pm-cps.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. /*
  2. * Copyright (C) 2014 Imagination Technologies
  3. * Author: Paul Burton <paul.burton@mips.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/cpuhotplug.h>
  11. #include <linux/init.h>
  12. #include <linux/percpu.h>
  13. #include <linux/slab.h>
  14. #include <asm/asm-offsets.h>
  15. #include <asm/cacheflush.h>
  16. #include <asm/cacheops.h>
  17. #include <asm/idle.h>
  18. #include <asm/mips-cps.h>
  19. #include <asm/mipsmtregs.h>
  20. #include <asm/pm.h>
  21. #include <asm/pm-cps.h>
  22. #include <asm/smp-cps.h>
  23. #include <asm/uasm.h>
  24. /*
  25. * cps_nc_entry_fn - type of a generated non-coherent state entry function
  26. * @online: the count of online coupled VPEs
  27. * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
  28. *
  29. * The code entering & exiting non-coherent states is generated at runtime
  30. * using uasm, in order to ensure that the compiler cannot insert a stray
  31. * memory access at an unfortunate time and to allow the generation of optimal
  32. * core-specific code particularly for cache routines. If coupled_coherence
  33. * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
  34. * returns the number of VPEs that were in the wait state at the point this
  35. * VPE left it. Returns garbage if coupled_coherence is zero or this is not
  36. * the entry function for CPS_PM_NC_WAIT.
  37. */
  38. typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
  39. /*
  40. * The entry point of the generated non-coherent idle state entry/exit
  41. * functions. Actually per-core rather than per-CPU.
  42. */
  43. static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
  44. nc_asm_enter);
  45. /* Bitmap indicating which states are supported by the system */
  46. static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
  47. /*
  48. * Indicates the number of coupled VPEs ready to operate in a non-coherent
  49. * state. Actually per-core rather than per-CPU.
  50. */
  51. static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
  52. /* Indicates online CPUs coupled with the current CPU */
  53. static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
  54. /*
  55. * Used to synchronize entry to deep idle states. Actually per-core rather
  56. * than per-CPU.
  57. */
  58. static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
  59. /* Saved CPU state across the CPS_PM_POWER_GATED state */
  60. DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
  61. /* A somewhat arbitrary number of labels & relocs for uasm */
  62. static struct uasm_label labels[32];
  63. static struct uasm_reloc relocs[32];
  64. enum mips_reg {
  65. zero, at, v0, v1, a0, a1, a2, a3,
  66. t0, t1, t2, t3, t4, t5, t6, t7,
  67. s0, s1, s2, s3, s4, s5, s6, s7,
  68. t8, t9, k0, k1, gp, sp, fp, ra,
  69. };
  70. bool cps_pm_support_state(enum cps_pm_state state)
  71. {
  72. return test_bit(state, state_support);
  73. }
  74. static void coupled_barrier(atomic_t *a, unsigned online)
  75. {
  76. /*
  77. * This function is effectively the same as
  78. * cpuidle_coupled_parallel_barrier, which can't be used here since
  79. * there's no cpuidle device.
