ring";
  1800. ring->id = BCS;
  1801. ring->mmio_base = BLT_RING_BASE;
  1802. ring->write_tail = ring_write_tail;
  1803. ring->flush = gen6_ring_flush;
  1804. ring->add_request = gen6_add_request;
  1805. ring->get_seqno = gen6_ring_get_seqno;
  1806. ring->set_seqno = ring_set_seqno;
  1807. if (INTEL_INFO(dev)->gen >= 8) {
  1808. ring->irq_enable_mask =
  1809. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1810. ring->irq_get = gen8_ring_get_irq;
  1811. ring->irq_put = gen8_ring_put_irq;
  1812. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1813. } else {
  1814. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1815. ring->irq_get = gen6_ring_get_irq;
  1816. ring->irq_put = gen6_ring_put_irq;
  1817. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1818. }
  1819. ring->sync_to = gen6_ring_sync;
  1820. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1821. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1822. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1823. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1824. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1825. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1826. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1827. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1828. ring->init = init_ring_common;
  1829. return intel_init_ring_buffer(dev, ring);
  1830. }
  1831. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1832. {
  1833. struct drm_i915_private *dev_priv = dev->dev_private;
  1834. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1835. ring->name = "video enhancement ring";
  1836. ring->id = VECS;
  1837. ring->mmio_base = VEBOX_RING_BASE;
  1838. ring->write_tail = ring_write_tail;
  1839. ring->flush = gen6_ring_flush;
  1840. ring->add_request = gen6_add_request;
  1841. ring->get_seqno = gen6_ring_get_seqno;
  1842. ring->set_seqno = ring_set_seqno;
  1843. if (INTEL_INFO(dev)->gen >= 8) {
  1844. ring->irq_enable_mask =
  1845. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1846. ring->irq_get = gen8_ring_get_irq;
  1847. ring->irq_put = gen8_ring_put_irq;
  1848. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1849. } else {
  1850. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1851. ring->irq_get = hsw_vebox_get_irq;
  1852. ring->irq_put = hsw_vebox_put_irq;
  1853. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1854. }
  1855. ring->sync_to = gen6_ring_sync;
  1856. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1857. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1858. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1859. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1860. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1861. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1862. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1863. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1864. ring->init = init_ring_common;
  1865. return intel_init_ring_buffer(dev, ring);
  1866. }
  1867. int
  1868. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1869. {
  1870. int ret;
  1871. if (!ring->gpu_caches_dirty)
  1872. return 0;
  1873. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1874. if (ret)
  1875. return ret;
  1876. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1877. ring->gpu_caches_dirty = false;
  1878. return 0;
  1879. }
  1880. int
  1881. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1882. {
  1883. uint32_t flush_domains;
  1884. int ret;
  1885. flush_domains = 0;
  1886. if (ring->gpu_caches_dirty)
  1887. flush_domains = I915_GEM_GPU_DOMAINS;
  1888. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1889. if (ret)
  1890. return ret;
  1891. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1892. ring->gpu_caches_dirty = false;
  1893. return 0;
  1894. }
  1895. void
  1896. intel_stop_ring_buffer(struct intel_ring_buffer *ring)
  1897. {
  1898. int ret;
  1899. if (!intel_ring_initialized(ring))
  1900. return;
  1901. ret = intel_ring_idle(ring);
  1902. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  1903. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1904. ring->name, ret);
  1905. stop_ring(ring);
  1906. }