sched.c 219 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. static inline struct task_group *task_group(struct task_struct *p)
  312. {
  313. return NULL;
  314. }
  315. #endif /* CONFIG_GROUP_SCHED */
  316. /* CFS-related fields in a runqueue */
  317. struct cfs_rq {
  318. struct load_weight load;
  319. unsigned long nr_running;
  320. u64 exec_clock;
  321. u64 min_vruntime;
  322. u64 pair_start;
  323. struct rb_root tasks_timeline;
  324. struct rb_node *rb_leftmost;
  325. struct list_head tasks;
  326. struct list_head *balance_iterator;
  327. /*
  328. * 'curr' points to currently running entity on this cfs_rq.
  329. * It is set to NULL otherwise (i.e when none are currently running).
  330. */
  331. struct sched_entity *curr, *next;
  332. unsigned long nr_spread_over;
  333. #ifdef CONFIG_FAIR_GROUP_SCHED
  334. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  335. /*
  336. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  337. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  338. * (like users, containers etc.)
  339. *
  340. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  341. * list is used during load balance.
  342. */
  343. struct list_head leaf_cfs_rq_list;
  344. struct task_group *tg; /* group that "owns" this runqueue */
  345. #ifdef CONFIG_SMP
  346. /*
  347. * the part of load.weight contributed by tasks
  348. */
  349. unsigned long task_weight;
  350. /*
  351. * h_load = weight * f(tg)
  352. *
  353. * Where f(tg) is the recursive weight fraction assigned to
  354. * this group.
  355. */
  356. unsigned long h_load;
  357. /*
  358. * this cpu's part of tg->shares
  359. */
  360. unsigned long shares;
  361. /*
  362. * load.weight at the time we set shares
  363. */
  364. unsigned long rq_weight;
  365. #endif
  366. #endif
  367. };
  368. /* Real-Time classes' related field in a runqueue: */
  369. struct rt_rq {
  370. struct rt_prio_array active;
  371. unsigned long rt_nr_running;
  372. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  373. int highest_prio; /* highest queued rt task prio */
  374. #endif
  375. #ifdef CONFIG_SMP
  376. unsigned long rt_nr_migratory;
  377. int overloaded;
  378. #endif
  379. int rt_throttled;
  380. u64 rt_time;
  381. u64 rt_runtime;
  382. /* Nests inside the rq lock: */
  383. spinlock_t rt_runtime_lock;
  384. #ifdef CONFIG_RT_GROUP_SCHED
  385. unsigned long rt_nr_boosted;
  386. struct rq *rq;
  387. struct list_head leaf_rt_rq_list;
  388. struct task_group *tg;
  389. struct sched_rt_entity *rt_se;
  390. #endif
  391. };
  392. #ifdef CONFIG_SMP
  393. /*
  394. * We add the notion of a root-domain which will be used to define per-domain
  395. * variables. Each exclusive cpuset essentially defines an island domain by
  396. * fully partitioning the member cpus from any other cpuset. Whenever a new
  397. * exclusive cpuset is created, we also create and attach a new root-domain
  398. * object.
  399. *
  400. */
  401. struct root_domain {
  402. atomic_t refcount;
  403. cpumask_t span;
  404. cpumask_t online;
  405. /*
  406. * The "RT overload" flag: it gets set if a CPU has more than
  407. * one runnable RT task.
  408. */
  409. cpumask_t rto_mask;
  410. atomic_t rto_count;
  411. #ifdef CONFIG_SMP
  412. struct cpupri cpupri;
  413. #endif
  414. };
  415. /*
  416. * By default the system creates a single root-domain with all cpus as
  417. * members (mimicking the global state we have today).
  418. */
  419. static struct root_domain def_root_domain;
  420. #endif
  421. /*
  422. * This is the main, per-CPU runqueue data structure.
  423. *
  424. * Locking rule: those places that want to lock multiple runqueues
  425. * (such as the load balancing or the thread migration code), lock
  426. * acquire operations must be ordered by ascending &runqueue.
  427. */
  428. struct rq {
  429. /* runqueue lock: */
  430. spinlock_t lock;
  431. /*
  432. * nr_running and cpu_load should be in the same cacheline because
  433. * remote CPUs use both these fields when doing load calculation.
  434. */
  435. unsigned long nr_running;
  436. #define CPU_LOAD_IDX_MAX 5
  437. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  438. unsigned char idle_at_tick;
  439. #ifdef CONFIG_NO_HZ
  440. unsigned long last_tick_seen;
  441. unsigned char in_nohz_recently;
  442. #endif
  443. /* capture load from *all* tasks on this cpu: */
  444. struct load_weight load;
  445. unsigned long nr_load_updates;
  446. u64 nr_switches;
  447. struct cfs_rq cfs;
  448. struct rt_rq rt;
  449. #ifdef CONFIG_FAIR_GROUP_SCHED
  450. /* list of leaf cfs_rq on this cpu: */
  451. struct list_head leaf_cfs_rq_list;
  452. #endif
  453. #ifdef CONFIG_RT_GROUP_SCHED
  454. struct list_head leaf_rt_rq_list;
  455. #endif
  456. /*
  457. * This is part of a global counter where only the total sum
  458. * over all CPUs matters. A task can increase this counter on
  459. * one CPU and if it got migrated afterwards it may decrease
  460. * it on another CPU. Always updated under the runqueue lock:
  461. */
  462. unsigned long nr_uninterruptible;
  463. struct task_struct *curr, *idle;
  464. unsigned long next_balance;
  465. struct mm_struct *prev_mm;
  466. u64 clock;
  467. atomic_t nr_iowait;
  468. #ifdef CONFIG_SMP
  469. struct root_domain *rd;
  470. struct sched_domain *sd;
  471. /* For active balancing */
  472. int active_balance;
  473. int push_cpu;
  474. /* cpu of this runqueue: */
  475. int cpu;
  476. int online;
  477. unsigned long avg_load_per_task;
  478. struct task_struct *migration_thread;
  479. struct list_head migration_queue;
  480. #endif
  481. #ifdef CONFIG_SCHED_HRTICK
  482. unsigned long hrtick_flags;
  483. ktime_t hrtick_expire;
  484. struct hrtimer hrtick_timer;
  485. #endif
  486. #ifdef CONFIG_SCHEDSTATS
  487. /* latency stats */
  488. struct sched_info rq_sched_info;
  489. /* sys_sched_yield() stats */
  490. unsigned int yld_exp_empty;
  491. unsigned int yld_act_empty;
  492. unsigned int yld_both_empty;
  493. unsigned int yld_count;
  494. /* schedule() stats */
  495. unsigned int sched_switch;
  496. unsigned int sched_count;
  497. unsigned int sched_goidle;
  498. /* try_to_wake_up() stats */
  499. unsigned int ttwu_count;
  500. unsigned int ttwu_local;
  501. /* BKL stats */
  502. unsigned int bkl_count;
  503. #endif
  504. struct lock_class_key rq_lock_key;
  505. };
  506. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  507. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  508. {
  509. rq->curr->sched_class->check_preempt_curr(rq, p);
  510. }
  511. static inline int cpu_of(struct rq *rq)
  512. {
  513. #ifdef CONFIG_SMP
  514. return rq->cpu;
  515. #else
  516. return 0;
  517. #endif
  518. }
  519. /*
  520. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  521. * See detach_destroy_domains: synchronize_sched for details.
  522. *
  523. * The domain tree of any CPU may only be accessed from within
  524. * preempt-disabled sections.
  525. */
  526. #define for_each_domain(cpu, __sd) \
  527. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  528. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  529. #define this_rq() (&__get_cpu_var(runqueues))
  530. #define task_rq(p) cpu_rq(task_cpu(p))
  531. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  532. static inline void update_rq_clock(struct rq *rq)
  533. {
  534. rq->clock = sched_clock_cpu(cpu_of(rq));
  535. }
  536. /*
  537. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  538. */
  539. #ifdef CONFIG_SCHED_DEBUG
  540. # define const_debug __read_mostly
  541. #else
  542. # define const_debug static const
  543. #endif
  544. /*
  545. * Debugging: various feature bits
  546. */
  547. #define SCHED_FEAT(name, enabled) \
  548. __SCHED_FEAT_##name ,
  549. enum {
  550. #include "sched_features.h"
  551. };
  552. #undef SCHED_FEAT
  553. #define SCHED_FEAT(name, enabled) \
  554. (1UL << __SCHED_FEAT_##name) * enabled |
  555. const_debug unsigned int sysctl_sched_features =
  556. #include "sched_features.h"
  557. 0;
  558. #undef SCHED_FEAT
  559. #ifdef CONFIG_SCHED_DEBUG
  560. #define SCHED_FEAT(name, enabled) \
  561. #name ,
  562. static __read_mostly char *sched_feat_names[] = {
  563. #include "sched_features.h"
  564. NULL
  565. };
  566. #undef SCHED_FEAT
  567. static int sched_feat_open(struct inode *inode, struct file *filp)
  568. {
  569. filp->private_data = inode->i_private;
  570. return 0;
  571. }
  572. static ssize_t
  573. sched_feat_read(struct file *filp, char __user *ubuf,
  574. size_t cnt, loff_t *ppos)
  575. {
  576. char *buf;
  577. int r = 0;
  578. int len = 0;
  579. int i;
  580. for (i = 0; sched_feat_names[i]; i++) {
  581. len += strlen(sched_feat_names[i]);
  582. len += 4;
  583. }
  584. buf = kmalloc(len + 2, GFP_KERNEL);
  585. if (!buf)
  586. return -ENOMEM;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (sysctl_sched_features & (1UL << i))
  589. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  590. else
  591. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  592. }
  593. r += sprintf(buf + r, "\n");
  594. WARN_ON(r >= len + 2);
  595. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  596. kfree(buf);
  597. return r;
  598. }
  599. static ssize_t
  600. sched_feat_write(struct file *filp, const char __user *ubuf,
  601. size_t cnt, loff_t *ppos)
  602. {
  603. char buf[64];
  604. char *cmp = buf;
  605. int neg = 0;
  606. int i;
  607. if (cnt > 63)
  608. cnt = 63;
  609. if (copy_from_user(&buf, ubuf, cnt))
  610. return -EFAULT;
  611. buf[cnt] = 0;
  612. if (strncmp(buf, "NO_", 3) == 0) {
  613. neg = 1;
  614. cmp += 3;
  615. }
  616. for (i = 0; sched_feat_names[i]; i++) {
  617. int len = strlen(sched_feat_names[i]);
  618. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  619. if (neg)
  620. sysctl_sched_features &= ~(1UL << i);
  621. else
  622. sysctl_sched_features |= (1UL << i);
  623. break;
  624. }
  625. }
  626. if (!sched_feat_names[i])
  627. return -EINVAL;
  628. filp->f_pos += cnt;
  629. return cnt;
  630. }
  631. static struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .read = sched_feat_read,
  634. .write = sched_feat_write,
  635. };
  636. static __init int sched_init_debug(void)
  637. {
  638. debugfs_create_file("sched_features", 0644, NULL, NULL,
  639. &sched_feat_fops);
  640. return 0;
  641. }
  642. late_initcall(sched_init_debug);
  643. #endif
  644. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  645. /*
  646. * Number of tasks to iterate in a single balance run.
  647. * Limited because this is done with IRQs disabled.
  648. */
  649. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  650. /*
  651. * ratelimit for updating the group shares.
  652. * default: 0.5ms
  653. */
  654. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  655. /*
  656. * period over which we measure -rt task cpu usage in us.
  657. * default: 1s
  658. */
  659. unsigned int sysctl_sched_rt_period = 1000000;
  660. static __read_mostly int scheduler_running;
  661. /*
  662. * part of the period that we allow rt tasks to run in us.
  663. * default: 0.95s
  664. */
  665. int sysctl_sched_rt_runtime = 950000;
  666. static inline u64 global_rt_period(void)
  667. {
  668. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  669. }
  670. static inline u64 global_rt_runtime(void)
  671. {
  672. if (sysctl_sched_rt_period < 0)
  673. return RUNTIME_INF;
  674. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  675. }
  676. #ifndef prepare_arch_switch
  677. # define prepare_arch_switch(next) do { } while (0)
  678. #endif
  679. #ifndef finish_arch_switch
  680. # define finish_arch_switch(prev) do { } while (0)
  681. #endif
  682. static inline int task_current(struct rq *rq, struct task_struct *p)
  683. {
  684. return rq->curr == p;
  685. }
  686. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  687. static inline int task_running(struct rq *rq, struct task_struct *p)
  688. {
  689. return task_current(rq, p);
  690. }
  691. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  692. {
  693. }
  694. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  695. {
  696. #ifdef CONFIG_DEBUG_SPINLOCK
  697. /* this is a valid case when another task releases the spinlock */
  698. rq->lock.owner = current;
  699. #endif
  700. /*
  701. * If we are tracking spinlock dependencies then we have to
  702. * fix up the runqueue lock - which gets 'carried over' from
  703. * prev into current:
  704. */
  705. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  706. spin_unlock_irq(&rq->lock);
  707. }
  708. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  709. static inline int task_running(struct rq *rq, struct task_struct *p)
  710. {
  711. #ifdef CONFIG_SMP
  712. return p->oncpu;
  713. #else
  714. return task_current(rq, p);
  715. #endif
  716. }
  717. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  718. {
  719. #ifdef CONFIG_SMP
  720. /*
  721. * We can optimise this out completely for !SMP, because the
  722. * SMP rebalancing from interrupt is the only thing that cares
  723. * here.
  724. */
  725. next->oncpu = 1;
  726. #endif
  727. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  728. spin_unlock_irq(&rq->lock);
  729. #else
  730. spin_unlock(&rq->lock);
  731. #endif
  732. }
  733. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * After ->oncpu is cleared, the task can be moved to a different CPU.
  738. * We must ensure this doesn't happen until the switch is completely
  739. * finished.
  740. */
  741. smp_wmb();
  742. prev->oncpu = 0;
  743. #endif
  744. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. local_irq_enable();
  746. #endif
  747. }
  748. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  749. /*
  750. * __task_rq_lock - lock the runqueue a given task resides on.
  751. * Must be called interrupts disabled.
  752. */
  753. static inline struct rq *__task_rq_lock(struct task_struct *p)
  754. __acquires(rq->lock)
  755. {
  756. for (;;) {
  757. struct rq *rq = task_rq(p);
  758. spin_lock(&rq->lock);
  759. if (likely(rq == task_rq(p)))
  760. return rq;
  761. spin_unlock(&rq->lock);
  762. }
  763. }
  764. /*
  765. * task_rq_lock - lock the runqueue a given task resides on and disable
  766. * interrupts. Note the ordering: we can safely lookup the task_rq without
  767. * explicitly disabling preemption.
  768. */
  769. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  770. __acquires(rq->lock)
  771. {
  772. struct rq *rq;
  773. for (;;) {
  774. local_irq_save(*flags);
  775. rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock_irqrestore(&rq->lock, *flags);
  780. }
  781. }
  782. static void __task_rq_unlock(struct rq *rq)
  783. __releases(rq->lock)
  784. {
  785. spin_unlock(&rq->lock);
  786. }
  787. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  788. __releases(rq->lock)
  789. {
  790. spin_unlock_irqrestore(&rq->lock, *flags);
  791. }
  792. /*
  793. * this_rq_lock - lock this runqueue and disable interrupts.
  794. */
  795. static struct rq *this_rq_lock(void)
  796. __acquires(rq->lock)
  797. {
  798. struct rq *rq;
  799. local_irq_disable();
  800. rq = this_rq();
  801. spin_lock(&rq->lock);
  802. return rq;
  803. }
  804. static void __resched_task(struct task_struct *p, int tif_bit);
  805. static inline void resched_task(struct task_struct *p)
  806. {
  807. __resched_task(p, TIF_NEED_RESCHED);
  808. }
  809. #ifdef CONFIG_SCHED_HRTICK
  810. /*
  811. * Use HR-timers to deliver accurate preemption points.
  812. *
  813. * Its all a bit involved since we cannot program an hrt while holding the
  814. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  815. * reschedule event.
  816. *
  817. * When we get rescheduled we reprogram the hrtick_timer outside of the
  818. * rq->lock.
  819. */
  820. static inline void resched_hrt(struct task_struct *p)
  821. {
  822. __resched_task(p, TIF_HRTICK_RESCHED);
  823. }
  824. static inline void resched_rq(struct rq *rq)
  825. {
  826. unsigned long flags;
  827. spin_lock_irqsave(&rq->lock, flags);
  828. resched_task(rq->curr);
  829. spin_unlock_irqrestore(&rq->lock, flags);
  830. }
  831. enum {
  832. HRTICK_SET, /* re-programm hrtick_timer */
  833. HRTICK_RESET, /* not a new slice */
  834. HRTICK_BLOCK, /* stop hrtick operations */
  835. };
  836. /*
  837. * Use hrtick when:
  838. * - enabled by features
  839. * - hrtimer is actually high res
  840. */
  841. static inline int hrtick_enabled(struct rq *rq)
  842. {
  843. if (!sched_feat(HRTICK))
  844. return 0;
  845. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  846. return 0;
  847. return hrtimer_is_hres_active(&rq->hrtick_timer);
  848. }
  849. /*
  850. * Called to set the hrtick timer state.
  851. *
  852. * called with rq->lock held and irqs disabled
  853. */
  854. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  855. {
  856. assert_spin_locked(&rq->lock);
  857. /*
  858. * preempt at: now + delay
  859. */
  860. rq->hrtick_expire =
  861. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  862. /*
  863. * indicate we need to program the timer
  864. */
  865. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  866. if (reset)
  867. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  868. /*
  869. * New slices are called from the schedule path and don't need a
  870. * forced reschedule.
  871. */
  872. if (reset)
  873. resched_hrt(rq->curr);
  874. }
  875. static void hrtick_clear(struct rq *rq)
  876. {
  877. if (hrtimer_active(&rq->hrtick_timer))
  878. hrtimer_cancel(&rq->hrtick_timer);
  879. }
  880. /*
  881. * Update the timer from the possible pending state.
  882. */
  883. static void hrtick_set(struct rq *rq)
  884. {
  885. ktime_t time;
  886. int set, reset;
  887. unsigned long flags;
  888. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  889. spin_lock_irqsave(&rq->lock, flags);
  890. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  891. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  892. time = rq->hrtick_expire;
  893. clear_thread_flag(TIF_HRTICK_RESCHED);
  894. spin_unlock_irqrestore(&rq->lock, flags);
  895. if (set) {
  896. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  897. if (reset && !hrtimer_active(&rq->hrtick_timer))
  898. resched_rq(rq);
  899. } else
  900. hrtick_clear(rq);
  901. }
  902. /*
  903. * High-resolution timer tick.
  904. * Runs from hardirq context with interrupts disabled.
  905. */
  906. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  907. {
  908. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  909. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  910. spin_lock(&rq->lock);
  911. update_rq_clock(rq);
  912. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  913. spin_unlock(&rq->lock);
  914. return HRTIMER_NORESTART;
  915. }
  916. #ifdef CONFIG_SMP
  917. static void hotplug_hrtick_disable(int cpu)
  918. {
  919. struct rq *rq = cpu_rq(cpu);
  920. unsigned long flags;
  921. spin_lock_irqsave(&rq->lock, flags);
  922. rq->hrtick_flags = 0;
  923. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  924. spin_unlock_irqrestore(&rq->lock, flags);
  925. hrtick_clear(rq);
  926. }
  927. static void hotplug_hrtick_enable(int cpu)
  928. {
  929. struct rq *rq = cpu_rq(cpu);
  930. unsigned long flags;
  931. spin_lock_irqsave(&rq->lock, flags);
  932. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  933. spin_unlock_irqrestore(&rq->lock, flags);
  934. }
  935. static int
  936. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  937. {
  938. int cpu = (int)(long)hcpu;
  939. switch (action) {
  940. case CPU_UP_CANCELED:
  941. case CPU_UP_CANCELED_FROZEN:
  942. case CPU_DOWN_PREPARE:
  943. case CPU_DOWN_PREPARE_FROZEN:
  944. case CPU_DEAD:
  945. case CPU_DEAD_FROZEN:
  946. hotplug_hrtick_disable(cpu);
  947. return NOTIFY_OK;
  948. case CPU_UP_PREPARE:
  949. case CPU_UP_PREPARE_FROZEN:
  950. case CPU_DOWN_FAILED:
  951. case CPU_DOWN_FAILED_FROZEN:
  952. case CPU_ONLINE:
  953. case CPU_ONLINE_FROZEN:
  954. hotplug_hrtick_enable(cpu);
  955. return NOTIFY_OK;
  956. }
  957. return NOTIFY_DONE;
  958. }
  959. static void init_hrtick(void)
  960. {
  961. hotcpu_notifier(hotplug_hrtick, 0);
  962. }
  963. #endif /* CONFIG_SMP */
  964. static void init_rq_hrtick(struct rq *rq)
  965. {
  966. rq->hrtick_flags = 0;
  967. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  968. rq->hrtick_timer.function = hrtick;
  969. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  970. }
  971. void hrtick_resched(void)
  972. {
  973. struct rq *rq;
  974. unsigned long flags;
  975. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  976. return;
  977. local_irq_save(flags);
  978. rq = cpu_rq(smp_processor_id());
  979. hrtick_set(rq);
  980. local_irq_restore(flags);
  981. }
  982. #else
  983. static inline void hrtick_clear(struct rq *rq)
  984. {
  985. }
  986. static inline void hrtick_set(struct rq *rq)
  987. {
  988. }
  989. static inline void init_rq_hrtick(struct rq *rq)
  990. {
  991. }
  992. void hrtick_resched(void)
  993. {
  994. }
  995. static inline void init_hrtick(void)
  996. {
  997. }
  998. #endif
  999. /*
  1000. * resched_task - mark a task 'to be rescheduled now'.
  1001. *
  1002. * On UP this means the setting of the need_resched flag, on SMP it
  1003. * might also involve a cross-CPU call to trigger the scheduler on
  1004. * the target CPU.
  1005. */
  1006. #ifdef CONFIG_SMP
  1007. #ifndef tsk_is_polling
  1008. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1009. #endif
  1010. static void __resched_task(struct task_struct *p, int tif_bit)
  1011. {
  1012. int cpu;
  1013. assert_spin_locked(&task_rq(p)->lock);
  1014. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1015. return;
  1016. set_tsk_thread_flag(p, tif_bit);
  1017. cpu = task_cpu(p);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /* NEED_RESCHED must be visible before we test polling */
  1021. smp_mb();
  1022. if (!tsk_is_polling(p))
  1023. smp_send_reschedule(cpu);
  1024. }
  1025. static void resched_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long flags;
  1029. if (!spin_trylock_irqsave(&rq->lock, flags))
  1030. return;
  1031. resched_task(cpu_curr(cpu));
  1032. spin_unlock_irqrestore(&rq->lock, flags);
  1033. }
  1034. #ifdef CONFIG_NO_HZ
  1035. /*
  1036. * When add_timer_on() enqueues a timer into the timer wheel of an
  1037. * idle CPU then this timer might expire before the next timer event
  1038. * which is scheduled to wake up that CPU. In case of a completely
  1039. * idle system the next event might even be infinite time into the
  1040. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1041. * leaves the inner idle loop so the newly added timer is taken into
  1042. * account when the CPU goes back to idle and evaluates the timer
  1043. * wheel for the next timer event.
  1044. */
  1045. void wake_up_idle_cpu(int cpu)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. if (cpu == smp_processor_id())
  1049. return;
  1050. /*
  1051. * This is safe, as this function is called with the timer
  1052. * wheel base lock of (cpu) held. When the CPU is on the way
  1053. * to idle and has not yet set rq->curr to idle then it will
  1054. * be serialized on the timer wheel base lock and take the new
  1055. * timer into account automatically.
  1056. */
  1057. if (rq->curr != rq->idle)
  1058. return;
  1059. /*
  1060. * We can set TIF_RESCHED on the idle task of the other CPU
  1061. * lockless. The worst case is that the other CPU runs the
  1062. * idle task through an additional NOOP schedule()
  1063. */
  1064. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1065. /* NEED_RESCHED must be visible before we test polling */
  1066. smp_mb();
  1067. if (!tsk_is_polling(rq->idle))
  1068. smp_send_reschedule(cpu);
  1069. }
  1070. #endif /* CONFIG_NO_HZ */
  1071. #else /* !CONFIG_SMP */
  1072. static void __resched_task(struct task_struct *p, int tif_bit)
  1073. {
  1074. assert_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_thread_flag(p, tif_bit);
  1076. }
  1077. #endif /* CONFIG_SMP */
  1078. #if BITS_PER_LONG == 32
  1079. # define WMULT_CONST (~0UL)
  1080. #else
  1081. # define WMULT_CONST (1UL << 32)
  1082. #endif
  1083. #define WMULT_SHIFT 32
  1084. /*
  1085. * Shift right and round:
  1086. */
  1087. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1088. /*
  1089. * delta *= weight / lw
  1090. */
  1091. static unsigned long
  1092. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1093. struct load_weight *lw)
  1094. {
  1095. u64 tmp;
  1096. if (!lw->inv_weight) {
  1097. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1098. lw->inv_weight = 1;
  1099. else
  1100. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1101. / (lw->weight+1);
  1102. }
  1103. tmp = (u64)delta_exec * weight;
  1104. /*
  1105. * Check whether we'd overflow the 64-bit multiplication:
  1106. */
  1107. if (unlikely(tmp > WMULT_CONST))
  1108. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1109. WMULT_SHIFT/2);
  1110. else
  1111. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1112. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1113. }
  1114. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1115. {
  1116. lw->weight += inc;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1120. {
  1121. lw->weight -= dec;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 2
  1133. #define WMULT_IDLEPRIO (1 << 31)
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1174. /*
  1175. * runqueue iterator, to support SMP load-balancing between different
  1176. * scheduling classes, without having to expose their internal data
  1177. * structures to the load-balancing proper:
  1178. */
  1179. struct rq_iterator {
  1180. void *arg;
  1181. struct task_struct *(*start)(void *);
  1182. struct task_struct *(*next)(void *);
  1183. };
  1184. #ifdef CONFIG_SMP
  1185. static unsigned long
  1186. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1187. unsigned long max_load_move, struct sched_domain *sd,
  1188. enum cpu_idle_type idle, int *all_pinned,
  1189. int *this_best_prio, struct rq_iterator *iterator);
  1190. static int
  1191. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1192. struct sched_domain *sd, enum cpu_idle_type idle,
  1193. struct rq_iterator *iterator);
  1194. #endif
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. #else
  1198. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1199. #endif
  1200. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_add(&rq->load, load);
  1203. }
  1204. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_sub(&rq->load, load);
  1207. }
  1208. #ifdef CONFIG_SMP
  1209. static unsigned long source_load(int cpu, int type);
  1210. static unsigned long target_load(int cpu, int type);
  1211. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1212. static unsigned long cpu_avg_load_per_task(int cpu)
  1213. {
  1214. struct rq *rq = cpu_rq(cpu);
  1215. if (rq->nr_running)
  1216. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1217. return rq->avg_load_per_task;
  1218. }
  1219. #ifdef CONFIG_FAIR_GROUP_SCHED
  1220. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1221. /*
  1222. * Iterate the full tree, calling @down when first entering a node and @up when
  1223. * leaving it for the final time.
  1224. */
  1225. static void
  1226. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1227. {
  1228. struct task_group *parent, *child;
  1229. rcu_read_lock();
  1230. parent = &root_task_group;
  1231. down:
  1232. (*down)(parent, cpu, sd);
  1233. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1234. parent = child;
  1235. goto down;
  1236. up:
  1237. continue;
  1238. }
  1239. (*up)(parent, cpu, sd);
  1240. child = parent;
  1241. parent = parent->parent;
  1242. if (parent)
  1243. goto up;
  1244. rcu_read_unlock();
  1245. }
  1246. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1247. /*
  1248. * Calculate and set the cpu's group shares.
  1249. */
  1250. static void
  1251. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1252. unsigned long sd_shares, unsigned long sd_rq_weight)
  1253. {
  1254. int boost = 0;
  1255. unsigned long shares;
  1256. unsigned long rq_weight;
  1257. if (!tg->se[cpu])
  1258. return;
  1259. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1260. /*
  1261. * If there are currently no tasks on the cpu pretend there is one of
  1262. * average load so that when a new task gets to run here it will not
  1263. * get delayed by group starvation.
  1264. */
  1265. if (!rq_weight) {
  1266. boost = 1;
  1267. rq_weight = NICE_0_LOAD;
  1268. }
  1269. if (unlikely(rq_weight > sd_rq_weight))
  1270. rq_weight = sd_rq_weight;
  1271. /*
  1272. * \Sum shares * rq_weight
  1273. * shares = -----------------------
  1274. * \Sum rq_weight
  1275. *
  1276. */
  1277. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1278. /*
  1279. * record the actual number of shares, not the boosted amount.
  1280. */
  1281. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1282. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1283. if (shares < MIN_SHARES)
  1284. shares = MIN_SHARES;
  1285. else if (shares > MAX_SHARES)
  1286. shares = MAX_SHARES;
  1287. __set_se_shares(tg->se[cpu], shares);
  1288. }
  1289. /*
  1290. * Re-compute the task group their per cpu shares over the given domain.
  1291. * This needs to be done in a bottom-up fashion because the rq weight of a
  1292. * parent group depends on the shares of its child groups.
  1293. */
  1294. static void
  1295. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1296. {
  1297. unsigned long rq_weight = 0;
  1298. unsigned long shares = 0;
  1299. int i;
  1300. for_each_cpu_mask(i, sd->span) {
  1301. rq_weight += tg->cfs_rq[i]->load.weight;
  1302. shares += tg->cfs_rq[i]->shares;
  1303. }
  1304. if ((!shares && rq_weight) || shares > tg->shares)
  1305. shares = tg->shares;
  1306. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1307. shares = tg->shares;
  1308. if (!rq_weight)
  1309. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1310. for_each_cpu_mask(i, sd->span) {
  1311. struct rq *rq = cpu_rq(i);
  1312. unsigned long flags;
  1313. spin_lock_irqsave(&rq->lock, flags);
  1314. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1315. spin_unlock_irqrestore(&rq->lock, flags);
  1316. }
  1317. }
  1318. /*
  1319. * Compute the cpu's hierarchical load factor for each task group.
  1320. * This needs to be done in a top-down fashion because the load of a child
  1321. * group is a fraction of its parents load.