  80. */
  81. if (!coupled_coherence)
  82. return;
  83. smp_mb__before_atomic();
  84. atomic_inc(a);
  85. while (atomic_read(a) < online)
  86. cpu_relax();
  87. if (atomic_inc_return(a) == online * 2) {
  88. atomic_set(a, 0);
  89. return;
  90. }
  91. while (atomic_read(a) > online)
  92. cpu_relax();
  93. }
  94. int cps_pm_enter_state(enum cps_pm_state state)
  95. {
  96. unsigned cpu = smp_processor_id();
  97. unsigned core = cpu_core(&current_cpu_data);
  98. unsigned online, left;
  99. cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
  100. u32 *core_ready_count, *nc_core_ready_count;
  101. void *nc_addr;
  102. cps_nc_entry_fn entry;
  103. struct core_boot_config *core_cfg;
  104. struct vpe_boot_config *vpe_cfg;
  105. /* Check that there is an entry function for this state */
  106. entry = per_cpu(nc_asm_enter, core)[state];
  107. if (!entry)
  108. return -EINVAL;
  109. /* Calculate which coupled CPUs (VPEs) are online */
  110. #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
  111. if (cpu_online(cpu)) {
  112. cpumask_and(coupled_mask, cpu_online_mask,
  113. &cpu_sibling_map[cpu]);
  114. online = cpumask_weight(coupled_mask);
  115. cpumask_clear_cpu(cpu, coupled_mask);
  116. } else
  117. #endif
  118. {
  119. cpumask_clear(coupled_mask);
  120. online = 1;
  121. }
  122. /* Setup the VPE to run mips_cps_pm_restore when started again */
  123. if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
  124. /* Power gating relies upon CPS SMP */
  125. if (!mips_cps_smp_in_use())
  126. return -EINVAL;
  127. core_cfg = &mips_cps_core_bootcfg[core];
  128. vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
  129. vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
  130. vpe_cfg->gp = (unsigned long)current_thread_info();
  131. vpe_cfg->sp = 0;
  132. }
  133. /* Indicate that this CPU might not be coherent */
  134. cpumask_clear_cpu(cpu, &cpu_coherent_mask);
  135. smp_mb__after_atomic();
  136. /* Create a non-coherent mapping of the core ready_count */
  137. core_ready_count = per_cpu(ready_count, core);
  138. nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
  139. (unsigned long)core_ready_count);
  140. nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
  141. nc_core_ready_count = nc_addr;
  142. /* Ensure ready_count is zero-initialised before the assembly runs */
  143. ACCESS_ONCE(*nc_core_ready_count) = 0;
  144. coupled_barrier(&per_cpu(pm_barrier, core), online);
  145. /* Run the generated entry code */
  146. left = entry(online, nc_core_ready_count);
  147. /* Remove the non-coherent mapping of ready_count */
  148. kunmap_noncoherent();
  149. /* Indicate that this CPU is definitely coherent */
  150. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  151. /*
  152. * If this VPE is the first to leave the non-coherent wait state then
  153. * it needs to wake up any coupled VPEs still running their wait
  154. * instruction so that they return to cpuidle, which can then complete
  155. * coordination between the coupled VPEs & provide the governor with
  156. * a chance to reflect on the length of time the VPEs were in the
  157. * idle state.
  158. */
  159. if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
  160. arch_send_call_function_ipi_mask(coupled_mask);
  161. return 0;
  162. }
  163. static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
  164. struct uasm_reloc **pr,
  165. const struct cache_desc *cache,
  166. unsigned op, int lbl)
  167. {
  168. unsigned cache_size = cache->ways << cache->waybit;
  169. unsigned i;
  170. const unsigned unroll_lines = 32;
  171. /* If the cache isn't present this function has it easy */
  172. if (cache->flags & MIPS_CACHE_NOT_PRESENT)
  173. return;
  174. /* Load base address */
  175. UASM_i_LA(pp, t0, (long)CKSEG0);
  176. /* Calculate end address */
  177. if (cache_size < 0x8000)
  178. uasm_i_addiu(pp, t1, t0, cache_size);
  179. else
  180. UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
  181. /* Start of cache op loop */
  182. uasm_build_label(pl, *pp, lbl);
  183. /* Generate the cache ops */
  184. for (i = 0; i < unroll_lines; i++) {
  185. if (cpu_has_mips_r6) {
  186. uasm_i_cache(pp, op, 0, t0);
  187. uasm_i_addiu(pp, t0, t0, cache->linesz);
  188. } else {
  189. uasm_i_cache(pp, op, i * cache->linesz, t0);
  190. }
  191. }
  192. if (!cpu_has_mips_r6)
  193. /* Update the base address */
  194. uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
  195. /* Loop if we haven't reached the end address yet */
  196. uasm_il_bne(pp, pr, t0, t1, lbl);
  197. uasm_i_nop(pp);
  198. }
  199. static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
  200. struct uasm_reloc **pr,
  201. const struct cpuinfo_mips *cpu_info,
  202. int lbl)
  203. {
  204. unsigned i, fsb_size = 8;
  205. unsigned num_loads = (fsb_size * 3) / 2;
  206. unsigned line_stride = 2;
  207. unsigned line_size = cpu_info->dcache.linesz;
  208. unsigned perf_counter, perf_event;
  209. unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
  210. /*
  211. * Determine whether this CPU requires an FSB flush, and if so which
  212. * performance counter/event reflect stalls due to a full FSB.
  213. */
  214. switch (__get_cpu_type(cpu_info->cputype)) {
  215. case CPU_INTERAPTIV:
  216. perf_counter = 1;
  217. perf_event = 51;
  218. break;
  219. case CPU_PROAPTIV:
  220. /* Newer proAptiv cores don't require this workaround */
  221. if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
  222. return 0;
  223. /* On older ones it's unavailable */
  224. return -1;
  225. default:
  226. /* Assume that the CPU does not need this workaround */
  227. return 0;
  228. }
  229. /*
  230. * Ensure that the fill/store buffer (FSB) is not holding the results
  231. * of a prefetch, since if it is then the CPC sequencer may become
  232. * stuck in the D3 (ClrBus) state whilst entering a low power state.
  233. */
  234. /* Preserve perf counter setup */
  235. uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  236. uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
  237. /* Setup perf counter to count FSB full pipeline stalls */
  238. uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
  239. uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  240. uasm_i_ehb(pp);
  241. uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
  242. uasm_i_ehb(pp);
  243. /* Base address for loads */
  244. UASM_i_LA(pp, t0, (long)CKSEG0);
  245. /* Start of clear loop */
  246. uasm_build_label(pl, *pp, lbl);
  247. /* Perform some loads to fill the FSB */
  248. for (i = 0; i < num_loads; i++)
  249. uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
  250. /*
  251. * Invalidate the new D-cache entries so that the cache will need
  252. * refilling (via the FSB) if the loop is executed again.
  253. */
  254. for (i = 0; i < num_loads; i++) {
  255. uasm_i_cache(pp, Hit_Invalidate_D,
  256. i * line_size * line_stride, t0);
  257. uasm_i_cache(pp, Hit_Writeback_Inv_SD,
  258. i * line_size * line_stride, t0);
  259. }
  260. /* Barrier ensuring previous cache invalidates are complete */
  261. uasm_i_sync(pp, STYPE_SYNC);
  262. uasm_i_ehb(pp);
  263. /* Check whether the pipeline stalled due to the FSB being full */
  264. uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
  265. /* Loop if it didn't */
  266. uasm_il_beqz(pp, pr, t1, lbl);
  267. uasm_i_nop(pp);
  268. /* Restore perf counter 1. The count may well now be wrong... */
  269. uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
  270. uasm_i_ehb(pp);
  271. uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
  272. uasm_i_ehb(pp);
  273. return 0;
  274. }
  275. static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
  276. struct uasm_reloc **pr,
  277. unsigned r_addr, int lbl)
  278. {
  279. uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
  280. uasm_build_label(pl, *pp, lbl);
  281. uasm_i_ll(pp, t1, 0, r_addr);
  282. uasm_i_or(pp, t1, t1, t0);
  283. uasm_i_sc(pp, t1, 0, r_addr);
  284. uasm_il_beqz(pp, pr, t1, lbl);
  285. uasm_i_nop(pp);
  286. }
  287. static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
  288. {
  289. struct uasm_label *l = labels;
  290. struct uasm_reloc *r = relocs;
  291. u32 *buf, *p;
  292. const unsigned r_online = a0;
  293. const unsigned r_nc_count = a1;
  294. const unsigned r_pcohctl = t7;
  295. const unsigned max_instrs = 256;
  296. unsigned cpc_cmd;
  297. int err;
  298. enum {
  299. lbl_incready = 1,
  300. lbl_poll_cont,
  301. lbl_secondary_hang,
  302. lbl_disable_coherence,
  303. lbl_flush_fsb,
  304. lbl_invicache,
  305. lbl_flushdcache,
  306. lbl_hang,
  307. lbl_set_cont,
  308. lbl_secondary_cont,
  309. lbl_decready,
  310. };
  311. /* Allocate a buffer to hold the generated code */
  312. p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
  313. if (!buf)
  314. return NULL;
  315. /* Clear labels & relocs ready for (re)use */
  316. memset(labels, 0, sizeof(labels));
  317. memset(relocs, 0, sizeof(relocs));
  318. if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
  319. /* Power gating relies upon CPS SMP */
  320. if (!mips_cps_smp_in_use())
  321. goto out_err;
  322. /*
  323. * Save CPU state. Note the non-standard calling convention
  324. * with the return address placed in v0 to avoid clobbering
  325. * the ra register before it is saved.