  1322. */
  1323. static void
  1324. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1325. {
  1326. unsigned long load;
  1327. if (!tg->parent) {
  1328. load = cpu_rq(cpu)->load.weight;
  1329. } else {
  1330. load = tg->parent->cfs_rq[cpu]->h_load;
  1331. load *= tg->cfs_rq[cpu]->shares;
  1332. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1333. }
  1334. tg->cfs_rq[cpu]->h_load = load;
  1335. }
  1336. static void
  1337. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1338. {
  1339. }
  1340. static void update_shares(struct sched_domain *sd)
  1341. {
  1342. u64 now = cpu_clock(raw_smp_processor_id());
  1343. s64 elapsed = now - sd->last_update;
  1344. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1345. sd->last_update = now;
  1346. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1347. }
  1348. }
  1349. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1350. {
  1351. spin_unlock(&rq->lock);
  1352. update_shares(sd);
  1353. spin_lock(&rq->lock);
  1354. }
  1355. static void update_h_load(int cpu)
  1356. {
  1357. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1358. }
  1359. #else
  1360. static inline void update_shares(struct sched_domain *sd)
  1361. {
  1362. }
  1363. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1364. {
  1365. }
  1366. #endif
  1367. #endif
  1368. #ifdef CONFIG_FAIR_GROUP_SCHED
  1369. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1370. {
  1371. #ifdef CONFIG_SMP
  1372. cfs_rq->shares = shares;
  1373. #endif
  1374. }
  1375. #endif
  1376. #include "sched_stats.h"
  1377. #include "sched_idletask.c"
  1378. #include "sched_fair.c"
  1379. #include "sched_rt.c"
  1380. #ifdef CONFIG_SCHED_DEBUG
  1381. # include "sched_debug.c"
  1382. #endif
  1383. #define sched_class_highest (&rt_sched_class)
  1384. #define for_each_class(class) \
  1385. for (class = sched_class_highest; class; class = class->next)
  1386. static void inc_nr_running(struct rq *rq)
  1387. {
  1388. rq->nr_running++;
  1389. }
  1390. static void dec_nr_running(struct rq *rq)
  1391. {
  1392. rq->nr_running--;
  1393. }
  1394. static void set_load_weight(struct task_struct *p)
  1395. {
  1396. if (task_has_rt_policy(p)) {
  1397. p->se.load.weight = prio_to_weight[0] * 2;
  1398. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1399. return;
  1400. }
  1401. /*
  1402. * SCHED_IDLE tasks get minimal weight:
  1403. */
  1404. if (p->policy == SCHED_IDLE) {
  1405. p->se.load.weight = WEIGHT_IDLEPRIO;
  1406. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1407. return;
  1408. }
  1409. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1410. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1411. }
  1412. static void update_avg(u64 *avg, u64 sample)
  1413. {
  1414. s64 diff = sample - *avg;
  1415. *avg += diff >> 3;
  1416. }
  1417. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1418. {
  1419. sched_info_queued(p);
  1420. p->sched_class->enqueue_task(rq, p, wakeup);
  1421. p->se.on_rq = 1;
  1422. }
  1423. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1424. {
  1425. if (sleep && p->se.last_wakeup) {
  1426. update_avg(&p->se.avg_overlap,
  1427. p->se.sum_exec_runtime - p->se.last_wakeup);
  1428. p->se.last_wakeup = 0;
  1429. }
  1430. sched_info_dequeued(p);
  1431. p->sched_class->dequeue_task(rq, p, sleep);
  1432. p->se.on_rq = 0;
  1433. }
  1434. /*
  1435. * __normal_prio - return the priority that is based on the static prio
  1436. */
  1437. static inline int __normal_prio(struct task_struct *p)
  1438. {
  1439. return p->static_prio;
  1440. }
  1441. /*
  1442. * Calculate the expected normal priority: i.e. priority
  1443. * without taking RT-inheritance into account. Might be
  1444. * boosted by interactivity modifiers. Changes upon fork,
  1445. * setprio syscalls, and whenever the interactivity
  1446. * estimator recalculates.
  1447. */
  1448. static inline int normal_prio(struct task_struct *p)
  1449. {
  1450. int prio;
  1451. if (task_has_rt_policy(p))
  1452. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1453. else
  1454. prio = __normal_prio(p);
  1455. return prio;
  1456. }
  1457. /*
  1458. * Calculate the current priority, i.e. the priority
  1459. * taken into account by the scheduler. This value might
  1460. * be boosted by RT tasks, or might be boosted by
  1461. * interactivity modifiers. Will be RT if the task got
  1462. * RT-boosted. If not then it returns p->normal_prio.
  1463. */
  1464. static int effective_prio(struct task_struct *p)
  1465. {
  1466. p->normal_prio = normal_prio(p);
  1467. /*
  1468. * If we are RT tasks or we were boosted to RT priority,
  1469. * keep the priority unchanged. Otherwise, update priority
  1470. * to the normal priority:
  1471. */
  1472. if (!rt_prio(p->prio))
  1473. return p->normal_prio;
  1474. return p->prio;
  1475. }
  1476. /*
  1477. * activate_task - move a task to the runqueue.
  1478. */
  1479. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1480. {
  1481. if (task_contributes_to_load(p))
  1482. rq->nr_uninterruptible--;
  1483. enqueue_task(rq, p, wakeup);
  1484. inc_nr_running(rq);
  1485. }
  1486. /*
  1487. * deactivate_task - remove a task from the runqueue.
  1488. */
  1489. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1490. {
  1491. if (task_contributes_to_load(p))
  1492. rq->nr_uninterruptible++;
  1493. dequeue_task(rq, p, sleep);
  1494. dec_nr_running(rq);
  1495. }
  1496. /**
  1497. * task_curr - is this task currently executing on a CPU?
  1498. * @p: the task in question.
  1499. */
  1500. inline int task_curr(const struct task_struct *p)
  1501. {
  1502. return cpu_curr(task_cpu(p)) == p;
  1503. }
  1504. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1505. {
  1506. set_task_rq(p, cpu);
  1507. #ifdef CONFIG_SMP
  1508. /*
  1509. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1510. * successfuly executed on another CPU. We must ensure that updates of
  1511. * per-task data have been completed by this moment.
  1512. */
  1513. smp_wmb();
  1514. task_thread_info(p)->cpu = cpu;
  1515. #endif
  1516. }
  1517. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1518. const struct sched_class *prev_class,
  1519. int oldprio, int running)
  1520. {
  1521. if (prev_class != p->sched_class) {
  1522. if (prev_class->switched_from)
  1523. prev_class->switched_from(rq, p, running);
  1524. p->sched_class->switched_to(rq, p, running);
  1525. } else
  1526. p->sched_class->prio_changed(rq, p, oldprio, running);
  1527. }
  1528. #ifdef CONFIG_SMP
  1529. /* Used instead of source_load when we know the type == 0 */
  1530. static unsigned long weighted_cpuload(const int cpu)
  1531. {
  1532. return cpu_rq(cpu)->load.weight;
  1533. }
  1534. /*
  1535. * Is this task likely cache-hot:
  1536. */
  1537. static int
  1538. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1539. {
  1540. s64 delta;
  1541. /*
  1542. * Buddy candidates are cache hot:
  1543. */
  1544. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1545. return 1;
  1546. if (p->sched_class != &fair_sched_class)
  1547. return 0;
  1548. if (sysctl_sched_migration_cost == -1)
  1549. return 1;
  1550. if (sysctl_sched_migration_cost == 0)
  1551. return 0;
  1552. delta = now - p->se.exec_start;
  1553. return delta < (s64)sysctl_sched_migration_cost;
  1554. }
  1555. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1556. {
  1557. int old_cpu = task_cpu(p);
  1558. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1559. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1560. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1561. u64 clock_offset;
  1562. clock_offset = old_rq->clock - new_rq->clock;
  1563. #ifdef CONFIG_SCHEDSTATS
  1564. if (p->se.wait_start)
  1565. p->se.wait_start -= clock_offset;
  1566. if (p->se.sleep_start)
  1567. p->se.sleep_start -= clock_offset;
  1568. if (p->se.block_start)
  1569. p->se.block_start -= clock_offset;
  1570. if (old_cpu != new_cpu) {
  1571. schedstat_inc(p, se.nr_migrations);
  1572. if (task_hot(p, old_rq->clock, NULL))
  1573. schedstat_inc(p, se.nr_forced2_migrations);
  1574. }
  1575. #endif
  1576. p->se.vruntime -= old_cfsrq->min_vruntime -
  1577. new_cfsrq->min_vruntime;
  1578. __set_task_cpu(p, new_cpu);
  1579. }
  1580. struct migration_req {
  1581. struct list_head list;
  1582. struct task_struct *task;
  1583. int dest_cpu;
  1584. struct completion done;
  1585. };
  1586. /*
  1587. * The task's runqueue lock must be held.
  1588. * Returns true if you have to wait for migration thread.
  1589. */
  1590. static int
  1591. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1592. {
  1593. struct rq *rq = task_rq(p);
  1594. /*
  1595. * If the task is not on a runqueue (and not running), then
  1596. * it is sufficient to simply update the task's cpu field.
  1597. */
  1598. if (!p->se.on_rq && !task_running(rq, p)) {
  1599. set_task_cpu(p, dest_cpu);
  1600. return 0;
  1601. }
  1602. init_completion(&req->done);
  1603. req->task = p;
  1604. req->dest_cpu = dest_cpu;
  1605. list_add(&req->list, &rq->migration_queue);
  1606. return 1;
  1607. }
  1608. /*
  1609. * wait_task_inactive - wait for a thread to unschedule.
  1610. *
  1611. * The caller must ensure that the task *will* unschedule sometime soon,
  1612. * else this function might spin for a *long* time. This function can't
  1613. * be called with interrupts off, or it may introduce deadlock with
  1614. * smp_call_function() if an IPI is sent by the same process we are
  1615. * waiting to become inactive.
  1616. */
  1617. void wait_task_inactive(struct task_struct *p)
  1618. {
  1619. unsigned long flags;
  1620. int running, on_rq;
  1621. struct rq *rq;
  1622. for (;;) {
  1623. /*
  1624. * We do the initial early heuristics without holding
  1625. * any task-queue locks at all. We'll only try to get
  1626. * the runqueue lock when things look like they will
  1627. * work out!
  1628. */
  1629. rq = task_rq(p);
  1630. /*
  1631. * If the task is actively running on another CPU
  1632. * still, just relax and busy-wait without holding
  1633. * any locks.
  1634. *
  1635. * NOTE! Since we don't hold any locks, it's not
  1636. * even sure that "rq" stays as the right runqueue!
  1637. * But we don't care, since "task_running()" will
  1638. * return false if the runqueue has changed and p
  1639. * is actually now running somewhere else!
  1640. */
  1641. while (task_running(rq, p))
  1642. cpu_relax();
  1643. /*
  1644. * Ok, time to look more closely! We need the rq
  1645. * lock now, to be *sure*. If we're wrong, we'll
  1646. * just go back and repeat.
  1647. */
  1648. rq = task_rq_lock(p, &flags);
  1649. running = task_running(rq, p);
  1650. on_rq = p->se.on_rq;
  1651. task_rq_unlock(rq, &flags);
  1652. /*
  1653. * Was it really running after all now that we
  1654. * checked with the proper locks actually held?
  1655. *
  1656. * Oops. Go back and try again..
  1657. */
  1658. if (unlikely(running)) {
  1659. cpu_relax();
  1660. continue;
  1661. }
  1662. /*
  1663. * It's not enough that it's not actively running,
  1664. * it must be off the runqueue _entirely_, and not
  1665. * preempted!
  1666. *
  1667. * So if it wa still runnable (but just not actively
  1668. * running right now), it's preempted, and we should
  1669. * yield - it could be a while.
  1670. */
  1671. if (unlikely(on_rq)) {
  1672. schedule_timeout_uninterruptible(1);
  1673. continue;
  1674. }
  1675. /*
  1676. * Ahh, all good. It wasn't running, and it wasn't
  1677. * runnable, which means that it will never become
  1678. * running in the future either. We're all done!
  1679. */
  1680. break;
  1681. }
  1682. }
  1683. /***
  1684. * kick_process - kick a running thread to enter/exit the kernel
  1685. * @p: the to-be-kicked thread
  1686. *
  1687. * Cause a process which is running on another CPU to enter
  1688. * kernel-mode, without any delay. (to get signals handled.)
  1689. *
  1690. * NOTE: this function doesnt have to take the runqueue lock,
  1691. * because all it wants to ensure is that the remote task enters
  1692. * the kernel. If the IPI races and the task has been migrated
  1693. * to another CPU then no harm is done and the purpose has been
  1694. * achieved as well.
  1695. */
  1696. void kick_process(struct task_struct *p)
  1697. {
  1698. int cpu;
  1699. preempt_disable();
  1700. cpu = task_cpu(p);
  1701. if ((cpu != smp_processor_id()) && task_curr(p))
  1702. smp_send_reschedule(cpu);
  1703. preempt_enable();
  1704. }
  1705. /*
  1706. * Return a low guess at the load of a migration-source cpu weighted
  1707. * according to the scheduling class and "nice" value.
  1708. *
  1709. * We want to under-estimate the load of migration sources, to
  1710. * balance conservatively.
  1711. */
  1712. static unsigned long source_load(int cpu, int type)
  1713. {
  1714. struct rq *rq = cpu_rq(cpu);
  1715. unsigned long total = weighted_cpuload(cpu);
  1716. if (type == 0 || !sched_feat(LB_BIAS))
  1717. return total;
  1718. return min(rq->cpu_load[type-1], total);
  1719. }
  1720. /*
  1721. * Return a high guess at the load of a migration-target cpu weighted
  1722. * according to the scheduling class and "nice" value.
  1723. */
  1724. static unsigned long target_load(int cpu, int type)
  1725. {
  1726. struct rq *rq = cpu_rq(cpu);
  1727. unsigned long total = weighted_cpuload(cpu);
  1728. if (type == 0 || !sched_feat(LB_BIAS))
  1729. return total;
  1730. return max(rq->cpu_load[type-1], total);
  1731. }
  1732. /*
  1733. * find_idlest_group finds and returns the least busy CPU group within the
  1734. * domain.
  1735. */
  1736. static struct sched_group *
  1737. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1738. {
  1739. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1740. unsigned long min_load = ULONG_MAX, this_load = 0;
  1741. int load_idx = sd->forkexec_idx;
  1742. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1743. do {
  1744. unsigned long load, avg_load;
  1745. int local_group;
  1746. int i;
  1747. /* Skip over this group if it has no CPUs allowed */
  1748. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1749. continue;
  1750. local_group = cpu_isset(this_cpu, group->cpumask);
  1751. /* Tally up the load of all CPUs in the group */
  1752. avg_load = 0;
  1753. for_each_cpu_mask(i, group->cpumask) {
  1754. /* Bias balancing toward cpus of our domain */
  1755. if (local_group)
  1756. load = source_load(i, load_idx);
  1757. else
  1758. load = target_load(i, load_idx);
  1759. avg_load += load;
  1760. }
  1761. /* Adjust by relative CPU power of the group */
  1762. avg_load = sg_div_cpu_power(group,
  1763. avg_load * SCHED_LOAD_SCALE);
  1764. if (local_group) {
  1765. this_load = avg_load;
  1766. this = group;
  1767. } else if (avg_load < min_load) {
  1768. min_load = avg_load;
  1769. idlest = group;
  1770. }
  1771. } while (group = group->next, group != sd->groups);
  1772. if (!idlest || 100*this_load < imbalance*min_load)
  1773. return NULL;
  1774. return idlest;
  1775. }
  1776. /*
  1777. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1778. */
  1779. static int
  1780. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1781. cpumask_t *tmp)
  1782. {
  1783. unsigned long load, min_load = ULONG_MAX;
  1784. int idlest = -1;
  1785. int i;
  1786. /* Traverse only the allowed CPUs */
  1787. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1788. for_each_cpu_mask(i, *tmp) {
  1789. load = weighted_cpuload(i);
  1790. if (load < min_load || (load == min_load && i == this_cpu)) {
  1791. min_load = load;
  1792. idlest = i;
  1793. }
  1794. }
  1795. return idlest;
  1796. }
  1797. /*
  1798. * sched_balance_self: balance the current task (running on cpu) in domains
  1799. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1800. * SD_BALANCE_EXEC.
  1801. *
  1802. * Balance, ie. select the least loaded group.
  1803. *
  1804. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1805. *
  1806. * preempt must be disabled.
  1807. */
  1808. static int sched_balance_self(int cpu, int flag)
  1809. {
  1810. struct task_struct *t = current;
  1811. struct sched_domain *tmp, *sd = NULL;
  1812. for_each_domain(cpu, tmp) {
  1813. /*
  1814. * If power savings logic is enabled for a domain, stop there.
  1815. */
  1816. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1817. break;
  1818. if (tmp->flags & flag)
  1819. sd = tmp;
  1820. }
  1821. if (sd)
  1822. update_shares(sd);
  1823. while (sd) {
  1824. cpumask_t span, tmpmask;
  1825. struct sched_group *group;
  1826. int new_cpu, weight;
  1827. if (!(sd->flags & flag)) {
  1828. sd = sd->child;
  1829. continue;
  1830. }
  1831. span = sd->span;
  1832. group = find_idlest_group(sd, t, cpu);
  1833. if (!group) {
  1834. sd = sd->child;
  1835. continue;
  1836. }
  1837. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1838. if (new_cpu == -1 || new_cpu == cpu) {
  1839. /* Now try balancing at a lower domain level of cpu */
  1840. sd = sd->child;
  1841. continue;
  1842. }
  1843. /* Now try balancing at a lower domain level of new_cpu */
  1844. cpu = new_cpu;
  1845. sd = NULL;
  1846. weight = cpus_weight(span);
  1847. for_each_domain(cpu, tmp) {
  1848. if (weight <= cpus_weight(tmp->span))
  1849. break;
  1850. if (tmp->flags & flag)
  1851. sd = tmp;
  1852. }
  1853. /* while loop will break here if sd == NULL */
  1854. }
  1855. return cpu;
  1856. }
  1857. #endif /* CONFIG_SMP */
  1858. /***
  1859. * try_to_wake_up - wake up a thread
  1860. * @p: the to-be-woken-up thread
  1861. * @state: the mask of task states that can be woken
  1862. * @sync: do a synchronous wakeup?
  1863. *
  1864. * Put it on the run-queue if it's not already there. The "current"
  1865. * thread is always on the run-queue (except when the actual
  1866. * re-schedule is in progress), and as such you're allowed to do
  1867. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1868. * runnable without the overhead of this.
  1869. *
  1870. * returns failure only if the task is already active.
  1871. */
  1872. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1873. {
  1874. int cpu, orig_cpu, this_cpu, success = 0;
  1875. unsigned long flags;
  1876. long old_state;
  1877. struct rq *rq;
  1878. if (!sched_feat(SYNC_WAKEUPS))
  1879. sync = 0;
  1880. #ifdef CONFIG_SMP
  1881. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1882. struct sched_domain *sd;
  1883. this_cpu = raw_smp_processor_id();
  1884. cpu = task_cpu(p);
  1885. for_each_domain(this_cpu, sd) {
  1886. if (cpu_isset(cpu, sd->span)) {
  1887. update_shares(sd);
  1888. break;
  1889. }
  1890. }
  1891. }
  1892. #endif
  1893. smp_wmb();
  1894. rq = task_rq_lock(p, &flags);
  1895. old_state = p->state;
  1896. if (!(old_state & state))
  1897. goto out;
  1898. if (p->se.on_rq)
  1899. goto out_running;
  1900. cpu = task_cpu(p);
  1901. orig_cpu = cpu;
  1902. this_cpu = smp_processor_id();
  1903. #ifdef CONFIG_SMP
  1904. if (unlikely(task_running(rq, p)))
  1905. goto out_activate;
  1906. cpu = p->sched_class->select_task_rq(p, sync);
  1907. if (cpu != orig_cpu) {
  1908. set_task_cpu(p, cpu);
  1909. task_rq_unlock(rq, &flags);
  1910. /* might preempt at this point */
  1911. rq = task_rq_lock(p, &flags);
  1912. old_state = p->state;
  1913. if (!(old_state & state))
  1914. goto out;
  1915. if (p->se.on_rq)
  1916. goto out_running;
  1917. this_cpu = smp_processor_id();
  1918. cpu = task_cpu(p);
  1919. }
  1920. #ifdef CONFIG_SCHEDSTATS
  1921. schedstat_inc(rq, ttwu_count);
  1922. if (cpu == this_cpu)
  1923. schedstat_inc(rq, ttwu_local);
  1924. else {
  1925. struct sched_domain *sd;
  1926. for_each_domain(this_cpu, sd) {
  1927. if (cpu_isset(cpu, sd->span)) {
  1928. schedstat_inc(sd, ttwu_wake_remote);
  1929. break;
  1930. }
  1931. }
  1932. }
  1933. #endif /* CONFIG_SCHEDSTATS */
  1934. out_activate:
  1935. #endif /* CONFIG_SMP */
  1936. schedstat_inc(p, se.nr_wakeups);
  1937. if (sync)
  1938. schedstat_inc(p, se.nr_wakeups_sync);
  1939. if (orig_cpu != cpu)
  1940. schedstat_inc(p, se.nr_wakeups_migrate);
  1941. if (cpu == this_cpu)
  1942. schedstat_inc(p, se.nr_wakeups_local);
  1943. else
  1944. schedstat_inc(p, se.nr_wakeups_remote);
  1945. update_rq_clock(rq);
  1946. activate_task(rq, p, 1);
  1947. success = 1;
  1948. out_running:
  1949. check_preempt_curr(rq, p);
  1950. p->state = TASK_RUNNING;
  1951. #ifdef CONFIG_SMP
  1952. if (p->sched_class->task_wake_up)
  1953. p->sched_class->task_wake_up(rq, p);
  1954. #endif
  1955. out:
  1956. current->se.last_wakeup = current->se.sum_exec_runtime;
  1957. task_rq_unlock(rq, &flags);
  1958. return success;
  1959. }
  1960. int wake_up_process(struct task_struct *p)
  1961. {
  1962. return try_to_wake_up(p, TASK_ALL, 0);
  1963. }
  1964. EXPORT_SYMBOL(wake_up_process);
  1965. int wake_up_state(struct task_struct *p, unsigned int state)
  1966. {
  1967. return try_to_wake_up(p, state, 0);
  1968. }
  1969. /*
  1970. * Perform scheduler related setup for a newly forked process p.
  1971. * p is forked by current.
  1972. *
  1973. * __sched_fork() is basic setup used by init_idle() too:
  1974. */
  1975. static void __sched_fork(struct task_struct *p)
  1976. {
  1977. p->se.exec_start = 0;
  1978. p->se.sum_exec_runtime = 0;
  1979. p->se.prev_sum_exec_runtime = 0;
  1980. p->se.last_wakeup = 0;
  1981. p->se.avg_overlap = 0;
  1982. #ifdef CONFIG_SCHEDSTATS
  1983. p->se.wait_start = 0;
  1984. p->se.sum_sleep_runtime = 0;
  1985. p->se.sleep_start = 0;
  1986. p->se.block_start = 0;
  1987. p->se.sleep_max = 0;
  1988. p->se.block_max = 0;
  1989. p->se.exec_max = 0;
  1990. p->se.slice_max = 0;
  1991. p->se.wait_max = 0;
  1992. #endif
  1993. INIT_LIST_HEAD(&p->rt.run_list);
  1994. p->se.on_rq = 0;
  1995. INIT_LIST_HEAD(&p->se.group_node);
  1996. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1997. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1998. #endif
  1999. /*
  2000. * We mark the process as running here, but have not actually
  2001. * inserted it onto the runqueue yet. This guarantees that
  2002. * nobody will actually run it, and a signal or other external
  2003. * event cannot wake it up and insert it on the runqueue either.
  2004. */
  2005. p->state = TASK_RUNNING;
  2006. }
  2007. /*
  2008. * fork()/clone()-time setup:
  2009. */
  2010. void sched_fork(struct task_struct *p, int clone_flags)
  2011. {
  2012. int cpu = get_cpu();
  2013. __sched_fork(p);
  2014. #ifdef CONFIG_SMP
  2015. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2016. #endif
  2017. set_task_cpu(p, cpu);
  2018. /*
  2019. * Make sure we do not leak PI boosting priority to the child:
  2020. */
  2021. p->prio = current->normal_prio;
  2022. if (!rt_prio(p->prio))
  2023. p->sched_class = &fair_sched_class;
  2024. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2025. if (likely(sched_info_on()))
  2026. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2027. #endif
  2028. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2029. p->oncpu = 0;
  2030. #endif
  2031. #ifdef CONFIG_PREEMPT
  2032. /* Want to start with kernel preemption disabled. */
  2033. task_thread_info(p)->preempt_count = 1;
  2034. #endif
  2035. put_cpu();
  2036. }
  2037. /*
  2038. * wake_up_new_task - wake up a newly created task for the first time.
  2039. *
  2040. * This function will do some initial scheduler statistics housekeeping
  2041. * that must be done for every newly created context, then puts the task
  2042. * on the runqueue and wakes it.
  2043. */
  2044. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2045. {
  2046. unsigned long flags;
  2047. struct rq *rq;
  2048. rq = task_rq_lock(p, &flags);
  2049. BUG_ON(p->state != TASK_RUNNING);
  2050. update_rq_clock(rq);
  2051. p->prio = effective_prio(p);
  2052. if (!p->sched_class->task_new || !current->se.on_rq) {
  2053. activate_task(rq, p, 0);
  2054. } else {
  2055. /*
  2056. * Let the scheduling class do new task startup
  2057. * management (if any):
  2058. */
  2059. p->sched_class->task_new(rq, p);
  2060. inc_nr_running(rq);
  2061. }
  2062. check_preempt_curr(rq, p);
  2063. #ifdef CONFIG_SMP
  2064. if (p->sched_class->task_wake_up)
  2065. p->sched_class->task_wake_up(rq, p);
  2066. #endif
  2067. task_rq_unlock(rq, &flags);
  2068. }
  2069. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2070. /**
  2071. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2072. * @notifier: notifier struct to register
  2073. */
  2074. void preempt_notifier_register(struct preempt_notifier *notifier)
  2075. {
  2076. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2077. }
  2078. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2079. /**
  2080. * preempt_notifier_unregister - no longer interested in preemption notifications
  2081. * @notifier: notifier struct to unregister
  2082. *
  2083. * This is safe to call from within a preemption notifier.
  2084. */
  2085. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2086. {
  2087. hlist_del(&notifier->link);
  2088. }
  2089. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2090. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2091. {
  2092. struct preempt_notifier *notifier;
  2093. struct hlist_node *node;
  2094. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2095. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2096. }
  2097. static void
  2098. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2099. struct task_struct *next)
  2100. {
  2101. struct preempt_notifier *notifier;
  2102. struct hlist_node *node;
  2103. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2104. notifier->ops->sched_out(notifier, next);
  2105. }
  2106. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2107. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2108. {
  2109. }
  2110. static void
  2111. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2112. struct task_struct *next)
  2113. {
  2114. }
  2115. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2116. /**
  2117. * prepare_task_switch - prepare to switch tasks
  2118. * @rq: the runqueue preparing to switch
  2119. * @prev: the current task that is being switched out
  2120. * @next: the task we are going to switch to.
  2121. *
  2122. * This is called with the rq lock held and interrupts off. It must
  2123. * be paired with a subsequent finish_task_switch after the context
  2124. * switch.
  2125. *
  2126. * prepare_task_switch sets up locking and calls architecture specific
  2127. * hooks.
  2128. */
  2129. static inline void
  2130. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2131. struct task_struct *next)
  2132. {
  2133. fire_sched_out_preempt_notifiers(prev, next);
  2134. prepare_lock_switch(rq, next);
  2135. prepare_arch_switch(next);
  2136. }
  2137. /**
  2138. * finish_task_switch - clean up after a task-switch
  2139. * @rq: runqueue associated with task-switch
  2140. * @prev: the thread we just switched away from.
  2141. *
  2142. * finish_task_switch must be called after the context switch, paired
  2143. * with a prepare_task_switch call before the context switch.
  2144. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2145. * and do any other architecture-specific cleanup actions.
  2146. *
  2147. * Note that we may have delayed dropping an mm in context_switch(). If
  2148. * so, we finish that here outside of the runqueue lock. (Doing it
  2149. * with the lock held can cause deadlocks; see schedule() for
  2150. * details.)
  2151. */
  2152. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2153. __releases(rq->lock)
  2154. {
  2155. struct mm_struct *mm = rq->prev_mm;
  2156. long prev_state;
  2157. rq->prev_mm = NULL;
  2158. /*
  2159. * A task struct has one reference for the use as "current".
  2160. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2161. * schedule one last time. The schedule call will never return, and
  2162. * the scheduled task must drop that reference.
  2163. * The test for TASK_DEAD must occur while the runqueue locks are
  2164. * still held, otherwise prev could be scheduled on another cpu, die
  2165. * there before we look at prev->state, and then the reference would
  2166. * be dropped twice.
  2167. * Manfred Spraul <manfred@colorfullife.com>
  2168. */
  2169. prev_state = prev->state;
  2170. finish_arch_switch(prev);
  2171. finish_lock_switch(rq, prev);
  2172. #ifdef CONFIG_SMP
  2173. if (current->sched_class->post_schedule)
  2174. current->sched_class->post_schedule(rq);
  2175. #endif
  2176. fire_sched_in_preempt_notifiers(current);
  2177. if (mm)
  2178. mmdrop(mm);
  2179. if (unlikely(prev_state == TASK_DEAD)) {
  2180. /*
  2181. * Remove function-return probe instances associated with this
  2182. * task and put them back on the free list.
  2183. */
  2184. kprobe_flush_task(prev);
  2185. put_task_struct(prev);
  2186. }
  2187. }
  2188. /**
  2189. * schedule_tail - first thing a freshly forked thread must call.
  2190. * @prev: the thread we just switched away from.
  2191. */
  2192. asmlinkage void schedule_tail(struct task_struct *prev)
  2193. __releases(rq->lock)
  2194. {
  2195. struct rq *rq = this_rq();
  2196. finish_task_switch(rq, prev);
  2197. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2198. /* In this case, finish_task_switch does not reenable preemption */
  2199. preempt_enable();
  2200. #endif
  2201. if (current->set_child_tid)
  2202. put_user(task_pid_vnr(current), current->set_child_tid);
  2203. }
  2204. /*
  2205. * context_switch - switch to the new MM and the new
  2206. * thread's register state.
  2207. */
  2208. static inline void
  2209. context_switch(struct rq *rq, struct task_struct *prev,
  2210. struct task_struct *next)
  2211. {
  2212. struct mm_struct *mm, *oldmm;
  2213. prepare_task_switch(rq, prev, next);
  2214. mm = next->mm;
  2215. oldmm = prev->active_mm;
  2216. /*
  2217. * For paravirt, this is coupled with an exit in switch_to to
  2218. * combine the page table reload and the switch backend into
  2219. * one hypercall.
  2220. */
  2221. arch_enter_lazy_cpu_mode();
  2222. if (unlikely(!mm)) {
  2223. next->active_mm = oldmm;
  2224. atomic_inc(&oldmm->mm_count);
  2225. enter_lazy_tlb(oldmm, next);
  2226. } else
  2227. switch_mm(oldmm, mm, next);
  2228. if (unlikely(!prev->mm)) {
  2229. prev->active_mm = NULL;
  2230. rq->prev_mm = oldmm;
  2231. }
  2232. /*
  2233. * Since the runqueue lock will be released by the next
  2234. * task (which is an invalid locking op but in the case
  2235. * of the scheduler it's an obvious special-case), so we
  2236. * do an early lockdep release here:
  2237. */
  2238. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2239. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2240. #endif
  2241. /* Here we just switch the register state and the stack. */
  2242. switch_to(prev, next, prev);
  2243. barrier();
  2244. /*
  2245. * this_rq must be evaluated again because prev may have moved
  2246. * CPUs since it called schedule(), thus the 'rq' on its stack
  2247. * frame will be invalid.
  2248. */
  2249. finish_task_switch(this_rq(), prev);
  2250. }
  2251. /*
  2252. * nr_running, nr_uninterruptible and nr_context_switches:
  2253. *
  2254. * externally visible scheduler statistics: current number of runnable
  2255. * threads, current number of uninterruptible-sleeping threads, total
  2256. * number of context switches performed since bootup.
  2257. */
  2258. unsigned long nr_running(void)
  2259. {
  2260. unsigned long i, sum = 0;
  2261. for_each_online_cpu(i)
  2262. sum += cpu_rq(i)->nr_running;
  2263. return sum;
  2264. }
  2265. unsigned long nr_uninterruptible(void)
  2266. {
  2267. unsigned long i, sum = 0;
  2268. for_each_possible_cpu(i)
  2269. sum += cpu_rq(i)->nr_uninterruptible;
  2270. /*
  2271. * Since we read the counters lockless, it might be slightly
  2272. * inaccurate. Do not allow it to go below zero though:
  2273. */
  2274. if (unlikely((long)sum < 0))
  2275. sum = 0;
  2276. return sum;
  2277. }
  2278. unsigned long long nr_context_switches(void)
  2279. {
  2280. int i;
  2281. unsigned long long sum = 0;
  2282. for_each_possible_cpu(i)
  2283. sum += cpu_rq(i)->nr_switches;
  2284. return sum;
  2285. }
  2286. unsigned long nr_iowait(void)
  2287. {
  2288. unsigned long i, sum = 0;
  2289. for_each_possible_cpu(i)
  2290. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2291. return sum;
  2292. }
  2293. unsigned long nr_active(void)
  2294. {
  2295. unsigned long i, running = 0, uninterruptible = 0;
  2296. for_each_online_cpu(i) {
  2297. running += cpu_rq(i)->nr_running;
  2298. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2299. }
  2300. if (unlikely((long)uninterruptible < 0))
  2301. uninterruptible = 0;
  2302. return running + uninterruptible;
  2303. }
  2304. /*
  2305. * Update rq->cpu_load[] statistics. This function is usually called every
  2306. * scheduler tick (TICK_NSEC).