  326. */
  327. UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
  328. uasm_i_jalr(&p, v0, t0);
  329. uasm_i_nop(&p);
  330. }
  331. /*
  332. * Load addresses of required CM & CPC registers. This is done early
  333. * because they're needed in both the enable & disable coherence steps
  334. * but in the coupled case the enable step will only run on one VPE.
  335. */
  336. UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
  337. if (coupled_coherence) {
  338. /* Increment ready_count */
  339. uasm_i_sync(&p, STYPE_SYNC_MB);
  340. uasm_build_label(&l, p, lbl_incready);
  341. uasm_i_ll(&p, t1, 0, r_nc_count);
  342. uasm_i_addiu(&p, t2, t1, 1);
  343. uasm_i_sc(&p, t2, 0, r_nc_count);
  344. uasm_il_beqz(&p, &r, t2, lbl_incready);
  345. uasm_i_addiu(&p, t1, t1, 1);
  346. /* Barrier ensuring all CPUs see the updated r_nc_count value */
  347. uasm_i_sync(&p, STYPE_SYNC_MB);
  348. /*
  349. * If this is the last VPE to become ready for non-coherence
  350. * then it should branch below.
  351. */
  352. uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
  353. uasm_i_nop(&p);
  354. if (state < CPS_PM_POWER_GATED) {
  355. /*
  356. * Otherwise this is not the last VPE to become ready
  357. * for non-coherence. It needs to wait until coherence
  358. * has been disabled before proceeding, which it will do
  359. * by polling for the top bit of ready_count being set.
  360. */
  361. uasm_i_addiu(&p, t1, zero, -1);
  362. uasm_build_label(&l, p, lbl_poll_cont);
  363. uasm_i_lw(&p, t0, 0, r_nc_count);
  364. uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
  365. uasm_i_ehb(&p);
  366. if (cpu_has_mipsmt)
  367. uasm_i_yield(&p, zero, t1);
  368. uasm_il_b(&p, &r, lbl_poll_cont);
  369. uasm_i_nop(&p);
  370. } else {
  371. /*
  372. * The core will lose power & this VPE will not continue
  373. * so it can simply halt here.
  374. */
  375. if (cpu_has_mipsmt) {
  376. /* Halt the VPE via C0 tchalt register */
  377. uasm_i_addiu(&p, t0, zero, TCHALT_H);
  378. uasm_i_mtc0(&p, t0, 2, 4);
  379. } else if (cpu_has_vp) {
  380. /* Halt the VP via the CPC VP_STOP register */
  381. unsigned int vpe_id;
  382. vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  383. uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
  384. UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
  385. uasm_i_sw(&p, t0, 0, t1);
  386. } else {
  387. BUG();
  388. }
  389. uasm_build_label(&l, p, lbl_secondary_hang);
  390. uasm_il_b(&p, &r, lbl_secondary_hang);
  391. uasm_i_nop(&p);
  392. }
  393. }
  394. /*
  395. * This is the point of no return - this VPE will now proceed to
  396. * disable coherence. At this point we *must* be sure that no other
  397. * VPE within the core will interfere with the L1 dcache.