  2307. */
  2308. static void update_cpu_load(struct rq *this_rq)
  2309. {
  2310. unsigned long this_load = this_rq->load.weight;
  2311. int i, scale;
  2312. this_rq->nr_load_updates++;
  2313. /* Update our load: */
  2314. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2315. unsigned long old_load, new_load;
  2316. /* scale is effectively 1 << i now, and >> i divides by scale */
  2317. old_load = this_rq->cpu_load[i];
  2318. new_load = this_load;
  2319. /*
  2320. * Round up the averaging division if load is increasing. This
  2321. * prevents us from getting stuck on 9 if the load is 10, for
  2322. * example.
  2323. */
  2324. if (new_load > old_load)
  2325. new_load += scale-1;
  2326. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2327. }
  2328. }
  2329. #ifdef CONFIG_SMP
  2330. /*
  2331. * double_rq_lock - safely lock two runqueues
  2332. *
  2333. * Note this does not disable interrupts like task_rq_lock,
  2334. * you need to do so manually before calling.
  2335. */
  2336. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2337. __acquires(rq1->lock)
  2338. __acquires(rq2->lock)
  2339. {
  2340. BUG_ON(!irqs_disabled());
  2341. if (rq1 == rq2) {
  2342. spin_lock(&rq1->lock);
  2343. __acquire(rq2->lock); /* Fake it out ;) */
  2344. } else {
  2345. if (rq1 < rq2) {
  2346. spin_lock(&rq1->lock);
  2347. spin_lock(&rq2->lock);
  2348. } else {
  2349. spin_lock(&rq2->lock);
  2350. spin_lock(&rq1->lock);
  2351. }
  2352. }
  2353. update_rq_clock(rq1);
  2354. update_rq_clock(rq2);
  2355. }
  2356. /*
  2357. * double_rq_unlock - safely unlock two runqueues
  2358. *
  2359. * Note this does not restore interrupts like task_rq_unlock,
  2360. * you need to do so manually after calling.
  2361. */
  2362. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2363. __releases(rq1->lock)
  2364. __releases(rq2->lock)
  2365. {
  2366. spin_unlock(&rq1->lock);
  2367. if (rq1 != rq2)
  2368. spin_unlock(&rq2->lock);
  2369. else
  2370. __release(rq2->lock);
  2371. }
  2372. /*
  2373. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2374. */
  2375. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2376. __releases(this_rq->lock)
  2377. __acquires(busiest->lock)
  2378. __acquires(this_rq->lock)
  2379. {
  2380. int ret = 0;
  2381. if (unlikely(!irqs_disabled())) {
  2382. /* printk() doesn't work good under rq->lock */
  2383. spin_unlock(&this_rq->lock);
  2384. BUG_ON(1);
  2385. }
  2386. if (unlikely(!spin_trylock(&busiest->lock))) {
  2387. if (busiest < this_rq) {
  2388. spin_unlock(&this_rq->lock);
  2389. spin_lock(&busiest->lock);
  2390. spin_lock(&this_rq->lock);
  2391. ret = 1;
  2392. } else
  2393. spin_lock(&busiest->lock);
  2394. }
  2395. return ret;
  2396. }
  2397. /*
  2398. * If dest_cpu is allowed for this process, migrate the task to it.
  2399. * This is accomplished by forcing the cpu_allowed mask to only
  2400. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2401. * the cpu_allowed mask is restored.
  2402. */
  2403. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2404. {
  2405. struct migration_req req;
  2406. unsigned long flags;
  2407. struct rq *rq;
  2408. rq = task_rq_lock(p, &flags);
  2409. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2410. || unlikely(cpu_is_offline(dest_cpu)))
  2411. goto out;
  2412. /* force the process onto the specified CPU */
  2413. if (migrate_task(p, dest_cpu, &req)) {
  2414. /* Need to wait for migration thread (might exit: take ref). */
  2415. struct task_struct *mt = rq->migration_thread;
  2416. get_task_struct(mt);
  2417. task_rq_unlock(rq, &flags);
  2418. wake_up_process(mt);
  2419. put_task_struct(mt);
  2420. wait_for_completion(&req.done);
  2421. return;
  2422. }
  2423. out:
  2424. task_rq_unlock(rq, &flags);
  2425. }
  2426. /*
  2427. * sched_exec - execve() is a valuable balancing opportunity, because at
  2428. * this point the task has the smallest effective memory and cache footprint.
  2429. */
  2430. void sched_exec(void)
  2431. {
  2432. int new_cpu, this_cpu = get_cpu();
  2433. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2434. put_cpu();
  2435. if (new_cpu != this_cpu)
  2436. sched_migrate_task(current, new_cpu);
  2437. }
  2438. /*
  2439. * pull_task - move a task from a remote runqueue to the local runqueue.
  2440. * Both runqueues must be locked.
  2441. */
  2442. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2443. struct rq *this_rq, int this_cpu)
  2444. {
  2445. deactivate_task(src_rq, p, 0);
  2446. set_task_cpu(p, this_cpu);
  2447. activate_task(this_rq, p, 0);
  2448. /*
  2449. * Note that idle threads have a prio of MAX_PRIO, for this test
  2450. * to be always true for them.
  2451. */
  2452. check_preempt_curr(this_rq, p);
  2453. }
  2454. /*
  2455. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2456. */
  2457. static
  2458. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2459. struct sched_domain *sd, enum cpu_idle_type idle,
  2460. int *all_pinned)
  2461. {
  2462. /*
  2463. * We do not migrate tasks that are:
  2464. * 1) running (obviously), or
  2465. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2466. * 3) are cache-hot on their current CPU.
  2467. */
  2468. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2469. schedstat_inc(p, se.nr_failed_migrations_affine);
  2470. return 0;
  2471. }
  2472. *all_pinned = 0;
  2473. if (task_running(rq, p)) {
  2474. schedstat_inc(p, se.nr_failed_migrations_running);
  2475. return 0;
  2476. }
  2477. /*
  2478. * Aggressive migration if:
  2479. * 1) task is cache cold, or
  2480. * 2) too many balance attempts have failed.
  2481. */
  2482. if (!task_hot(p, rq->clock, sd) ||
  2483. sd->nr_balance_failed > sd->cache_nice_tries) {
  2484. #ifdef CONFIG_SCHEDSTATS
  2485. if (task_hot(p, rq->clock, sd)) {
  2486. schedstat_inc(sd, lb_hot_gained[idle]);
  2487. schedstat_inc(p, se.nr_forced_migrations);
  2488. }
  2489. #endif
  2490. return 1;
  2491. }
  2492. if (task_hot(p, rq->clock, sd)) {
  2493. schedstat_inc(p, se.nr_failed_migrations_hot);
  2494. return 0;
  2495. }
  2496. return 1;
  2497. }
  2498. static unsigned long
  2499. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2500. unsigned long max_load_move, struct sched_domain *sd,
  2501. enum cpu_idle_type idle, int *all_pinned,
  2502. int *this_best_prio, struct rq_iterator *iterator)
  2503. {
  2504. int loops = 0, pulled = 0, pinned = 0;
  2505. struct task_struct *p;
  2506. long rem_load_move = max_load_move;
  2507. if (max_load_move == 0)
  2508. goto out;
  2509. pinned = 1;
  2510. /*
  2511. * Start the load-balancing iterator:
  2512. */
  2513. p = iterator->start(iterator->arg);
  2514. next:
  2515. if (!p || loops++ > sysctl_sched_nr_migrate)
  2516. goto out;
  2517. if ((p->se.load.weight >> 1) > rem_load_move ||
  2518. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2519. p = iterator->next(iterator->arg);
  2520. goto next;
  2521. }
  2522. pull_task(busiest, p, this_rq, this_cpu);
  2523. pulled++;
  2524. rem_load_move -= p->se.load.weight;
  2525. /*
  2526. * We only want to steal up to the prescribed amount of weighted load.
  2527. */
  2528. if (rem_load_move > 0) {
  2529. if (p->prio < *this_best_prio)
  2530. *this_best_prio = p->prio;
  2531. p = iterator->next(iterator->arg);
  2532. goto next;
  2533. }
  2534. out:
  2535. /*
  2536. * Right now, this is one of only two places pull_task() is called,
  2537. * so we can safely collect pull_task() stats here rather than
  2538. * inside pull_task().
  2539. */
  2540. schedstat_add(sd, lb_gained[idle], pulled);
  2541. if (all_pinned)
  2542. *all_pinned = pinned;
  2543. return max_load_move - rem_load_move;
  2544. }
  2545. /*
  2546. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2547. * this_rq, as part of a balancing operation within domain "sd".
  2548. * Returns 1 if successful and 0 otherwise.
  2549. *
  2550. * Called with both runqueues locked.
  2551. */
  2552. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2553. unsigned long max_load_move,
  2554. struct sched_domain *sd, enum cpu_idle_type idle,
  2555. int *all_pinned)
  2556. {
  2557. const struct sched_class *class = sched_class_highest;
  2558. unsigned long total_load_moved = 0;
  2559. int this_best_prio = this_rq->curr->prio;
  2560. do {
  2561. total_load_moved +=
  2562. class->load_balance(this_rq, this_cpu, busiest,
  2563. max_load_move - total_load_moved,
  2564. sd, idle, all_pinned, &this_best_prio);
  2565. class = class->next;
  2566. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2567. break;
  2568. } while (class && max_load_move > total_load_moved);
  2569. return total_load_moved > 0;
  2570. }
  2571. static int
  2572. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2573. struct sched_domain *sd, enum cpu_idle_type idle,
  2574. struct rq_iterator *iterator)
  2575. {
  2576. struct task_struct *p = iterator->start(iterator->arg);
  2577. int pinned = 0;
  2578. while (p) {
  2579. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2580. pull_task(busiest, p, this_rq, this_cpu);
  2581. /*
  2582. * Right now, this is only the second place pull_task()
  2583. * is called, so we can safely collect pull_task()
  2584. * stats here rather than inside pull_task().
  2585. */
  2586. schedstat_inc(sd, lb_gained[idle]);
  2587. return 1;
  2588. }
  2589. p = iterator->next(iterator->arg);
  2590. }
  2591. return 0;
  2592. }
  2593. /*
  2594. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2595. * part of active balancing operations within "domain".
  2596. * Returns 1 if successful and 0 otherwise.
  2597. *
  2598. * Called with both runqueues locked.
  2599. */
  2600. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2601. struct sched_domain *sd, enum cpu_idle_type idle)
  2602. {
  2603. const struct sched_class *class;
  2604. for (class = sched_class_highest; class; class = class->next)
  2605. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2606. return 1;
  2607. return 0;
  2608. }
  2609. /*
  2610. * find_busiest_group finds and returns the busiest CPU group within the
  2611. * domain. It calculates and returns the amount of weighted load which
  2612. * should be moved to restore balance via the imbalance parameter.
  2613. */
  2614. static struct sched_group *
  2615. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2616. unsigned long *imbalance, enum cpu_idle_type idle,
  2617. int *sd_idle, const cpumask_t *cpus, int *balance)
  2618. {
  2619. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2620. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2621. unsigned long max_pull;
  2622. unsigned long busiest_load_per_task, busiest_nr_running;
  2623. unsigned long this_load_per_task, this_nr_running;
  2624. int load_idx, group_imb = 0;
  2625. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2626. int power_savings_balance = 1;
  2627. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2628. unsigned long min_nr_running = ULONG_MAX;
  2629. struct sched_group *group_min = NULL, *group_leader = NULL;
  2630. #endif
  2631. max_load = this_load = total_load = total_pwr = 0;
  2632. busiest_load_per_task = busiest_nr_running = 0;
  2633. this_load_per_task = this_nr_running = 0;
  2634. if (idle == CPU_NOT_IDLE)
  2635. load_idx = sd->busy_idx;
  2636. else if (idle == CPU_NEWLY_IDLE)
  2637. load_idx = sd->newidle_idx;
  2638. else
  2639. load_idx = sd->idle_idx;
  2640. do {
  2641. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2642. int local_group;
  2643. int i;
  2644. int __group_imb = 0;
  2645. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2646. unsigned long sum_nr_running, sum_weighted_load;
  2647. unsigned long sum_avg_load_per_task;
  2648. unsigned long avg_load_per_task;
  2649. local_group = cpu_isset(this_cpu, group->cpumask);
  2650. if (local_group)
  2651. balance_cpu = first_cpu(group->cpumask);
  2652. /* Tally up the load of all CPUs in the group */
  2653. sum_weighted_load = sum_nr_running = avg_load = 0;
  2654. sum_avg_load_per_task = avg_load_per_task = 0;
  2655. max_cpu_load = 0;
  2656. min_cpu_load = ~0UL;
  2657. for_each_cpu_mask(i, group->cpumask) {
  2658. struct rq *rq;
  2659. if (!cpu_isset(i, *cpus))
  2660. continue;
  2661. rq = cpu_rq(i);
  2662. if (*sd_idle && rq->nr_running)
  2663. *sd_idle = 0;
  2664. /* Bias balancing toward cpus of our domain */
  2665. if (local_group) {
  2666. if (idle_cpu(i) && !first_idle_cpu) {
  2667. first_idle_cpu = 1;
  2668. balance_cpu = i;
  2669. }
  2670. load = target_load(i, load_idx);
  2671. } else {
  2672. load = source_load(i, load_idx);
  2673. if (load > max_cpu_load)
  2674. max_cpu_load = load;
  2675. if (min_cpu_load > load)
  2676. min_cpu_load = load;
  2677. }
  2678. avg_load += load;
  2679. sum_nr_running += rq->nr_running;
  2680. sum_weighted_load += weighted_cpuload(i);
  2681. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2682. }
  2683. /*
  2684. * First idle cpu or the first cpu(busiest) in this sched group
  2685. * is eligible for doing load balancing at this and above
  2686. * domains. In the newly idle case, we will allow all the cpu's
  2687. * to do the newly idle load balance.
  2688. */
  2689. if (idle != CPU_NEWLY_IDLE && local_group &&
  2690. balance_cpu != this_cpu && balance) {
  2691. *balance = 0;
  2692. goto ret;
  2693. }
  2694. total_load += avg_load;
  2695. total_pwr += group->__cpu_power;
  2696. /* Adjust by relative CPU power of the group */
  2697. avg_load = sg_div_cpu_power(group,
  2698. avg_load * SCHED_LOAD_SCALE);
  2699. /*
  2700. * Consider the group unbalanced when the imbalance is larger
  2701. * than the average weight of two tasks.
  2702. *
  2703. * APZ: with cgroup the avg task weight can vary wildly and
  2704. * might not be a suitable number - should we keep a
  2705. * normalized nr_running number somewhere that negates
  2706. * the hierarchy?
  2707. */
  2708. avg_load_per_task = sg_div_cpu_power(group,
  2709. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2710. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2711. __group_imb = 1;
  2712. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2713. if (local_group) {
  2714. this_load = avg_load;
  2715. this = group;
  2716. this_nr_running = sum_nr_running;
  2717. this_load_per_task = sum_weighted_load;
  2718. } else if (avg_load > max_load &&
  2719. (sum_nr_running > group_capacity || __group_imb)) {
  2720. max_load = avg_load;
  2721. busiest = group;
  2722. busiest_nr_running = sum_nr_running;
  2723. busiest_load_per_task = sum_weighted_load;
  2724. group_imb = __group_imb;
  2725. }
  2726. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2727. /*
  2728. * Busy processors will not participate in power savings
  2729. * balance.
  2730. */
  2731. if (idle == CPU_NOT_IDLE ||
  2732. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2733. goto group_next;
  2734. /*
  2735. * If the local group is idle or completely loaded
  2736. * no need to do power savings balance at this domain
  2737. */
  2738. if (local_group && (this_nr_running >= group_capacity ||
  2739. !this_nr_running))
  2740. power_savings_balance = 0;
  2741. /*
  2742. * If a group is already running at full capacity or idle,
  2743. * don't include that group in power savings calculations
  2744. */
  2745. if (!power_savings_balance || sum_nr_running >= group_capacity
  2746. || !sum_nr_running)
  2747. goto group_next;
  2748. /*
  2749. * Calculate the group which has the least non-idle load.
  2750. * This is the group from where we need to pick up the load
  2751. * for saving power
  2752. */
  2753. if ((sum_nr_running < min_nr_running) ||
  2754. (sum_nr_running == min_nr_running &&
  2755. first_cpu(group->cpumask) <
  2756. first_cpu(group_min->cpumask))) {
  2757. group_min = group;
  2758. min_nr_running = sum_nr_running;
  2759. min_load_per_task = sum_weighted_load /
  2760. sum_nr_running;
  2761. }
  2762. /*
  2763. * Calculate the group which is almost near its
  2764. * capacity but still has some space to pick up some load
  2765. * from other group and save more power
  2766. */
  2767. if (sum_nr_running <= group_capacity - 1) {
  2768. if (sum_nr_running > leader_nr_running ||
  2769. (sum_nr_running == leader_nr_running &&
  2770. first_cpu(group->cpumask) >
  2771. first_cpu(group_leader->cpumask))) {
  2772. group_leader = group;
  2773. leader_nr_running = sum_nr_running;
  2774. }
  2775. }
  2776. group_next:
  2777. #endif
  2778. group = group->next;
  2779. } while (group != sd->groups);
  2780. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2781. goto out_balanced;
  2782. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2783. if (this_load >= avg_load ||
  2784. 100*max_load <= sd->imbalance_pct*this_load)
  2785. goto out_balanced;
  2786. busiest_load_per_task /= busiest_nr_running;
  2787. if (group_imb)
  2788. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2789. /*
  2790. * We're trying to get all the cpus to the average_load, so we don't
  2791. * want to push ourselves above the average load, nor do we wish to
  2792. * reduce the max loaded cpu below the average load, as either of these
  2793. * actions would just result in more rebalancing later, and ping-pong
  2794. * tasks around. Thus we look for the minimum possible imbalance.
  2795. * Negative imbalances (*we* are more loaded than anyone else) will
  2796. * be counted as no imbalance for these purposes -- we can't fix that
  2797. * by pulling tasks to us. Be careful of negative numbers as they'll
  2798. * appear as very large values with unsigned longs.
  2799. */
  2800. if (max_load <= busiest_load_per_task)
  2801. goto out_balanced;
  2802. /*
  2803. * In the presence of smp nice balancing, certain scenarios can have
  2804. * max load less than avg load(as we skip the groups at or below
  2805. * its cpu_power, while calculating max_load..)
  2806. */
  2807. if (max_load < avg_load) {
  2808. *imbalance = 0;
  2809. goto small_imbalance;
  2810. }
  2811. /* Don't want to pull so many tasks that a group would go idle */
  2812. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2813. /* How much load to actually move to equalise the imbalance */
  2814. *imbalance = min(max_pull * busiest->__cpu_power,
  2815. (avg_load - this_load) * this->__cpu_power)
  2816. / SCHED_LOAD_SCALE;
  2817. /*
  2818. * if *imbalance is less than the average load per runnable task
  2819. * there is no gaurantee that any tasks will be moved so we'll have
  2820. * a think about bumping its value to force at least one task to be
  2821. * moved
  2822. */
  2823. if (*imbalance < busiest_load_per_task) {
  2824. unsigned long tmp, pwr_now, pwr_move;
  2825. unsigned int imbn;
  2826. small_imbalance:
  2827. pwr_move = pwr_now = 0;
  2828. imbn = 2;
  2829. if (this_nr_running) {
  2830. this_load_per_task /= this_nr_running;
  2831. if (busiest_load_per_task > this_load_per_task)
  2832. imbn = 1;
  2833. } else
  2834. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2835. if (max_load - this_load + 2*busiest_load_per_task >=
  2836. busiest_load_per_task * imbn) {
  2837. *imbalance = busiest_load_per_task;
  2838. return busiest;
  2839. }
  2840. /*
  2841. * OK, we don't have enough imbalance to justify moving tasks,
  2842. * however we may be able to increase total CPU power used by
  2843. * moving them.
  2844. */
  2845. pwr_now += busiest->__cpu_power *
  2846. min(busiest_load_per_task, max_load);
  2847. pwr_now += this->__cpu_power *
  2848. min(this_load_per_task, this_load);
  2849. pwr_now /= SCHED_LOAD_SCALE;
  2850. /* Amount of load we'd subtract */
  2851. tmp = sg_div_cpu_power(busiest,
  2852. busiest_load_per_task * SCHED_LOAD_SCALE);
  2853. if (max_load > tmp)
  2854. pwr_move += busiest->__cpu_power *
  2855. min(busiest_load_per_task, max_load - tmp);
  2856. /* Amount of load we'd add */
  2857. if (max_load * busiest->__cpu_power <
  2858. busiest_load_per_task * SCHED_LOAD_SCALE)
  2859. tmp = sg_div_cpu_power(this,
  2860. max_load * busiest->__cpu_power);
  2861. else
  2862. tmp = sg_div_cpu_power(this,
  2863. busiest_load_per_task * SCHED_LOAD_SCALE);
  2864. pwr_move += this->__cpu_power *
  2865. min(this_load_per_task, this_load + tmp);
  2866. pwr_move /= SCHED_LOAD_SCALE;
  2867. /* Move if we gain throughput */
  2868. if (pwr_move > pwr_now)
  2869. *imbalance = busiest_load_per_task;
  2870. }
  2871. return busiest;
  2872. out_balanced:
  2873. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2874. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2875. goto ret;
  2876. if (this == group_leader && group_leader != group_min) {
  2877. *imbalance = min_load_per_task;
  2878. return group_min;
  2879. }
  2880. #endif
  2881. ret:
  2882. *imbalance = 0;
  2883. return NULL;
  2884. }
  2885. /*
  2886. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2887. */
  2888. static struct rq *
  2889. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2890. unsigned long imbalance, const cpumask_t *cpus)
  2891. {
  2892. struct rq *busiest = NULL, *rq;
  2893. unsigned long max_load = 0;
  2894. int i;
  2895. for_each_cpu_mask(i, group->cpumask) {
  2896. unsigned long wl;
  2897. if (!cpu_isset(i, *cpus))
  2898. continue;
  2899. rq = cpu_rq(i);
  2900. wl = weighted_cpuload(i);
  2901. if (rq->nr_running == 1 && wl > imbalance)
  2902. continue;
  2903. if (wl > max_load) {
  2904. max_load = wl;
  2905. busiest = rq;
  2906. }
  2907. }
  2908. return busiest;
  2909. }
  2910. /*
  2911. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2912. * so long as it is large enough.
  2913. */
  2914. #define MAX_PINNED_INTERVAL 512
  2915. /*
  2916. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2917. * tasks if there is an imbalance.
  2918. */
  2919. static int load_balance(int this_cpu, struct rq *this_rq,
  2920. struct sched_domain *sd, enum cpu_idle_type idle,
  2921. int *balance, cpumask_t *cpus)
  2922. {
  2923. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2924. struct sched_group *group;
  2925. unsigned long imbalance;
  2926. struct rq *busiest;
  2927. unsigned long flags;
  2928. cpus_setall(*cpus);
  2929. /*
  2930. * When power savings policy is enabled for the parent domain, idle
  2931. * sibling can pick up load irrespective of busy siblings. In this case,
  2932. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2933. * portraying it as CPU_NOT_IDLE.
  2934. */
  2935. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2936. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2937. sd_idle = 1;
  2938. schedstat_inc(sd, lb_count[idle]);
  2939. redo:
  2940. update_shares(sd);
  2941. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2942. cpus, balance);
  2943. if (*balance == 0)
  2944. goto out_balanced;
  2945. if (!group) {
  2946. schedstat_inc(sd, lb_nobusyg[idle]);
  2947. goto out_balanced;
  2948. }
  2949. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2950. if (!busiest) {
  2951. schedstat_inc(sd, lb_nobusyq[idle]);
  2952. goto out_balanced;
  2953. }
  2954. BUG_ON(busiest == this_rq);
  2955. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2956. ld_moved = 0;
  2957. if (busiest->nr_running > 1) {
  2958. /*
  2959. * Attempt to move tasks. If find_busiest_group has found
  2960. * an imbalance but busiest->nr_running <= 1, the group is
  2961. * still unbalanced. ld_moved simply stays zero, so it is
  2962. * correctly treated as an imbalance.
  2963. */
  2964. local_irq_save(flags);
  2965. double_rq_lock(this_rq, busiest);
  2966. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2967. imbalance, sd, idle, &all_pinned);
  2968. double_rq_unlock(this_rq, busiest);
  2969. local_irq_restore(flags);
  2970. /*
  2971. * some other cpu did the load balance for us.
  2972. */
  2973. if (ld_moved && this_cpu != smp_processor_id())
  2974. resched_cpu(this_cpu);
  2975. /* All tasks on this runqueue were pinned by CPU affinity */
  2976. if (unlikely(all_pinned)) {
  2977. cpu_clear(cpu_of(busiest), *cpus);
  2978. if (!cpus_empty(*cpus))
  2979. goto redo;
  2980. goto out_balanced;
  2981. }
  2982. }
  2983. if (!ld_moved) {
  2984. schedstat_inc(sd, lb_failed[idle]);
  2985. sd->nr_balance_failed++;
  2986. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2987. spin_lock_irqsave(&busiest->lock, flags);
  2988. /* don't kick the migration_thread, if the curr
  2989. * task on busiest cpu can't be moved to this_cpu
  2990. */
  2991. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2992. spin_unlock_irqrestore(&busiest->lock, flags);
  2993. all_pinned = 1;
  2994. goto out_one_pinned;
  2995. }
  2996. if (!busiest->active_balance) {
  2997. busiest->active_balance = 1;
  2998. busiest->push_cpu = this_cpu;
  2999. active_balance = 1;
  3000. }
  3001. spin_unlock_irqrestore(&busiest->lock, flags);
  3002. if (active_balance)
  3003. wake_up_process(busiest->migration_thread);
  3004. /*
  3005. * We've kicked active balancing, reset the failure
  3006. * counter.
  3007. */
  3008. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3009. }
  3010. } else
  3011. sd->nr_balance_failed = 0;
  3012. if (likely(!active_balance)) {
  3013. /* We were unbalanced, so reset the balancing interval */
  3014. sd->balance_interval = sd->min_interval;
  3015. } else {
  3016. /*
  3017. * If we've begun active balancing, start to back off. This
  3018. * case may not be covered by the all_pinned logic if there
  3019. * is only 1 task on the busy runqueue (because we don't call
  3020. * move_tasks).
  3021. */
  3022. if (sd->balance_interval < sd->max_interval)
  3023. sd->balance_interval *= 2;
  3024. }
  3025. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3026. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3027. ld_moved = -1;
  3028. goto out;
  3029. out_balanced:
  3030. schedstat_inc(sd, lb_balanced[idle]);
  3031. sd->nr_balance_failed = 0;
  3032. out_one_pinned:
  3033. /* tune up the balancing interval */
  3034. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3035. (sd->balance_interval < sd->max_interval))
  3036. sd->balance_interval *= 2;
  3037. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3038. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3039. ld_moved = -1;
  3040. else
  3041. ld_moved = 0;
  3042. out:
  3043. if (ld_moved)
  3044. update_shares(sd);
  3045. return ld_moved;
  3046. }
  3047. /*
  3048. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3049. * tasks if there is an imbalance.
  3050. *
  3051. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3052. * this_rq is locked.
  3053. */
  3054. static int
  3055. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3056. cpumask_t *cpus)
  3057. {
  3058. struct sched_group *group;
  3059. struct rq *busiest = NULL;
  3060. unsigned long imbalance;
  3061. int ld_moved = 0;
  3062. int sd_idle = 0;
  3063. int all_pinned = 0;
  3064. cpus_setall(*cpus);
  3065. /*
  3066. * When power savings policy is enabled for the parent domain, idle
  3067. * sibling can pick up load irrespective of busy siblings. In this case,
  3068. * let the state of idle sibling percolate up as IDLE, instead of
  3069. * portraying it as CPU_NOT_IDLE.
  3070. */
  3071. if (sd->flags & SD_SHARE_CPUPOWER &&
  3072. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3073. sd_idle = 1;
  3074. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3075. redo:
  3076. update_shares_locked(this_rq, sd);
  3077. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3078. &sd_idle, cpus, NULL);
  3079. if (!group) {
  3080. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3081. goto out_balanced;
  3082. }
  3083. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3084. if (!busiest) {
  3085. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3086. goto out_balanced;
  3087. }
  3088. BUG_ON(busiest == this_rq);
  3089. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3090. ld_moved = 0;
  3091. if (busiest->nr_running > 1) {
  3092. /* Attempt to move tasks */
  3093. double_lock_balance(this_rq, busiest);
  3094. /* this_rq->clock is already updated */
  3095. update_rq_clock(busiest);
  3096. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3097. imbalance, sd, CPU_NEWLY_IDLE,
  3098. &all_pinned);
  3099. spin_unlock(&busiest->lock);
  3100. if (unlikely(all_pinned)) {
  3101. cpu_clear(cpu_of(busiest), *cpus);
  3102. if (!cpus_empty(*cpus))
  3103. goto redo;
  3104. }
  3105. }
  3106. if (!ld_moved) {
  3107. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3108. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3109. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3110. return -1;
  3111. } else
  3112. sd->nr_balance_failed = 0;
  3113. update_shares_locked(this_rq, sd);
  3114. return ld_moved;
  3115. out_balanced:
  3116. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3117. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3118. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3119. return -1;
  3120. sd->nr_balance_failed = 0;
  3121. return 0;
  3122. }
  3123. /*
  3124. * idle_balance is called by schedule() if this_cpu is about to become
  3125. * idle. Attempts to pull tasks from other CPUs.
  3126. */
  3127. static void idle_balance(int this_cpu, struct rq *this_rq)
  3128. {
  3129. struct sched_domain *sd;
  3130. int pulled_task = -1;
  3131. unsigned long next_balance = jiffies + HZ;
  3132. cpumask_t tmpmask;
  3133. for_each_domain(this_cpu, sd) {
  3134. unsigned long interval;
  3135. if (!(sd->flags & SD_LOAD_BALANCE))
  3136. continue;
  3137. if (sd->flags & SD_BALANCE_NEWIDLE)
  3138. /* If we've pulled tasks over stop searching: */
  3139. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3140. sd, &tmpmask);
  3141. interval = msecs_to_jiffies(sd->balance_interval);
  3142. if (time_after(next_balance, sd->last_balance + interval))
  3143. next_balance = sd->last_balance + interval;
  3144. if (pulled_task)
  3145. break;
  3146. }
  3147. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3148. /*
  3149. * We are going idle. next_balance may be set based on
  3150. * a busy processor. So reset next_balance.
  3151. */
  3152. this_rq->next_balance = next_balance;
  3153. }
  3154. }
  3155. /*
  3156. * active_load_balance is run by migration threads. It pushes running tasks
  3157. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3158. * running on each physical CPU where possible, and avoids physical /
  3159. * logical imbalances.
  3160. *
  3161. * Called with busiest_rq locked.
  3162. */
  3163. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3164. {
  3165. int target_cpu = busiest_rq->push_cpu;
  3166. struct sched_domain *sd;
  3167. struct rq *target_rq;
  3168. /* Is there any task to move? */
  3169. if (busiest_rq->nr_running <= 1)
  3170. return;
  3171. target_rq = cpu_rq(target_cpu);
  3172. /*
  3173. * This condition is "impossible", if it occurs
  3174. * we need to fix it. Originally reported by
  3175. * Bjorn Helgaas on a 128-cpu setup.
  3176. */
  3177. BUG_ON(busiest_rq == target_rq);
  3178. /* move a task from busiest_rq to target_rq */
  3179. double_lock_balance(busiest_rq, target_rq);
  3180. update_rq_clock(busiest_rq);
  3181. update_rq_clock(target_rq);
  3182. /* Search for an sd spanning us and the target CPU. */
  3183. for_each_domain(target_cpu, sd) {
  3184. if ((sd->flags & SD_LOAD_BALANCE) &&
  3185. cpu_isset(busiest_cpu, sd->span))
  3186. break;
  3187. }
  3188. if (likely(sd)) {
  3189. schedstat_inc(sd, alb_count);
  3190. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3191. sd, CPU_IDLE))
  3192. schedstat_inc(sd, alb_pushed);
  3193. else
  3194. schedstat_inc(sd, alb_failed);
  3195. }
  3196. spin_unlock(&target_rq->lock);
  3197. }
  3198. #ifdef CONFIG_NO_HZ
  3199. static struct {
  3200. atomic_t load_balancer;
  3201. cpumask_t cpu_mask;
  3202. } nohz ____cacheline_aligned = {
  3203. .load_balancer = ATOMIC_INIT(-1),
  3204. .cpu_mask = CPU_MASK_NONE,
  3205. };
  3206. /*
  3207. * This routine will try to nominate the ilb (idle load balancing)
  3208. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3209. * load balancing on behalf of all those cpus. If all the cpus in the system
  3210. * go into this tickless mode, then there will be no ilb owner (as there is
  3211. * no need for one) and all the cpus will sleep till the next wakeup event
  3212. * arrives...
  3213. *
  3214. * For the ilb owner, tick is not stopped. And this tick will be used
  3215. * for idle load balancing. ilb owner will still be part of
  3216. * nohz.cpu_mask..
  3217. *
  3218. * While stopping the tick, this cpu will become the ilb owner if there
  3219. * is no other owner. And will be the owner till that cpu becomes busy
  3220. * or if all cpus in the system stop their ticks at which point
  3221. * there is no need for ilb owner.
  3222. *
  3223. * When the ilb owner becomes busy, it nominates another owner, during the
  3224. * next busy scheduler_tick()
  3225. */
  3226. int select_nohz_load_balancer(int stop_tick)
  3227. {
  3228. int cpu = smp_processor_id();
  3229. if (stop_tick) {
  3230. cpu_set(cpu, nohz.cpu_mask);
  3231. cpu_rq(cpu)->in_nohz_recently = 1;
  3232. /*
  3233. * If we are going offline and still the leader, give up!
  3234. */
  3235. if (cpu_is_offline(cpu) &&
  3236. atomic_read(&nohz.load_balancer) == cpu) {
  3237. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3238. BUG();
  3239. return 0;
  3240. }
  3241. /* time for ilb owner also to sleep */
  3242. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3243. if (atomic_read(&nohz.load_balancer) == cpu)
  3244. atomic_set(&nohz.load_balancer, -1);
  3245. return 0;
  3246. }
  3247. if (atomic_read(&nohz.load_balancer) == -1) {
  3248. /* make me the ilb owner */
  3249. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3250. return 1;
  3251. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3252. return 1;
  3253. } else {
  3254. if (!cpu_isset(cpu, nohz.cpu_mask))
  3255. return 0;
  3256. cpu_clear(cpu, nohz.cpu_mask);
  3257. if (atomic_read(&nohz.load_balancer) == cpu)
  3258. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3259. BUG();
  3260. }
  3261. return 0;
  3262. }
  3263. #endif
  3264. static DEFINE_SPINLOCK(balancing);
  3265. /*
  3266. * It checks each scheduling domain to see if it is due to be balanced,
  3267. * and initiates a balancing operation if so.
  3268. *
  3269. * Balancing parameters are set up in arch_init_sched_domains.
  3270. */
  3271. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3272. {
  3273. int balance = 1;
  3274. struct rq *rq = cpu_rq(cpu);
  3275. unsigned long interval;
  3276. struct sched_domain *sd;
  3277. /* Earliest time when we have to do rebalance again */
  3278. unsigned long next_balance = jiffies + 60*HZ;
  3279. int update_next_balance = 0;
  3280. int need_serialize;
  3281. cpumask_t tmp;
  3282. for_each_domain(cpu, sd) {
  3283. if (!(sd->flags & SD_LOAD_BALANCE))
  3284. continue;
  3285. interval = sd->balance_interval;
  3286. if (idle != CPU_IDLE)
  3287. interval *= sd->busy_factor;
  3288. /* scale ms to jiffies */
  3289. interval = msecs_to_jiffies(interval);
  3290. if (unlikely(!interval))
  3291. interval = 1;
  3292. if (interval > HZ*NR_CPUS/10)
  3293. interval = HZ*NR_CPUS/10;
  3294. need_serialize = sd->flags & SD_SERIALIZE;
  3295. if (need_serialize) {
  3296. if (!spin_trylock(&balancing))
  3297. goto out;
  3298. }
  3299. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3300. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3301. /*
  3302. * We've pulled tasks over so either we're no
  3303. * longer idle, or one of our SMT siblings is
  3304. * not idle.
  3305. */
  3306. idle = CPU_NOT_IDLE;
  3307. }
  3308. sd->last_balance = jiffies;
  3309. }
  3310. if (need_serialize)
  3311. spin_unlock(&balancing);
  3312. out:
  3313. if (time_after(next_balance, sd->last_balance + interval)) {
  3314. next_balance = sd->last_balance + interval;
  3315. update_next_balance = 1;
  3316. }
  3317. /*
  3318. * Stop the load balance at this level. There is another
  3319. * CPU in our sched group which is doing load balancing more
  3320. * actively.
  3321. */
  3322. if (!balance)
  3323. break;
  3324. }
  3325. /*
  3326. * next_balance will be updated only when there is a need.
  3327. * When the cpu is attached to null domain for ex, it will not be
  3328. * updated.
  3329. */
  3330. if (likely(update_next_balance))
  3331. rq->next_balance = next_balance;
  3332. }
  3333. /*
  3334. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3335. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3336. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3337. */
  3338. static void run_rebalance_domains(struct softirq_action *h)
  3339. {
  3340. int this_cpu = smp_processor_id();
  3341. struct rq *this_rq = cpu_rq(this_cpu);
  3342. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3343. CPU_IDLE : CPU_NOT_IDLE;
  3344. rebalance_domains(this_cpu, idle);
  3345. #ifdef CONFIG_NO_HZ
  3346. /*
  3347. * If this cpu is the owner for idle load balancing, then do the
  3348. * balancing on behalf of the other idle cpus whose ticks are
  3349. * stopped.
  3350. */
  3351. if (this_rq->idle_at_tick &&
  3352. atomic_read(&nohz.load_balancer) == this_cpu) {
  3353. cpumask_t cpus = nohz.cpu_mask;
  3354. struct rq *rq;
  3355. int balance_cpu;
  3356. cpu_clear(this_cpu, cpus);
  3357. for_each_cpu_mask(balance_cpu, cpus) {
  3358. /*
  3359. * If this cpu gets work to do, stop the load balancing
  3360. * work being done for other cpus. Next load
  3361. * balancing owner will pick it up.
  3362. */
  3363. if (need_resched())
  3364. break;
  3365. rebalance_domains(balance_cpu, CPU_IDLE);
  3366. rq = cpu_rq(balance_cpu);
  3367. if (time_after(this_rq->next_balance, rq->next_balance))
  3368. this_rq->next_balance = rq->next_balance;
  3369. }
  3370. }
  3371. #endif
  3372. }
  3373. /*
  3374. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3375. *
  3376. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3377. * idle load balancing owner or decide to stop the periodic load balancing,
  3378. * if the whole system is idle.
  3379. */
  3380. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3381. {
  3382. #ifdef CONFIG_NO_HZ
  3383. /*
  3384. * If we were in the nohz mode recently and busy at the current
  3385. * scheduler tick, then check if we need to nominate new idle
  3386. * load balancer.
  3387. */
  3388. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3389. rq->in_nohz_recently = 0;
  3390. if (atomic_read(&nohz.load_balancer) == cpu) {
  3391. cpu_clear(cpu, nohz.cpu_mask);
  3392. atomic_set(&nohz.load_balancer, -1);
  3393. }
  3394. if (atomic_read(&nohz.load_balancer) == -1) {
  3395. /*
  3396. * simple selection for now: Nominate the
  3397. * first cpu in the nohz list to be the next
  3398. * ilb owner.
  3399. *
  3400. * TBD: Traverse the sched domains and nominate
  3401. * the nearest cpu in the nohz.cpu_mask.
  3402. */
  3403. int ilb = first_cpu(nohz.cpu_mask);
  3404. if (ilb < nr_cpu_ids)
  3405. resched_cpu(ilb);
  3406. }
  3407. }
  3408. /*
  3409. * If this cpu is idle and doing idle load balancing for all the
  3410. * cpus with ticks stopped, is it time for that to stop?
  3411. */
  3412. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3413. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3414. resched_cpu(cpu);
  3415. return;
  3416. }
  3417. /*
  3418. * If this cpu is idle and the idle load balancing is done by
  3419. * someone else, then no need raise the SCHED_SOFTIRQ
  3420. */
  3421. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3422. cpu_isset(cpu, nohz.cpu_mask))
  3423. return;
  3424. #endif
  3425. if (time_after_eq(jiffies, rq->next_balance))
  3426. raise_softirq(SCHED_SOFTIRQ);
  3427. }
  3428. #else /* CONFIG_SMP */
  3429. /*
  3430. * on UP we do not need to balance between CPUs:
  3431. */
  3432. static inline void idle_balance(int cpu, struct rq *rq)
  3433. {
  3434. }
  3435. #endif
  3436. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3437. EXPORT_PER_CPU_SYMBOL(kstat);
  3438. /*
  3439. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3440. * that have not yet been banked in case the task is currently running.
  3441. */
  3442. unsigned long long task_sched_runtime(struct task_struct *p)
  3443. {
  3444. unsigned long flags;
  3445. u64 ns, delta_exec;
  3446. struct rq *rq;
  3447. rq = task_rq_lock(p, &flags);
  3448. ns = p->se.sum_exec_runtime;
  3449. if (task_current(rq, p)) {
  3450. update_rq_clock(rq);
  3451. delta_exec = rq->clock - p->se.exec_start;
  3452. if ((s64)delta_exec > 0)
  3453. ns += delta_exec;
  3454. }
  3455. task_rq_unlock(rq, &flags);
  3456. return ns;
  3457. }
  3458. /*
  3459. * Account user cpu time to a process.
  3460. * @p: the process that the cpu time gets accounted to
  3461. * @cputime: the cpu time spent in user space since the last update
  3462. */
  3463. void account_user_time(struct task_struct *p, cputime_t cputime)
  3464. {
  3465. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3466. cputime64_t tmp;
  3467. p->utime = cputime_add(p->utime, cputime);
  3468. /* Add user time to cpustat. */
  3469. tmp = cputime_to_cputime64(cputime);
  3470. if (TASK_NICE(p) > 0)
  3471. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3472. else
  3473. cpustat->user = cputime64_add(cpustat->user, tmp);
  3474. }
  3475. /*
  3476. * Account guest cpu time to a process.
  3477. * @p: the process that the cpu time gets accounted to
  3478. * @cputime: the cpu time spent in virtual machine since the last update
  3479. */
  3480. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3481. {
  3482. cputime64_t tmp;
  3483. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3484. tmp = cputime_to_cputime64(cputime);
  3485. p->utime = cputime_add(p->utime, cputime);
  3486. p->gtime = cputime_add(p->gtime, cputime);
  3487. cpustat->user = cputime64_add(cpustat->user, tmp);
  3488. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3489. }
  3490. /*
  3491. * Account scaled user cpu time to a process.
  3492. * @p: the process that the cpu time gets accounted to
  3493. * @cputime: the cpu time spent in user space since the last update
  3494. */
  3495. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3496. {
  3497. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3498. }
  3499. /*
  3500. * Account system cpu time to a process.
  3501. * @p: the process that the cpu time gets accounted to
  3502. * @hardirq_offset: the offset to subtract from hardirq_count()
  3503. * @cputime: the cpu time spent in kernel space since the last update
  3504. */
  3505. void account_system_time(struct task_struct *p, int hardirq_offset,
  3506. cputime_t cputime)
  3507. {
  3508. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3509. struct rq *rq = this_rq();
  3510. cputime64_t tmp;
  3511. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3512. account_guest_time(p, cputime);
  3513. return;
  3514. }
  3515. p->stime = cputime_add(p->stime, cputime);
  3516. /* Add system time to cpustat. */
  3517. tmp = cputime_to_cputime64(cputime);
  3518. if (hardirq_count() - hardirq_offset)
  3519. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3520. else if (softirq_count())
  3521. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3522. else if (p != rq->idle)
  3523. cpustat->system = cputime64_add(cpustat->system, tmp);
  3524. else if (atomic_read(&rq->nr_iowait) > 0)
  3525. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3526. else
  3527. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3528. /* Account for system time used */
  3529. acct_update_integrals(p);
  3530. }
  3531. /*
  3532. * Account scaled system cpu time to a process.
  3533. * @p: the process that the cpu time gets accounted to
  3534. * @hardirq_offset: the offset to subtract from hardirq_count()
  3535. * @cputime: the cpu time spent in kernel space since the last update
  3536. */
  3537. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3538. {
  3539. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3540. }
  3541. /*
  3542. * Account for involuntary wait time.
  3543. * @p: the process from which the cpu time has been stolen
  3544. * @steal: the cpu time spent in involuntary wait
  3545. */
  3546. void account_steal_time(struct task_struct *p, cputime_t steal)
  3547. {
  3548. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3549. cputime64_t tmp = cputime_to_cputime64(steal);
  3550. struct rq *rq = this_rq();
  3551. if (p == rq->idle) {
  3552. p->stime = cputime_add(p->stime, steal);
  3553. if (atomic_read(&rq->nr_iowait) > 0)
  3554. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3555. else
  3556. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3557. } else
  3558. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3559. }
  3560. /*
  3561. * This function gets called by the timer code, with HZ frequency.
  3562. * We call it with interrupts disabled.
  3563. *
  3564. * It also gets called by the fork code, when changing the parent's
  3565. * timeslices.
  3566. */
  3567. void scheduler_tick(void)
  3568. {
  3569. int cpu = smp_processor_id();
  3570. struct rq *rq = cpu_rq(cpu);
  3571. struct task_struct *curr = rq->curr;
  3572. sched_clock_tick();
  3573. spin_lock(&rq->lock);
  3574. update_rq_clock(rq);
  3575. update_cpu_load(rq);
  3576. curr->sched_class->task_tick(rq, curr, 0);
  3577. spin_unlock(&rq->lock);
  3578. #ifdef CONFIG_SMP
  3579. rq->idle_at_tick = idle_cpu(cpu);
  3580. trigger_load_balance(rq, cpu);
  3581. #endif
  3582. }
  3583. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3584. void __kprobes add_preempt_count(int val)
  3585. {
  3586. /*
  3587. * Underflow?
  3588. */
  3589. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3590. return;
  3591. preempt_count() += val;
  3592. /*
  3593. * Spinlock count overflowing soon?
  3594. */
  3595. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3596. PREEMPT_MASK - 10);
  3597. }
  3598. EXPORT_SYMBOL(add_preempt_count);
  3599. void __kprobes sub_preempt_count(int val)
  3600. {
  3601. /*
  3602. * Underflow?
  3603. */
  3604. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3605. return;
  3606. /*
  3607. * Is the spinlock portion underflowing?
  3608. */
  3609. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3610. !(preempt_count() & PREEMPT_MASK)))
  3611. return;
  3612. preempt_count() -= val;
  3613. }
  3614. EXPORT_SYMBOL(sub_preempt_count);
  3615. #endif
  3616. /*
  3617. * Print scheduling while atomic bug:
  3618. */
  3619. static noinline void __schedule_bug(struct task_struct *prev)
  3620. {
  3621. struct pt_regs *regs = get_irq_regs();
  3622. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3623. prev->comm, prev->pid, preempt_count());
  3624. debug_show_held_locks(prev);
  3625. print_modules();
  3626. if (irqs_disabled())
  3627. print_irqtrace_events(prev);
  3628. if (regs)
  3629. show_regs(regs);
  3630. else
  3631. dump_stack();
  3632. }
  3633. /*
  3634. * Various schedule()-time debugging checks and statistics:
  3635. */
  3636. static inline void schedule_debug(struct task_struct *prev)
  3637. {
  3638. /*
  3639. * Test if we are atomic. Since do_exit() needs to call into
  3640. * schedule() atomically, we ignore that path for now.
  3641. * Otherwise, whine if we are scheduling when we should not be.
  3642. */
  3643. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3644. __schedule_bug(prev);
  3645. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3646. schedstat_inc(this_rq(), sched_count);
  3647. #ifdef CONFIG_SCHEDSTATS
  3648. if (unlikely(prev->lock_depth >= 0)) {
  3649. schedstat_inc(this_rq(), bkl_count);
  3650. schedstat_inc(prev, sched_info.bkl_count);
  3651. }
  3652. #endif
  3653. }
  3654. /*
  3655. * Pick up the highest-prio task:
  3656. */
  3657. static inline struct task_struct *
  3658. pick_next_task(struct rq *rq, struct task_struct *prev)
  3659. {
  3660. const struct sched_class *class;
  3661. struct task_struct *p;
  3662. /*
  3663. * Optimization: we know that if all tasks are in
  3664. * the fair class we can call that function directly:
  3665. */
  3666. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3667. p = fair_sched_class.pick_next_task(rq);
  3668. if (likely(p))
  3669. return p;
  3670. }
  3671. class = sched_class_highest;
  3672. for ( ; ; ) {
  3673. p = class->pick_next_task(rq);
  3674. if (p)
  3675. return p;
  3676. /*
  3677. * Will never be NULL as the idle class always
  3678. * returns a non-NULL p:
  3679. */
  3680. class = class->next;
  3681. }
  3682. }
  3683. /*
  3684. * schedule() is the main scheduler function.
  3685. */
  3686. asmlinkage void __sched schedule(void)
  3687. {
  3688. struct task_struct *prev, *next;
  3689. unsigned long *switch_count;
  3690. struct rq *rq;
  3691. int cpu, hrtick = sched_feat(HRTICK);
  3692. need_resched:
  3693. preempt_disable();
  3694. cpu = smp_processor_id();
  3695. rq = cpu_rq(cpu);
  3696. rcu_qsctr_inc(cpu);
  3697. prev = rq->curr;
  3698. switch_count = &prev->nivcsw;
  3699. release_kernel_lock(prev);
  3700. need_resched_nonpreemptible:
  3701. schedule_debug(prev);
  3702. if (hrtick)
  3703. hrtick_clear(rq);
  3704. /*
  3705. * Do the rq-clock update outside the rq lock:
  3706. */
  3707. local_irq_disable();
  3708. update_rq_clock(rq);
  3709. spin_lock(&rq->lock);
  3710. clear_tsk_need_resched(prev);
  3711. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3712. if (unlikely(signal_pending_state(prev->state, prev)))
  3713. prev->state = TASK_RUNNING;
  3714. else
  3715. deactivate_task(rq, prev, 1);
  3716. switch_count = &prev->nvcsw;
  3717. }
  3718. #ifdef CONFIG_SMP
  3719. if (prev->sched_class->pre_schedule)
  3720. prev->sched_class->pre_schedule(rq, prev);
  3721. #endif
  3722. if (unlikely(!rq->nr_running))
  3723. idle_balance(cpu, rq);
  3724. prev->sched_class->put_prev_task(rq, prev);
  3725. next = pick_next_task(rq, prev);
  3726. if (likely(prev != next)) {
  3727. sched_info_switch(prev, next);
  3728. rq->nr_switches++;
  3729. rq->curr = next;
  3730. ++*switch_count;
  3731. context_switch(rq, prev, next); /* unlocks the rq */
  3732. /*
  3733. * the context switch might have flipped the stack from under
  3734. * us, hence refresh the local variables.
  3735. */
  3736. cpu = smp_processor_id();
  3737. rq = cpu_rq(cpu);
  3738. } else
  3739. spin_unlock_irq(&rq->lock);
  3740. if (hrtick)
  3741. hrtick_set(rq);
  3742. if (unlikely(reacquire_kernel_lock(current) < 0))
  3743. goto need_resched_nonpreemptible;
  3744. preempt_enable_no_resched();
  3745. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3746. goto need_resched;
  3747. }
  3748. EXPORT_SYMBOL(schedule);
  3749. #ifdef CONFIG_PREEMPT
  3750. /*
  3751. * this is the entry point to schedule() from in-kernel preemption
  3752. * off of preempt_enable. Kernel preemptions off return from interrupt
  3753. * occur there and call schedule directly.
  3754. */
  3755. asmlinkage void __sched preempt_schedule(void)
  3756. {
  3757. struct thread_info *ti = current_thread_info();
  3758. /*
  3759. * If there is a non-zero preempt_count or interrupts are disabled,
  3760. * we do not want to preempt the current task. Just return..
  3761. */
  3762. if (likely(ti->preempt_count || irqs_disabled()))
  3763. return;
  3764. do {
  3765. add_preempt_count(PREEMPT_ACTIVE);
  3766. schedule();
  3767. sub_preempt_count(PREEMPT_ACTIVE);
  3768. /*
  3769. * Check again in case we missed a preemption opportunity
  3770. * between schedule and now.
  3771. */
  3772. barrier();
  3773. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3774. }
  3775. EXPORT_SYMBOL(preempt_schedule);
  3776. /*
  3777. * this is the entry point to schedule() from kernel preemption
  3778. * off of irq context.
  3779. * Note, that this is called and return with irqs disabled. This will
  3780. * protect us against recursive calling from irq.
  3781. */
  3782. asmlinkage void __sched preempt_schedule_irq(void)
  3783. {
  3784. struct thread_info *ti = current_thread_info();
  3785. /* Catch callers which need to be fixed */
  3786. BUG_ON(ti->preempt_count || !irqs_disabled());
  3787. do {
  3788. add_preempt_count(PREEMPT_ACTIVE);
  3789. local_irq_enable();
  3790. schedule();
  3791. local_irq_disable();
  3792. sub_preempt_count(PREEMPT_ACTIVE);
  3793. /*
  3794. * Check again in case we missed a preemption opportunity
  3795. * between schedule and now.
  3796. */
  3797. barrier();
  3798. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3799. }
  3800. #endif /* CONFIG_PREEMPT */
  3801. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3802. void *key)
  3803. {
  3804. return try_to_wake_up(curr->private, mode, sync);
  3805. }
  3806. EXPORT_SYMBOL(default_wake_function);
  3807. /*
  3808. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3809. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3810. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3811. *
  3812. * There are circumstances in which we can try to wake a task which has already
  3813. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3814. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3815. */
  3816. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3817. int nr_exclusive, int sync, void *key)
  3818. {
  3819. wait_queue_t *curr, *next;
  3820. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3821. unsigned flags = curr->flags;
  3822. if (curr->func(curr, mode, sync, key) &&
  3823. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3824. break;
  3825. }
  3826. }
  3827. /**
  3828. * __wake_up - wake up threads blocked on a waitqueue.
  3829. * @q: the waitqueue
  3830. * @mode: which threads
  3831. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3832. * @key: is directly passed to the wakeup function
  3833. */
  3834. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3835. int nr_exclusive, void *key)
  3836. {
  3837. unsigned long flags;
  3838. spin_lock_irqsave(&q->lock, flags);
  3839. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3840. spin_unlock_irqrestore(&q->lock, flags);
  3841. }
  3842. EXPORT_SYMBOL(__wake_up);
  3843. /*
  3844. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3845. */
  3846. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3847. {
  3848. __wake_up_common(q, mode, 1, 0, NULL);
  3849. }
  3850. /**
  3851. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3852. * @q: the waitqueue
  3853. * @mode: which threads
  3854. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3855. *
  3856. * The sync wakeup differs that the waker knows that it will schedule
  3857. * away soon, so while the target thread will be woken up, it will not
  3858. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3859. * with each other. This can prevent needless bouncing between CPUs.
  3860. *
  3861. * On UP it can prevent extra preemption.
  3862. */
  3863. void
  3864. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3865. {
  3866. unsigned long flags;
  3867. int sync = 1;
  3868. if (unlikely(!q))
  3869. return;
  3870. if (unlikely(!nr_exclusive))
  3871. sync = 0;
  3872. spin_lock_irqsave(&q->lock, flags);
  3873. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3874. spin_unlock_irqrestore(&q->lock, flags);
  3875. }
  3876. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3877. void complete(struct completion *x)
  3878. {
  3879. unsigned long flags;
  3880. spin_lock_irqsave(&x->wait.lock, flags);
  3881. x->done++;
  3882. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3883. spin_unlock_irqrestore(&x->wait.lock, flags);
  3884. }
  3885. EXPORT_SYMBOL(complete);
  3886. void complete_all(struct completion *x)
  3887. {
  3888. unsigned long flags;
  3889. spin_lock_irqsave(&x->wait.lock, flags);
  3890. x->done += UINT_MAX/2;
  3891. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3892. spin_unlock_irqrestore(&x->wait.lock, flags);
  3893. }
  3894. EXPORT_SYMBOL(complete_all);
  3895. static inline long __sched
  3896. do_wait_for_common(struct completion *x, long timeout, int state)
  3897. {
  3898. if (!x->done) {
  3899. DECLARE_WAITQUEUE(wait, current);
  3900. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3901. __add_wait_queue_tail(&x->wait, &wait);
  3902. do {
  3903. if ((state == TASK_INTERRUPTIBLE &&
  3904. signal_pending(current)) ||
  3905. (state == TASK_KILLABLE &&
  3906. fatal_signal_pending(current))) {
  3907. timeout = -ERESTARTSYS;
  3908. break;
  3909. }
  3910. __set_current_state(state);
  3911. spin_unlock_irq(&x->wait.lock);
  3912. timeout = schedule_timeout(timeout);
  3913. spin_lock_irq(&x->wait.lock);
  3914. } while (!x->done && timeout);
  3915. __remove_wait_queue(&x->wait, &wait);
  3916. if (!x->done)
  3917. return timeout;
  3918. }
  3919. x->done--;
  3920. return timeout ?: 1;
  3921. }
  3922. static long __sched
  3923. wait_for_common(struct completion *x, long timeout, int state)
  3924. {
  3925. might_sleep();
  3926. spin_lock_irq(&x->wait.lock);
  3927. timeout = do_wait_for_common(x, timeout, state);
  3928. spin_unlock_irq(&x->wait.lock);
  3929. return timeout;
  3930. }
  3931. void __sched wait_for_completion(struct completion *x)
  3932. {
  3933. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3934. }
  3935. EXPORT_SYMBOL(wait_for_completion);
  3936. unsigned long __sched
  3937. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3938. {
  3939. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3940. }
  3941. EXPORT_SYMBOL(wait_for_completion_timeout);
  3942. int __sched wait_for_completion_interruptible(struct completion *x)
  3943. {
  3944. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3945. if (t == -ERESTARTSYS)
  3946. return t;
  3947. return 0;
  3948. }
  3949. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3950. unsigned long __sched
  3951. wait_for_completion_interruptible_timeout(struct completion *x,
  3952. unsigned long timeout)
  3953. {
  3954. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3955. }
  3956. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3957. int __sched wait_for_completion_killable(struct completion *x)
  3958. {
  3959. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3960. if (t == -ERESTARTSYS)
  3961. return t;
  3962. return 0;
  3963. }
  3964. EXPORT_SYMBOL(wait_for_completion_killable);
  3965. static long __sched
  3966. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3967. {
  3968. unsigned long flags;
  3969. wait_queue_t wait;
  3970. init_waitqueue_entry(&wait, current);
  3971. __set_current_state(state);
  3972. spin_lock_irqsave(&q->lock, flags);
  3973. __add_wait_queue(q, &wait);
  3974. spin_unlock(&q->lock);
  3975. timeout = schedule_timeout(timeout);
  3976. spin_lock_irq(&q->lock);
  3977. __remove_wait_queue(q, &wait);
  3978. spin_unlock_irqrestore(&q->lock, flags);
  3979. return timeout;
  3980. }
  3981. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3982. {
  3983. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3984. }
  3985. EXPORT_SYMBOL(interruptible_sleep_on);
  3986. long __sched
  3987. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3988. {
  3989. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3990. }
  3991. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3992. void __sched sleep_on(wait_queue_head_t *q)
  3993. {
  3994. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3995. }
  3996. EXPORT_SYMBOL(sleep_on);
  3997. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3998. {
  3999. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4000. }
  4001. EXPORT_SYMBOL(sleep_on_timeout);
  4002. #ifdef CONFIG_RT_MUTEXES
  4003. /*
  4004. * rt_mutex_setprio - set the current priority of a task
  4005. * @p: task
  4006. * @prio: prio value (kernel-internal form)
  4007. *
  4008. * This function changes the 'effective' priority of a task. It does
  4009. * not touch ->normal_prio like __setscheduler().
  4010. *
  4011. * Used by the rt_mutex code to implement priority inheritance logic.
  4012. */
  4013. void rt_mutex_setprio(struct task_struct *p, int prio)
  4014. {
  4015. unsigned long flags;
  4016. int oldprio, on_rq, running;
  4017. struct rq *rq;
  4018. const struct sched_class *prev_class = p->sched_class;
  4019. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4020. rq = task_rq_lock(p, &flags);
  4021. update_rq_clock(rq);
  4022. oldprio = p->prio;
  4023. on_rq = p->se.on_rq;
  4024. running = task_current(rq, p);
  4025. if (on_rq)
  4026. dequeue_task(rq, p, 0);
  4027. if (running)
  4028. p->sched_class->put_prev_task(rq, p);
  4029. if (rt_prio(prio))
  4030. p->sched_class = &rt_sched_class;
  4031. else
  4032. p->sched_class = &fair_sched_class;
  4033. p->prio = prio;
  4034. if (running)
  4035. p->sched_class->set_curr_task(rq);
  4036. if (on_rq) {
  4037. enqueue_task(rq, p, 0);
  4038. check_class_changed(rq, p, prev_class, oldprio, running);
  4039. }
  4040. task_rq_unlock(rq, &flags);
  4041. }
  4042. #endif
  4043. void set_user_nice(struct task_struct *p, long nice)
  4044. {
  4045. int old_prio, delta, on_rq;
  4046. unsigned long flags;
  4047. struct rq *rq;
  4048. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4049. return;
  4050. /*
  4051. * We have to be careful, if called from sys_setpriority(),
  4052. * the task might be in the middle of scheduling on another CPU.
  4053. */
  4054. rq = task_rq_lock(p, &flags);
  4055. update_rq_clock(rq);
  4056. /*
  4057. * The RT priorities are set via sched_setscheduler(), but we still
  4058. * allow the 'normal' nice value to be set - but as expected
  4059. * it wont have any effect on scheduling until the task is
  4060. * SCHED_FIFO/SCHED_RR:
  4061. */
  4062. if (task_has_rt_policy(p)) {
  4063. p->static_prio = NICE_TO_PRIO(nice);
  4064. goto out_unlock;
  4065. }
  4066. on_rq = p->se.on_rq;
  4067. if (on_rq)
  4068. dequeue_task(rq, p, 0);
  4069. p->static_prio = NICE_TO_PRIO(nice);
  4070. set_load_weight(p);
  4071. old_prio = p->prio;
  4072. p->prio = effective_prio(p);
  4073. delta = p->prio - old_prio;
  4074. if (on_rq) {
  4075. enqueue_task(rq, p, 0);
  4076. /*
  4077. * If the task increased its priority or is running and
  4078. * lowered its priority, then reschedule its CPU:
  4079. */
  4080. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4081. resched_task(rq->curr);
  4082. }
  4083. out_unlock:
  4084. task_rq_unlock(rq, &flags);
  4085. }
  4086. EXPORT_SYMBOL(set_user_nice);
  4087. /*
  4088. * can_nice - check if a task can reduce its nice value
  4089. * @p: task
  4090. * @nice: nice value
  4091. */
  4092. int can_nice(const struct task_struct *p, const int nice)
  4093. {
  4094. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4095. int nice_rlim = 20 - nice;
  4096. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4097. capable(CAP_SYS_NICE));
  4098. }
  4099. #ifdef __ARCH_WANT_SYS_NICE
  4100. /*
  4101. * sys_nice - change the priority of the current process.