  398. */
  399. uasm_build_label(&l, p, lbl_disable_coherence);
  400. /* Invalidate the L1 icache */
  401. cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
  402. Index_Invalidate_I, lbl_invicache);
  403. /* Writeback & invalidate the L1 dcache */
  404. cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
  405. Index_Writeback_Inv_D, lbl_flushdcache);
  406. /* Barrier ensuring previous cache invalidates are complete */
  407. uasm_i_sync(&p, STYPE_SYNC);
  408. uasm_i_ehb(&p);
  409. if (mips_cm_revision() < CM_REV_CM3) {
  410. /*
  411. * Disable all but self interventions. The load from COHCTL is
  412. * defined by the interAptiv & proAptiv SUMs as ensuring that the
  413. * operation resulting from the preceding store is complete.
  414. */
  415. uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
  416. uasm_i_sw(&p, t0, 0, r_pcohctl);
  417. uasm_i_lw(&p, t0, 0, r_pcohctl);
  418. /* Barrier to ensure write to coherence control is complete */
  419. uasm_i_sync(&p, STYPE_SYNC);
  420. uasm_i_ehb(&p);
  421. }
  422. /* Disable coherence */
  423. uasm_i_sw(&p, zero, 0, r_pcohctl);
  424. uasm_i_lw(&p, t0, 0, r_pcohctl);
  425. if (state >= CPS_PM_CLOCK_GATED) {
  426. err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
  427. lbl_flush_fsb);
  428. if (err)
  429. goto out_err;
  430. /* Determine the CPC command to issue */
  431. switch (state) {
  432. case CPS_PM_CLOCK_GATED:
  433. cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
  434. break;
  435. case CPS_PM_POWER_GATED:
  436. cpc_cmd = CPC_Cx_CMD_PWRDOWN;
  437. break;
  438. default:
  439. BUG();
  440. goto out_err;
  441. }
  442. /* Issue the CPC command */
  443. UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
  444. uasm_i_addiu(&p, t1, zero, cpc_cmd);
  445. uasm_i_sw(&p, t1, 0, t0);
  446. if (state == CPS_PM_POWER_GATED) {
  447. /* If anything goes wrong just hang */
  448. uasm_build_label(&l, p, lbl_hang);
  449. uasm_il_b(&p, &r, lbl_hang);
  450. uasm_i_nop(&p);
  451. /*
  452. * There's no point generating more code, the core is
  453. * powered down & if powered back up will run from the
  454. * reset vector not from here.
  455. */
  456. goto gen_done;
  457. }
  458. /* Barrier to ensure write to CPC command is complete */
  459. uasm_i_sync(&p, STYPE_SYNC);
  460. uasm_i_ehb(&p);
  461. }
  462. if (state == CPS_PM_NC_WAIT) {
  463. /*
  464. * At this point it is safe for all VPEs to proceed with
  465. * execution. This VPE will set the top bit of ready_count
  466. * to indicate to the other VPEs that they may continue.
  467. */
  468. if (coupled_coherence)
  469. cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
  470. lbl_set_cont);
  471. /*
  472. * VPEs which did not disable coherence will continue
  473. * executing, after coherence has been disabled, from this
  474. * point.
  475. */
  476. uasm_build_label(&l, p, lbl_secondary_cont);
  477. /* Now perform our wait */
  478. uasm_i_wait(&p, 0);
  479. }
  480. /*
  481. * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
  482. * will run this. The first will actually re-enable coherence & the
  483. * rest will just be performing a rather unusual nop.
  484. */
  485. uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
  486. ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
  487. : CM3_GCR_Cx_COHERENCE_COHEN);
  488. uasm_i_sw(&p, t0, 0, r_pcohctl);
  489. uasm_i_lw(&p, t0, 0, r_pcohctl);
  490. /* Barrier to ensure write to coherence control is complete */
  491. uasm_i_sync(&p, STYPE_SYNC);
  492. uasm_i_ehb(&p);
  493. if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
  494. /* Decrement ready_count */
  495. uasm_build_label(&l, p, lbl_decready);
  496. uasm_i_sync(&p, STYPE_SYNC_MB);
  497. uasm_i_ll(&p, t1, 0, r_nc_count);
  498. uasm_i_addiu(&p, t2, t1, -1);
  499. uasm_i_sc(&p, t2, 0, r_nc_count);
  500. uasm_il_beqz(&p, &r, t2, lbl_decready);
  501. uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
  502. /* Barrier ensuring all CPUs see the updated r_nc_count value */
  503. uasm_i_sync(&p, STYPE_SYNC_MB);
  504. }
  505. if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
  506. /*
  507. * At this point it is safe for all VPEs to proceed with
  508. * execution. This VPE will set the top bit of ready_count
  509. * to indicate to the other VPEs that they may continue.