  4102. * @increment: priority increment
  4103. *
  4104. * sys_setpriority is a more generic, but much slower function that
  4105. * does similar things.
  4106. */
  4107. asmlinkage long sys_nice(int increment)
  4108. {
  4109. long nice, retval;
  4110. /*
  4111. * Setpriority might change our priority at the same moment.
  4112. * We don't have to worry. Conceptually one call occurs first
  4113. * and we have a single winner.
  4114. */
  4115. if (increment < -40)
  4116. increment = -40;
  4117. if (increment > 40)
  4118. increment = 40;
  4119. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4120. if (nice < -20)
  4121. nice = -20;
  4122. if (nice > 19)
  4123. nice = 19;
  4124. if (increment < 0 && !can_nice(current, nice))
  4125. return -EPERM;
  4126. retval = security_task_setnice(current, nice);
  4127. if (retval)
  4128. return retval;
  4129. set_user_nice(current, nice);
  4130. return 0;
  4131. }
  4132. #endif
  4133. /**
  4134. * task_prio - return the priority value of a given task.
  4135. * @p: the task in question.
  4136. *
  4137. * This is the priority value as seen by users in /proc.
  4138. * RT tasks are offset by -200. Normal tasks are centered
  4139. * around 0, value goes from -16 to +15.
  4140. */
  4141. int task_prio(const struct task_struct *p)
  4142. {
  4143. return p->prio - MAX_RT_PRIO;
  4144. }
  4145. /**
  4146. * task_nice - return the nice value of a given task.
  4147. * @p: the task in question.
  4148. */
  4149. int task_nice(const struct task_struct *p)
  4150. {
  4151. return TASK_NICE(p);
  4152. }
  4153. EXPORT_SYMBOL(task_nice);
  4154. /**
  4155. * idle_cpu - is a given cpu idle currently?
  4156. * @cpu: the processor in question.
  4157. */
  4158. int idle_cpu(int cpu)
  4159. {
  4160. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4161. }
  4162. /**
  4163. * idle_task - return the idle task for a given cpu.
  4164. * @cpu: the processor in question.
  4165. */
  4166. struct task_struct *idle_task(int cpu)
  4167. {
  4168. return cpu_rq(cpu)->idle;
  4169. }
  4170. /**
  4171. * find_process_by_pid - find a process with a matching PID value.
  4172. * @pid: the pid in question.
  4173. */
  4174. static struct task_struct *find_process_by_pid(pid_t pid)
  4175. {
  4176. return pid ? find_task_by_vpid(pid) : current;
  4177. }
  4178. /* Actually do priority change: must hold rq lock. */
  4179. static void
  4180. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4181. {
  4182. BUG_ON(p->se.on_rq);
  4183. p->policy = policy;
  4184. switch (p->policy) {
  4185. case SCHED_NORMAL:
  4186. case SCHED_BATCH:
  4187. case SCHED_IDLE:
  4188. p->sched_class = &fair_sched_class;
  4189. break;
  4190. case SCHED_FIFO:
  4191. case SCHED_RR:
  4192. p->sched_class = &rt_sched_class;
  4193. break;
  4194. }
  4195. p->rt_priority = prio;
  4196. p->normal_prio = normal_prio(p);
  4197. /* we are holding p->pi_lock already */
  4198. p->prio = rt_mutex_getprio(p);
  4199. set_load_weight(p);
  4200. }
  4201. /**
  4202. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4203. * @p: the task in question.
  4204. * @policy: new policy.
  4205. * @param: structure containing the new RT priority.
  4206. *
  4207. * NOTE that the task may be already dead.
  4208. */
  4209. int sched_setscheduler(struct task_struct *p, int policy,
  4210. struct sched_param *param)
  4211. {
  4212. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4213. unsigned long flags;
  4214. const struct sched_class *prev_class = p->sched_class;
  4215. struct rq *rq;
  4216. /* may grab non-irq protected spin_locks */
  4217. BUG_ON(in_interrupt());
  4218. recheck:
  4219. /* double check policy once rq lock held */
  4220. if (policy < 0)
  4221. policy = oldpolicy = p->policy;
  4222. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4223. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4224. policy != SCHED_IDLE)
  4225. return -EINVAL;
  4226. /*
  4227. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4228. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4229. * SCHED_BATCH and SCHED_IDLE is 0.
  4230. */
  4231. if (param->sched_priority < 0 ||
  4232. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4233. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4234. return -EINVAL;
  4235. if (rt_policy(policy) != (param->sched_priority != 0))
  4236. return -EINVAL;
  4237. /*
  4238. * Allow unprivileged RT tasks to decrease priority:
  4239. */
  4240. if (!capable(CAP_SYS_NICE)) {
  4241. if (rt_policy(policy)) {
  4242. unsigned long rlim_rtprio;
  4243. if (!lock_task_sighand(p, &flags))
  4244. return -ESRCH;
  4245. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4246. unlock_task_sighand(p, &flags);
  4247. /* can't set/change the rt policy */
  4248. if (policy != p->policy && !rlim_rtprio)
  4249. return -EPERM;
  4250. /* can't increase priority */
  4251. if (param->sched_priority > p->rt_priority &&
  4252. param->sched_priority > rlim_rtprio)
  4253. return -EPERM;
  4254. }
  4255. /*
  4256. * Like positive nice levels, dont allow tasks to
  4257. * move out of SCHED_IDLE either:
  4258. */
  4259. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4260. return -EPERM;
  4261. /* can't change other user's priorities */
  4262. if ((current->euid != p->euid) &&
  4263. (current->euid != p->uid))
  4264. return -EPERM;
  4265. }
  4266. #ifdef CONFIG_RT_GROUP_SCHED
  4267. /*
  4268. * Do not allow realtime tasks into groups that have no runtime
  4269. * assigned.
  4270. */
  4271. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4272. return -EPERM;
  4273. #endif
  4274. retval = security_task_setscheduler(p, policy, param);
  4275. if (retval)
  4276. return retval;
  4277. /*
  4278. * make sure no PI-waiters arrive (or leave) while we are
  4279. * changing the priority of the task:
  4280. */
  4281. spin_lock_irqsave(&p->pi_lock, flags);
  4282. /*
  4283. * To be able to change p->policy safely, the apropriate
  4284. * runqueue lock must be held.
  4285. */
  4286. rq = __task_rq_lock(p);
  4287. /* recheck policy now with rq lock held */
  4288. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4289. policy = oldpolicy = -1;
  4290. __task_rq_unlock(rq);
  4291. spin_unlock_irqrestore(&p->pi_lock, flags);
  4292. goto recheck;
  4293. }
  4294. update_rq_clock(rq);
  4295. on_rq = p->se.on_rq;
  4296. running = task_current(rq, p);
  4297. if (on_rq)
  4298. deactivate_task(rq, p, 0);
  4299. if (running)
  4300. p->sched_class->put_prev_task(rq, p);
  4301. oldprio = p->prio;
  4302. __setscheduler(rq, p, policy, param->sched_priority);
  4303. if (running)
  4304. p->sched_class->set_curr_task(rq);
  4305. if (on_rq) {
  4306. activate_task(rq, p, 0);
  4307. check_class_changed(rq, p, prev_class, oldprio, running);
  4308. }
  4309. __task_rq_unlock(rq);
  4310. spin_unlock_irqrestore(&p->pi_lock, flags);
  4311. rt_mutex_adjust_pi(p);
  4312. return 0;
  4313. }
  4314. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4315. static int
  4316. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4317. {
  4318. struct sched_param lparam;
  4319. struct task_struct *p;
  4320. int retval;
  4321. if (!param || pid < 0)
  4322. return -EINVAL;
  4323. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4324. return -EFAULT;
  4325. rcu_read_lock();
  4326. retval = -ESRCH;
  4327. p = find_process_by_pid(pid);
  4328. if (p != NULL)
  4329. retval = sched_setscheduler(p, policy, &lparam);
  4330. rcu_read_unlock();
  4331. return retval;
  4332. }
  4333. /**
  4334. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4335. * @pid: the pid in question.
  4336. * @policy: new policy.
  4337. * @param: structure containing the new RT priority.
  4338. */
  4339. asmlinkage long
  4340. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4341. {
  4342. /* negative values for policy are not valid */
  4343. if (policy < 0)
  4344. return -EINVAL;
  4345. return do_sched_setscheduler(pid, policy, param);
  4346. }
  4347. /**
  4348. * sys_sched_setparam - set/change the RT priority of a thread
  4349. * @pid: the pid in question.
  4350. * @param: structure containing the new RT priority.
  4351. */
  4352. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4353. {
  4354. return do_sched_setscheduler(pid, -1, param);
  4355. }
  4356. /**
  4357. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4358. * @pid: the pid in question.
  4359. */
  4360. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4361. {
  4362. struct task_struct *p;
  4363. int retval;
  4364. if (pid < 0)
  4365. return -EINVAL;
  4366. retval = -ESRCH;
  4367. read_lock(&tasklist_lock);
  4368. p = find_process_by_pid(pid);
  4369. if (p) {
  4370. retval = security_task_getscheduler(p);
  4371. if (!retval)
  4372. retval = p->policy;
  4373. }
  4374. read_unlock(&tasklist_lock);
  4375. return retval;
  4376. }
  4377. /**
  4378. * sys_sched_getscheduler - get the RT priority of a thread
  4379. * @pid: the pid in question.
  4380. * @param: structure containing the RT priority.
  4381. */
  4382. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4383. {
  4384. struct sched_param lp;
  4385. struct task_struct *p;
  4386. int retval;
  4387. if (!param || pid < 0)
  4388. return -EINVAL;
  4389. read_lock(&tasklist_lock);
  4390. p = find_process_by_pid(pid);
  4391. retval = -ESRCH;
  4392. if (!p)
  4393. goto out_unlock;
  4394. retval = security_task_getscheduler(p);
  4395. if (retval)
  4396. goto out_unlock;
  4397. lp.sched_priority = p->rt_priority;
  4398. read_unlock(&tasklist_lock);
  4399. /*
  4400. * This one might sleep, we cannot do it with a spinlock held ...
  4401. */
  4402. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4403. return retval;
  4404. out_unlock:
  4405. read_unlock(&tasklist_lock);
  4406. return retval;
  4407. }
  4408. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4409. {
  4410. cpumask_t cpus_allowed;
  4411. cpumask_t new_mask = *in_mask;
  4412. struct task_struct *p;
  4413. int retval;
  4414. get_online_cpus();
  4415. read_lock(&tasklist_lock);
  4416. p = find_process_by_pid(pid);
  4417. if (!p) {
  4418. read_unlock(&tasklist_lock);
  4419. put_online_cpus();
  4420. return -ESRCH;
  4421. }
  4422. /*
  4423. * It is not safe to call set_cpus_allowed with the
  4424. * tasklist_lock held. We will bump the task_struct's
  4425. * usage count and then drop tasklist_lock.
  4426. */
  4427. get_task_struct(p);
  4428. read_unlock(&tasklist_lock);
  4429. retval = -EPERM;
  4430. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4431. !capable(CAP_SYS_NICE))
  4432. goto out_unlock;
  4433. retval = security_task_setscheduler(p, 0, NULL);
  4434. if (retval)
  4435. goto out_unlock;
  4436. cpuset_cpus_allowed(p, &cpus_allowed);
  4437. cpus_and(new_mask, new_mask, cpus_allowed);
  4438. again:
  4439. retval = set_cpus_allowed_ptr(p, &new_mask);
  4440. if (!retval) {
  4441. cpuset_cpus_allowed(p, &cpus_allowed);
  4442. if (!cpus_subset(new_mask, cpus_allowed)) {
  4443. /*
  4444. * We must have raced with a concurrent cpuset
  4445. * update. Just reset the cpus_allowed to the
  4446. * cpuset's cpus_allowed
  4447. */
  4448. new_mask = cpus_allowed;
  4449. goto again;
  4450. }
  4451. }
  4452. out_unlock:
  4453. put_task_struct(p);
  4454. put_online_cpus();
  4455. return retval;
  4456. }
  4457. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4458. cpumask_t *new_mask)
  4459. {
  4460. if (len < sizeof(cpumask_t)) {
  4461. memset(new_mask, 0, sizeof(cpumask_t));
  4462. } else if (len > sizeof(cpumask_t)) {
  4463. len = sizeof(cpumask_t);
  4464. }
  4465. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4466. }
  4467. /**
  4468. * sys_sched_setaffinity - set the cpu affinity of a process
  4469. * @pid: pid of the process
  4470. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4471. * @user_mask_ptr: user-space pointer to the new cpu mask
  4472. */
  4473. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4474. unsigned long __user *user_mask_ptr)
  4475. {
  4476. cpumask_t new_mask;
  4477. int retval;
  4478. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4479. if (retval)
  4480. return retval;
  4481. return sched_setaffinity(pid, &new_mask);
  4482. }
  4483. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4484. {
  4485. struct task_struct *p;
  4486. int retval;
  4487. get_online_cpus();
  4488. read_lock(&tasklist_lock);
  4489. retval = -ESRCH;
  4490. p = find_process_by_pid(pid);
  4491. if (!p)
  4492. goto out_unlock;
  4493. retval = security_task_getscheduler(p);
  4494. if (retval)
  4495. goto out_unlock;
  4496. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4497. out_unlock:
  4498. read_unlock(&tasklist_lock);
  4499. put_online_cpus();
  4500. return retval;
  4501. }
  4502. /**
  4503. * sys_sched_getaffinity - get the cpu affinity of a process
  4504. * @pid: pid of the process
  4505. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4506. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4507. */
  4508. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4509. unsigned long __user *user_mask_ptr)
  4510. {
  4511. int ret;
  4512. cpumask_t mask;
  4513. if (len < sizeof(cpumask_t))
  4514. return -EINVAL;
  4515. ret = sched_getaffinity(pid, &mask);
  4516. if (ret < 0)
  4517. return ret;
  4518. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4519. return -EFAULT;
  4520. return sizeof(cpumask_t);
  4521. }
  4522. /**
  4523. * sys_sched_yield - yield the current processor to other threads.
  4524. *
  4525. * This function yields the current CPU to other tasks. If there are no
  4526. * other threads running on this CPU then this function will return.
  4527. */
  4528. asmlinkage long sys_sched_yield(void)
  4529. {
  4530. struct rq *rq = this_rq_lock();
  4531. schedstat_inc(rq, yld_count);
  4532. current->sched_class->yield_task(rq);
  4533. /*
  4534. * Since we are going to call schedule() anyway, there's
  4535. * no need to preempt or enable interrupts:
  4536. */
  4537. __release(rq->lock);
  4538. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4539. _raw_spin_unlock(&rq->lock);
  4540. preempt_enable_no_resched();
  4541. schedule();
  4542. return 0;
  4543. }
  4544. static void __cond_resched(void)
  4545. {
  4546. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4547. __might_sleep(__FILE__, __LINE__);
  4548. #endif
  4549. /*
  4550. * The BKS might be reacquired before we have dropped
  4551. * PREEMPT_ACTIVE, which could trigger a second
  4552. * cond_resched() call.
  4553. */
  4554. do {
  4555. add_preempt_count(PREEMPT_ACTIVE);
  4556. schedule();
  4557. sub_preempt_count(PREEMPT_ACTIVE);
  4558. } while (need_resched());
  4559. }
  4560. int __sched _cond_resched(void)
  4561. {
  4562. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4563. system_state == SYSTEM_RUNNING) {
  4564. __cond_resched();
  4565. return 1;
  4566. }
  4567. return 0;
  4568. }
  4569. EXPORT_SYMBOL(_cond_resched);
  4570. /*
  4571. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4572. * call schedule, and on return reacquire the lock.
  4573. *
  4574. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4575. * operations here to prevent schedule() from being called twice (once via
  4576. * spin_unlock(), once by hand).
  4577. */
  4578. int cond_resched_lock(spinlock_t *lock)
  4579. {
  4580. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4581. int ret = 0;
  4582. if (spin_needbreak(lock) || resched) {
  4583. spin_unlock(lock);
  4584. if (resched && need_resched())
  4585. __cond_resched();
  4586. else
  4587. cpu_relax();
  4588. ret = 1;
  4589. spin_lock(lock);
  4590. }
  4591. return ret;
  4592. }
  4593. EXPORT_SYMBOL(cond_resched_lock);
  4594. int __sched cond_resched_softirq(void)
  4595. {
  4596. BUG_ON(!in_softirq());
  4597. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4598. local_bh_enable();
  4599. __cond_resched();
  4600. local_bh_disable();
  4601. return 1;
  4602. }
  4603. return 0;
  4604. }
  4605. EXPORT_SYMBOL(cond_resched_softirq);
  4606. /**
  4607. * yield - yield the current processor to other threads.
  4608. *
  4609. * This is a shortcut for kernel-space yielding - it marks the
  4610. * thread runnable and calls sys_sched_yield().
  4611. */
  4612. void __sched yield(void)
  4613. {
  4614. set_current_state(TASK_RUNNING);
  4615. sys_sched_yield();
  4616. }
  4617. EXPORT_SYMBOL(yield);
  4618. /*
  4619. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4620. * that process accounting knows that this is a task in IO wait state.
  4621. *
  4622. * But don't do that if it is a deliberate, throttling IO wait (this task
  4623. * has set its backing_dev_info: the queue against which it should throttle)
  4624. */
  4625. void __sched io_schedule(void)
  4626. {
  4627. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4628. delayacct_blkio_start();
  4629. atomic_inc(&rq->nr_iowait);
  4630. schedule();
  4631. atomic_dec(&rq->nr_iowait);
  4632. delayacct_blkio_end();
  4633. }
  4634. EXPORT_SYMBOL(io_schedule);
  4635. long __sched io_schedule_timeout(long timeout)
  4636. {
  4637. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4638. long ret;
  4639. delayacct_blkio_start();
  4640. atomic_inc(&rq->nr_iowait);
  4641. ret = schedule_timeout(timeout);
  4642. atomic_dec(&rq->nr_iowait);
  4643. delayacct_blkio_end();
  4644. return ret;
  4645. }
  4646. /**
  4647. * sys_sched_get_priority_max - return maximum RT priority.
  4648. * @policy: scheduling class.
  4649. *
  4650. * this syscall returns the maximum rt_priority that can be used
  4651. * by a given scheduling class.
  4652. */
  4653. asmlinkage long sys_sched_get_priority_max(int policy)
  4654. {
  4655. int ret = -EINVAL;
  4656. switch (policy) {
  4657. case SCHED_FIFO:
  4658. case SCHED_RR:
  4659. ret = MAX_USER_RT_PRIO-1;
  4660. break;
  4661. case SCHED_NORMAL:
  4662. case SCHED_BATCH:
  4663. case SCHED_IDLE:
  4664. ret = 0;
  4665. break;
  4666. }
  4667. return ret;
  4668. }
  4669. /**
  4670. * sys_sched_get_priority_min - return minimum RT priority.
  4671. * @policy: scheduling class.
  4672. *
  4673. * this syscall returns the minimum rt_priority that can be used
  4674. * by a given scheduling class.
  4675. */
  4676. asmlinkage long sys_sched_get_priority_min(int policy)
  4677. {
  4678. int ret = -EINVAL;
  4679. switch (policy) {
  4680. case SCHED_FIFO:
  4681. case SCHED_RR:
  4682. ret = 1;
  4683. break;
  4684. case SCHED_NORMAL:
  4685. case SCHED_BATCH:
  4686. case SCHED_IDLE:
  4687. ret = 0;
  4688. }
  4689. return ret;
  4690. }
  4691. /**
  4692. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4693. * @pid: pid of the process.
  4694. * @interval: userspace pointer to the timeslice value.
  4695. *
  4696. * this syscall writes the default timeslice value of a given process
  4697. * into the user-space timespec buffer. A value of '0' means infinity.
  4698. */
  4699. asmlinkage
  4700. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4701. {
  4702. struct task_struct *p;
  4703. unsigned int time_slice;
  4704. int retval;
  4705. struct timespec t;
  4706. if (pid < 0)
  4707. return -EINVAL;
  4708. retval = -ESRCH;
  4709. read_lock(&tasklist_lock);
  4710. p = find_process_by_pid(pid);
  4711. if (!p)
  4712. goto out_unlock;
  4713. retval = security_task_getscheduler(p);
  4714. if (retval)
  4715. goto out_unlock;
  4716. /*
  4717. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4718. * tasks that are on an otherwise idle runqueue:
  4719. */
  4720. time_slice = 0;
  4721. if (p->policy == SCHED_RR) {
  4722. time_slice = DEF_TIMESLICE;
  4723. } else if (p->policy != SCHED_FIFO) {
  4724. struct sched_entity *se = &p->se;
  4725. unsigned long flags;
  4726. struct rq *rq;
  4727. rq = task_rq_lock(p, &flags);
  4728. if (rq->cfs.load.weight)
  4729. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4730. task_rq_unlock(rq, &flags);
  4731. }
  4732. read_unlock(&tasklist_lock);
  4733. jiffies_to_timespec(time_slice, &t);
  4734. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4735. return retval;
  4736. out_unlock:
  4737. read_unlock(&tasklist_lock);
  4738. return retval;
  4739. }
  4740. static const char stat_nam[] = "RSDTtZX";
  4741. void sched_show_task(struct task_struct *p)
  4742. {
  4743. unsigned long free = 0;
  4744. unsigned state;
  4745. state = p->state ? __ffs(p->state) + 1 : 0;
  4746. printk(KERN_INFO "%-13.13s %c", p->comm,
  4747. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4748. #if BITS_PER_LONG == 32
  4749. if (state == TASK_RUNNING)
  4750. printk(KERN_CONT " running ");
  4751. else
  4752. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4753. #else
  4754. if (state == TASK_RUNNING)
  4755. printk(KERN_CONT " running task ");
  4756. else
  4757. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4758. #endif
  4759. #ifdef CONFIG_DEBUG_STACK_USAGE
  4760. {
  4761. unsigned long *n = end_of_stack(p);
  4762. while (!*n)
  4763. n++;
  4764. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4765. }
  4766. #endif
  4767. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4768. task_pid_nr(p), task_pid_nr(p->real_parent));
  4769. show_stack(p, NULL);
  4770. }
  4771. void show_state_filter(unsigned long state_filter)
  4772. {
  4773. struct task_struct *g, *p;
  4774. #if BITS_PER_LONG == 32
  4775. printk(KERN_INFO
  4776. " task PC stack pid father\n");
  4777. #else
  4778. printk(KERN_INFO
  4779. " task PC stack pid father\n");
  4780. #endif
  4781. read_lock(&tasklist_lock);
  4782. do_each_thread(g, p) {
  4783. /*
  4784. * reset the NMI-timeout, listing all files on a slow
  4785. * console might take alot of time:
  4786. */
  4787. touch_nmi_watchdog();
  4788. if (!state_filter || (p->state & state_filter))
  4789. sched_show_task(p);
  4790. } while_each_thread(g, p);
  4791. touch_all_softlockup_watchdogs();
  4792. #ifdef CONFIG_SCHED_DEBUG
  4793. sysrq_sched_debug_show();
  4794. #endif
  4795. read_unlock(&tasklist_lock);
  4796. /*
  4797. * Only show locks if all tasks are dumped:
  4798. */
  4799. if (state_filter == -1)
  4800. debug_show_all_locks();
  4801. }
  4802. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4803. {
  4804. idle->sched_class = &idle_sched_class;
  4805. }
  4806. /**
  4807. * init_idle - set up an idle thread for a given CPU
  4808. * @idle: task in question
  4809. * @cpu: cpu the idle task belongs to
  4810. *
  4811. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4812. * flag, to make booting more robust.
  4813. */
  4814. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4815. {
  4816. struct rq *rq = cpu_rq(cpu);
  4817. unsigned long flags;
  4818. __sched_fork(idle);
  4819. idle->se.exec_start = sched_clock();
  4820. idle->prio = idle->normal_prio = MAX_PRIO;
  4821. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4822. __set_task_cpu(idle, cpu);
  4823. spin_lock_irqsave(&rq->lock, flags);
  4824. rq->curr = rq->idle = idle;
  4825. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4826. idle->oncpu = 1;
  4827. #endif
  4828. spin_unlock_irqrestore(&rq->lock, flags);
  4829. /* Set the preempt count _outside_ the spinlocks! */
  4830. #if defined(CONFIG_PREEMPT)
  4831. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4832. #else
  4833. task_thread_info(idle)->preempt_count = 0;
  4834. #endif
  4835. /*
  4836. * The idle tasks have their own, simple scheduling class:
  4837. */
  4838. idle->sched_class = &idle_sched_class;
  4839. }
  4840. /*
  4841. * In a system that switches off the HZ timer nohz_cpu_mask
  4842. * indicates which cpus entered this state. This is used
  4843. * in the rcu update to wait only for active cpus. For system
  4844. * which do not switch off the HZ timer nohz_cpu_mask should
  4845. * always be CPU_MASK_NONE.
  4846. */
  4847. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4848. /*
  4849. * Increase the granularity value when there are more CPUs,
  4850. * because with more CPUs the 'effective latency' as visible
  4851. * to users decreases. But the relationship is not linear,
  4852. * so pick a second-best guess by going with the log2 of the
  4853. * number of CPUs.
  4854. *
  4855. * This idea comes from the SD scheduler of Con Kolivas:
  4856. */
  4857. static inline void sched_init_granularity(void)
  4858. {
  4859. unsigned int factor = 1 + ilog2(num_online_cpus());
  4860. const unsigned long limit = 200000000;
  4861. sysctl_sched_min_granularity *= factor;
  4862. if (sysctl_sched_min_granularity > limit)
  4863. sysctl_sched_min_granularity = limit;
  4864. sysctl_sched_latency *= factor;
  4865. if (sysctl_sched_latency > limit)
  4866. sysctl_sched_latency = limit;
  4867. sysctl_sched_wakeup_granularity *= factor;
  4868. }
  4869. #ifdef CONFIG_SMP
  4870. /*
  4871. * This is how migration works:
  4872. *
  4873. * 1) we queue a struct migration_req structure in the source CPU's
  4874. * runqueue and wake up that CPU's migration thread.
  4875. * 2) we down() the locked semaphore => thread blocks.
  4876. * 3) migration thread wakes up (implicitly it forces the migrated
  4877. * thread off the CPU)
  4878. * 4) it gets the migration request and checks whether the migrated
  4879. * task is still in the wrong runqueue.
  4880. * 5) if it's in the wrong runqueue then the migration thread removes
  4881. * it and puts it into the right queue.
  4882. * 6) migration thread up()s the semaphore.
  4883. * 7) we wake up and the migration is done.
  4884. */
  4885. /*
  4886. * Change a given task's CPU affinity. Migrate the thread to a
  4887. * proper CPU and schedule it away if the CPU it's executing on
  4888. * is removed from the allowed bitmask.
  4889. *
  4890. * NOTE: the caller must have a valid reference to the task, the
  4891. * task must not exit() & deallocate itself prematurely. The
  4892. * call is not atomic; no spinlocks may be held.
  4893. */
  4894. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4895. {
  4896. struct migration_req req;
  4897. unsigned long flags;
  4898. struct rq *rq;
  4899. int ret = 0;
  4900. rq = task_rq_lock(p, &flags);
  4901. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4902. ret = -EINVAL;
  4903. goto out;
  4904. }
  4905. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4906. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4907. ret = -EINVAL;
  4908. goto out;
  4909. }
  4910. if (p->sched_class->set_cpus_allowed)
  4911. p->sched_class->set_cpus_allowed(p, new_mask);
  4912. else {
  4913. p->cpus_allowed = *new_mask;
  4914. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4915. }
  4916. /* Can the task run on the task's current CPU? If so, we're done */
  4917. if (cpu_isset(task_cpu(p), *new_mask))
  4918. goto out;
  4919. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4920. /* Need help from migration thread: drop lock and wait. */
  4921. task_rq_unlock(rq, &flags);
  4922. wake_up_process(rq->migration_thread);
  4923. wait_for_completion(&req.done);
  4924. tlb_migrate_finish(p->mm);
  4925. return 0;
  4926. }
  4927. out:
  4928. task_rq_unlock(rq, &flags);
  4929. return ret;
  4930. }
  4931. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4932. /*
  4933. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4934. * this because either it can't run here any more (set_cpus_allowed()
  4935. * away from this CPU, or CPU going down), or because we're
  4936. * attempting to rebalance this task on exec (sched_exec).
  4937. *
  4938. * So we race with normal scheduler movements, but that's OK, as long
  4939. * as the task is no longer on this CPU.
  4940. *
  4941. * Returns non-zero if task was successfully migrated.
  4942. */
  4943. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4944. {
  4945. struct rq *rq_dest, *rq_src;
  4946. int ret = 0, on_rq;
  4947. if (unlikely(cpu_is_offline(dest_cpu)))
  4948. return ret;
  4949. rq_src = cpu_rq(src_cpu);
  4950. rq_dest = cpu_rq(dest_cpu);
  4951. double_rq_lock(rq_src, rq_dest);
  4952. /* Already moved. */
  4953. if (task_cpu(p) != src_cpu)
  4954. goto out;
  4955. /* Affinity changed (again). */
  4956. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4957. goto out;
  4958. on_rq = p->se.on_rq;
  4959. if (on_rq)
  4960. deactivate_task(rq_src, p, 0);
  4961. set_task_cpu(p, dest_cpu);
  4962. if (on_rq) {
  4963. activate_task(rq_dest, p, 0);
  4964. check_preempt_curr(rq_dest, p);
  4965. }
  4966. ret = 1;
  4967. out:
  4968. double_rq_unlock(rq_src, rq_dest);
  4969. return ret;
  4970. }
  4971. /*
  4972. * migration_thread - this is a highprio system thread that performs
  4973. * thread migration by bumping thread off CPU then 'pushing' onto
  4974. * another runqueue.
  4975. */
  4976. static int migration_thread(void *data)
  4977. {
  4978. int cpu = (long)data;
  4979. struct rq *rq;
  4980. rq = cpu_rq(cpu);
  4981. BUG_ON(rq->migration_thread != current);
  4982. set_current_state(TASK_INTERRUPTIBLE);
  4983. while (!kthread_should_stop()) {
  4984. struct migration_req *req;
  4985. struct list_head *head;
  4986. spin_lock_irq(&rq->lock);
  4987. if (cpu_is_offline(cpu)) {
  4988. spin_unlock_irq(&rq->lock);
  4989. goto wait_to_die;
  4990. }
  4991. if (rq->active_balance) {
  4992. active_load_balance(rq, cpu);
  4993. rq->active_balance = 0;
  4994. }
  4995. head = &rq->migration_queue;
  4996. if (list_empty(head)) {
  4997. spin_unlock_irq(&rq->lock);
  4998. schedule();
  4999. set_current_state(TASK_INTERRUPTIBLE);
  5000. continue;
  5001. }
  5002. req = list_entry(head->next, struct migration_req, list);
  5003. list_del_init(head->next);
  5004. spin_unlock(&rq->lock);
  5005. __migrate_task(req->task, cpu, req->dest_cpu);
  5006. local_irq_enable();
  5007. complete(&req->done);
  5008. }
  5009. __set_current_state(TASK_RUNNING);
  5010. return 0;
  5011. wait_to_die:
  5012. /* Wait for kthread_stop */
  5013. set_current_state(TASK_INTERRUPTIBLE);
  5014. while (!kthread_should_stop()) {
  5015. schedule();
  5016. set_current_state(TASK_INTERRUPTIBLE);
  5017. }
  5018. __set_current_state(TASK_RUNNING);
  5019. return 0;
  5020. }
  5021. #ifdef CONFIG_HOTPLUG_CPU
  5022. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5023. {
  5024. int ret;
  5025. local_irq_disable();
  5026. ret = __migrate_task(p, src_cpu, dest_cpu);
  5027. local_irq_enable();
  5028. return ret;
  5029. }
  5030. /*
  5031. * Figure out where task on dead CPU should go, use force if necessary.
  5032. * NOTE: interrupts should be disabled by the caller
  5033. */
  5034. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5035. {
  5036. unsigned long flags;
  5037. cpumask_t mask;
  5038. struct rq *rq;
  5039. int dest_cpu;
  5040. do {
  5041. /* On same node? */
  5042. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5043. cpus_and(mask, mask, p->cpus_allowed);
  5044. dest_cpu = any_online_cpu(mask);
  5045. /* On any allowed CPU? */
  5046. if (dest_cpu >= nr_cpu_ids)
  5047. dest_cpu = any_online_cpu(p->cpus_allowed);
  5048. /* No more Mr. Nice Guy. */
  5049. if (dest_cpu >= nr_cpu_ids) {
  5050. cpumask_t cpus_allowed;
  5051. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5052. /*
  5053. * Try to stay on the same cpuset, where the
  5054. * current cpuset may be a subset of all cpus.
  5055. * The cpuset_cpus_allowed_locked() variant of
  5056. * cpuset_cpus_allowed() will not block. It must be
  5057. * called within calls to cpuset_lock/cpuset_unlock.
  5058. */
  5059. rq = task_rq_lock(p, &flags);
  5060. p->cpus_allowed = cpus_allowed;
  5061. dest_cpu = any_online_cpu(p->cpus_allowed);
  5062. task_rq_unlock(rq, &flags);
  5063. /*
  5064. * Don't tell them about moving exiting tasks or
  5065. * kernel threads (both mm NULL), since they never
  5066. * leave kernel.
  5067. */
  5068. if (p->mm && printk_ratelimit()) {
  5069. printk(KERN_INFO "process %d (%s) no "
  5070. "longer affine to cpu%d\n",
  5071. task_pid_nr(p), p->comm, dead_cpu);
  5072. }
  5073. }
  5074. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5075. }
  5076. /*
  5077. * While a dead CPU has no uninterruptible tasks queued at this point,
  5078. * it might still have a nonzero ->nr_uninterruptible counter, because
  5079. * for performance reasons the counter is not stricly tracking tasks to
  5080. * their home CPUs. So we just add the counter to another CPU's counter,
  5081. * to keep the global sum constant after CPU-down:
  5082. */
  5083. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5084. {
  5085. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5086. unsigned long flags;
  5087. local_irq_save(flags);
  5088. double_rq_lock(rq_src, rq_dest);
  5089. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5090. rq_src->nr_uninterruptible = 0;
  5091. double_rq_unlock(rq_src, rq_dest);
  5092. local_irq_restore(flags);
  5093. }
  5094. /* Run through task list and migrate tasks from the dead cpu. */
  5095. static void migrate_live_tasks(int src_cpu)
  5096. {
  5097. struct task_struct *p, *t;
  5098. read_lock(&tasklist_lock);
  5099. do_each_thread(t, p) {
  5100. if (p == current)
  5101. continue;
  5102. if (task_cpu(p) == src_cpu)
  5103. move_task_off_dead_cpu(src_cpu, p);
  5104. } while_each_thread(t, p);
  5105. read_unlock(&tasklist_lock);
  5106. }
  5107. /*
  5108. * Schedules idle task to be the next runnable task on current CPU.
  5109. * It does so by boosting its priority to highest possible.
  5110. * Used by CPU offline code.
  5111. */
  5112. void sched_idle_next(void)
  5113. {
  5114. int this_cpu = smp_processor_id();
  5115. struct rq *rq = cpu_rq(this_cpu);
  5116. struct task_struct *p = rq->idle;
  5117. unsigned long flags;
  5118. /* cpu has to be offline */
  5119. BUG_ON(cpu_online(this_cpu));
  5120. /*
  5121. * Strictly not necessary since rest of the CPUs are stopped by now
  5122. * and interrupts disabled on the current cpu.
  5123. */
  5124. spin_lock_irqsave(&rq->lock, flags);
  5125. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5126. update_rq_clock(rq);
  5127. activate_task(rq, p, 0);
  5128. spin_unlock_irqrestore(&rq->lock, flags);
  5129. }
  5130. /*
  5131. * Ensures that the idle task is using init_mm right before its cpu goes
  5132. * offline.
  5133. */
  5134. void idle_task_exit(void)
  5135. {
  5136. struct mm_struct *mm = current->active_mm;
  5137. BUG_ON(cpu_online(smp_processor_id()));
  5138. if (mm != &init_mm)
  5139. switch_mm(mm, &init_mm, current);
  5140. mmdrop(mm);
  5141. }
  5142. /* called under rq->lock with disabled interrupts */
  5143. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5144. {
  5145. struct rq *rq = cpu_rq(dead_cpu);
  5146. /* Must be exiting, otherwise would be on tasklist. */
  5147. BUG_ON(!p->exit_state);
  5148. /* Cannot have done final schedule yet: would have vanished. */
  5149. BUG_ON(p->state == TASK_DEAD);
  5150. get_task_struct(p);
  5151. /*
  5152. * Drop lock around migration; if someone else moves it,
  5153. * that's OK. No task can be added to this CPU, so iteration is
  5154. * fine.
  5155. */
  5156. spin_unlock_irq(&rq->lock);
  5157. move_task_off_dead_cpu(dead_cpu, p);
  5158. spin_lock_irq(&rq->lock);
  5159. put_task_struct(p);
  5160. }
  5161. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5162. static void migrate_dead_tasks(unsigned int dead_cpu)
  5163. {
  5164. struct rq *rq = cpu_rq(dead_cpu);
  5165. struct task_struct *next;
  5166. for ( ; ; ) {
  5167. if (!rq->nr_running)
  5168. break;
  5169. update_rq_clock(rq);
  5170. next = pick_next_task(rq, rq->curr);
  5171. if (!next)
  5172. break;
  5173. migrate_dead(dead_cpu, next);
  5174. }
  5175. }
  5176. #endif /* CONFIG_HOTPLUG_CPU */
  5177. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5178. static struct ctl_table sd_ctl_dir[] = {
  5179. {
  5180. .procname = "sched_domain",
  5181. .mode = 0555,
  5182. },
  5183. {0, },
  5184. };
  5185. static struct ctl_table sd_ctl_root[] = {
  5186. {
  5187. .ctl_name = CTL_KERN,
  5188. .procname = "kernel",
  5189. .mode = 0555,
  5190. .child = sd_ctl_dir,
  5191. },
  5192. {0, },
  5193. };
  5194. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5195. {
  5196. struct ctl_table *entry =
  5197. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5198. return entry;
  5199. }
  5200. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5201. {
  5202. struct ctl_table *entry;
  5203. /*
  5204. * In the intermediate directories, both the child directory and
  5205. * procname are dynamically allocated and could fail but the mode
  5206. * will always be set. In the lowest directory the names are
  5207. * static strings and all have proc handlers.
  5208. */
  5209. for (entry = *tablep; entry->mode; entry++) {
  5210. if (entry->child)
  5211. sd_free_ctl_entry(&entry->child);
  5212. if (entry->proc_handler == NULL)
  5213. kfree(entry->procname);
  5214. }
  5215. kfree(*tablep);
  5216. *tablep = NULL;
  5217. }
  5218. static void
  5219. set_table_entry(struct ctl_table *entry,
  5220. const char *procname, void *data, int maxlen,
  5221. mode_t mode, proc_handler *proc_handler)
  5222. {
  5223. entry->procname = procname;
  5224. entry->data = data;
  5225. entry->maxlen = maxlen;
  5226. entry->mode = mode;
  5227. entry->proc_handler = proc_handler;
  5228. }
  5229. static struct ctl_table *
  5230. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5231. {
  5232. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5233. if (table == NULL)
  5234. return NULL;
  5235. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5236. sizeof(long), 0644, proc_doulongvec_minmax);
  5237. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5238. sizeof(long), 0644, proc_doulongvec_minmax);
  5239. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5240. sizeof(int), 0644, proc_dointvec_minmax);
  5241. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5242. sizeof(int), 0644, proc_dointvec_minmax);
  5243. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5244. sizeof(int), 0644, proc_dointvec_minmax);
  5245. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5246. sizeof(int), 0644, proc_dointvec_minmax);
  5247. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5248. sizeof(int), 0644, proc_dointvec_minmax);
  5249. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5250. sizeof(int), 0644, proc_dointvec_minmax);
  5251. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5252. sizeof(int), 0644, proc_dointvec_minmax);
  5253. set_table_entry(&table[9], "cache_nice_tries",
  5254. &sd->cache_nice_tries,
  5255. sizeof(int), 0644, proc_dointvec_minmax);
  5256. set_table_entry(&table[10], "flags", &sd->flags,
  5257. sizeof(int), 0644, proc_dointvec_minmax);
  5258. /* &table[11] is terminator */
  5259. return table;
  5260. }
  5261. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5262. {
  5263. struct ctl_table *entry, *table;
  5264. struct sched_domain *sd;
  5265. int domain_num = 0, i;
  5266. char buf[32];
  5267. for_each_domain(cpu, sd)
  5268. domain_num++;
  5269. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5270. if (table == NULL)
  5271. return NULL;
  5272. i = 0;
  5273. for_each_domain(cpu, sd) {
  5274. snprintf(buf, 32, "domain%d", i);
  5275. entry->procname = kstrdup(buf, GFP_KERNEL);
  5276. entry->mode = 0555;
  5277. entry->child = sd_alloc_ctl_domain_table(sd);
  5278. entry++;
  5279. i++;
  5280. }
  5281. return table;
  5282. }
  5283. static struct ctl_table_header *sd_sysctl_header;
  5284. static void register_sched_domain_sysctl(void)
  5285. {
  5286. int i, cpu_num = num_online_cpus();
  5287. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5288. char buf[32];
  5289. WARN_ON(sd_ctl_dir[0].child);
  5290. sd_ctl_dir[0].child = entry;
  5291. if (entry == NULL)
  5292. return;
  5293. for_each_online_cpu(i) {
  5294. snprintf(buf, 32, "cpu%d", i);
  5295. entry->procname = kstrdup(buf, GFP_KERNEL);
  5296. entry->mode = 0555;
  5297. entry->child = sd_alloc_ctl_cpu_table(i);
  5298. entry++;
  5299. }
  5300. WARN_ON(sd_sysctl_header);
  5301. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5302. }
  5303. /* may be called multiple times per register */
  5304. static void unregister_sched_domain_sysctl(void)
  5305. {
  5306. if (sd_sysctl_header)
  5307. unregister_sysctl_table(sd_sysctl_header);
  5308. sd_sysctl_header = NULL;
  5309. if (sd_ctl_dir[0].child)
  5310. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5311. }
  5312. #else
  5313. static void register_sched_domain_sysctl(void)
  5314. {
  5315. }
  5316. static void unregister_sched_domain_sysctl(void)
  5317. {
  5318. }
  5319. #endif
  5320. static void set_rq_online(struct rq *rq)
  5321. {
  5322. if (!rq->online) {
  5323. const struct sched_class *class;
  5324. cpu_set(rq->cpu, rq->rd->online);
  5325. rq->online = 1;
  5326. for_each_class(class) {
  5327. if (class->rq_online)
  5328. class->rq_online(rq);
  5329. }
  5330. }
  5331. }
  5332. static void set_rq_offline(struct rq *rq)
  5333. {
  5334. if (rq->online) {
  5335. const struct sched_class *class;
  5336. for_each_class(class) {
  5337. if (class->rq_offline)
  5338. class->rq_offline(rq);
  5339. }
  5340. cpu_clear(rq->cpu, rq->rd->online);
  5341. rq->online = 0;
  5342. }
  5343. }
  5344. /*
  5345. * migration_call - callback that gets triggered when a CPU is added.
  5346. * Here we can start up the necessary migration thread for the new CPU.
  5347. */
  5348. static int __cpuinit
  5349. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5350. {
  5351. struct task_struct *p;
  5352. int cpu = (long)hcpu;
  5353. unsigned long flags;
  5354. struct rq *rq;
  5355. switch (action) {
  5356. case CPU_UP_PREPARE:
  5357. case CPU_UP_PREPARE_FROZEN:
  5358. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5359. if (IS_ERR(p))
  5360. return NOTIFY_BAD;
  5361. kthread_bind(p, cpu);
  5362. /* Must be high prio: stop_machine expects to yield to it. */
  5363. rq = task_rq_lock(p, &flags);
  5364. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5365. task_rq_unlock(rq, &flags);
  5366. cpu_rq(cpu)->migration_thread = p;
  5367. break;
  5368. case CPU_ONLINE:
  5369. case CPU_ONLINE_FROZEN:
  5370. /* Strictly unnecessary, as first user will wake it. */
  5371. wake_up_process(cpu_rq(cpu)->migration_thread);
  5372. /* Update our root-domain */
  5373. rq = cpu_rq(cpu);
  5374. spin_lock_irqsave(&rq->lock, flags);
  5375. if (rq->rd) {
  5376. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5377. set_rq_online(rq);
  5378. }
  5379. spin_unlock_irqrestore(&rq->lock, flags);
  5380. break;
  5381. #ifdef CONFIG_HOTPLUG_CPU
  5382. case CPU_UP_CANCELED:
  5383. case CPU_UP_CANCELED_FROZEN:
  5384. if (!cpu_rq(cpu)->migration_thread)
  5385. break;
  5386. /* Unbind it from offline cpu so it can run. Fall thru. */
  5387. kthread_bind(cpu_rq(cpu)->migration_thread,
  5388. any_online_cpu(cpu_online_map));
  5389. kthread_stop(cpu_rq(cpu)->migration_thread);
  5390. cpu_rq(cpu)->migration_thread = NULL;
  5391. break;
  5392. case CPU_DEAD:
  5393. case CPU_DEAD_FROZEN:
  5394. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5395. migrate_live_tasks(cpu);
  5396. rq = cpu_rq(cpu);
  5397. kthread_stop(rq->migration_thread);
  5398. rq->migration_thread = NULL;
  5399. /* Idle task back to normal (off runqueue, low prio) */
  5400. spin_lock_irq(&rq->lock);
  5401. update_rq_clock(rq);
  5402. deactivate_task(rq, rq->idle, 0);
  5403. rq->idle->static_prio = MAX_PRIO;
  5404. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5405. rq->idle->sched_class = &idle_sched_class;
  5406. migrate_dead_tasks(cpu);
  5407. spin_unlock_irq(&rq->lock);
  5408. cpuset_unlock();
  5409. migrate_nr_uninterruptible(rq);
  5410. BUG_ON(rq->nr_running != 0);
  5411. /*
  5412. * No need to migrate the tasks: it was best-effort if
  5413. * they didn't take sched_hotcpu_mutex. Just wake up
  5414. * the requestors.
  5415. */
  5416. spin_lock_irq(&rq->lock);
  5417. while (!list_empty(&rq->migration_queue)) {
  5418. struct migration_req *req;
  5419. req = list_entry(rq->migration_queue.next,
  5420. struct migration_req, list);
  5421. list_del_init(&req->list);
  5422. complete(&req->done);
  5423. }
  5424. spin_unlock_irq(&rq->lock);
  5425. break;
  5426. case CPU_DYING:
  5427. case CPU_DYING_FROZEN:
  5428. /* Update our root-domain */
  5429. rq = cpu_rq(cpu);
  5430. spin_lock_irqsave(&rq->lock, flags);
  5431. if (rq->rd) {
  5432. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5433. set_rq_offline(rq);
  5434. }
  5435. spin_unlock_irqrestore(&rq->lock, flags);
  5436. break;
  5437. #endif
  5438. }
  5439. return NOTIFY_OK;
  5440. }
  5441. /* Register at highest priority so that task migration (migrate_all_tasks)
  5442. * happens before everything else.
  5443. */
  5444. static struct notifier_block __cpuinitdata migration_notifier = {
  5445. .notifier_call = migration_call,
  5446. .priority = 10
  5447. };
  5448. void __init migration_init(void)
  5449. {
  5450. void *cpu = (void *)(long)smp_processor_id();
  5451. int err;
  5452. /* Start one for the boot CPU: */
  5453. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5454. BUG_ON(err == NOTIFY_BAD);
  5455. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5456. register_cpu_notifier(&migration_notifier);
  5457. }
  5458. #endif
  5459. #ifdef CONFIG_SMP
  5460. #ifdef CONFIG_SCHED_DEBUG
  5461. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5462. {
  5463. switch (lvl) {
  5464. case SD_LV_NONE:
  5465. return "NONE";
  5466. case SD_LV_SIBLING:
  5467. return "SIBLING";
  5468. case SD_LV_MC:
  5469. return "MC";
  5470. case SD_LV_CPU:
  5471. return "CPU";
  5472. case SD_LV_NODE:
  5473. return "NODE";
  5474. case SD_LV_ALLNODES:
  5475. return "ALLNODES";
  5476. case SD_LV_MAX:
  5477. return "MAX";
  5478. }
  5479. return "MAX";
  5480. }
  5481. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5482. cpumask_t *groupmask)
  5483. {
  5484. struct sched_group *group = sd->groups;
  5485. char str[256];
  5486. cpulist_scnprintf(str, sizeof(str), sd->span);
  5487. cpus_clear(*groupmask);
  5488. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5489. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5490. printk("does not load-balance\n");
  5491. if (sd->parent)
  5492. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5493. " has parent");
  5494. return -1;
  5495. }
  5496. printk(KERN_CONT "span %s level %s\n",
  5497. str, sd_level_to_string(sd->level));
  5498. if (!cpu_isset(cpu, sd->span)) {
  5499. printk(KERN_ERR "ERROR: domain->span does not contain "
  5500. "CPU%d\n", cpu);
  5501. }
  5502. if (!cpu_isset(cpu, group->cpumask)) {
  5503. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5504. " CPU%d\n", cpu);
  5505. }
  5506. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5507. do {
  5508. if (!group) {
  5509. printk("\n");
  5510. printk(KERN_ERR "ERROR: group is NULL\n");
  5511. break;
  5512. }
  5513. if (!group->__cpu_power) {
  5514. printk(KERN_CONT "\n");
  5515. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5516. "set\n");
  5517. break;
  5518. }
  5519. if (!cpus_weight(group->cpumask)) {
  5520. printk(KERN_CONT "\n");
  5521. printk(KERN_ERR "ERROR: empty group\n");
  5522. break;
  5523. }
  5524. if (cpus_intersects(*groupmask, group->cpumask)) {
  5525. printk(KERN_CONT "\n");
  5526. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5527. break;
  5528. }
  5529. cpus_or(*groupmask, *groupmask, group->cpumask);
  5530. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5531. printk(KERN_CONT " %s", str);
  5532. group = group->next;
  5533. } while (group != sd->groups);
  5534. printk(KERN_CONT "\n");
  5535. if (!cpus_equal(sd->span, *groupmask))
  5536. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5537. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5538. printk(KERN_ERR "ERROR: parent span is not a superset "
  5539. "of domain->span\n");
  5540. return 0;
  5541. }
  5542. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5543. {
  5544. cpumask_t *groupmask;
  5545. int level = 0;
  5546. if (!sd) {
  5547. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5548. return;
  5549. }
  5550. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5551. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5552. if (!groupmask) {
  5553. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5554. return;
  5555. }
  5556. for (;;) {
  5557. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5558. break;
  5559. level++;
  5560. sd = sd->parent;
  5561. if (!sd)
  5562. break;
  5563. }
  5564. kfree(groupmask);
  5565. }
  5566. #else /* !CONFIG_SCHED_DEBUG */
  5567. # define sched_domain_debug(sd, cpu) do { } while (0)
  5568. #endif /* CONFIG_SCHED_DEBUG */
  5569. static int sd_degenerate(struct sched_domain *sd)
  5570. {
  5571. if (cpus_weight(sd->span) == 1)
  5572. return 1;
  5573. /* Following flags need at least 2 groups */
  5574. if (sd->flags & (SD_LOAD_BALANCE |
  5575. SD_BALANCE_NEWIDLE |
  5576. SD_BALANCE_FORK |
  5577. SD_BALANCE_EXEC |
  5578. SD_SHARE_CPUPOWER |
  5579. SD_SHARE_PKG_RESOURCES)) {
  5580. if (sd->groups != sd->groups->next)
  5581. return 0;
  5582. }
  5583. /* Following flags don't use groups */
  5584. if (sd->flags & (SD_WAKE_IDLE |
  5585. SD_WAKE_AFFINE |
  5586. SD_WAKE_BALANCE))
  5587. return 0;
  5588. return 1;
  5589. }
  5590. static int
  5591. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5592. {
  5593. unsigned long cflags = sd->flags, pflags = parent->flags;
  5594. if (sd_degenerate(parent))
  5595. return 1;
  5596. if (!cpus_equal(sd->span, parent->span))
  5597. return 0;
  5598. /* Does parent contain flags not in child? */
  5599. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5600. if (cflags & SD_WAKE_AFFINE)
  5601. pflags &= ~SD_WAKE_BALANCE;
  5602. /* Flags needing groups don't count if only 1 group in parent */
  5603. if (parent->groups == parent->groups->next) {
  5604. pflags &= ~(SD_LOAD_BALANCE |
  5605. SD_BALANCE_NEWIDLE |
  5606. SD_BALANCE_FORK |
  5607. SD_BALANCE_EXEC |
  5608. SD_SHARE_CPUPOWER |
  5609. SD_SHARE_PKG_RESOURCES);
  5610. }
  5611. if (~cflags & pflags)
  5612. return 0;
  5613. return 1;
  5614. }
  5615. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5616. {
  5617. unsigned long flags;
  5618. spin_lock_irqsave(&rq->lock, flags);
  5619. if (rq->rd) {
  5620. struct root_domain *old_rd = rq->rd;
  5621. if (cpu_isset(rq->cpu, old_rd->online))
  5622. set_rq_offline(rq);
  5623. cpu_clear(rq->cpu, old_rd->span);
  5624. if (atomic_dec_and_test(&old_rd->refcount))
  5625. kfree(old_rd);
  5626. }
  5627. atomic_inc(&rd->refcount);
  5628. rq->rd = rd;
  5629. cpu_set(rq->cpu, rd->span);
  5630. if (cpu_isset(rq->cpu, cpu_online_map))
  5631. set_rq_online(rq);
  5632. spin_unlock_irqrestore(&rq->lock, flags);
  5633. }
  5634. static void init_rootdomain(struct root_domain *rd)
  5635. {
  5636. memset(rd, 0, sizeof(*rd));
  5637. cpus_clear(rd->span);
  5638. cpus_clear(rd->online);
  5639. cpupri_init(&rd->cpupri);
  5640. }
  5641. static void init_defrootdomain(void)
  5642. {
  5643. init_rootdomain(&def_root_domain);
  5644. atomic_set(&def_root_domain.refcount, 1);
  5645. }
  5646. static struct root_domain *alloc_rootdomain(void)
  5647. {
  5648. struct root_domain *rd;
  5649. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5650. if (!rd)
  5651. return NULL;
  5652. init_rootdomain(rd);
  5653. return rd;
  5654. }
  5655. /*
  5656. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5657. * hold the hotplug lock.
  5658. */
  5659. static void
  5660. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5661. {
  5662. struct rq *rq = cpu_rq(cpu);
  5663. struct sched_domain *tmp;
  5664. /* Remove the sched domains which do not contribute to scheduling. */
  5665. for (tmp = sd; tmp; tmp = tmp->parent) {
  5666. struct sched_domain *parent = tmp->parent;
  5667. if (!parent)
  5668. break;
  5669. if (sd_parent_degenerate(tmp, parent)) {
  5670. tmp->parent = parent->parent;
  5671. if (parent->parent)
  5672. parent->parent->child = tmp;
  5673. }
  5674. }
  5675. if (sd && sd_degenerate(sd)) {
  5676. sd = sd->parent;
  5677. if (sd)
  5678. sd->child = NULL;
  5679. }
  5680. sched_domain_debug(sd, cpu);
  5681. rq_attach_root(rq, rd);
  5682. rcu_assign_pointer(rq->sd, sd);
  5683. }
  5684. /* cpus with isolated domains */
  5685. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5686. /* Setup the mask of cpus configured for isolated domains */
  5687. static int __init isolated_cpu_setup(char *str)
  5688. {
  5689. int ints[NR_CPUS], i;
  5690. str = get_options(str, ARRAY_SIZE(ints), ints);
  5691. cpus_clear(cpu_isolated_map);
  5692. for (i = 1; i <= ints[0]; i++)
  5693. if (ints[i] < NR_CPUS)
  5694. cpu_set(ints[i], cpu_isolated_map);
  5695. return 1;
  5696. }
  5697. __setup("isolcpus=", isolated_cpu_setup);
  5698. /*
  5699. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5700. * to a function which identifies what group(along with sched group) a CPU
  5701. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5702. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5703. *
  5704. * init_sched_build_groups will build a circular linked list of the groups
  5705. * covered by the given span, and will set each group's ->cpumask correctly,
  5706. * and ->cpu_power to 0.
  5707. */
  5708. static void
  5709. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5710. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5711. struct sched_group **sg,
  5712. cpumask_t *tmpmask),
  5713. cpumask_t *covered, cpumask_t *tmpmask)
  5714. {
  5715. struct sched_group *first = NULL, *last = NULL;
  5716. int i;
  5717. cpus_clear(*covered);
  5718. for_each_cpu_mask(i, *span) {
  5719. struct sched_group *sg;
  5720. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5721. int j;
  5722. if (cpu_isset(i, *covered))
  5723. continue;
  5724. cpus_clear(sg->cpumask);
  5725. sg->__cpu_power = 0;
  5726. for_each_cpu_mask(j, *span) {
  5727. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5728. continue;
  5729. cpu_set(j, *covered);
  5730. cpu_set(j, sg->cpumask);
  5731. }
  5732. if (!first)
  5733. first = sg;
  5734. if (last)
  5735. last->next = sg;
  5736. last = sg;
  5737. }
  5738. last->next = first;
  5739. }
  5740. #define SD_NODES_PER_DOMAIN 16
  5741. #ifdef CONFIG_NUMA
  5742. /**
  5743. * find_next_best_node - find the next node to include in a sched_domain
  5744. * @node: node whose sched_domain we're building
  5745. * @used_nodes: nodes already in the sched_domain
  5746. *
  5747. * Find the next node to include in a given scheduling domain. Simply
  5748. * finds the closest node not already in the @used_nodes map.
  5749. *
  5750. * Should use nodemask_t.
  5751. */
  5752. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5753. {
  5754. int i, n, val, min_val, best_node = 0;
  5755. min_val = INT_MAX;
  5756. for (i = 0; i < MAX_NUMNODES; i++) {
  5757. /* Start at @node */
  5758. n = (node + i) % MAX_NUMNODES;
  5759. if (!nr_cpus_node(n))
  5760. continue;
  5761. /* Skip already used nodes */
  5762. if (node_isset(n, *used_nodes))
  5763. continue;
  5764. /* Simple min distance search */
  5765. val = node_distance(node, n);
  5766. if (val < min_val) {
  5767. min_val = val;
  5768. best_node = n;
  5769. }
  5770. }
  5771. node_set(best_node, *used_nodes);
  5772. return best_node;
  5773. }
  5774. /**
  5775. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5776. * @node: node whose cpumask we're constructing
  5777. * @span: resulting cpumask
  5778. *
  5779. * Given a node, construct a good cpumask for its sched_domain to span. It
  5780. * should be one that prevents unnecessary balancing, but also spreads tasks
  5781. * out optimally.
  5782. */
  5783. static void sched_domain_node_span(int node, cpumask_t *span)
  5784. {
  5785. nodemask_t used_nodes;
  5786. node_to_cpumask_ptr(nodemask, node);
  5787. int i;
  5788. cpus_clear(*span);
  5789. nodes_clear(used_nodes);
  5790. cpus_or(*span, *span, *nodemask);
  5791. node_set(node, used_nodes);
  5792. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5793. int next_node = find_next_best_node(node, &used_nodes);
  5794. node_to_cpumask_ptr_next(nodemask, next_node);
  5795. cpus_or(*span, *span, *nodemask);
  5796. }
  5797. }
  5798. #endif /* CONFIG_NUMA */
  5799. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5800. /*
  5801. * SMT sched-domains:
  5802. */
  5803. #ifdef CONFIG_SCHED_SMT
  5804. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5805. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5806. static int
  5807. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5808. cpumask_t *unused)
  5809. {
  5810. if (sg)
  5811. *sg = &per_cpu(sched_group_cpus, cpu);
  5812. return cpu;
  5813. }
  5814. #endif /* CONFIG_SCHED_SMT */
  5815. /*
  5816. * multi-core sched-domains:
  5817. */
  5818. #ifdef CONFIG_SCHED_MC
  5819. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5820. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5821. #endif /* CONFIG_SCHED_MC */
  5822. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5823. static int
  5824. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5825. cpumask_t *mask)
  5826. {
  5827. int group;
  5828. *mask = per_cpu(cpu_sibling_map, cpu);
  5829. cpus_and(*mask, *mask, *cpu_map);
  5830. group = first_cpu(*mask);
  5831. if (sg)
  5832. *sg = &per_cpu(sched_group_core, group);
  5833. return group;
  5834. }
  5835. #elif defined(CONFIG_SCHED_MC)
  5836. static int
  5837. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5838. cpumask_t *unused)
  5839. {
  5840. if (sg)
  5841. *sg = &per_cpu(sched_group_core, cpu);
  5842. return cpu;
  5843. }
  5844. #endif
  5845. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5846. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5847. static int
  5848. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5849. cpumask_t *mask)
  5850. {
  5851. int group;
  5852. #ifdef CONFIG_SCHED_MC
  5853. *mask = cpu_coregroup_map(cpu);
  5854. cpus_and(*mask, *mask, *cpu_map);
  5855. group = first_cpu(*mask);
  5856. #elif defined(CONFIG_SCHED_SMT)
  5857. *mask = per_cpu(cpu_sibling_map, cpu);
  5858. cpus_and(*mask, *mask, *cpu_map);
  5859. group = first_cpu(*mask);
  5860. #else
  5861. group = cpu;
  5862. #endif
  5863. if (sg)
  5864. *sg = &per_cpu(sched_group_phys, group);
  5865. return group;
  5866. }
  5867. #ifdef CONFIG_NUMA
  5868. /*
  5869. * The init_sched_build_groups can't handle what we want to do with node
  5870. * groups, so roll our own. Now each node has its own list of groups which
  5871. * gets dynamically allocated.
  5872. */
  5873. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5874. static struct sched_group ***sched_group_nodes_bycpu;
  5875. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5876. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5877. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5878. struct sched_group **sg, cpumask_t *nodemask)
  5879. {
  5880. int group;
  5881. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5882. cpus_and(*nodemask, *nodemask, *cpu_map);
  5883. group = first_cpu(*nodemask);
  5884. if (sg)
  5885. *sg = &per_cpu(sched_group_allnodes, group);
  5886. return group;
  5887. }
  5888. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5889. {
  5890. struct sched_group *sg = group_head;
  5891. int j;
  5892. if (!sg)
  5893. return;
  5894. do {
  5895. for_each_cpu_mask(j, sg->cpumask) {
  5896. struct sched_domain *sd;
  5897. sd = &per_cpu(phys_domains, j);
  5898. if (j != first_cpu(sd->groups->cpumask)) {
  5899. /*
  5900. * Only add "power" once for each
  5901. * physical package.
  5902. */
  5903. continue;
  5904. }
  5905. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5906. }
  5907. sg = sg->next;
  5908. } while (sg != group_head);
  5909. }
  5910. #endif /* CONFIG_NUMA */
  5911. #ifdef CONFIG_NUMA
  5912. /* Free memory allocated for various sched_group structures */
  5913. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5914. {
  5915. int cpu, i;
  5916. for_each_cpu_mask(cpu, *cpu_map) {
  5917. struct sched_group **sched_group_nodes
  5918. = sched_group_nodes_bycpu[cpu];
  5919. if (!sched_group_nodes)
  5920. continue;
  5921. for (i = 0; i < MAX_NUMNODES; i++) {
  5922. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5923. *nodemask = node_to_cpumask(i);
  5924. cpus_and(*nodemask, *nodemask, *cpu_map);
  5925. if (cpus_empty(*nodemask))
  5926. continue;
  5927. if (sg == NULL)
  5928. continue;
  5929. sg = sg->next;
  5930. next_sg:
  5931. oldsg = sg;
  5932. sg = sg->next;
  5933. kfree(oldsg);
  5934. if (oldsg != sched_group_nodes[i])
  5935. goto next_sg;
  5936. }
  5937. kfree(sched_group_nodes);
  5938. sched_group_nodes_bycpu[cpu] = NULL;
  5939. }
  5940. }
  5941. #else /* !CONFIG_NUMA */
  5942. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5943. {
  5944. }
  5945. #endif /* CONFIG_NUMA */
  5946. /*
  5947. * Initialize sched groups cpu_power.