  510. */
  511. cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
  512. /*
  513. * This core will be reliant upon another core sending a
  514. * power-up command to the CPC in order to resume operation.
  515. * Thus an arbitrary VPE can't trigger the core leaving the
  516. * idle state and the one that disables coherence might as well
  517. * be the one to re-enable it. The rest will continue from here
  518. * after that has been done.
  519. */
  520. uasm_build_label(&l, p, lbl_secondary_cont);
  521. /* Barrier ensuring all CPUs see the updated r_nc_count value */
  522. uasm_i_sync(&p, STYPE_SYNC_MB);
  523. }
  524. /* The core is coherent, time to return to C code */
  525. uasm_i_jr(&p, ra);
  526. uasm_i_nop(&p);
  527. gen_done:
  528. /* Ensure the code didn't exceed the resources allocated for it */
  529. BUG_ON((p - buf) > max_instrs);
  530. BUG_ON((l - labels) > ARRAY_SIZE(labels));
  531. BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
  532. /* Patch branch offsets */
  533. uasm_resolve_relocs(relocs, labels);
  534. /* Flush the icache */
  535. local_flush_icache_range((unsigned long)buf, (unsigned long)p);
  536. return buf;
  537. out_err:
  538. kfree(buf);
  539. return NULL;
  540. }
  541. static int cps_pm_online_cpu(unsigned int cpu)
  542. {
  543. enum cps_pm_state state;
  544. unsigned core = cpu_core(&cpu_data[cpu]);
  545. void *entry_fn, *core_rc;
  546. for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
  547. if (per_cpu(nc_asm_enter, core)[state])
  548. continue;
  549. if (!test_bit(state, state_support))
  550. continue;
  551. entry_fn = cps_gen_entry_code(cpu, state);
  552. if (!entry_fn) {
  553. pr_err("Failed to generate core %u state %u entry\n",
  554. core, state);
  555. clear_bit(state, state_support);
  556. }
  557. per_cpu(nc_asm_enter, core)[state] = entry_fn;
  558. }
  559. if (!per_cpu(ready_count, core)) {
  560. core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
  561. if (!core_rc) {
  562. pr_err("Failed allocate core %u ready_count\n", core);
  563. return -ENOMEM;
  564. }
  565. per_cpu(ready_count, core) = core_rc;
  566. }
  567. return 0;
  568. }
  569. static int __init cps_pm_init(void)
  570. {
  571. /* A CM is required for all non-coherent states */
  572. if (!mips_cm_present()) {
  573. pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
  574. return 0;
  575. }
  576. /*
  577. * If interrupts were enabled whilst running a wait instruction on a
  578. * non-coherent core then the VPE may end up processing interrupts
  579. * whilst non-coherent. That would be bad.
  580. */
  581. if (cpu_wait == r4k_wait_irqoff)
  582. set_bit(CPS_PM_NC_WAIT, state_support);
  583. else
  584. pr_warn("pm-cps: non-coherent wait unavailable\n");
  585. /* Detect whether a CPC is present */
  586. if (mips_cpc_present()) {
  587. /* Detect whether clock gating is implemented */
  588. if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
  589. set_bit(CPS_PM_CLOCK_GATED, state_support);
  590. else
  591. pr_warn("pm-cps: CPC does not support clock gating\n");
  592. /* Power gating is available with CPS SMP & any CPC */
  593. if (mips_cps_smp_in_use())
  594. set_bit(CPS_PM_POWER_GATED, state_support);
  595. else
  596. pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
  597. } else {
  598. pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
  599. }
  600. return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
  601. cps_pm_online_cpu, NULL);
  602. }
  603. arch_initcall(cps_pm_init);