  5948. *
  5949. * cpu_power indicates the capacity of sched group, which is used while
  5950. * distributing the load between different sched groups in a sched domain.
  5951. * Typically cpu_power for all the groups in a sched domain will be same unless
  5952. * there are asymmetries in the topology. If there are asymmetries, group
  5953. * having more cpu_power will pickup more load compared to the group having
  5954. * less cpu_power.
  5955. *
  5956. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5957. * the maximum number of tasks a group can handle in the presence of other idle
  5958. * or lightly loaded groups in the same sched domain.
  5959. */
  5960. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5961. {
  5962. struct sched_domain *child;
  5963. struct sched_group *group;
  5964. WARN_ON(!sd || !sd->groups);
  5965. if (cpu != first_cpu(sd->groups->cpumask))
  5966. return;
  5967. child = sd->child;
  5968. sd->groups->__cpu_power = 0;
  5969. /*
  5970. * For perf policy, if the groups in child domain share resources
  5971. * (for example cores sharing some portions of the cache hierarchy
  5972. * or SMT), then set this domain groups cpu_power such that each group
  5973. * can handle only one task, when there are other idle groups in the
  5974. * same sched domain.
  5975. */
  5976. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5977. (child->flags &
  5978. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5979. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5980. return;
  5981. }
  5982. /*
  5983. * add cpu_power of each child group to this groups cpu_power
  5984. */
  5985. group = child->groups;
  5986. do {
  5987. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5988. group = group->next;
  5989. } while (group != child->groups);
  5990. }
  5991. /*
  5992. * Initializers for schedule domains
  5993. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5994. */
  5995. #define SD_INIT(sd, type) sd_init_##type(sd)
  5996. #define SD_INIT_FUNC(type) \
  5997. static noinline void sd_init_##type(struct sched_domain *sd) \
  5998. { \
  5999. memset(sd, 0, sizeof(*sd)); \
  6000. *sd = SD_##type##_INIT; \
  6001. sd->level = SD_LV_##type; \
  6002. }
  6003. SD_INIT_FUNC(CPU)
  6004. #ifdef CONFIG_NUMA
  6005. SD_INIT_FUNC(ALLNODES)
  6006. SD_INIT_FUNC(NODE)
  6007. #endif
  6008. #ifdef CONFIG_SCHED_SMT
  6009. SD_INIT_FUNC(SIBLING)
  6010. #endif
  6011. #ifdef CONFIG_SCHED_MC
  6012. SD_INIT_FUNC(MC)
  6013. #endif
  6014. /*
  6015. * To minimize stack usage kmalloc room for cpumasks and share the
  6016. * space as the usage in build_sched_domains() dictates. Used only
  6017. * if the amount of space is significant.
  6018. */
  6019. struct allmasks {
  6020. cpumask_t tmpmask; /* make this one first */
  6021. union {
  6022. cpumask_t nodemask;
  6023. cpumask_t this_sibling_map;
  6024. cpumask_t this_core_map;
  6025. };
  6026. cpumask_t send_covered;
  6027. #ifdef CONFIG_NUMA
  6028. cpumask_t domainspan;
  6029. cpumask_t covered;
  6030. cpumask_t notcovered;
  6031. #endif
  6032. };
  6033. #if NR_CPUS > 128
  6034. #define SCHED_CPUMASK_ALLOC 1
  6035. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6036. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6037. #else
  6038. #define SCHED_CPUMASK_ALLOC 0
  6039. #define SCHED_CPUMASK_FREE(v)
  6040. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6041. #endif
  6042. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6043. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6044. static int default_relax_domain_level = -1;
  6045. static int __init setup_relax_domain_level(char *str)
  6046. {
  6047. unsigned long val;
  6048. val = simple_strtoul(str, NULL, 0);
  6049. if (val < SD_LV_MAX)
  6050. default_relax_domain_level = val;
  6051. return 1;
  6052. }
  6053. __setup("relax_domain_level=", setup_relax_domain_level);
  6054. static void set_domain_attribute(struct sched_domain *sd,
  6055. struct sched_domain_attr *attr)
  6056. {
  6057. int request;
  6058. if (!attr || attr->relax_domain_level < 0) {
  6059. if (default_relax_domain_level < 0)
  6060. return;
  6061. else
  6062. request = default_relax_domain_level;
  6063. } else
  6064. request = attr->relax_domain_level;
  6065. if (request < sd->level) {
  6066. /* turn off idle balance on this domain */
  6067. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6068. } else {
  6069. /* turn on idle balance on this domain */
  6070. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6071. }
  6072. }
  6073. /*
  6074. * Build sched domains for a given set of cpus and attach the sched domains
  6075. * to the individual cpus
  6076. */
  6077. static int __build_sched_domains(const cpumask_t *cpu_map,
  6078. struct sched_domain_attr *attr)
  6079. {
  6080. int i;
  6081. struct root_domain *rd;
  6082. SCHED_CPUMASK_DECLARE(allmasks);
  6083. cpumask_t *tmpmask;
  6084. #ifdef CONFIG_NUMA
  6085. struct sched_group **sched_group_nodes = NULL;
  6086. int sd_allnodes = 0;
  6087. /*
  6088. * Allocate the per-node list of sched groups
  6089. */
  6090. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6091. GFP_KERNEL);
  6092. if (!sched_group_nodes) {
  6093. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6094. return -ENOMEM;
  6095. }
  6096. #endif
  6097. rd = alloc_rootdomain();
  6098. if (!rd) {
  6099. printk(KERN_WARNING "Cannot alloc root domain\n");
  6100. #ifdef CONFIG_NUMA
  6101. kfree(sched_group_nodes);
  6102. #endif
  6103. return -ENOMEM;
  6104. }
  6105. #if SCHED_CPUMASK_ALLOC
  6106. /* get space for all scratch cpumask variables */
  6107. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6108. if (!allmasks) {
  6109. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6110. kfree(rd);
  6111. #ifdef CONFIG_NUMA
  6112. kfree(sched_group_nodes);
  6113. #endif
  6114. return -ENOMEM;
  6115. }
  6116. #endif
  6117. tmpmask = (cpumask_t *)allmasks;
  6118. #ifdef CONFIG_NUMA
  6119. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6120. #endif
  6121. /*
  6122. * Set up domains for cpus specified by the cpu_map.
  6123. */
  6124. for_each_cpu_mask(i, *cpu_map) {
  6125. struct sched_domain *sd = NULL, *p;
  6126. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6127. *nodemask = node_to_cpumask(cpu_to_node(i));
  6128. cpus_and(*nodemask, *nodemask, *cpu_map);
  6129. #ifdef CONFIG_NUMA
  6130. if (cpus_weight(*cpu_map) >
  6131. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6132. sd = &per_cpu(allnodes_domains, i);
  6133. SD_INIT(sd, ALLNODES);
  6134. set_domain_attribute(sd, attr);
  6135. sd->span = *cpu_map;
  6136. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6137. p = sd;
  6138. sd_allnodes = 1;
  6139. } else
  6140. p = NULL;
  6141. sd = &per_cpu(node_domains, i);
  6142. SD_INIT(sd, NODE);
  6143. set_domain_attribute(sd, attr);
  6144. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6145. sd->parent = p;
  6146. if (p)
  6147. p->child = sd;
  6148. cpus_and(sd->span, sd->span, *cpu_map);
  6149. #endif
  6150. p = sd;
  6151. sd = &per_cpu(phys_domains, i);
  6152. SD_INIT(sd, CPU);
  6153. set_domain_attribute(sd, attr);
  6154. sd->span = *nodemask;
  6155. sd->parent = p;
  6156. if (p)
  6157. p->child = sd;
  6158. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6159. #ifdef CONFIG_SCHED_MC
  6160. p = sd;
  6161. sd = &per_cpu(core_domains, i);
  6162. SD_INIT(sd, MC);
  6163. set_domain_attribute(sd, attr);
  6164. sd->span = cpu_coregroup_map(i);
  6165. cpus_and(sd->span, sd->span, *cpu_map);
  6166. sd->parent = p;
  6167. p->child = sd;
  6168. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6169. #endif
  6170. #ifdef CONFIG_SCHED_SMT
  6171. p = sd;
  6172. sd = &per_cpu(cpu_domains, i);
  6173. SD_INIT(sd, SIBLING);
  6174. set_domain_attribute(sd, attr);
  6175. sd->span = per_cpu(cpu_sibling_map, i);
  6176. cpus_and(sd->span, sd->span, *cpu_map);
  6177. sd->parent = p;
  6178. p->child = sd;
  6179. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6180. #endif
  6181. }
  6182. #ifdef CONFIG_SCHED_SMT
  6183. /* Set up CPU (sibling) groups */
  6184. for_each_cpu_mask(i, *cpu_map) {
  6185. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6186. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6187. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6188. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6189. if (i != first_cpu(*this_sibling_map))
  6190. continue;
  6191. init_sched_build_groups(this_sibling_map, cpu_map,
  6192. &cpu_to_cpu_group,
  6193. send_covered, tmpmask);
  6194. }
  6195. #endif
  6196. #ifdef CONFIG_SCHED_MC
  6197. /* Set up multi-core groups */
  6198. for_each_cpu_mask(i, *cpu_map) {
  6199. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6200. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6201. *this_core_map = cpu_coregroup_map(i);
  6202. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6203. if (i != first_cpu(*this_core_map))
  6204. continue;
  6205. init_sched_build_groups(this_core_map, cpu_map,
  6206. &cpu_to_core_group,
  6207. send_covered, tmpmask);
  6208. }
  6209. #endif
  6210. /* Set up physical groups */
  6211. for (i = 0; i < MAX_NUMNODES; i++) {
  6212. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6213. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6214. *nodemask = node_to_cpumask(i);
  6215. cpus_and(*nodemask, *nodemask, *cpu_map);
  6216. if (cpus_empty(*nodemask))
  6217. continue;
  6218. init_sched_build_groups(nodemask, cpu_map,
  6219. &cpu_to_phys_group,
  6220. send_covered, tmpmask);
  6221. }
  6222. #ifdef CONFIG_NUMA
  6223. /* Set up node groups */
  6224. if (sd_allnodes) {
  6225. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6226. init_sched_build_groups(cpu_map, cpu_map,
  6227. &cpu_to_allnodes_group,
  6228. send_covered, tmpmask);
  6229. }
  6230. for (i = 0; i < MAX_NUMNODES; i++) {
  6231. /* Set up node groups */
  6232. struct sched_group *sg, *prev;
  6233. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6234. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6235. SCHED_CPUMASK_VAR(covered, allmasks);
  6236. int j;
  6237. *nodemask = node_to_cpumask(i);
  6238. cpus_clear(*covered);
  6239. cpus_and(*nodemask, *nodemask, *cpu_map);
  6240. if (cpus_empty(*nodemask)) {
  6241. sched_group_nodes[i] = NULL;
  6242. continue;
  6243. }
  6244. sched_domain_node_span(i, domainspan);
  6245. cpus_and(*domainspan, *domainspan, *cpu_map);
  6246. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6247. if (!sg) {
  6248. printk(KERN_WARNING "Can not alloc domain group for "
  6249. "node %d\n", i);
  6250. goto error;
  6251. }
  6252. sched_group_nodes[i] = sg;
  6253. for_each_cpu_mask(j, *nodemask) {
  6254. struct sched_domain *sd;
  6255. sd = &per_cpu(node_domains, j);
  6256. sd->groups = sg;
  6257. }
  6258. sg->__cpu_power = 0;
  6259. sg->cpumask = *nodemask;
  6260. sg->next = sg;
  6261. cpus_or(*covered, *covered, *nodemask);
  6262. prev = sg;
  6263. for (j = 0; j < MAX_NUMNODES; j++) {
  6264. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6265. int n = (i + j) % MAX_NUMNODES;
  6266. node_to_cpumask_ptr(pnodemask, n);
  6267. cpus_complement(*notcovered, *covered);
  6268. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6269. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6270. if (cpus_empty(*tmpmask))
  6271. break;
  6272. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6273. if (cpus_empty(*tmpmask))
  6274. continue;
  6275. sg = kmalloc_node(sizeof(struct sched_group),
  6276. GFP_KERNEL, i);
  6277. if (!sg) {
  6278. printk(KERN_WARNING
  6279. "Can not alloc domain group for node %d\n", j);
  6280. goto error;
  6281. }
  6282. sg->__cpu_power = 0;
  6283. sg->cpumask = *tmpmask;
  6284. sg->next = prev->next;
  6285. cpus_or(*covered, *covered, *tmpmask);
  6286. prev->next = sg;
  6287. prev = sg;
  6288. }
  6289. }
  6290. #endif
  6291. /* Calculate CPU power for physical packages and nodes */
  6292. #ifdef CONFIG_SCHED_SMT
  6293. for_each_cpu_mask(i, *cpu_map) {
  6294. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6295. init_sched_groups_power(i, sd);
  6296. }
  6297. #endif
  6298. #ifdef CONFIG_SCHED_MC
  6299. for_each_cpu_mask(i, *cpu_map) {
  6300. struct sched_domain *sd = &per_cpu(core_domains, i);
  6301. init_sched_groups_power(i, sd);
  6302. }
  6303. #endif
  6304. for_each_cpu_mask(i, *cpu_map) {
  6305. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6306. init_sched_groups_power(i, sd);
  6307. }
  6308. #ifdef CONFIG_NUMA
  6309. for (i = 0; i < MAX_NUMNODES; i++)
  6310. init_numa_sched_groups_power(sched_group_nodes[i]);
  6311. if (sd_allnodes) {
  6312. struct sched_group *sg;
  6313. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6314. tmpmask);
  6315. init_numa_sched_groups_power(sg);
  6316. }
  6317. #endif
  6318. /* Attach the domains */
  6319. for_each_cpu_mask(i, *cpu_map) {
  6320. struct sched_domain *sd;
  6321. #ifdef CONFIG_SCHED_SMT
  6322. sd = &per_cpu(cpu_domains, i);
  6323. #elif defined(CONFIG_SCHED_MC)
  6324. sd = &per_cpu(core_domains, i);
  6325. #else
  6326. sd = &per_cpu(phys_domains, i);
  6327. #endif
  6328. cpu_attach_domain(sd, rd, i);
  6329. }
  6330. SCHED_CPUMASK_FREE((void *)allmasks);
  6331. return 0;
  6332. #ifdef CONFIG_NUMA
  6333. error:
  6334. free_sched_groups(cpu_map, tmpmask);
  6335. SCHED_CPUMASK_FREE((void *)allmasks);
  6336. return -ENOMEM;
  6337. #endif
  6338. }
  6339. static int build_sched_domains(const cpumask_t *cpu_map)
  6340. {
  6341. return __build_sched_domains(cpu_map, NULL);
  6342. }
  6343. static cpumask_t *doms_cur; /* current sched domains */
  6344. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6345. static struct sched_domain_attr *dattr_cur;
  6346. /* attribues of custom domains in 'doms_cur' */
  6347. /*
  6348. * Special case: If a kmalloc of a doms_cur partition (array of
  6349. * cpumask_t) fails, then fallback to a single sched domain,
  6350. * as determined by the single cpumask_t fallback_doms.
  6351. */
  6352. static cpumask_t fallback_doms;
  6353. void __attribute__((weak)) arch_update_cpu_topology(void)
  6354. {
  6355. }
  6356. /*
  6357. * Free current domain masks.
  6358. * Called after all cpus are attached to NULL domain.
  6359. */
  6360. static void free_sched_domains(void)
  6361. {
  6362. ndoms_cur = 0;
  6363. if (doms_cur != &fallback_doms)
  6364. kfree(doms_cur);
  6365. doms_cur = &fallback_doms;
  6366. }
  6367. /*
  6368. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6369. * For now this just excludes isolated cpus, but could be used to
  6370. * exclude other special cases in the future.
  6371. */
  6372. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6373. {
  6374. int err;
  6375. arch_update_cpu_topology();
  6376. ndoms_cur = 1;
  6377. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6378. if (!doms_cur)
  6379. doms_cur = &fallback_doms;
  6380. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6381. dattr_cur = NULL;
  6382. err = build_sched_domains(doms_cur);
  6383. register_sched_domain_sysctl();
  6384. return err;
  6385. }
  6386. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6387. cpumask_t *tmpmask)
  6388. {
  6389. free_sched_groups(cpu_map, tmpmask);
  6390. }
  6391. /*
  6392. * Detach sched domains from a group of cpus specified in cpu_map
  6393. * These cpus will now be attached to the NULL domain
  6394. */
  6395. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6396. {
  6397. cpumask_t tmpmask;
  6398. int i;
  6399. unregister_sched_domain_sysctl();
  6400. for_each_cpu_mask(i, *cpu_map)
  6401. cpu_attach_domain(NULL, &def_root_domain, i);
  6402. synchronize_sched();
  6403. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6404. }
  6405. /* handle null as "default" */
  6406. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6407. struct sched_domain_attr *new, int idx_new)
  6408. {
  6409. struct sched_domain_attr tmp;
  6410. /* fast path */
  6411. if (!new && !cur)
  6412. return 1;
  6413. tmp = SD_ATTR_INIT;
  6414. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6415. new ? (new + idx_new) : &tmp,
  6416. sizeof(struct sched_domain_attr));
  6417. }
  6418. /*
  6419. * Partition sched domains as specified by the 'ndoms_new'
  6420. * cpumasks in the array doms_new[] of cpumasks. This compares
  6421. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6422. * It destroys each deleted domain and builds each new domain.
  6423. *
  6424. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6425. * The masks don't intersect (don't overlap.) We should setup one
  6426. * sched domain for each mask. CPUs not in any of the cpumasks will
  6427. * not be load balanced. If the same cpumask appears both in the
  6428. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6429. * it as it is.
  6430. *
  6431. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6432. * ownership of it and will kfree it when done with it. If the caller
  6433. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6434. * and partition_sched_domains() will fallback to the single partition
  6435. * 'fallback_doms'.
  6436. *
  6437. * Call with hotplug lock held
  6438. */
  6439. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6440. struct sched_domain_attr *dattr_new)
  6441. {
  6442. int i, j;
  6443. mutex_lock(&sched_domains_mutex);
  6444. /* always unregister in case we don't destroy any domains */
  6445. unregister_sched_domain_sysctl();
  6446. if (doms_new == NULL) {
  6447. ndoms_new = 1;
  6448. doms_new = &fallback_doms;
  6449. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6450. dattr_new = NULL;
  6451. }
  6452. /* Destroy deleted domains */
  6453. for (i = 0; i < ndoms_cur; i++) {
  6454. for (j = 0; j < ndoms_new; j++) {
  6455. if (cpus_equal(doms_cur[i], doms_new[j])
  6456. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6457. goto match1;
  6458. }
  6459. /* no match - a current sched domain not in new doms_new[] */
  6460. detach_destroy_domains(doms_cur + i);
  6461. match1:
  6462. ;
  6463. }
  6464. /* Build new domains */
  6465. for (i = 0; i < ndoms_new; i++) {
  6466. for (j = 0; j < ndoms_cur; j++) {
  6467. if (cpus_equal(doms_new[i], doms_cur[j])
  6468. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6469. goto match2;
  6470. }
  6471. /* no match - add a new doms_new */
  6472. __build_sched_domains(doms_new + i,
  6473. dattr_new ? dattr_new + i : NULL);
  6474. match2:
  6475. ;
  6476. }
  6477. /* Remember the new sched domains */
  6478. if (doms_cur != &fallback_doms)
  6479. kfree(doms_cur);
  6480. kfree(dattr_cur); /* kfree(NULL) is safe */
  6481. doms_cur = doms_new;
  6482. dattr_cur = dattr_new;
  6483. ndoms_cur = ndoms_new;
  6484. register_sched_domain_sysctl();
  6485. mutex_unlock(&sched_domains_mutex);
  6486. }
  6487. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6488. int arch_reinit_sched_domains(void)
  6489. {
  6490. int err;
  6491. get_online_cpus();
  6492. mutex_lock(&sched_domains_mutex);
  6493. detach_destroy_domains(&cpu_online_map);
  6494. free_sched_domains();
  6495. err = arch_init_sched_domains(&cpu_online_map);
  6496. mutex_unlock(&sched_domains_mutex);
  6497. put_online_cpus();
  6498. return err;
  6499. }
  6500. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6501. {
  6502. int ret;
  6503. if (buf[0] != '0' && buf[0] != '1')
  6504. return -EINVAL;
  6505. if (smt)
  6506. sched_smt_power_savings = (buf[0] == '1');
  6507. else
  6508. sched_mc_power_savings = (buf[0] == '1');
  6509. ret = arch_reinit_sched_domains();
  6510. return ret ? ret : count;
  6511. }
  6512. #ifdef CONFIG_SCHED_MC
  6513. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6514. {
  6515. return sprintf(page, "%u\n", sched_mc_power_savings);
  6516. }
  6517. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6518. const char *buf, size_t count)
  6519. {
  6520. return sched_power_savings_store(buf, count, 0);
  6521. }
  6522. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6523. sched_mc_power_savings_store);
  6524. #endif
  6525. #ifdef CONFIG_SCHED_SMT
  6526. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6527. {
  6528. return sprintf(page, "%u\n", sched_smt_power_savings);
  6529. }
  6530. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6531. const char *buf, size_t count)
  6532. {
  6533. return sched_power_savings_store(buf, count, 1);
  6534. }
  6535. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6536. sched_smt_power_savings_store);
  6537. #endif
  6538. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6539. {
  6540. int err = 0;
  6541. #ifdef CONFIG_SCHED_SMT
  6542. if (smt_capable())
  6543. err = sysfs_create_file(&cls->kset.kobj,
  6544. &attr_sched_smt_power_savings.attr);
  6545. #endif
  6546. #ifdef CONFIG_SCHED_MC
  6547. if (!err && mc_capable())
  6548. err = sysfs_create_file(&cls->kset.kobj,
  6549. &attr_sched_mc_power_savings.attr);
  6550. #endif
  6551. return err;
  6552. }
  6553. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6554. /*
  6555. * Force a reinitialization of the sched domains hierarchy. The domains
  6556. * and groups cannot be updated in place without racing with the balancing
  6557. * code, so we temporarily attach all running cpus to the NULL domain
  6558. * which will prevent rebalancing while the sched domains are recalculated.
  6559. */
  6560. static int update_sched_domains(struct notifier_block *nfb,
  6561. unsigned long action, void *hcpu)
  6562. {
  6563. int cpu = (int)(long)hcpu;
  6564. switch (action) {
  6565. case CPU_DOWN_PREPARE:
  6566. case CPU_DOWN_PREPARE_FROZEN:
  6567. disable_runtime(cpu_rq(cpu));
  6568. /* fall-through */
  6569. case CPU_UP_PREPARE:
  6570. case CPU_UP_PREPARE_FROZEN:
  6571. detach_destroy_domains(&cpu_online_map);
  6572. free_sched_domains();
  6573. return NOTIFY_OK;
  6574. case CPU_DOWN_FAILED:
  6575. case CPU_DOWN_FAILED_FROZEN:
  6576. case CPU_ONLINE:
  6577. case CPU_ONLINE_FROZEN:
  6578. enable_runtime(cpu_rq(cpu));
  6579. /* fall-through */
  6580. case CPU_UP_CANCELED:
  6581. case CPU_UP_CANCELED_FROZEN:
  6582. case CPU_DEAD:
  6583. case CPU_DEAD_FROZEN:
  6584. /*
  6585. * Fall through and re-initialise the domains.
  6586. */
  6587. break;
  6588. default:
  6589. return NOTIFY_DONE;
  6590. }
  6591. #ifndef CONFIG_CPUSETS
  6592. /*
  6593. * Create default domain partitioning if cpusets are disabled.
  6594. * Otherwise we let cpusets rebuild the domains based on the
  6595. * current setup.
  6596. */
  6597. /* The hotplug lock is already held by cpu_up/cpu_down */
  6598. arch_init_sched_domains(&cpu_online_map);
  6599. #endif
  6600. return NOTIFY_OK;
  6601. }
  6602. void __init sched_init_smp(void)
  6603. {
  6604. cpumask_t non_isolated_cpus;
  6605. #if defined(CONFIG_NUMA)
  6606. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6607. GFP_KERNEL);
  6608. BUG_ON(sched_group_nodes_bycpu == NULL);
  6609. #endif
  6610. get_online_cpus();
  6611. mutex_lock(&sched_domains_mutex);
  6612. arch_init_sched_domains(&cpu_online_map);
  6613. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6614. if (cpus_empty(non_isolated_cpus))
  6615. cpu_set(smp_processor_id(), non_isolated_cpus);
  6616. mutex_unlock(&sched_domains_mutex);
  6617. put_online_cpus();
  6618. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6619. hotcpu_notifier(update_sched_domains, 0);
  6620. init_hrtick();
  6621. /* Move init over to a non-isolated CPU */
  6622. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6623. BUG();
  6624. sched_init_granularity();
  6625. }
  6626. #else
  6627. void __init sched_init_smp(void)
  6628. {
  6629. sched_init_granularity();
  6630. }
  6631. #endif /* CONFIG_SMP */
  6632. int in_sched_functions(unsigned long addr)
  6633. {
  6634. return in_lock_functions(addr) ||
  6635. (addr >= (unsigned long)__sched_text_start
  6636. && addr < (unsigned long)__sched_text_end);
  6637. }
  6638. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6639. {
  6640. cfs_rq->tasks_timeline = RB_ROOT;
  6641. INIT_LIST_HEAD(&cfs_rq->tasks);
  6642. #ifdef CONFIG_FAIR_GROUP_SCHED
  6643. cfs_rq->rq = rq;
  6644. #endif
  6645. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6646. }
  6647. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6648. {
  6649. struct rt_prio_array *array;
  6650. int i;
  6651. array = &rt_rq->active;
  6652. for (i = 0; i < MAX_RT_PRIO; i++) {
  6653. INIT_LIST_HEAD(array->queue + i);
  6654. __clear_bit(i, array->bitmap);
  6655. }
  6656. /* delimiter for bitsearch: */
  6657. __set_bit(MAX_RT_PRIO, array->bitmap);
  6658. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6659. rt_rq->highest_prio = MAX_RT_PRIO;
  6660. #endif
  6661. #ifdef CONFIG_SMP
  6662. rt_rq->rt_nr_migratory = 0;
  6663. rt_rq->overloaded = 0;
  6664. #endif
  6665. rt_rq->rt_time = 0;
  6666. rt_rq->rt_throttled = 0;
  6667. rt_rq->rt_runtime = 0;
  6668. spin_lock_init(&rt_rq->rt_runtime_lock);
  6669. #ifdef CONFIG_RT_GROUP_SCHED
  6670. rt_rq->rt_nr_boosted = 0;
  6671. rt_rq->rq = rq;
  6672. #endif
  6673. }
  6674. #ifdef CONFIG_FAIR_GROUP_SCHED
  6675. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6676. struct sched_entity *se, int cpu, int add,
  6677. struct sched_entity *parent)
  6678. {
  6679. struct rq *rq = cpu_rq(cpu);
  6680. tg->cfs_rq[cpu] = cfs_rq;
  6681. init_cfs_rq(cfs_rq, rq);
  6682. cfs_rq->tg = tg;
  6683. if (add)
  6684. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6685. tg->se[cpu] = se;
  6686. /* se could be NULL for init_task_group */
  6687. if (!se)
  6688. return;
  6689. if (!parent)
  6690. se->cfs_rq = &rq->cfs;
  6691. else
  6692. se->cfs_rq = parent->my_q;
  6693. se->my_q = cfs_rq;
  6694. se->load.weight = tg->shares;
  6695. se->load.inv_weight = 0;
  6696. se->parent = parent;
  6697. }
  6698. #endif
  6699. #ifdef CONFIG_RT_GROUP_SCHED
  6700. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6701. struct sched_rt_entity *rt_se, int cpu, int add,
  6702. struct sched_rt_entity *parent)
  6703. {
  6704. struct rq *rq = cpu_rq(cpu);
  6705. tg->rt_rq[cpu] = rt_rq;
  6706. init_rt_rq(rt_rq, rq);
  6707. rt_rq->tg = tg;
  6708. rt_rq->rt_se = rt_se;
  6709. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6710. if (add)
  6711. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6712. tg->rt_se[cpu] = rt_se;
  6713. if (!rt_se)
  6714. return;
  6715. if (!parent)
  6716. rt_se->rt_rq = &rq->rt;
  6717. else
  6718. rt_se->rt_rq = parent->my_q;
  6719. rt_se->my_q = rt_rq;
  6720. rt_se->parent = parent;
  6721. INIT_LIST_HEAD(&rt_se->run_list);
  6722. }
  6723. #endif
  6724. void __init sched_init(void)
  6725. {
  6726. int i, j;
  6727. unsigned long alloc_size = 0, ptr;
  6728. #ifdef CONFIG_FAIR_GROUP_SCHED
  6729. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6730. #endif
  6731. #ifdef CONFIG_RT_GROUP_SCHED
  6732. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6733. #endif
  6734. #ifdef CONFIG_USER_SCHED
  6735. alloc_size *= 2;
  6736. #endif
  6737. /*
  6738. * As sched_init() is called before page_alloc is setup,
  6739. * we use alloc_bootmem().
  6740. */
  6741. if (alloc_size) {
  6742. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6743. #ifdef CONFIG_FAIR_GROUP_SCHED
  6744. init_task_group.se = (struct sched_entity **)ptr;
  6745. ptr += nr_cpu_ids * sizeof(void **);
  6746. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6747. ptr += nr_cpu_ids * sizeof(void **);
  6748. #ifdef CONFIG_USER_SCHED
  6749. root_task_group.se = (struct sched_entity **)ptr;
  6750. ptr += nr_cpu_ids * sizeof(void **);
  6751. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6752. ptr += nr_cpu_ids * sizeof(void **);
  6753. #endif /* CONFIG_USER_SCHED */
  6754. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6755. #ifdef CONFIG_RT_GROUP_SCHED
  6756. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6757. ptr += nr_cpu_ids * sizeof(void **);
  6758. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6759. ptr += nr_cpu_ids * sizeof(void **);
  6760. #ifdef CONFIG_USER_SCHED
  6761. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6762. ptr += nr_cpu_ids * sizeof(void **);
  6763. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6764. ptr += nr_cpu_ids * sizeof(void **);
  6765. #endif /* CONFIG_USER_SCHED */
  6766. #endif /* CONFIG_RT_GROUP_SCHED */
  6767. }
  6768. #ifdef CONFIG_SMP
  6769. init_defrootdomain();
  6770. #endif
  6771. init_rt_bandwidth(&def_rt_bandwidth,
  6772. global_rt_period(), global_rt_runtime());
  6773. #ifdef CONFIG_RT_GROUP_SCHED
  6774. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6775. global_rt_period(), global_rt_runtime());
  6776. #ifdef CONFIG_USER_SCHED
  6777. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6778. global_rt_period(), RUNTIME_INF);
  6779. #endif /* CONFIG_USER_SCHED */
  6780. #endif /* CONFIG_RT_GROUP_SCHED */
  6781. #ifdef CONFIG_GROUP_SCHED
  6782. list_add(&init_task_group.list, &task_groups);
  6783. INIT_LIST_HEAD(&init_task_group.children);
  6784. #ifdef CONFIG_USER_SCHED
  6785. INIT_LIST_HEAD(&root_task_group.children);
  6786. init_task_group.parent = &root_task_group;
  6787. list_add(&init_task_group.siblings, &root_task_group.children);
  6788. #endif /* CONFIG_USER_SCHED */
  6789. #endif /* CONFIG_GROUP_SCHED */
  6790. for_each_possible_cpu(i) {
  6791. struct rq *rq;
  6792. rq = cpu_rq(i);
  6793. spin_lock_init(&rq->lock);
  6794. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6795. rq->nr_running = 0;
  6796. init_cfs_rq(&rq->cfs, rq);
  6797. init_rt_rq(&rq->rt, rq);
  6798. #ifdef CONFIG_FAIR_GROUP_SCHED
  6799. init_task_group.shares = init_task_group_load;
  6800. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6801. #ifdef CONFIG_CGROUP_SCHED
  6802. /*
  6803. * How much cpu bandwidth does init_task_group get?
  6804. *
  6805. * In case of task-groups formed thr' the cgroup filesystem, it
  6806. * gets 100% of the cpu resources in the system. This overall
  6807. * system cpu resource is divided among the tasks of
  6808. * init_task_group and its child task-groups in a fair manner,
  6809. * based on each entity's (task or task-group's) weight
  6810. * (se->load.weight).
  6811. *
  6812. * In other words, if init_task_group has 10 tasks of weight
  6813. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6814. * then A0's share of the cpu resource is:
  6815. *
  6816. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6817. *
  6818. * We achieve this by letting init_task_group's tasks sit
  6819. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6820. */
  6821. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6822. #elif defined CONFIG_USER_SCHED
  6823. root_task_group.shares = NICE_0_LOAD;
  6824. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6825. /*
  6826. * In case of task-groups formed thr' the user id of tasks,
  6827. * init_task_group represents tasks belonging to root user.
  6828. * Hence it forms a sibling of all subsequent groups formed.
  6829. * In this case, init_task_group gets only a fraction of overall
  6830. * system cpu resource, based on the weight assigned to root
  6831. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6832. * by letting tasks of init_task_group sit in a separate cfs_rq
  6833. * (init_cfs_rq) and having one entity represent this group of
  6834. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6835. */
  6836. init_tg_cfs_entry(&init_task_group,
  6837. &per_cpu(init_cfs_rq, i),
  6838. &per_cpu(init_sched_entity, i), i, 1,
  6839. root_task_group.se[i]);
  6840. #endif
  6841. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6842. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6843. #ifdef CONFIG_RT_GROUP_SCHED
  6844. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6845. #ifdef CONFIG_CGROUP_SCHED
  6846. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6847. #elif defined CONFIG_USER_SCHED
  6848. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6849. init_tg_rt_entry(&init_task_group,
  6850. &per_cpu(init_rt_rq, i),
  6851. &per_cpu(init_sched_rt_entity, i), i, 1,
  6852. root_task_group.rt_se[i]);
  6853. #endif
  6854. #endif
  6855. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6856. rq->cpu_load[j] = 0;
  6857. #ifdef CONFIG_SMP
  6858. rq->sd = NULL;
  6859. rq->rd = NULL;
  6860. rq->active_balance = 0;
  6861. rq->next_balance = jiffies;
  6862. rq->push_cpu = 0;
  6863. rq->cpu = i;
  6864. rq->online = 0;
  6865. rq->migration_thread = NULL;
  6866. INIT_LIST_HEAD(&rq->migration_queue);
  6867. rq_attach_root(rq, &def_root_domain);
  6868. #endif
  6869. init_rq_hrtick(rq);
  6870. atomic_set(&rq->nr_iowait, 0);
  6871. }
  6872. set_load_weight(&init_task);
  6873. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6874. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6875. #endif
  6876. #ifdef CONFIG_SMP
  6877. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6878. #endif
  6879. #ifdef CONFIG_RT_MUTEXES
  6880. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6881. #endif
  6882. /*
  6883. * The boot idle thread does lazy MMU switching as well:
  6884. */
  6885. atomic_inc(&init_mm.mm_count);
  6886. enter_lazy_tlb(&init_mm, current);
  6887. /*
  6888. * Make us the idle thread. Technically, schedule() should not be
  6889. * called from this thread, however somewhere below it might be,
  6890. * but because we are the idle thread, we just pick up running again
  6891. * when this runqueue becomes "idle".
  6892. */
  6893. init_idle(current, smp_processor_id());
  6894. /*
  6895. * During early bootup we pretend to be a normal task:
  6896. */
  6897. current->sched_class = &fair_sched_class;
  6898. scheduler_running = 1;
  6899. }
  6900. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6901. void __might_sleep(char *file, int line)
  6902. {
  6903. #ifdef in_atomic
  6904. static unsigned long prev_jiffy; /* ratelimiting */
  6905. if ((in_atomic() || irqs_disabled()) &&
  6906. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6907. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6908. return;
  6909. prev_jiffy = jiffies;
  6910. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6911. " context at %s:%d\n", file, line);
  6912. printk("in_atomic():%d, irqs_disabled():%d\n",
  6913. in_atomic(), irqs_disabled());
  6914. debug_show_held_locks(current);
  6915. if (irqs_disabled())
  6916. print_irqtrace_events(current);
  6917. dump_stack();
  6918. }
  6919. #endif
  6920. }
  6921. EXPORT_SYMBOL(__might_sleep);
  6922. #endif
  6923. #ifdef CONFIG_MAGIC_SYSRQ
  6924. static void normalize_task(struct rq *rq, struct task_struct *p)
  6925. {
  6926. int on_rq;
  6927. update_rq_clock(rq);
  6928. on_rq = p->se.on_rq;
  6929. if (on_rq)
  6930. deactivate_task(rq, p, 0);
  6931. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6932. if (on_rq) {
  6933. activate_task(rq, p, 0);
  6934. resched_task(rq->curr);
  6935. }
  6936. }
  6937. void normalize_rt_tasks(void)
  6938. {
  6939. struct task_struct *g, *p;
  6940. unsigned long flags;
  6941. struct rq *rq;
  6942. read_lock_irqsave(&tasklist_lock, flags);
  6943. do_each_thread(g, p) {
  6944. /*
  6945. * Only normalize user tasks:
  6946. */
  6947. if (!p->mm)
  6948. continue;
  6949. p->se.exec_start = 0;
  6950. #ifdef CONFIG_SCHEDSTATS
  6951. p->se.wait_start = 0;
  6952. p->se.sleep_start = 0;
  6953. p->se.block_start = 0;
  6954. #endif
  6955. if (!rt_task(p)) {
  6956. /*
  6957. * Renice negative nice level userspace
  6958. * tasks back to 0:
  6959. */
  6960. if (TASK_NICE(p) < 0 && p->mm)
  6961. set_user_nice(p, 0);
  6962. continue;
  6963. }
  6964. spin_lock(&p->pi_lock);
  6965. rq = __task_rq_lock(p);
  6966. normalize_task(rq, p);
  6967. __task_rq_unlock(rq);
  6968. spin_unlock(&p->pi_lock);
  6969. } while_each_thread(g, p);
  6970. read_unlock_irqrestore(&tasklist_lock, flags);
  6971. }
  6972. #endif /* CONFIG_MAGIC_SYSRQ */
  6973. #ifdef CONFIG_IA64
  6974. /*
  6975. * These functions are only useful for the IA64 MCA handling.
  6976. *
  6977. * They can only be called when the whole system has been
  6978. * stopped - every CPU needs to be quiescent, and no scheduling
  6979. * activity can take place. Using them for anything else would
  6980. * be a serious bug, and as a result, they aren't even visible
  6981. * under any other configuration.
  6982. */
  6983. /**
  6984. * curr_task - return the current task for a given cpu.
  6985. * @cpu: the processor in question.
  6986. *
  6987. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6988. */
  6989. struct task_struct *curr_task(int cpu)
  6990. {
  6991. return cpu_curr(cpu);
  6992. }
  6993. /**
  6994. * set_curr_task - set the current task for a given cpu.
  6995. * @cpu: the processor in question.
  6996. * @p: the task pointer to set.
  6997. *
  6998. * Description: This function must only be used when non-maskable interrupts
  6999. * are serviced on a separate stack. It allows the architecture to switch the
  7000. * notion of the current task on a cpu in a non-blocking manner. This function
  7001. * must be called with all CPU's synchronized, and interrupts disabled, the
  7002. * and caller must save the original value of the current task (see
  7003. * curr_task() above) and restore that value before reenabling interrupts and
  7004. * re-starting the system.
  7005. *
  7006. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7007. */
  7008. void set_curr_task(int cpu, struct task_struct *p)
  7009. {
  7010. cpu_curr(cpu) = p;
  7011. }
  7012. #endif
  7013. #ifdef CONFIG_FAIR_GROUP_SCHED
  7014. static void free_fair_sched_group(struct task_group *tg)
  7015. {
  7016. int i;
  7017. for_each_possible_cpu(i) {
  7018. if (tg->cfs_rq)
  7019. kfree(tg->cfs_rq[i]);
  7020. if (tg->se)
  7021. kfree(tg->se[i]);
  7022. }
  7023. kfree(tg->cfs_rq);
  7024. kfree(tg->se);
  7025. }
  7026. static
  7027. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7028. {
  7029. struct cfs_rq *cfs_rq;
  7030. struct sched_entity *se, *parent_se;
  7031. struct rq *rq;
  7032. int i;
  7033. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7034. if (!tg->cfs_rq)
  7035. goto err;
  7036. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7037. if (!tg->se)
  7038. goto err;
  7039. tg->shares = NICE_0_LOAD;
  7040. for_each_possible_cpu(i) {
  7041. rq = cpu_rq(i);
  7042. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7043. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7044. if (!cfs_rq)
  7045. goto err;
  7046. se = kmalloc_node(sizeof(struct sched_entity),
  7047. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7048. if (!se)
  7049. goto err;
  7050. parent_se = parent ? parent->se[i] : NULL;
  7051. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7052. }
  7053. return 1;
  7054. err:
  7055. return 0;
  7056. }
  7057. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7058. {
  7059. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7060. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7061. }
  7062. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7063. {
  7064. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7065. }
  7066. #else /* !CONFG_FAIR_GROUP_SCHED */
  7067. static inline void free_fair_sched_group(struct task_group *tg)
  7068. {
  7069. }
  7070. static inline
  7071. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7072. {
  7073. return 1;
  7074. }
  7075. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7076. {
  7077. }
  7078. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7079. {
  7080. }
  7081. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7082. #ifdef CONFIG_RT_GROUP_SCHED
  7083. static void free_rt_sched_group(struct task_group *tg)
  7084. {
  7085. int i;
  7086. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7087. for_each_possible_cpu(i) {
  7088. if (tg->rt_rq)
  7089. kfree(tg->rt_rq[i]);
  7090. if (tg->rt_se)
  7091. kfree(tg->rt_se[i]);
  7092. }
  7093. kfree(tg->rt_rq);
  7094. kfree(tg->rt_se);
  7095. }
  7096. static
  7097. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7098. {
  7099. struct rt_rq *rt_rq;
  7100. struct sched_rt_entity *rt_se, *parent_se;
  7101. struct rq *rq;
  7102. int i;
  7103. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7104. if (!tg->rt_rq)
  7105. goto err;
  7106. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7107. if (!tg->rt_se)
  7108. goto err;
  7109. init_rt_bandwidth(&tg->rt_bandwidth,
  7110. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7111. for_each_possible_cpu(i) {
  7112. rq = cpu_rq(i);
  7113. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7114. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7115. if (!rt_rq)
  7116. goto err;
  7117. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7118. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7119. if (!rt_se)
  7120. goto err;
  7121. parent_se = parent ? parent->rt_se[i] : NULL;
  7122. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7123. }
  7124. return 1;
  7125. err:
  7126. return 0;
  7127. }
  7128. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7129. {
  7130. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7131. &cpu_rq(cpu)->leaf_rt_rq_list);
  7132. }
  7133. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7134. {
  7135. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7136. }
  7137. #else /* !CONFIG_RT_GROUP_SCHED */
  7138. static inline void free_rt_sched_group(struct task_group *tg)
  7139. {
  7140. }
  7141. static inline
  7142. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7143. {
  7144. return 1;
  7145. }
  7146. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7147. {
  7148. }
  7149. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7150. {
  7151. }
  7152. #endif /* CONFIG_RT_GROUP_SCHED */
  7153. #ifdef CONFIG_GROUP_SCHED
  7154. static void free_sched_group(struct task_group *tg)
  7155. {
  7156. free_fair_sched_group(tg);
  7157. free_rt_sched_group(tg);
  7158. kfree(tg);
  7159. }
  7160. /* allocate runqueue etc for a new task group */
  7161. struct task_group *sched_create_group(struct task_group *parent)
  7162. {
  7163. struct task_group *tg;
  7164. unsigned long flags;
  7165. int i;
  7166. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7167. if (!tg)
  7168. return ERR_PTR(-ENOMEM);
  7169. if (!alloc_fair_sched_group(tg, parent))
  7170. goto err;
  7171. if (!alloc_rt_sched_group(tg, parent))
  7172. goto err;
  7173. spin_lock_irqsave(&task_group_lock, flags);
  7174. for_each_possible_cpu(i) {
  7175. register_fair_sched_group(tg, i);
  7176. register_rt_sched_group(tg, i);
  7177. }
  7178. list_add_rcu(&tg->list, &task_groups);
  7179. WARN_ON(!parent); /* root should already exist */
  7180. tg->parent = parent;
  7181. list_add_rcu(&tg->siblings, &parent->children);
  7182. INIT_LIST_HEAD(&tg->children);
  7183. spin_unlock_irqrestore(&task_group_lock, flags);
  7184. return tg;
  7185. err:
  7186. free_sched_group(tg);
  7187. return ERR_PTR(-ENOMEM);
  7188. }
  7189. /* rcu callback to free various structures associated with a task group */
  7190. static void free_sched_group_rcu(struct rcu_head *rhp)
  7191. {
  7192. /* now it should be safe to free those cfs_rqs */
  7193. free_sched_group(container_of(rhp, struct task_group, rcu));
  7194. }
  7195. /* Destroy runqueue etc associated with a task group */
  7196. void sched_destroy_group(struct task_group *tg)
  7197. {
  7198. unsigned long flags;
  7199. int i;
  7200. spin_lock_irqsave(&task_group_lock, flags);
  7201. for_each_possible_cpu(i) {
  7202. unregister_fair_sched_group(tg, i);
  7203. unregister_rt_sched_group(tg, i);
  7204. }
  7205. list_del_rcu(&tg->list);
  7206. list_del_rcu(&tg->siblings);
  7207. spin_unlock_irqrestore(&task_group_lock, flags);
  7208. /* wait for possible concurrent references to cfs_rqs complete */
  7209. call_rcu(&tg->rcu, free_sched_group_rcu);
  7210. }
  7211. /* change task's runqueue when it moves between groups.
  7212. * The caller of this function should have put the task in its new group
  7213. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7214. * reflect its new group.
  7215. */
  7216. void sched_move_task(struct task_struct *tsk)
  7217. {
  7218. int on_rq, running;
  7219. unsigned long flags;
  7220. struct rq *rq;
  7221. rq = task_rq_lock(tsk, &flags);
  7222. update_rq_clock(rq);
  7223. running = task_current(rq, tsk);
  7224. on_rq = tsk->se.on_rq;
  7225. if (on_rq)
  7226. dequeue_task(rq, tsk, 0);
  7227. if (unlikely(running))
  7228. tsk->sched_class->put_prev_task(rq, tsk);
  7229. set_task_rq(tsk, task_cpu(tsk));
  7230. #ifdef CONFIG_FAIR_GROUP_SCHED
  7231. if (tsk->sched_class->moved_group)
  7232. tsk->sched_class->moved_group(tsk);
  7233. #endif
  7234. if (unlikely(running))
  7235. tsk->sched_class->set_curr_task(rq);
  7236. if (on_rq)
  7237. enqueue_task(rq, tsk, 0);
  7238. task_rq_unlock(rq, &flags);
  7239. }
  7240. #endif /* CONFIG_GROUP_SCHED */
  7241. #ifdef CONFIG_FAIR_GROUP_SCHED
  7242. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7243. {
  7244. struct cfs_rq *cfs_rq = se->cfs_rq;
  7245. int on_rq;
  7246. on_rq = se->on_rq;
  7247. if (on_rq)
  7248. dequeue_entity(cfs_rq, se, 0);
  7249. se->load.weight = shares;
  7250. se->load.inv_weight = 0;
  7251. if (on_rq)
  7252. enqueue_entity(cfs_rq, se, 0);
  7253. }
  7254. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7255. {
  7256. struct cfs_rq *cfs_rq = se->cfs_rq;
  7257. struct rq *rq = cfs_rq->rq;
  7258. unsigned long flags;
  7259. spin_lock_irqsave(&rq->lock, flags);
  7260. __set_se_shares(se, shares);
  7261. spin_unlock_irqrestore(&rq->lock, flags);
  7262. }
  7263. static DEFINE_MUTEX(shares_mutex);
  7264. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7265. {
  7266. int i;
  7267. unsigned long flags;
  7268. /*
  7269. * We can't change the weight of the root cgroup.
  7270. */
  7271. if (!tg->se[0])
  7272. return -EINVAL;
  7273. if (shares < MIN_SHARES)
  7274. shares = MIN_SHARES;
  7275. else if (shares > MAX_SHARES)
  7276. shares = MAX_SHARES;
  7277. mutex_lock(&shares_mutex);
  7278. if (tg->shares == shares)
  7279. goto done;
  7280. spin_lock_irqsave(&task_group_lock, flags);
  7281. for_each_possible_cpu(i)
  7282. unregister_fair_sched_group(tg, i);
  7283. list_del_rcu(&tg->siblings);
  7284. spin_unlock_irqrestore(&task_group_lock, flags);
  7285. /* wait for any ongoing reference to this group to finish */
  7286. synchronize_sched();
  7287. /*
  7288. * Now we are free to modify the group's share on each cpu
  7289. * w/o tripping rebalance_share or load_balance_fair.
  7290. */
  7291. tg->shares = shares;
  7292. for_each_possible_cpu(i) {
  7293. /*
  7294. * force a rebalance
  7295. */
  7296. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7297. set_se_shares(tg->se[i], shares);
  7298. }
  7299. /*
  7300. * Enable load balance activity on this group, by inserting it back on
  7301. * each cpu's rq->leaf_cfs_rq_list.
  7302. */
  7303. spin_lock_irqsave(&task_group_lock, flags);
  7304. for_each_possible_cpu(i)
  7305. register_fair_sched_group(tg, i);
  7306. list_add_rcu(&tg->siblings, &tg->parent->children);
  7307. spin_unlock_irqrestore(&task_group_lock, flags);
  7308. done:
  7309. mutex_unlock(&shares_mutex);
  7310. return 0;
  7311. }
  7312. unsigned long sched_group_shares(struct task_group *tg)
  7313. {
  7314. return tg->shares;
  7315. }
  7316. #endif
  7317. #ifdef CONFIG_RT_GROUP_SCHED
  7318. /*
  7319. * Ensure that the real time constraints are schedulable.
  7320. */
  7321. static DEFINE_MUTEX(rt_constraints_mutex);
  7322. static unsigned long to_ratio(u64 period, u64 runtime)
  7323. {
  7324. if (runtime == RUNTIME_INF)
  7325. return 1ULL << 16;
  7326. return div64_u64(runtime << 16, period);
  7327. }
  7328. #ifdef CONFIG_CGROUP_SCHED
  7329. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7330. {
  7331. struct task_group *tgi, *parent = tg->parent;
  7332. unsigned long total = 0;
  7333. if (!parent) {
  7334. if (global_rt_period() < period)
  7335. return 0;
  7336. return to_ratio(period, runtime) <
  7337. to_ratio(global_rt_period(), global_rt_runtime());
  7338. }
  7339. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7340. return 0;
  7341. rcu_read_lock();
  7342. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7343. if (tgi == tg)
  7344. continue;
  7345. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7346. tgi->rt_bandwidth.rt_runtime);
  7347. }
  7348. rcu_read_unlock();
  7349. return total + to_ratio(period, runtime) <=
  7350. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7351. parent->rt_bandwidth.rt_runtime);
  7352. }
  7353. #elif defined CONFIG_USER_SCHED
  7354. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7355. {
  7356. struct task_group *tgi;
  7357. unsigned long total = 0;
  7358. unsigned long global_ratio =
  7359. to_ratio(global_rt_period(), global_rt_runtime());
  7360. rcu_read_lock();
  7361. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7362. if (tgi == tg)
  7363. continue;
  7364. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7365. tgi->rt_bandwidth.rt_runtime);
  7366. }
  7367. rcu_read_unlock();
  7368. return total + to_ratio(period, runtime) < global_ratio;
  7369. }
  7370. #endif
  7371. /* Must be called with tasklist_lock held */
  7372. static inline int tg_has_rt_tasks(struct task_group *tg)
  7373. {
  7374. struct task_struct *g, *p;
  7375. do_each_thread(g, p) {
  7376. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7377. return 1;
  7378. } while_each_thread(g, p);
  7379. return 0;
  7380. }
  7381. static int tg_set_bandwidth(struct task_group *tg,
  7382. u64 rt_period, u64 rt_runtime)
  7383. {
  7384. int i, err = 0;
  7385. mutex_lock(&rt_constraints_mutex);
  7386. read_lock(&tasklist_lock);
  7387. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7388. err = -EBUSY;
  7389. goto unlock;
  7390. }
  7391. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7392. err = -EINVAL;
  7393. goto unlock;
  7394. }
  7395. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7396. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7397. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7398. for_each_possible_cpu(i) {
  7399. struct rt_rq *rt_rq = tg->rt_rq[i];
  7400. spin_lock(&rt_rq->rt_runtime_lock);
  7401. rt_rq->rt_runtime = rt_runtime;
  7402. spin_unlock(&rt_rq->rt_runtime_lock);
  7403. }
  7404. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7405. unlock:
  7406. read_unlock(&tasklist_lock);
  7407. mutex_unlock(&rt_constraints_mutex);
  7408. return err;
  7409. }
  7410. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7411. {
  7412. u64 rt_runtime, rt_period;
  7413. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7414. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7415. if (rt_runtime_us < 0)
  7416. rt_runtime = RUNTIME_INF;
  7417. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7418. }
  7419. long sched_group_rt_runtime(struct task_group *tg)
  7420. {
  7421. u64 rt_runtime_us;
  7422. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7423. return -1;
  7424. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7425. do_div(rt_runtime_us, NSEC_PER_USEC);
  7426. return rt_runtime_us;
  7427. }
  7428. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7429. {
  7430. u64 rt_runtime, rt_period;
  7431. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7432. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7433. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7434. }
  7435. long sched_group_rt_period(struct task_group *tg)
  7436. {
  7437. u64 rt_period_us;
  7438. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7439. do_div(rt_period_us, NSEC_PER_USEC);
  7440. return rt_period_us;
  7441. }
  7442. static int sched_rt_global_constraints(void)
  7443. {
  7444. struct task_group *tg = &root_task_group;
  7445. u64 rt_runtime, rt_period;
  7446. int ret = 0;
  7447. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7448. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7449. mutex_lock(&rt_constraints_mutex);
  7450. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7451. ret = -EINVAL;
  7452. mutex_unlock(&rt_constraints_mutex);
  7453. return ret;
  7454. }
  7455. #else /* !CONFIG_RT_GROUP_SCHED */
  7456. static int sched_rt_global_constraints(void)
  7457. {
  7458. unsigned long flags;
  7459. int i;
  7460. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7461. for_each_possible_cpu(i) {
  7462. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7463. spin_lock(&rt_rq->rt_runtime_lock);
  7464. rt_rq->rt_runtime = global_rt_runtime();
  7465. spin_unlock(&rt_rq->rt_runtime_lock);
  7466. }
  7467. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7468. return 0;
  7469. }
  7470. #endif /* CONFIG_RT_GROUP_SCHED */
  7471. int sched_rt_handler(struct ctl_table *table, int write,
  7472. struct file *filp, void __user *buffer, size_t *lenp,
  7473. loff_t *ppos)
  7474. {
  7475. int ret;
  7476. int old_period, old_runtime;
  7477. static DEFINE_MUTEX(mutex);
  7478. mutex_lock(&mutex);
  7479. old_period = sysctl_sched_rt_period;
  7480. old_runtime = sysctl_sched_rt_runtime;
  7481. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7482. if (!ret && write) {
  7483. ret = sched_rt_global_constraints();
  7484. if (ret) {
  7485. sysctl_sched_rt_period = old_period;
  7486. sysctl_sched_rt_runtime = old_runtime;
  7487. } else {
  7488. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7489. def_rt_bandwidth.rt_period =
  7490. ns_to_ktime(global_rt_period());
  7491. }
  7492. }
  7493. mutex_unlock(&mutex);
  7494. return ret;
  7495. }
  7496. #ifdef CONFIG_CGROUP_SCHED
  7497. /* return corresponding task_group object of a cgroup */
  7498. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7499. {
  7500. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7501. struct task_group, css);
  7502. }
  7503. static struct cgroup_subsys_state *
  7504. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7505. {
  7506. struct task_group *tg, *parent;
  7507. if (!cgrp->parent) {
  7508. /* This is early initialization for the top cgroup */
  7509. init_task_group.css.cgroup = cgrp;
  7510. return &init_task_group.css;
  7511. }
  7512. parent = cgroup_tg(cgrp->parent);
  7513. tg = sched_create_group(parent);
  7514. if (IS_ERR(tg))
  7515. return ERR_PTR(-ENOMEM);
  7516. /* Bind the cgroup to task_group object we just created */
  7517. tg->css.cgroup = cgrp;
  7518. return &tg->css;
  7519. }
  7520. static void
  7521. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7522. {
  7523. struct task_group *tg = cgroup_tg(cgrp);
  7524. sched_destroy_group(tg);
  7525. }
  7526. static int
  7527. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7528. struct task_struct *tsk)
  7529. {
  7530. #ifdef CONFIG_RT_GROUP_SCHED
  7531. /* Don't accept realtime tasks when there is no way for them to run */
  7532. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7533. return -EINVAL;
  7534. #else
  7535. /* We don't support RT-tasks being in separate groups */
  7536. if (tsk->sched_class != &fair_sched_class)
  7537. return -EINVAL;
  7538. #endif
  7539. return 0;
  7540. }
  7541. static void
  7542. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7543. struct cgroup *old_cont, struct task_struct *tsk)
  7544. {
  7545. sched_move_task(tsk);
  7546. }
  7547. #ifdef CONFIG_FAIR_GROUP_SCHED
  7548. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7549. u64 shareval)
  7550. {
  7551. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7552. }
  7553. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7554. {
  7555. struct task_group *tg = cgroup_tg(cgrp);
  7556. return (u64) tg->shares;
  7557. }
  7558. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7559. #ifdef CONFIG_RT_GROUP_SCHED
  7560. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7561. s64 val)
  7562. {
  7563. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7564. }
  7565. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7566. {
  7567. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7568. }
  7569. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7570. u64 rt_period_us)
  7571. {
  7572. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7573. }
  7574. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7575. {
  7576. return sched_group_rt_period(cgroup_tg(cgrp));
  7577. }
  7578. #endif /* CONFIG_RT_GROUP_SCHED */
  7579. static struct cftype cpu_files[] = {
  7580. #ifdef CONFIG_FAIR_GROUP_SCHED
  7581. {
  7582. .name = "shares",
  7583. .read_u64 = cpu_shares_read_u64,
  7584. .write_u64 = cpu_shares_write_u64,
  7585. },
  7586. #endif
  7587. #ifdef CONFIG_RT_GROUP_SCHED
  7588. {
  7589. .name = "rt_runtime_us",
  7590. .read_s64 = cpu_rt_runtime_read,
  7591. .write_s64 = cpu_rt_runtime_write,
  7592. },
  7593. {
  7594. .name = "rt_period_us",
  7595. .read_u64 = cpu_rt_period_read_uint,
  7596. .write_u64 = cpu_rt_period_write_uint,
  7597. },
  7598. #endif
  7599. };
  7600. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7601. {
  7602. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7603. }
  7604. struct cgroup_subsys cpu_cgroup_subsys = {
  7605. .name = "cpu",
  7606. .create = cpu_cgroup_create,
  7607. .destroy = cpu_cgroup_destroy,
  7608. .can_attach = cpu_cgroup_can_attach,
  7609. .attach = cpu_cgroup_attach,
  7610. .populate = cpu_cgroup_populate,
  7611. .subsys_id = cpu_cgroup_subsys_id,
  7612. .early_init = 1,
  7613. };
  7614. #endif /* CONFIG_CGROUP_SCHED */
  7615. #ifdef CONFIG_CGROUP_CPUACCT
  7616. /*
  7617. * CPU accounting code for task groups.
  7618. *
  7619. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7620. * (balbir@in.ibm.com).
  7621. */
  7622. /* track cpu usage of a group of tasks */
  7623. struct cpuacct {
  7624. struct cgroup_subsys_state css;
  7625. /* cpuusage holds pointer to a u64-type object on every cpu */
  7626. u64 *cpuusage;
  7627. };
  7628. struct cgroup_subsys cpuacct_subsys;
  7629. /* return cpu accounting group corresponding to this container */
  7630. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7631. {
  7632. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7633. struct cpuacct, css);
  7634. }
  7635. /* return cpu accounting group to which this task belongs */
  7636. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7637. {
  7638. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7639. struct cpuacct, css);
  7640. }
  7641. /* create a new cpu accounting group */
  7642. static struct cgroup_subsys_state *cpuacct_create(
  7643. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7644. {
  7645. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7646. if (!ca)
  7647. return ERR_PTR(-ENOMEM);
  7648. ca->cpuusage = alloc_percpu(u64);
  7649. if (!ca->cpuusage) {
  7650. kfree(ca);
  7651. return ERR_PTR(-ENOMEM);
  7652. }
  7653. return &ca->css;
  7654. }
  7655. /* destroy an existing cpu accounting group */
  7656. static void
  7657. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7658. {
  7659. struct cpuacct *ca = cgroup_ca(cgrp);
  7660. free_percpu(ca->cpuusage);
  7661. kfree(ca);
  7662. }
  7663. /* return total cpu usage (in nanoseconds) of a group */
  7664. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7665. {
  7666. struct cpuacct *ca = cgroup_ca(cgrp);
  7667. u64 totalcpuusage = 0;
  7668. int i;
  7669. for_each_possible_cpu(i) {
  7670. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7671. /*
  7672. * Take rq->lock to make 64-bit addition safe on 32-bit
  7673. * platforms.
  7674. */
  7675. spin_lock_irq(&cpu_rq(i)->lock);
  7676. totalcpuusage += *cpuusage;
  7677. spin_unlock_irq(&cpu_rq(i)->lock);
  7678. }
  7679. return totalcpuusage;
  7680. }
  7681. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7682. u64 reset)
  7683. {
  7684. struct cpuacct *ca = cgroup_ca(cgrp);
  7685. int err = 0;
  7686. int i;
  7687. if (reset) {
  7688. err = -EINVAL;
  7689. goto out;
  7690. }
  7691. for_each_possible_cpu(i) {
  7692. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7693. spin_lock_irq(&cpu_rq(i)->lock);
  7694. *cpuusage = 0;
  7695. spin_unlock_irq(&cpu_rq(i)->lock);
  7696. }
  7697. out:
  7698. return err;
  7699. }
  7700. static struct cftype files[] = {
  7701. {
  7702. .name = "usage",
  7703. .read_u64 = cpuusage_read,
  7704. .write_u64 = cpuusage_write,
  7705. },
  7706. };
  7707. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7708. {
  7709. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7710. }
  7711. /*
  7712. * charge this task's execution time to its accounting group.
  7713. *
  7714. * called with rq->lock held.
  7715. */
  7716. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7717. {
  7718. struct cpuacct *ca;
  7719. if (!cpuacct_subsys.active)
  7720. return;
  7721. ca = task_ca(tsk);
  7722. if (ca) {
  7723. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7724. *cpuusage += cputime;
  7725. }
  7726. }
  7727. struct cgroup_subsys cpuacct_subsys = {
  7728. .name = "cpuacct",
  7729. .create = cpuacct_create,
  7730. .destroy = cpuacct_destroy,
  7731. .populate = cpuacct_populate,
  7732. .subsys_id = cpuacct_subsys_id,
  7733. };
  7734. #endif /* CONFIG_CGROUP_CPUACCT */